
Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

PASTA: PRETRAINED ACTION-STATE TRANSFORMER
AGENTS

Raphael Boige∗, Yannis Flet-Berliac∗, Arthur Flajolet, Guillaume Richard, Thomas Pierrot
InstaDeep
{r.boige,y.flet-berliac}@instadeep.com

ABSTRACT

Self-supervised learning has brought about a revolutionary paradigm shift in var-
ious computing domains, including NLP, vision, and biology. Recent approaches
involve pre-training transformer models on vast amounts of unlabeled data, serv-
ing as a starting point for efficiently solving downstream tasks. In reinforcement
learning, researchers have recently adapted these approaches, developing models
pre-trained on expert trajectories. This advancement enables the models to tackle
a broad spectrum of tasks, ranging from robotics to recommendation systems.
However, existing methods mostly rely on intricate pre-training objectives tai-
lored to specific downstream applications. This paper conducts a comprehensive
investigation of models, referred to as pre-trained action-state transformer agents
(PASTA). Our study covers a unified methodology and covers an extensive set of
general downstream tasks including behavioral cloning, offline RL, sensor failure
robustness, and dynamics change adaptation. Our objective is to systematically
compare various design choices and offer valuable insights that will aid practition-
ers in developing robust models. Key highlights of our study include tokenization
at the component level for actions and states, the use of fundamental pre-training
objectives such as next token prediction or masked language modeling, simulta-
neous training of models across multiple domains, and the application of various
fine-tuning strategies. In this study, the developed models contain fewer than 7
million parameters allowing a broad community to use these models and repro-
duce our experiments. We hope that this study will encourage further research
into the use of transformers with first principle design choices to represent RL
trajectories and contribute to robust policy learning.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a robust framework for training highly efficient agents
to interact with complex environments and learn optimal decision-making policies. RL algorithms
aim to devise effective strategies by maximizing cumulative rewards from interactions with the envi-
ronment. This approach has led to remarkable achievements in diverse fields, including gaming and
robotics (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016; Mnih et al., 2016). These
algorithms often comprise multiple components that are essential for training and adapting neural
policies. For example, model-based RL involves learning a model of the world (Racanière et al.,
2017; Hafner et al., 2019; Janner et al., 2019; Schrittwieser et al., 2020) while most model-free pol-
icy gradient methods train a value or Q-network to control the variance of the gradient update (Mnih
et al., 2013; Schulman et al., 2017; Haarnoja et al., 2018; Hessel et al., 2018). Training these multi-
faceted networks poses challenges due to their nested nature (Boyan & Moore, 1994; Anschel et al.,
2017) and the necessity to extract meaningful features from state-action spaces, coupled with assign-
ing appropriate credit in complex decision-making scenarios. Consequently, these factors contribute
to fragile learning procedures, high sensitivity to hyperparameters, and limitations on the network’s
parameter capacity (Islam et al., 2017; Henderson et al., 2018; Engstrom et al., 2020).

To address these challenges, various auxiliary tasks have been proposed, including pre-training
different networks to solve various tasks, such as forward or backward dynamics learning (Ha &

∗Equal contribution.

1



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Schmidhuber, 2018; Schwarzer et al., 2021) as well as using online contrastive learning to disen-
tangle feature extraction from task-solving (Laskin et al., 2020; Nachum & Yang, 2021; Eysenbach
et al., 2022). Alternatively, pre-training agents from a static dataset via offline RL without requiring
interaction with the environment also enables robust policies to be deployed for real applications.
Most of these approaches rely either on conservative policy optimization (Fujimoto & Gu, 2021;
Kumar et al., 2020) or supervised training on state-action-rewards trajectory inputs where the trans-
former architecture has proven to be particularly powerful (Chen et al., 2021; Janner et al., 2021).

Recently, self-supervised learning has emerged as a powerful paradigm for pre-training neural net-
works in various domains including NLP (Chowdhery et al., 2022; Brown et al., 2020; Touvron
et al., 2023), computer vision (Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2022) or bi-
ology (Lin et al., 2023; Dalla-Torre et al., 2023), especially when combined with the transformer
architecture. Inspired by impressive NLP results with the transformer architecture applied to se-
quential discrete data, most self-supervised techniques use tokenization, representing input data as a
sequence of discrete elements called tokens. Once the data is transformed, first principle objectives
such as mask modeling (Devlin et al., 2018) or next token prediction (Brown et al., 2020) can be
used for self-supervised training of the model. In RL, recent works have explored the use of self-
supervised learning to pre-train transformer networks with expert data. While these investigations
have yielded exciting outcomes, such as zero-shot capabilities and transfer learning between envi-
ronments, methods such as MTM (Wu et al., 2023) and SMART (Sun et al., 2023) often rely on
highly specific masking techniques and masking schedules (Liu et al., 2022a), and explore transfer
learning across a limited number of tasks. Hence, further exploration of this class of methods is war-
ranted. In this paper, we provide a general study of the different self-supervised objectives and of the
different tokenization techniques. In addition, we outline a standardized set of downstream tasks for
evaluating the transfer learning performance of pre-trained models, ranging from behavioral cloning
to offline RL, robustness to sensor failure, and adaptation to changing dynamics.

Our contributions. With this objective in mind, we introduce the PASTA study, which stands
for pretrained action-state transformer agents. This study provides comprehensive comparisons that
include four pre-training objectives, two tokenization techniques, four pre-training datasets, and 7
downstream tasks. These tasks are categorized into three groups and span four continuous control
environments. The PASTA downstream tasks encompass imitation learning and standard RL to
demonstrate the versatility of the pre-trained models. In addition, we explore scenarios involving
four physical regime changes and 11 observation alterations to assess the robustness of the pre-
trained representations. Finally, we assess the zero-shot performance of the models for predictions
related to decision-making. We summarize the key findings of our study below:

1. Tokenize trajectories at the component level. Tokenization at the component level signif-
icantly outperforms tokenization at the modality level. In other words, it is more effective
to tokenize trajectories based on the individual components of the state and action vectors,
rather than directly tokenizing states and actions as is commonly done in existing works.

2. Prefer first principle objectives over convoluted ones. First principle training objectives,
such as random masking or next-token prediction with standard hyperparameters match or
outperform more intricate and task-specific objectives carefully designed for RL, such as
those considered in MTM or SMART.

3. Pre-train the same model on datasets from multiple domains. Simultaneously pre-
training the model on datasets from the four environments leads to enhanced performance
across all four environments compared to training separate models for each environment.

4. Generalize with a small parameter count. All of the examined models have fewer than 7
million parameters. Hence, while these approaches are both affordable and practical even
on limited hardware resources, the above findings are corroborated by experimentation with
four transfer learning scenarios: a) probing (the pre-trained models generate embeddings
and only the policy heads are trained to address downstream tasks), b) last layer fine-tuning
(only the last layer of the pre-trained model is fine-tuned), c) full fine-tuning and d) zero-
shot transfer.

2



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Figure 1: Illustration of the PASTA study. Left: State-action trajectories are collected from multiple
environments and are tokenized at the component level. Middle: A transformer model is pre-
trained by processing fixed-size chunks of these sequences. It learns latent representations T (s)
of the environments’ states. In this study, we compare different tokenization schemes, masking
patterns, and pre-training objectives, e.g., random tokens prediction (BERT) or next token prediction
(GPT). Right: The representations of the pre-trained transformer models are evaluated on multiple
downstream tasks in which the learned representation T (s) serves as a surrogate state for the policy.
Different fine-tuning methods are investigated: probing, last-layer fine-tuning and full fine-tuning.

2 RELATED WORK

Self-supervised Learning for RL. Self-supervised learning, which trains models using unlabeled
data, has achieved notable success in various control domains (Liu & Abbeel, 2021; Yuan et al.,
2022; Laskin et al., 2022). One effective approach is contrastive self-prediction (Chopra et al., 2005;
Le-Khac et al., 2020; Yang & Nachum, 2021; Banino et al., 2021) which have proven effective
in efficient data augmentation strategies, enabling downstream task solving through fine-tuning,
particularly in RL tasks (Laskin et al., 2020; Nachum & Yang, 2021). Our study aligns with this
trend, focusing on domain-agnostic self-supervised mechanisms that leverage masked predictions to
pre-train general-purpose RL networks.

Offline RL and Imitation Learning. Offline learning for control involves leveraging historical
data from a fixed behavior policy πb to learn a reward-maximizing policy in an unknown envi-
ronment. Offline RL methods are typically designed to restrict the learned policy from producing
out-of-distribution actions or constrain the learning process within the support of the dataset. Most
of these methods usually leverage importance sampling (Sutton et al., 2016; Nair et al., 2020; Liu
et al., 2022b) or incorporate explicit policy constraints (Kumar et al., 2019; Fujimoto & Gu, 2021;
Fakoor et al., 2021; Dong et al., 2023). In contrast, Imitation learning (IL) focuses on learning poli-
cies by imitating expert demonstrations. Behavior cloning (BC) involves training a policy to mimic
expert actions directly while Inverse RL (Ng et al., 2000) aims to infer the underlying reward func-
tion to train policies that generalize well to new situations. In contrast, the models investigated in
PASTA focus on learning general reward-free representations that can accelerate and facilitate the
training of any off-the-shelf offline RL or IL algorithm.

Masked Predictions and Transformers in RL. Recently, self-supervised learning techniques
based on next token prediction (Brown et al., 2020) and random masked predictions (Devlin et al.,
2018) have gained popularity. These methods involve predicting missing content by masking por-
tions of the input sequence. These first principle pre-training methods have achieved remarkable
success in various domains, including NLP (Radford et al., 2018; 2019), computer vision (Dosovit-
skiy et al., 2020; Bao et al., 2021; Van Den Oord et al., 2017), and robotics (Driess et al., 2023). We
explore the effectiveness of different variants of these approaches, with various masking patterns and
pre-training objectives, in modeling RL trajectories and learning representations of state-action vec-
tor components. Transformer networks have been particularly valuable for these purposes. The de-

3



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

cision transformer (Chen et al., 2021) and trajectory transformer (Janner et al., 2021) have emerged
as offline RL approaches using a causal transformer architecture to fit a reward-conditioned policy,
paving the way for subsequent work (Zheng et al., 2022; Yamagata et al., 2022; Liu et al., 2022a; Lee
et al., 2023; Badrinath et al., 2023). Notably, GATO (Reed et al., 2022) is a multi-modal behavioral
cloning method that directly learns policies, while PASTA focuses on pre-training self-supervised
representations. Additionally, MTM (Wu et al., 2023) and SMART (Sun et al., 2023) propose orig-
inal masking objectives for pre-training transformers in RL. MTM randomly masks tokens while
ensuring some tokens are predicted without future context. It uses modality-level masking and is
limited to single-domain pre-training. Conversely, SMART uses a three-fold objective for pre-
training a decision transformer with forward-dynamics prediction, inverse-dynamics prediction, and
"random masked hindsight control" with a curriculum masking schedule. It focuses on processing
real-valued visual observation sequences and investigates generalization across different domains.
In PASTA, we compare several first principle pre-training objectives without a masking schedule to
these state-of-the-art approaches across multiple environments and diverse downstream tasks.

3 THE PASTA STUDY

3.1 PRELIMINARIES

Self-supervised Learning framework. In this paper, we study self-supervised learn-
ing (Balestriero et al., 2023) techniques to pre-train models on a large corpus of static (of-
fline) datasets from interactions with simulated environments, as done in Shah & Kumar (2021);
Schwarzer et al. (2023). By solving pre-training objectives, such as predicting future states or filling
in missing information, the models learn to extract meaningful features that capture the underlying
structure of the data. We focus our study on the use of the transformer architecture due to its ability
to model long-range dependencies and capture complex patterns in sequential data. In addition, the
attention mechanism is designed to consider the temporal and intra-modality (position in the state or
action vectors) dependencies. After pre-training the models, we evaluate their capabilities to solve
downstream tasks. This analysis is done through the lenses of three mechanisms: (i) probing, (ii)
fine-tuning, and (iii) zero-shot transfer. The goal of the study is to investigate which pre-training
process makes the model learn the most generalizable representations to provide a strong founda-
tion for adaptation and learning in specified environments. An illustration of the approach adopted
in PASTA is given in Figure 1.

Reinforcement Learning framework. In this paper, we place ourselves in the Markov De-
cision Processes (Puterman, 1994) framework. A Markov Decision Process (MDP) is a tuple
M = {S ,A ,P,R,γ}, where S is the state space, A is the action space, P is the transition kernel,
R is the bounded reward function and γ ∈ [0,1) is the discount factor. Let π denote a stochastic pol-
icy mapping states to distributions over actions. We place ourselves in the infinite-horizon setting,
i.e., we seek a policy that optimizes J(π) = Eπ [∑

∞
t=0 γ tr (st ,at)]. The value of a state is the quantity

V π(s) =Eπ [∑
∞
t=0 γ tr (st ,at) |s0 = s] and the value of a state-action pair Qπ(s,a) of performing action

a in state s and then following policy π is defined as: Qπ(s,a) = Eπ [∑
∞
t=0 γ tr (st ,at) |s0 = s,a0 = a].

3.2 COMPONENT-LEVEL TOKENIZATION

A key focus of the PASTA study is the representation of trajectories at the component-level for
states and actions (i.e., one state component corresponds to one token, as depicted in the middle
panel of Figure 1) rather than at the modality-level (i.e., one state corresponds to one token). Most
previous work, including SMART (Sun et al., 2023) and MTM (Wu et al., 2023) focus on the
modality-level and consider each trajectory as a sequence of state, action (and often return) tuples,
while an alternative is to break the sequences down into individual state and action components.
Moreover, for the purpose of this study, we exclude the return to focus on general methods applicable
to reward-free settings that learn representations not tied to task-specific rewards (Stooke et al.,
2021; Yarats et al., 2021). Based on our experimental results, we argue that the component-level
level tokenization allows capturing dynamics and dependencies at different space scales, as well as
the interplay between the agent’s morphological actions and the resulting states. As we observe
in Section 4, this results in more generalizable representations that improve the performance of
downstream tasks across different robotic structures.

4



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Figure 2: Performance aggregation of the component-level tokenization models (C-*) and modality-
level models (MTM and SMART) with different masking and training objectives. In (a) we report
the Interquartile Mean (IQM) of the expert normalized score, computed with stratified bootstrap
confidence intervals (CI), obtained in the four fine-tuning downstream tasks over 5 seeds and in (b)
the zero-shot transfer tasks: Action Prediction (AP), Forward Prediction (FP), and Inverse Predic-
tion (IP) with 95% CI. Results are aggregated over all four environments. We developed our own
implementation of MTM and SMART using the same masking patterns and training objectives. ↑
(resp. ↓) indicates that higher (resp. lower) is better.

3.3 PRE-TRAINING

Trajectory modeling. The PASTA study includes different types of self-supervised learning
strategies, each using different combinations of random token masking and/or next token prediction.
Next token prediction uses autoregressive masking, while random masked prediction aims to learn
from a sequence of trajectory tokens denoted as τ = (s0

0, ...,s
K
0 ,a

0
0, ...,a

L
0 , ...,s

0
T , ...,s

K
T ). The model’s

task is to reconstruct this sequence when presented with a masked version τ̂ = Tθ (Masked(τ)),
where K is the observation space size, L is the action space size and T is an arbitrary trajectory
size. Here, Tθ refers to a bi-directional transformer, and Masked(τ) represents a modified view
of τ where certain elements in the sequence are masked. For instance, a masked view could be
(s0

0, ...,s
K
0 ,a

0
0, ...,a

L
0 , ...,_, ...,_), where the underscore “_” symbol denotes a masked element.

Pre-training objectives. Next, we introduce the masking patterns investigated in the experimen-
tal study. First, the C-GPT masking pattern mimics GPT’s masking mechanism and uses causal
(backward-looking) attention to predict the next unseen token in RL trajectories. Second, we have
the C-BERT masking pattern, derived from BERT’s masking mechanism which uses random masks
to facilitate diverse learning signals from each trajectory by enabling different combinations. Fig-
ure 1 provides a visual representation of the C-BERT and C-GPT masking mechanisms. Third,
the MTM masking scheme (Wu et al., 2023) combines random masking (similar to BERT) and
causal prediction of the last elements of the trajectory. This latter aims to prevent the model from
overly relying on future token information. While MTM operates at the modality level, we adapt it
to operate directly on components by masking random tokens within the trajectory and additionally
masking a certain proportion of the last tokens. We refer to this method as C-MTM, which stands for
component-level MTM. Finally, SMART’s training objective encompasses three different masking
patterns (Sun et al., 2023): forward-dynamics, inverse-dynamics and masked hindsight control. The
training involves adding up the three losses corresponding to the three masking patterns. Similarly,
we derive C-SMART, where instead of masking an entire modality at each stage, we mask a random
fraction of the tokens within that modality. See Appendix C for additional details.

3.4 DOWNSTREAM EVALUATION

In this study, we evaluate the effectiveness of PASTA models in transfer learning from two perspec-
tives. Firstly, we examine the ability of pre-trained models to generate high-quality representations.
This evaluation is carried out through probing, full fine-tuning and last layer fine-tuning. Secondly,
we investigate the capability of pre-trained models to solve new tasks in a zero-shot transfer set-
ting. To accomplish this, we introduce two sets of tasks: Representation learning tasks (4) and
Zero-shot transfer tasks (3), comprising a total of 7 evaluation downstream tasks. These task sets

5



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

are further divided into sub-categories. These categories are designed to provide a general-purpose
assessment for pre-trained agents, irrespective of the specific environment or domain.

Figure 3: (a) Performance profile of models after full fine-tuning, last layer fine-tuning, no fine-
tuning (probing), and RL policies trained from raw observations. Shaded areas show bootstrapped
confidence intervals over 5 seeds and 256 rollouts. (b) Evaluation in all downstream tasks with
multi- and single-domain pre-training, no-pretraining and training from raw observations. Remark-
ably, multi-domain pre-training performs better or on par with single-domain pre-training, despite
being trained on the same amount of data.

Representation learning. The representation learning tasks encompass four sub-categories: Im-
itation Learning, Offline RL, Sensor Failure, and Dynamics Change. We evaluate the quality of
raw representations learned by pre-trained agents using probing on these tasks. In this setting, the
weights of the pre-trained models are kept fixed, and the embeddings produced by the final attention
layer are fed into a single dense layer network. As the expressive power of such networks is limited,
achieving good performance is contingent upon the embeddings containing sufficient information.
Furthermore, we assess the quality of the produced representations through full fine-tuning and last
layer fine-tuning, where the weights of the pre-trained agents are further updated to solve the down-
stream tasks. Fine-tuning just the last layer updates only a small fraction of the total weight volume
(<1 million parameters), enhancing memory efficiency and lowering the computational resources
required.

Zero-shot transfer. The zero-shot tasks are organized into three categories: Action Prediction
(AP), Forward dynamics Prediction (FP), and Inverse dynamics Prediction (IP). These categories
evaluate the pre-trained models’ ability to directly predict states or actions based on trajectory infor-
mation. Specifically, the prediction problems can be expressed as follows; AP: (τt−1,st → at ), FP:
(τt−1,st ,at → st+1) and IP: (τt−1,st ,st+1 → at ), where the input to the model is shown on the left
side of the parentheses, and the prediction target is shown on the right side. For each category, we
examine both component prediction and modality (state or action) prediction.

4 EXPERIMENTAL ANALYSIS

In this section, we present the experimental study conducted to examine the impact of pre-training
objectives, tokenization, and dataset preparation choices on the generalization capabilities of pre-
trained PASTA models.

4.1 EXPERIMENTAL SETUP

Domains. To assess the effectiveness of our approach, we select tasks from the Brax library (Free-
man et al., 2021a), which provides environments designed to closely match (Freeman et al., 2021b)
the original versions found in MuJoCo’s environment suite (Todorov et al., 2012). Brax provides

6



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Table 1: Comparison of agents using representations learned from modality-level tokenization,
component-level tokenization, and from an MLP policy network in the four representation learn-
ing downstream tasks. We include the maximum performance obtained using modality-level or
component-level tokenization. (↑) indicates higher is better and [11] means 11 variations per task.
We repeatedly trained all methods with 5 different random seeds and evaluated them using 256 roll-
outs.

Domain Task
RL policy

from raw obs
Modality-level
tokenization

Component-level
tokenization

HalfCheetah

IL (↑) [1] 1.132 ± 0.003 1.151 ± 0.003 1.154 ± 0.003
Off-RL (↑) [1] 0.571 ± 0.030 1.152 ± 0.004 1.154 ± 0.003
Sensor failure (↑) [11] 0.896 ± 0.003 1.006 ± 0.002 1.048 ± 0.002
Dynamics change (↑) [4] 0.251 ± 0.003 0.339 ± 0.003 0.369 ± 0.004

Hopper

IL (↑) [1] 0.898 ± 0.022 0.847 ± 0.019 1.078 ± 0.021
Off-RL (↑) [1] 0.890 ± 0.022 0.812 ± 0.020 0.971 ± 0.022
Sensor failure (↑) [11] 0.307 ± 0.005 0.554 ± 0.006 0.584 ± 0.007
Dynamics change (↑) [4] 0.169 ± 0.035 0.290 ± 0.035 0.290 ± 0.038

Walker2d

IL (↑) [1] 0.736 ± 0.010 1.128 ± 0.029 1.178 ± 0.031
Off-RL (↑) [1] 0.911 ± 0.025 0.923 ± 0.025 1.046 ± 0.023
Sensor failure (↑) [11] 0.339 ± 0.003 0.419 ± 0.003 0.511 ± 0.003
Dynamics change (↑) [4] 0.000 ± 0.000 0.004 ± 0.001 0.005 ± 0.001

Ant

IL (↑) [1] 0.876 ± 0.032 1.203 ± 0.008 1.209 ± 0.005
Off-RL (↑) [1] 0.846 ± 0.030 0.907 ± 0.035 1.213 ± 0.021
Sensor failure (↑) [11] 0.082 ± 0.004 0.615 ± 0.007 0.717 ± 0.007
Dynamics change (↑) [4] 0.015 ± 0.001 0.065 ± 0.001 0.068 ± 0.001

significant advantages over MuJoCo, as it offers a highly flexible and scalable framework for sim-
ulating robotic systems based on realistic physics. More information about the environments is
given in Appendix D.2. The pre-training datasets consist of trajectories collected from four Brax
environments: HalfCheetah, Hopper, Walker2d and Ant. Following the protocols used in previous
work (Fu et al., 2020; Sun et al., 2023), we trained 10 Soft Actor-Critic (SAC) (Haarnoja et al.,
2018) agents initialized with different seeds and collected single- and multi-domain datasets com-
posed of 680 million tokens in total. For details about the pre-training datasets, we refer the reader
to Appendix D.3.

Consequently, the 7 downstream tasks presented in Section 3 are set up for each environment re-
sulting in a total of 28 tasks across environments. The reason we introduce multiple environments
for pre-training and evaluation is (i) to evaluate the reproducibility of our findings across domains
and (ii) to study the performance of models pre-trained on the four datasets simultaneously (multi-
domains model) compared to specialized single-domain models. For further details about the im-
plementation of downstream tasks, please refer to Appendix D.4.

Implementation details. In this study, we focus on reasonably sized and efficient models, typi-
cally consisting of around 7 million parameters. To capture positional information effectively, we
incorporate a learned positional embedding layer at the component level. Additionally, we include
a rotary position encoding layer following the approach in Su et al. (2021) to account for relative
positional information. More implementation details are provided in Appendix B. To convert the
collected data (state or action components) into tokens, we adopt a tokenization scheme similar
to Reed et al. (2022). Continuous values are mu-law encoded to the range [-1, 1] and discretized
into 1024 uniform bins. The sequence order follows observation tokens followed by action tokens,
with transitions arranged in timestep order.

Baselines To put in perspective the performance attained by the different pre-trained models, we
compare them with a simple MLP architecture, that learns directly from the raw observations with
no pre-training. For fairness, the architecture and parameters of the MLP have been tuned by taking
the best performance independently on each domain and on each downstream task.

7



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

4.2 RESULTS

Component-level Tokenization. Our initial analysis probes the influence of tokenization detail –
how finely we dissect the data – on the models’ ability to generalize. We scrutinize this by training
models using both the SMART and MTM protocols at two levels of granularity: modality-level
(predicting entire observations and actions) for SMART and MTM, and component-level (focus-
ing on individual observation and action elements) for C-SMART and C-MTM. Despite sharing
identical architectures and training conditions, and being trained on the same multi-domain dataset,
the models’ fine-tuning performances vary. As depicted in Figure 2 (a), a shift from modality-level
to component-level tokenization markedly enhances model performance across a spectrum of tasks,
including Imitation Learning, Offline RL, variations of Sensor Failure, and Dynamics Change tasks.
Furthermore, Table 1 provides a breakdown of performance for both tokenization techniques across
different domains. Overall, we observe that transitioning from modality-level to component-level
tokenization improves performance.

Masking objectives. Subsequently, we compare fundamental tokenization approaches, i.e.,
masked language modeling (BERT) and next token prediction (GPT) against state-of-the-art trans-
former RL methods MTM and SMART which incorporate more tailored design choices. In the light
of the previous section demonstrating the advantages of using component-level tokenization, we de-
sign C-BERT and C-GPT which focus on individual observation and action elements. These mod-
els are trained under similar conditions as C-SMART and C-MTM on the multi-domain dataset.
We systematically fine-tune all models for all downstream tasks and domains. Figure 2 (a) reveals
that C-BERT exhibits on average higher performance on the considered downstream tasks com-
pared to other masking schemes and training objectives. This demonstrates that simpler objectives
are sufficient to achieve robust generalization performance. Based on C-BERT showing the best
performance among other models, it is selected for further analysis within this study.

Multi-domain representation. We now investigate the benefits of pre-training models on multi-
domain representations, using a granular, component-level tokenization approach. Figure 3 (b)
presents an aggregated comparison of multi-domain and single-domain representation models across
all tasks and domains, with each model being trained on the same number of tokens. We compare
these approaches with a randomly initialized model and our MLP policy network baseline. Our
findings confirm that policies trained with multi-domain representations using component-level to-
kenization outperform policies trained from raw observations with neural networks comprised of an
equivalent number of parameters (cf. Appendix D.1). This validates the capability of the model to
produce useful representations. We also compare the performance of multi-domain models against
a randomly initialized model (no pre-training) with the same architecture and confirm the positive
effect of pre-training on the observed performance. Then, comparing multi-domain models against
specialized models trained in isolation for each environment, we show that specialized models are
slightly outperformed in terms of final performance, suggesting that multi-domain models can com-
press the information contained in the representation of the four domains into one single model by
sharing most of the parameters between the different domains and without performance degrada-
tion. Note that to ensure a fair comparison, all models were trained on the same amount of tokens
and have the same representation capability (architecture and number of learned parameters). For
a detailed breakdown of the results for each downstream task, please refer to panels provided in
Appendix A.1.

Fine-tuning. Figure 3 (a) presents the performance profiles for various fine-tuning strategies:
probing (the transformer’s parameters are frozen), last layer fine-tuning (only the last layer’s pa-
rameters are trained) and full fine-tuning (all the parameters are trainable). We observe that full
fine-tuning results in a higher fraction of runs achieving near-expert scores, followed by last-layer
fine-tuning, MLP, and probing. We note that the performance of the probed model may initially seem
unexpected, yet several underlying factors could contribute to this outcome. Primarily, it suggests
that the pre-training tasks may not align closely with the downstream tasks, leading to represen-
tations that, although rich, are not directly applicable. This mirrors that of LLMs which require
task-specific fine-tuning for particular NLP applications. The results show that the fine-tuning pro-
cess appears to bridge the gap between the generic representations and the specialized requirements
of the downstream tasks.

8



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Table 2: Breakdown of Expert-normalized returns in the Sensor Failure and Dynamics Change tasks.
(↑) indicates that higher is better.

Model Sensor Failure Dynamics Change

Multi-domain pre-training (↑) 0.69±0.01 0.17±0.01
Single-domain pre-training (↑) 0.66±0.01 0.18±0.01
MLP (raw observations) (↑) 0.41±0.02 0.11±0.01
No pre-training (↑) 0.55±0.01 0.16±0.01

Robust representations. In this section, we focus on resilience to sensor failure and adaptability
to dynamics change. These factors play a crucial role in real-world robotics scenarios, where sensor
malfunctions and environmental variations can pose risks and impact decision-making processes.
We used BC as the training algorithm and during evaluation, we systematically disabled each of
the 11 sensors individually by assigning a value of 0 to the corresponding coordinate in the state
vector. In Table 2, multi-domain models exhibit higher performance compared to the baselines,
demonstrating their enhanced robustness in handling sensor failures. Furthermore, we introduced
four gravity changes during the inference phase, and the results reaffirm the resilience of multi-
domain learning in adapting to dynamics change, corroborating our previous findings.

Zero-shot predictions. In this section, we extend our study into the zero-shot capabilities of pre-
trained models. We evaluated an additional suite of tasks, outlined in Section 3.4, originally intro-
duced in MTM (He et al., 2022). Notably, Figure 2 (b) reveals that the errors in Action Prediction
(AP), Forward Prediction (FP), and Inverse Prediction (IP) for C-GPT and C-BERT are on par with
those of more sophisticated models like C-MTM or C-SMART. This suggests that even simple pre-
training objectives are well-aligned with the inference tasks, despite the models not being explicitly
trained for these tasks. Such findings reinforce the effectiveness of simple objective functions com-
bined with straightforward masking patterns and component-level tokenization. Importantly, we
note that the masking strategy of C-BERT and C-GPT allows the emergence of competitive Ac-
tion Prediction (AP) performance, which, according to the results in Figure 2 (a) is sufficient and
indicative of strong downstream performance.

5 DISCUSSION

This paper introduces the PASTA study on Pretrained Action-State Transformer Agents, aiming
to deeply investigate self-supervised learning models in reinforcement learning (RL). The study
contributes datasets, seven downstream tasks, and analyses across four training objectives and two
tokenization methods. Conducted in four different continuous control environments, it showcases
the flexibility and efficacy of pre-trained models in transfer learning scenarios, including probing,
fine-tuning, and zero-shot evaluation.

One key finding is the effectiveness of fundamental self-supervised objectives over more complex
ones. Simple tasks like random masking or next token prediction were as effective, if not more,
than bespoke RL objectives. Component-level tokenization also proved superior to modality-level,
underscoring the importance of nuanced tokenization for richer representations. Additionally, pre-
training on multi-domain datasets led to better performance than domain-specific models, demon-
strating the value of cross-domain knowledge transfer. Additionally, the investigation in Section 4.2
highlighted the importance of developing such models that can effectively adapt and make deci-
sions in the presence of sensor failures or dynamic changes, ensuring safety and mitigating risks in
robotics applications.

Overall, the findings from this study provide valuable guidance to researchers interested in leverag-
ing self-supervised learning to improve RL in complex decision-making tasks. The models presented
in this study are relatively lightweight, enabling the replication of both pre-training and fine-tuning
experiments on readily available hardware. In future work, we anticipate further exploration of self-
supervised objectives, tokenization methods, and a broader spectrum of tasks to evaluate adaptability
and robustness, enhancing the practical applicability of pre-trained agents in real-world scenarios.

9



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

6 ACKNOWLEDGMENTS

Research supported with Cloud TPUs from Google’s TPU Research Cloud (TRC).

10



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

REFERENCES

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International conference on machine learning, pp. 176–185.
PMLR, 2017.

Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer:
Reinforcement learning via supervised learning with intermediate targets, 2023.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-
supervised learning. arXiv preprint arXiv:2304.12210, 2023.

Andrea Banino, Adria Puigdomenech Badia, Jacob C Walker, Tim Scholtes, Jovana Mitrovic, and
Charles Blundell. Coberl: Contrastive bert for reinforcement learning. In International Confer-
ence on Learning Representations, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Justin Boyan and Andrew Moore. Generalization in reinforcement learning: Safely approximating
the value function. Advances in neural information processing systems, 7, 1994.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Felix Chalumeau, Raphael Boige, Bryan Lim, Valentin Macé, Maxime Allard, Arthur Flajolet, An-
toine Cully, and Thomas PIERROT. Neuroevolution is a competitive alternative to reinforcement
learning for skill discovery. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Felix Chalumeau, Bryan Lim, Raphael Boige, Maxime Allard, Luca Grillotti, Manon Flageat,
Valentin Macé, Arthur Flajolet, Thomas Pierrot, and Antoine Cully. Qdax: A library for
quality-diversity and population-based algorithms with hardware acceleration. arXiv preprint
arXiv:2308.03665, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pp. 539–546. IEEE, 2005.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Hassan Sirelkhatim, Guillaume
Richard, et al. The nucleotide transformer: Building and evaluating robust foundation models for
human genomics. bioRxiv, pp. 2023–01, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Kefan Dong, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Model-based offline reinforce-
ment learning with local misspecification. arXiv preprint arXiv:2301.11426, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

11



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1etN1rtPB.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite horizon model predictive control for nonlin-
ear periodic tasks. Manuscript under review, 4, 2011.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola. Continu-
ous doubly constrained batch reinforcement learning. Advances in Neural Information Processing
Systems, 34:11260–11273, 2021.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021a. URL http:
//github.com/google/brax.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021b.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

12

https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
http://github.com/google/brax
http://github.com/google/brax


Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. Cic:
Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint arXiv:2202.00161,
2022.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. Ieee Access, 8:193907–193934, 2020.

Jonathan N. Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and
generalizable decision making. arXiv preprint arXiv:2211.12740, 2022a.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Yao Liu, Yannis Flet-Berliac, and Emma Brunskill. Offline policy optimization with eligible actions.
In Uncertainty in Artificial Intelligence, pp. 1253–1263. PMLR, 2022b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Ofir Nachum and Mengjiao Yang. Provable representation learning for imitation with contrastive
fourier features. Advances in Neural Information Processing Systems, 34:30100–30112, 2021.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Martin Puterman. Markov Decision Processes. Wiley, 1994. ISBN 978-0471727828.

13



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. Advances in neural information
processing systems, 30, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. arXiv
preprint arXiv:2305.19452, 2023.

Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. arXiv
preprint arXiv:2107.03380, 2021.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning,
2014.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879.
PMLR, 2021.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv preprint
arXiv:2301.09816, 2023.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603–2631, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

14



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Paweł Wawrzyński. A cat-like robot real-time learning to run. In Adaptive and Natural Computing
Algorithms: 9th International Conference, ICANNGA 2009, Kuopio, Finland, April 23-25, 2009,
Revised Selected Papers 9, pp. 380–390. Springer, 2009.

Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and Aravind
Rajeswaran. Masked trajectory models for prediction, representation, and control. arXiv preprint
arXiv:2305.02968, 2023.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. arXiv preprint
arXiv:2209.03993, 2022.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential de-
cision making. In International Conference on Machine Learning, pp. 11784–11794. PMLR,
2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. In International Conference on Machine Learning, pp. 11920–11931.
PMLR, 2021.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe
Xu. Pre-trained image encoder for generalizable visual reinforcement learning. arXiv preprint
arXiv:2212.08860, 2022.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning, pp. 27042–27059. PMLR, 2022.

15



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

A ADDITIONAL EXPERIMENTS

A.1 DETAILED BREAKDOWN OF DOWNSTREAM TASKS RESULTS

Figure 4: Detailed breakdown of the Mean, Interquartile Mean (IQM) and Median expert normal-
ized scores, computed with stratified bootstrap confidence intervals, obtained in the four fine-tuning
downstream tasks for the four environments HalfCheetah, Hopper, Walker2d and Ant. We repeat-
edly trained all methods with 5 different random seeds and evaluated them using 256 rollouts.

B IMPLEMENTATION DETAILS

In the sequence tokenization phase, we do not use return conditioning but since the representation
models are pre-trained on multiple environments and tasks, we use environment conditioning, i.e.,
during training, an environment token is appended at the beginning of the sequences in each batch,
providing the model with additional contextual information. In practice, the length of the last two
modalities (state and action concatenated) varies across different environments. Therefore, the max-
imum portion of masked tokens at the end of the sequence differs depending on the environment.
For instance, in the Hopper environment with 3 actions and 11 observation tokens, the maximum
portion of masked tokens is 14, while in HalfCheetah with 6 actions and 18 observation tokens,
it is 24. Additionally, as we maintain a fixed-size context window of 128, the sequences’ starting
points will have varying truncations for different environments, ensuring a non-truncated state at the
end of the window. Another design choice is the embedding aggregation, i.e., how to come from a
context_window x embedding_dimension tensor to a 1 x embedding_dimension tensor. We decided
to use take the embedding from the last observed token.

16



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Computational Cost. A significant advantage of the component-level sequencing approach is its
reduced input dimension, allowing cheaper computational costs. By capturing the components of
states and actions at different time steps, the input space expands linearly rather than quadratically
mitigating the challenges associated with the curse of dimensionality. To illustrate this, consider a
simple example of a 2-dimensional state space with a discretization size of 9. With a component-
level granularity, the input size becomes 2× 9 = 18. In contrast, a state-level granularity results in
an input size of 9× 9 = 81. The former exhibits linear growth within the observation space, while
the latter demonstrates quadratic growth. Moreover, while it effectively multiplies the length of the
input sequence by the average number of components in a state, this drawback is absorbed by the
increased context window of transformer models. Lastly, for an equal number of trajectories, the
number of tokens is also trivially larger than that with a state- and action-level granularity.

C ADDITIONAL DETAILS ON MASKING PATTERNS

In this section, we provide further details on the masking patterns and schedule used in the
SMART (Sun et al., 2023) and MTM (Wu et al., 2023) baselines. In C-GPT or C-BERT, we
focused on reducing the technicalities to their minimum: a simple masking pattern, i.e., GPT-like or
BERT-like, and no masking schedule.

In SMART, the objective involves three components: Forward Dynamics Prediction, Inverse Dy-
namics Prediction, and Random Masked Hindsight Control. The masking schedule involves two
masking sizes, k and k′, which determine the number of masked actions and observations during
pre-training. The masking schedule for actions (k) is designed to gradually increase the difficulty of
the random masked hindsight control task. It starts with k = 1, ensuring the model initially predicts
masked actions based on a single observed action. As training progresses, the value of k is increased
in a curriculum fashion. The masking schedule for observations (k′) ensures that the model learns
to predict masked actions based on a revealed subsequence of observations and actions, rather than
relying solely on local dynamics. Similar to the action masking schedule, k′ starts at 1 and gradu-
ally increases during training. SMART’s paper suggests that the masking schedule is essential for
effective pre-training in control environments. By gradually increasing the masking difficulty, the
model is exposed to a range of training scenarios, starting with simple local dynamics and gradually
transitioning to complex long-term dependencies.

In MTM, the masking pattern is implemented by requiring at least one token in the masked sequence
to be autoregressive, which means it must be predicted based solely on previous tokens, and all
future tokens are masked. In addition, MTM uses a modality-specific encoder to elevate the raw
trajectory inputs to a common representation space for the tokens. Finally, MTM is trained with a
range (between 0.0 and 0.6) of randomly sampled masking ratios.

D EXPERIMENTAL DETAILS AND HYPERPARAMETERS

In this section, we provide more details about the experiments, including hyperparameter configura-
tion and details of each environment (e.g., version). For all experiments, we run 256 rollouts with 5
different random seeds and report the mean and stratified bootstrap confidence intervals.

D.1 FAIR COMPARISON

To ensure a fair comparison between the representation models using an MLP or a transformer
architecture, we made sure to have a comparable number of parameters. Both models consist of a
minimum of three layers with a size of 256 for the baseline, while transformer models use a single
layer with a hidden size of 512 for the policy. We tested bigger architecture for the MLP without
performance gain.

Moreover, we choose to fine-tune the MLP baselines to achieve the best performance in each en-
vironment. In contrast, we use the same set of hyperparameters for all domains involving PASTA
models. This approach puts PASTA models at a slight disadvantage while holding the promise of
potentially achieving even better performance with the PASTA methods with further hyperparame-
ter tuning.

17



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Finally, when a pre-trained model is involved, we always select the final checkpoint after the fixed
3 epochs done over the pre-training dataset.

D.2 ENVIRONMENT DETAILS

Figure 5: Continuous Control Downstream Tasks.

For all experiments, we use the 0.0.15 version of Brax (Freeman et al., 2021a). Each environment
in Brax, illustrated in Figure 5, provides a realistic physics simulation, enabling agents to interact
with objects and the environment in a physically plausible manner. The tasks studied in this paper
feature (i) a HalfCheetah robot (Wawrzyński, 2009) with 9 links and 8 joints. The objective is to
apply torques on the joints to make the cheetah run forward as fast as possible. The action space for
the agents consists of a 6-element vector representing torques applied between the different links;
(ii) a Hopper robot (Erez et al., 2011) which is a two-dimensional one-legged figure consisting of
four main body parts: the torso, thigh, leg, and foot. The objective is to make hops in the forward
direction by applying torques on the hinges connecting the body parts. The action space for the
agent is a 3-element vector representing the torques applied to the thigh, leg, and foot joints; (iii) a
Walker robot (Erez et al., 2011) which is a two-dimensional two-legged figure comprising a single
torso at the top, two thighs below the torso, two legs below the thighs, and two feet attached to
the legs. The objective is to coordinate the movements of both sets of feet, legs, and thighs to
achieve forward motion in the right direction. The action space for the agent is a 6-element vector
representing the torques applied to the thigh, leg, foot, left thigh, left leg, and left foot joints; (iv)
an Ant robot (Schulman et al., 2016) which is a one torso body with four legs attached to it with
each leg having two body parts. The objective is to coordinate the movements of the four legs to
achieve forward motion in the right direction. The action space for the agent is an 8-element vector
representing the torques applied at the hinge joints.

D.3 DATASET DETAILS

In this section, we provide further detail on the collection of the datasets. We trained 10
SAC (Haarnoja et al., 2018) agents for a total of 5 million timesteps in each of the four environ-
ments. From each, we select the 20% latest trajectories of size 1000, resulting in a combined total
of 40 million transitions. With each environment comprising different observation and action sizes,
the overall multi-domain dataset is composed of 680 million tokens. We also have one dataset for
each domain.

Next, we give the hyperparameters of the SAC agents used to collect the pre-training trajectories.
These are given in Table 3.

We also provide a concrete example of the state and action components with their corresponding
properties for the simplest robot structure, Hopper. The number of components for each property
is given in parentheses. In this case, the action space consists of torques applied to the rotors (3),
while the observation space includes the following components: z-coordinate of the top (1), angle
(4), velocity (2), and angular velocity (4).

D.4 DOWNSTREAM TASKS DETAILS

In this section, we provide the hyperparameters used in the training of the imitation learning algo-
rithm Behavioural Cloning (BC) (Table 4) and the offline RL algorithm TD3-BC (Table 5).

Then, we give additional details about the Sensor Failures downstream task. In Table 6, 7, 8 and 9
we include the correspondence between each sensor number and its associated name in all environ-

18



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Table 3: Hyperparameters used in SAC.

Hyperparameter Value

Adam stepsize 3 ·10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient steps per timestep 1
Training steps 20,000

Table 4: Hyperparameters used in the BC downstream task.

Parameter Value
Horizon T 1000
Batch Size 1024
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize 3 ·10−4

Training steps 80,000

ments. In the 11 variations of the Sensor Failure downstream task, we switch off each one of these
sensors.

Finally, to implement the Dynamics Change downstream task we use the GravityWrapper for Brax
environments of the QDax library (Chalumeau et al., 2023) and similarly to Chalumeau et al. (2022)
we train the policies with a gravity multiplier of 1 and we vary this coefficient at inference by the
following constant values: 0.1, 0.25, 4, and 10.

19



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Table 5: Hyperparameters used in the TD3-BC downstream task.

Parameter Value
Horizon T 1000
Batch Size 1024
Discount γ 0.99
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize (actor) 1 ·10−4

Adam stepsize (critic) 3 ·10−4

Target update rate 5 ·10−3

Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
Conservatism coefficient α 2.5
Training steps 140,000

Table 6: Sensor name / Sensor number in Halfcheetah.

Sensor name Sensor number

z-coordinate of the center of mass 1
w-orientation of the front tip 2
y-orientation of the front tip 3
angle of the back thigh rotor 4
angle of the back shin rotor 5
angle of the back foot rotor 6
velocity of the tip along the y-axis 7
angular velocity of front tip 8
angular velocity of second rotor 9
x-coordinate of the front tip 10
y-coordinate of the front tip 11

Table 7: Sensor name / Sensor number in Hopper.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
velocity of the x-coordinate of the top 6
velocity of the z-coordinate (height) of the top 7
angular velocity of the angle of the top 8
angular velocity of the thigh hinge 9
angular velocity of the leg hinge 10
angular velocity of the foot hinge 11

D.5 HYPERPARAMETERS

In Table 10, we show the hyperparameter configuration for C-BERT across all experiments.

20



Accepted at the Foundation Models for Decision Making Workshop at NeurIPS 2023

Table 8: Sensor name / Sensor number in Walker2d.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
angle of the left thigh joint 6
angle of the left leg joint 7
angle of the left foot joint 8
velocity of the x-coordinate of the top 9
velocity of the z-coordinate (height) of the top 10
angular velocity of the angle of the top 11

Table 9: Sensor name / Sensor number in Ant.

Sensor name Sensor number

z-coordinate of the torso (centre) 1
x-orientation of the torso (centre) 2
y-orientation of the torso (centre) 3
z-orientation of the torso (centre) 4
w-orientation of the torso (centre) 5
angle between torso and first link on front left 6
angle between the two links on the front left 7
angle between torso and first link on front right 8
angle between the two links on the front right 9
angle between torso and first link on back left 10
angle between the two links on the back left 11

Table 10: Hyperparameters and configuration details for C-BERT across all experiments.

Hyperparameter Value

Transformer Layers 10
Transformer Heads 8
Noising Ratio 0.15
Masking Probability 0.8
Random Token Probability 0.1
Non-Linearity GELU
Learning Rate 3e−4
Num Epochs 3
Batch Size 4096
Num Quantization Tokens 1024
Embedding Dimension 256

21


	Introduction
	Related Work
	The PASTA Study
	Preliminaries
	Component-level Tokenization
	Pre-training
	Downstream evaluation

	Experimental Analysis
	Experimental Setup
	Results

	Discussion
	Acknowledgments
	Additional Experiments
	Detailed Breakdown of Downstream Tasks Results

	Implementation Details
	Additional Details on Masking Patterns
	Experimental Details and Hyperparameters
	Fair Comparison
	Environment Details
	Dataset Details
	Downstream Tasks Details
	Hyperparameters


