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ABSTRACT

Learned image compression (LIC) methods have demonstrated superior rate–
distortion performance, compared to traditional ones. Previous studies on LIC
have mainly focused on models, consisting of analysis/synthesis transformations
and entropy models. Unfortunately, the importance of data has usually been ne-
glected when training LIC models. In this paper, we introduce block-wise RGB
standard deviation as a measure for estimating the compression-related difficulty
of images. Next, we emphasize the significance of effective data utilization for
LIC by demonstrating that models trained on a certain subset of data, constructed
according to the block-wise RGB standard deviation, can achieve superior rate–
distortion performance to models trained on the entire data. Inspired by this ob-
servation, we propose a simple data augmentation technique for LIC, coined
CutSharp, which enhances image sharpness within an arbitrary region. Our pro-
posed augmentation consistently improves rate–distortion performance on the Ko-
dak and CLIC validation dataset. We hope that our work will encourage further
research in data-centric approaches for LIC.

1 INTRODUCTION

Learned image compression (LIC) (Ballé et al., 2017) has emerged as a prominent area of research,
surpassing traditional rule-based approach such as JPEG (Wallace, 1992) and BPG (Bellard, 2015).
In general, LIC involves a transform coding framework using learned nonlinear transformations and
an learned entropy model (Ballé et al., 2016b). For the encoding process, an image x is transformed
into a latent representation y through a nonlinear analysis transformation fa(·). This latent represen-
tation y is then quantized into ŷ, represented as ŷ = ⌊y⌉, and subsequently encoded into a bitstream
using an entropy coding algorithm (e.g., arithmetic coding (Rissanen & Langdon, 1981)). To per-
form entropy coding, an entropy model which serves as a prior probability model on ŷ is required.
For the decoding process, the bitstream is decoded into the quantized latent representation ŷ. Finally,
a reconstructed image x̂ is produced from ŷ through a nonlinear synthesis transformation fs(·).
Within this framework, the rate–distortion optimization is formulated as the minimization of both
the expected length of the bitstream (i.e., rate) and the expected distance, denoted as d, between the
original image x and its reconstructed image x̂ (i.e., distortion). This can be expressed as follows:

Ex∼px
[− log2 pŷ(⌊fa(x)⌉)]︸ ︷︷ ︸

rate

+λ · Ex∼px
[d(x, fs(⌊fa(x)⌉))]︸ ︷︷ ︸

distortion

. (1)

Numerous previous studies have concentrated on designing learned nonlinear transformations and
learned entropy models to enhance rate–distortion performance. For better nonlinear transforma-
tions, various architectures (e.g., CNN and Transformer) (Ballé et al., 2017; Zou et al., 2022; Zhu
et al., 2022; Ghorbel et al., 2023; Liu et al., 2023), modules (e.g., skip connection and attention)
(Cheng et al., 2020; He et al., 2022), and activation functions (e.g., generalized divisive normaliza-
tion) (Ballé et al., 2016a) were introduced. Meanwhile, for better entropy models, hyperprior entropy
models (e.g., mean-scale hyperprior) (Ballé et al., 2018; Minnen et al., 2018; Kim et al., 2022) and
context models (e.g., spatial autoregressive and channel-wise autoregressive) (Minnen et al., 2018;
Lee et al., 2019; Minnen & Singh, 2020) were proposed.
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(a) Original Image. (b) Sharpened Image.

Sharpened Area

(c) CutSharp.

Figure 1: Example of CutSharp.

However, the importance of data, which is a fundamental component in the realm of deep learning,
has been regrettably overlooked in the study of LIC. Additionally, there is no commonly used dataset
for training LIC models. During the recent meeting of JPEG-AI community (JPEG-AI, 2023), the is-
sue of common training and testing data was highlighted as a critical concern. Although Wang et al.
(2022) indirectly addressed data-dependent LIC by introducing a data-dependent neural-syntax rep-
resentation and modifying the structure of analysis/synthesis transformations, they did not directly
engage in data-centric research, such as examining how training data impacts performance of LIC
models.

In this paper, we scrutinize the impact of training data on joint rate–distortion optimization and
propose a straightforward data augmentation method for LIC. To our knowledge, our study is the
first direct data-centric approach to LIC. Our primary contributions are outlined as follows:

• We motivate the importance of effective data utilization for LIC by showing that models
trained on a specific subset of dataset can achieve superior performance to those trained
on the entire dataset. Specifically, we bridge the relationship between rate–distortion per-
formance and block-wise RGB standard deviation (B-RGB-SD) of the training dataset.
(Section 4)

• We propose a simple augmentation method for LIC called CutSharp, based on B-RGB-
SD analysis. CutSharp enhances image sharpness within a certain region during training.
We compare our method with existing augmentation techniques and show the superiority
of our approach for LIC. (Section 5)

• We show that CutSharp leads to consistent rate–distortion performance improvement
across diverse entropy models (including hyperpriors and context models). Especially, with
CutSharp, trained models can reconstruct images using a smaller BPP, keeping high-
frequency details. (Section 6).

2 RELATED WORK

Learned Image Compression (LIC). For learned nonlinear transformations, the structure con-
sisting of linear convolutional layers with nonlinear activation functions was first used (Ballé et al.,
2017). Unlike other computer vision tasks, generalized divisible normalization (GDN) (Ballé et al.,
2016a), which is especially designed for density modeling of images, has been predominantly
used as the activation function. More advanced techniques, such as deep neural networks with
skip connection and attention modules, have been proposed (Cheng et al., 2020; He et al., 2022).
Transformer-based nonlinear transformations have also been adopted (Zhu et al., 2021; Zou et al.,
2022). Most recently, an approach based on the fusion of CNN and Transformer exhibited more
improved rate–distortion performance (Liu et al., 2023).

As one of the early attempts for learned entropy models, Ballé et al. (2017) assumed that the chan-
nels of the latent representation follow different probability models and that all elements in a channel
are independent and identically distributed. Based on this assumption, they proposed the factorized
entropy model, which does not change according to the input. Other subsequent methods aimed
to design adaptive probability models for better rate–distortion performance. To achieve adapta-
tion, information is used, which can be categorized into two groups: side information extracted by
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additional neural networks (Ballé et al., 2018), and context information obtained from previously
encoded/decoded elements (Minnen et al., 2018). Recent research has focused on how to efficiently
extract and exploit information. For instance, Kim et al. (2022) efficiently modeled global side infor-
mation using a cross-attention mechanism, while other works proposed efficient modeling of context
information by improving parallelism (Minnen & Singh, 2020; He et al., 2021).

Some prior works have proposed instance-adaptive compression (Li et al., 2018; van Rozendaal
et al., 2021; Wang et al., 2022). Among them, Wang et al. (2022) recently introduced a neural data-
dependent transform. The main idea is to generate not only a general latent representation but also
a neural-syntax representation through an analysis transformation, and to use this data-dependent
neural-syntax representation for an improved synthesis transformation. Although they addressed
the data dependency, they primarily focused on modifying the analysis/synthesis transformations.
Unlike these prior works, we directly investigate the impact of data on LIC models.

Data Augmentation. Data augmentation is an effective method for mitigating overfitting and
achieving better performance in diverse research fields, including computer vision (Shorten &
Khoshgoftaar, 2019) and NLP (Feng et al., 2021). For vision tasks, simple techniques such as hori-
zontal and vertical flipping, cropping, color jittering (including brightness, contrast, saturation, and
hue), and blurring–sharpening can be used to manipulate a single image. Additionally, data augmen-
tation techniques such as MixUp (Zhang et al., 2017), CutMix (Yun et al., 2019), PuzzleMix (Kim
et al., 2020), and Manifold MixUp (Verma et al., 2019), which involve mixing two images or latent
representations, have been proposed.

These mixing-based augmentation techniques have also inspired new approaches for low-level vi-
sion tasks: CutBlur for super-resolution tasks and CutDepth for monocular depth estimation tasks.
CutBlur (Yoo et al., 2020) involves cutting a low-/high-resolution image patch and pasting it onto
the corresponding high-/low-resolution image region, allowing models to learn both how and where
to super-resolve an image. CutDepth (Ishii & Yamashita, 2021) involves cutting a depth image patch
and pasting it onto the corresponding RGB image region, which reduces the latent distance between
the depth and the RGB images. Inspired by these augmentation methods, we propose a straightfor-
ward augmentation method for LIC, named CutSharp.

3 EXPERIMENTAL SETUP

Our main objective is to investigate the impact of data on rate–distortion optimization. To this end,
we construct LIC methods using the well-known structures and train them from scratch under the
same training setting.

Models. We train four LIC methods having different entropy models: Joint hyperprior and context
model, Joint (Minnen et al., 2018), channel-wise autoregressive model, ChARM (Minnen & Singh,
2020), unevenly grouped channel-wise autoregressive model, UChARM (He et al., 2022), and global
side information model, Informer (Kim et al., 2022). All methods have the same structure of the
analysis/synthesis transformations as in the ELIC-sm (He et al., 2022) model. It is noted that unless
otherwise mentioned, the Joint method is used.

Training. We use 300K images randomly selected from the training images of the Open Images
dataset (Krasin et al., 2017). For rate–distortion optimization described in Eq. (1), we utilize mean
squared error (MSE) as the distance metric d. Following the base code provided by CompressAI
(Bégaint et al., 2020), the λ values in Eq. (1) consist of {0.0018, 0.0035, 0.0067, 0.0130, 0.0250,
0.0483}. As λ increases, the quality of the reconstructed images improves. For simplicity, we map
the λ values to reconstruction quality q, where the smallest λ value corresponds to q of 1 and the
largest λ value corresponds to q of 6. All models are trained for 100 epochs using the Adam optimizer
(Kingma & Ba, 2015). We use a batch size of 16 with randomly cropped patches having a resolution
of 256× 256. The learning rate is initially set to 1e−4 and decreases to 1e−5 at epoch 90.

Evaluation. To measure rate and distortion, we compute the BPP (Bit Per Pixel) and PSNR (Peak
Signal-to-Noise Ratio), respectively. We employ BD-rate (Bjøntegaard Delta) (Bjontegaard, 2001)
to perform comparisons that take both into account simultaneously. For BD-rate, we first calculate
sample-wise BD-rate values, and then average them, following Zhu et al. (2022). The comparison
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Figure 2: Rate–distortion performance with block-wise RGB standard deviation of test samples on
the (a) Kodak and (d) CLIC-P validation datasets. Each circle represents each test sample. (b) and
(e) are the estimated easiest images, and (c) and (f) are the estimated hardest images in each dataset.

baselines are specifically described in each experiment. It should be noted that our comparisons
revolve primarily around the presence or absence of certain aspects for LIC. We use the Kodak
dataset (Kodak, 1993) and the CLIC professional (CLIC-P) validation dataset (Toderici et al., 2020).
The Kodak dataset contains 24 images with resolutions of either 512×768 or 768×512. The CLIC-P
dataset contains 41 images with an average resolution of approximately 1200× 1800.

4 MOTIVATION: AN EFFICIENT DATA-CENTRIC STRATEGY FOR LIC

In this section, we demonstrate that models trained on a subset of dataset, based on B-RGB-SD,
can outperform models trained on the entire dataset. This highlights the potential for an efficient
data-centric strategy in training LIC models.

Block-wise RGB Standard Deviation (B-RGB-SD). First of all, we analyze the test samples in
Kodak and CLIC-P, one by one, using LIC models trained on the entire training dataset. Figures 2(a)
and (d) show the rate–distortion performance, where each dot represents one test image, and the BPP
and PSNR are averaged over the results from six LIC models according to the reconstruction quality
q from 1 to 6.1 The results reveal a clear linear correlation between BPP and PSNR, with Pearson
correlation coefficients of −0.9394 and −0.8988 for Kodak and CLIC-P, respectively. This means
that the number of images with low PSNR at low BPP or high PSNR at high BPP is inherently small
when using LIC models. Based on this observation, we categorize images with high PSNR at low
BPP as easier samples (located in the upper-left area), while images with low PSNR at high BPP as
harder samples (located in the lower-right area).

Herein, we introduce block-wise RGB standard deviation (B-RGB-SD) as a measure for estimating
the compression-related difficulty of an image before any training. B-RGB-SD of an image is calcu-
lated by dividing it into a set of blocks, calculating the RGB standard deviations for each block, and
averaging them.2 Compared with image-wise RGB-SD, B-RGB-SD is more effective in capturing
the compression-related difficulty of an image. Let us consider two 256× 256 images: one that has
128×256 filled with black and the remaining 128×256 filled with white, and another that alternates
between black and white both horizontally and vertically like a checkerboard. Intuitively, the latter

1Results without averaging are provided in Appendix C.
2We use a block size of 162 because images are typically reduced by 162× via an analysis transformation.
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image is thought to be harder to compress than the former image. Notwithstanding the fact that the
two images have the same image-wise RGB-SD, the latter image has much higher B-RGB-SD than
the former image. In Appendix A, we provide samples with image-wise and block-wise RGB-SD.

With this concept, in Figures 2(a) and (d), stronger red indicates higher B-RGB-SD, while stronger
blue indicates lower B-RGB-SD. As expected, blue dots are generally located in the upper-left easier
area, whereas red dots are generally located in lower-right harder area. Moreover, Pearson correla-
tion coefficients are calculated to provide further evidence. For Kodak and CLIC-P, the coefficients
between B-RGB-SD and BPP are 0.8957 and 0.7739, respectively, and the coefficients between B-
RGB-SD and PSNR are −0.7989 and −0.6400, respectively. This indicates that there is a strong
correlation between B-RGB-SD and compression-related difficulty. For instance, Figures 2(b) and
(e) are the images with the lowest B-RGB-SD, implying that they are expected to be among the eas-
iest images to compress by LIC models. Conversely, Figures 2(c) and (f) are images with the highest
B-RGB-SD, implying that they are expected to be among the hardest images to compress. Although
previous research has acknowledged the connection between the complexity (or, difficulty) of an
image and its local color characteristics (e.g., contrast) (Zou et al., 2022), our approach is distinct in
that we explicitly use B-RGB-SD as an metric analyze its relationship with the performance of LIC
models.
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Figure 3: Rate–distortion performance ac-
cording to B-RGB-SD of training dataset.

Training Dataset Based on the B-RGB-SD. Be-
yond the analysis on the test samples, we examine the
influence of the B-RGB-SD of the training dataset on
the rate–distortion performance. Specifically, we or-
der the images in the training dataset based on their B-
RGB-SD and divide them into five mutually exclusive
groups. Although images are cropped during training,
the overall trend of B-RGB-SD is still maintained.
The hardest training subset includes the images with
the highest B-RGB-SD, which correspond to the top
0-20% of the dataset, while the easiest training sub-
set includes the images with the lowest B-RGB-SD,
which correspond to the top 80-100% of the dataset.
For fair comparison, we use the same number of train-
ing steps for all cases. Namely, when using a subset (20%) of the dataset, the models are trained for
500 epochs, because when using the entire dataset, the models are trained for 100 epochs.

Figure 3 shows the rate–distortion performance according to the estimated compression-related dif-
ficulty (i.e., B-RGB-SD) of the training dataset. The results reveal that on average, as the B-RGB-SD
increases (i.e., blue → orange → green → red → purple), the LIC models tend to target higher PSNR
at higher BPP. This indicates that even though the rate–distortion training objectives are the same,
the difficulty of the training dataset can affect the desired PSNR and BPP. The detailed values of
BPP and PSNR are provided in Appendix E.

Next, we provide an assessment of the trade-off between rate and distortion by calculating the BD-
rate for four samples (shown in Figure 2) compared to models trained on the entire dataset, as
depicted in Figure 4. The lower PSNR at lower BPP achieved due to the easier training dataset is
beneficial for the easiest test samples (Figures 4(a) and (c)), whereas the higher PSNR at higher BPP
achieved due to the harder training dataset is beneficial for the hardest test samples (Figures 4(b) and
(d)). This indicates that the trade-off between rate and distortion is influenced by the difficulty of
both the training and test samples.

Lastly, we evaluate these models on the entire test samples, ranging from the easiest sample to the
hardest sample on average. Table 1 shows the BD-rate compared to the model trained on the entire
dataset. It is observed that trained only using a subset of the dataset, LIC models can outperform
those trained using the entire training dataset, on both Kodak and CLIC-P. This indicates that pos-
sessing a greater number of samples does not necessarily result in better performance, even when
models are trained with an unlabeled dataset. Additionally, it seems that the optimal performance
can be achieved at a distinct sweet spot for each test dataset, rather than following the same optimal
direction. This finding motivates the importance of considering the B-RGB-SD when training LIC
models.

5



Under review as a conference paper at ICLR 2024

top 0-20%
top 20-40%

top 40-60%
top 60-80%

top 80-100%

2

0

2

4

BD
-ra

te
 (%

)

(a) Easiest (Kodak).

top 0-20%
top 20-40%

top 40-60%
top 60-80%

top 80-100%
2

0

2

4

6

8

BD
-ra

te
 (%

)

(b) Hardest (Kodak).

top 0-20%
top 20-40%

top 40-60%
top 60-80%

top 80-100%

5

0

5

10

15

BD
-ra

te
 (%

)

(c) Easiest (CLIC-P).

top 0-20%
top 20-40%

top 40-60%
top 60-80%

top 80-100%
2

0

2

4

6

BD
-ra

te
 (%

)

(d) Hardest (CLIC-P).

Figure 4: BD-rate compared to the model trained on the entire dataset. Evaluation is performed on
four samples: (a) Estimated easiest sample in Kodak (Figure 2(b)), (b) Estimated hardest sample
in Kodak (Figure 2(c)), (c) Estimated easiest sample in CLIC-P (Figure 2(e)), and (d) Estimated
hardest sample in CLIC-P (Figure 2(f)).

Test Dataset
Training Dataset (Average of B-RGB-SD)

Entire top 0-20% top 20-40% top 40-60% top 60-80% top 80-100%
(0.0656) (0.1092) (0.0776) (0.0618) (0.0482) (0.0311)

Kodak 0.00% 1.88% -1.20% -0.82% -0.20% 2.60%
CLIC-P 0.00% 4.31% 0.17% -0.61% -0.82% 0.24%

Table 1: BD-rate compared to the model trained on the entire dataset. Lower is better.

5 CUTSHARP : ENHANCING SHARPNESS WITHIN A CERTAIN REGION

Although it is observed that utilizing a subset of the training dataset can be advantageous for training
LIC models, constructing a suitable subset based on B-RGB-SD is challenging. This is because the
training dataset for the LIC task can vary considerably and the appropriate range varies depending
on test dataset as shown in Table 1. Consequently, to ensure generalizability, we aim to use the
given entire dataset with an augmentation technique. This converts the subset selection problem
into the manipulation of the B-RGB-SD of the training dataset. In light of this, we propose a novel
augmentation technique, named CutSharp.

5.1 COLOR-RELATED AUGMENTATION TECHNIQUES

We first examine the impact of the two representative color-related augmentation techniques (i.e.,
ColorJitter and Blurring–Sharpening, provided by PyTorch (Paszke et al., 2019)) on rate–distortion
performance, considering changes in B-RGB-SD. To investigate the impact, we vary the magnitude
m(> 0) of these augmentation techniques. ColorJitter changes an image’s brightness, contrast, and
saturation to a random degree between the minimum and maximum values. If both the minimum and
maximum values are equal to 1.0, the transformed image is identical to the original one. For a more
comprehensive analysis, we divide ColorJitter into two subgroups: negative ColorJitter, in which the
minimum value is defined as 1.0−m and the maximum value is fixed at 1.0, and positive ColorJitter,
in which the minimum value is fixed at 1.0 and the maximum value is defined as 1.0+m. Blurring–
Sharpening changes an image’s sharpness based on the given degree of value. Blurring–Sharpening
is divided into two subgroups: Blurring and Sharpening with the degree of m. In this experiment,
the probability of augmentation is set to one.

Table 2 presents the B-RGB-SD values according to the magnitudes of ColorJitter and Blurring–
Sharpening, and the BD-rate compared to the models trained without any augmentation. As ex-
pected, negative ColorJitter and Blurring decrease the B-RGB-SD of the training dataset, whereas
positive ColorJitter and Sharpening increase the B-RGB-SD of the training dataset. The magnitude
m is strongly correlated with the degree of increase or decrease in the B-RGB-SD of the train-
ing dataset. The change in B-RGB-SD resulting from ColorJitter is greater than that resulting from
Blurring–Sharpening.

Regarding the rate–distortion performance, these data augmentation techniques typically do not re-
sult in improvements for LIC models. Instead, for each augmentation technique, the BD-rate tends
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Augmentation (m) B-RGB-SD BD-rate (↓) Augmentation (m) B-RGB-SD BD-rate (↓)
Kodak CLIC-P Kodak CLIC-P

neg. ColorJitter (0.8) 0.0235 5.92% 5.64% Blurring (1.00) 0.0585 36.48% 27.72%
neg. ColorJitter (0.6) 0.0319 3.85% 3.34% Blurring (0.75) 0.0601 12.77% 8.67%
neg. ColorJitter (0.4) 0.0419 1.88% 1.07% Blurring (0.50) 0.0618 3.99% 2.44%
neg. ColorJitter (0.2) 0.0531 0.73% -0.63% Blurring (0.25) 0.0637 1.06% 0.45%

− 0.0656 0.00% 0.00% − 0.0656 0.00% 0.00%

pos. ColorJitter (0.2) 0.0761 1.84% 3.40% Sharpening (0.25) 0.0681 -0.39% 0.16%
pos. ColorJitter (0.4) 0.0835 4.76% 7.17% Sharpening (0.50) 0.0702 -0.46% 0.42%
pos. ColorJitter (0.6) 0.0888 9.43% 12.24% Sharpening (0.75) 0.0723 0.39% 1.76%
pos. ColorJitter (0.8) 0.0928 12.08% 15.42% Sharpening (1.00) 0.0747 0.88% 2.34%

Table 2: B-RGB-SD according to the magitude m of ColorJitter and Blurring–Sharpening and BD-
rate compared to the model trained without any augmentation on Kodak and CLIC-P.

to decrease initially and then increase, as the B-RGB-SD increases from the minimum to the maxi-
mum. Intriguing observations are that the change in BD-rate is asymmetric with respect to the mag-
nitude change, and the change in BD-rate varies depending on the augmentation technique. This
result implies that there are other characteristics affected by augmentation other than B-RGB-SD,
as evidenced by the comparison between negative ColorJitter and Blurring. Among augmentation
techniques, Sharpening exhibits the lowest rate–distortion performance degradation for both Kodak
and CLIC-P datasets.

5.2 ALGORITHM

Based on our previous experiment, we adopt Sharpening and introduce CutSharp, illustrated in
Figure 1. Our method cuts a sharpened image patch and pastes it onto the corresponding original
image region. To implement CutSharp, we select a random region following CutMix (Yun et al.,
2019), limit the size of this region to a maximum size of s, and sharpen the restricted region with
a magnitude of m. The intention behind CutSharp is related to mimicking the property of the
original image during training, wherein a smaller cropped image is used. In other words, during
training, the original image is cropped to a smaller size, which is more likely to have a low B-RGB-
SD because typically only a small portion of the original image has high B-RGB-SD. Therefore, to
compensate this imbalance, we apply Sharpening to an arbitrary part of the cropped image during
training, to increase the B-RGB-SD.

5.3 ABLATION STUDY

We conduct an ablation study on the hyperparameters of CutSharp: magnitude m and maximum
size s. Table 3 presents the BD-rates obtained when applying CutSharp, compared to the models
without augmentation. It is observed that CutSharp can improve BD-rate for both the Kodak and
CLIC-P datasets (bold texts in Table 3), although the improvement is slight. The improvement on
both datasets is not achieved when using existing augmentation techniques, as shown in Table 2.
Furthermore, it is observed that strong magnitude with a small maximum size or weak magnitude
with a large maximum size are effective for CutSharp.

m
s

8× 8 16× 16 32× 32 64× 64

0.5 0.01% 0.11% -0.38% -0.24%
1.0 -0.14% 0.33% -0.39% -0.13%
1.5 -0.34% -0.18% -0.35% -0.23%

(a) Kodak.

m
s

8× 8 16× 16 32× 32 64× 64

0.5 0.26% 0.31% -0.08% -0.40%
1.0 0.25% 1.13% 0.18% 0.40%
1.5 -0.21% -0.14% -0.16% -0.14%

(b) CLIC-P.

Table 3: Ablation study on hyperparameters, magnitude m and maximum size s.
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(a) w/o Ours (0.0309, 33.10). (b) w/o Ours (0.0765, 36.02). (c) w/o Ours (0.2357, 39.92).

(d) w/ Ours (0.0308, 33.15). (e) w/ Ours (0.0749, 36.06). (f) w/ Ours (0.2330, 39.94).

Figure 5: Qualitative comparison on the test sample, on which the largest performance gain appears.
Top and bottom rows indicate the reconstructed images by without and with CutSharp, respec-
tively. Three reconstruction qualities q are used: 1 for (a) and (d), 3 for (b) and (e), and 6 for (c) and
(f). BPP and PSNR are reported in parentheses.

6 EXPERIMENTS

For this section, we set the magnitude m to 0.5 and the maximum size s to 64× 64 for CutSharp.

6.1 QUALITATIVE RESULTS

We compare the visual quality of decoded images depending on CutSharp on the sample image
from CLIC-P, on which the largest BD-rate gain appears. Figure 5 displays three comparisons ac-
cording to the reconstruction quality q with (BPP, PSNR) values: 1 for (a) and (d), 3 for (b) and
(e), and 6 for (c) and (f). Our results demonstrate that the model with CutSharp can reconstruct
this sample similar to the model without CutSharp while using a smaller BPP, maintaining details
(zoomed box).

6.2 RATE–DISTORTION PERFORMANCE ACROSS VARIOUS MODELS

Model CutSharp
BD-rate (↓)

Kodak CLIC-P

Joint (2018) ✗ 0.00% 0.00%
✓ -0.24% -0.40%

ChARM (2020) ✗ 0.00% 0.00%
✓ -0.46% -0.18%

Informer (2022) ✗ 0.00% 0.00%
✓ -0.66% -0.48%

UChARM (2022) ✗ 0.00% 0.00%
✓ -0.42% -0.33%

Table 4: BD-rate according to CutSharp across
diverse LIC methods.

Table 4 presents the BD-rate achieved with
CutSharp across various LIC methods. The
comparison baselines of the models using
CutSharp are the counterparts that do not
use CutSharp. For instance, the baseline of
Informer with CutSharp is Informer without
CutSharp.

Although the performance improvement is mi-
nor, we highlight consistent enhancements in
the rate–distortion performance across diverse
LIC methods. This finding implies that data-
centric LIC and model-centric LIC can be de-
veloped together to achieve improved perfor-
mance for LIC. By leveraging both approaches,
we can potentially create more robust and effi-
cient LIC models.
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(c) Kodak + CLIC-P.

Figure 6: Changes in rate–distortion performance of test samples on (a) Kodak (circle marker), (b)
CLIC-P (star marker), and (c) Together. Gray dots represent the performance of the model trained
using the entire training dataset, while colored dots represent the performance of the best model
among the models trained using a subset of training dataset.

7 CONCLUSION

We motivate data-centric approaches for LIC by showing that using the entire training dataset does
not guarantee the better performance. For data analysis, we introduce B-RGB-SD as a tool to es-
timate the compress-related difficulty of an image. We conduct an in-depth sample-wise analysis
using this measure, and propose a simple data augmentation method for LIC. Our proposed aug-
mentation technique demonstrates a consistent improvement in rate-distortion performance, albeit
slight. We hope that our research will encourage further exploration of data-centric approaches for
LIC, and open up new opportunities in this area.

7.1 DISCUSSION

We discuss the effectiveness of model ensemble for LIC by examining the match between the B-
RGB-SD of the training dataset and that of the test dataset. To assess the potential of model ensem-
ble, we extend the observations presented in Figure 4 for all test samples, and select the best model
for each test sample based on BD-rate among the five models that are designed in Section 4. Figure
6 depicts the changes in the averaged BPP and PSNR for each test sample, comparing the perfor-
mance of the model trained using the entire dataset to that of the best model trained using a subset
of the training dataset. The gray dots in Figures 6(a) and (b) are the same as those in Figure 2(a)
and (d), respectively. The colored dots represent the best performance among the five models, and
their color denotes the selected model. The lines connect dots that correspond to the same sample.
Additionally, we present the combined results for Kodak and CLIC-P in Figure 6(c), using circle
and star markers, respectively.

In Figures 6(a) and (b), there is a gradual color shift (i.e., the best model among five models) from
blue to orange, orange to green, green to red, and red to purple, from the upper-left to the lower-
right, although the ratio of each color is not precisely 20%. Furthermore, from Figure 6(c), when
the two datasets are analyzed simultaneously with B-RGB-SD, this trend becomes more apparent:
models trained using easier training dataset tend to perform better on easier test samples (i.e., blue or
orange dots are located in the upper-left region), while models trained using harder training dataset
tend to perform better on harder test samples (i.e., purple or red dots are located in the lower-right
region). This implies that B-RGB-SD is an effective measure of approximating the compress-related
difficulty of an image, and that matching the B-RGB-SD between the training and test datasets is an
important factor in improving performance of LIC models.

Finally, from Figures 6(a) and (b), the BD-rates of ensembled models are −1.57% and −2.27% on
Kodak and CLIC-P, which is better than the BD-rates of the best non-ensembled model (−1.20%
and −0.82%), listed in Table 1. Although we select the best model for discussion purposes, this
result highlights the potential of an ensemble model or a mixture of experts (Rincy & Gupta, 2020;
Ganaie et al., 2022), based on the characteristics of the training and test samples.
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Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimization of nonlinear trans-
form codes for perceptual quality. In 2016 Picture Coding Symposium (PCS), pp. 1–5. IEEE,
2016b.
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A IMAGE-WISE AND BLOCK-WISE RGB-SD EXAMPLES

Table 5 displays image samples from Kodak, along with their image-wise RGB-SD (I-RGB-SD) and
block-wise RGB-SD values. The BPP and PSNR values are from Figure 2(a). As mentioned in the
main paper, it is worth noting that B-RGB-SD has a much stronger correlation with BPP and PSNR
than I-RGB-SD. For instance, the 20th sample has large I-RGB-SD (0.3463), but small B-RGB-SD
(0.0529). This sample is deemed to be easily compressible. Red and blue texts indicate the estimated
harest and easiest samples based on B-RGB-SD.

Image

I-RGB-SD 0.1560 0.0921 0.1715 0.1614 0.1898
B-RGB-SD 0.1000 0.0448 0.0438 0.0550 0.1210

BPP 0.6965 0.2539 0.2002 0.2775 0.7276
PSNR 30.35 32.90 35.07 33.01 30.72

I-RGB-SD 0.2280 0.1542 0.2437 0.1483 0.1506
B-RGB-SD 0.0733 0.0709 0.1436 0.0537 0.0547

BPP 0.4987 0.2895 0.7687 0.2218 0.2434
PSNR 31.51 34.36 30.31 34.59 34.20

I-RGB-SD 0.1674 0.1787 0.2096 0.1913 0.3205
B-RGB-SD 0.0700 0.0515 0.1132 0.0843 0.0612

BPP 0.4210 0.2152 1.0249 0.5633 0.2644
PSNR 32.00 34.13 29.04 30.96 33.42

I-RGB-SD 0.1668 0.1895 0.1516 0.1868 0.3463
B-RGB-SD 0.0484 0.0625 0.0761 0.0693 0.0529

BPP 0.3062 0.2862 0.5868 0.3689 0.2540
PSNR 33.00 33.58 30.83 32.39 34.15

I-RGB-SD 0.1755 0.1726 0.2116 0.2105
B-RGB-SD 0.0702 0.0594 0.0475 0.0828

BPP 0.4544 0.4178 0.1759 0.5944
PSNR 32.05 31.70 35.44 31.14

Table 5: Image characteristics of the Kodak dataset.
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Moreover, we provide B-RGB-SD histogram with RGB distribution for Kodak dataset. Figure 7
describes the process of B-RGB-SD calculation, where the last scalar value is used for representing
B-RGB-SD in our paper. In Table 6, the upper line indicates pixel-level RGB distribution and the
lower line B-RGB-SD histogram, corresponding to each image in Table 5. For RGB distributions,
minimum and maximum values of x-axis are 0 and 255, and those of y-axis are 0 and 50,000. For
B-RGB-SD histogram, minimum and maximum values of x-axis are 0 and 0.40, and those of y-axis
are 0 and 500. The B-RGB-SD histogram of most samples is concentrated at low values.

Figure 7: Overview of B-RGB-SD calculation.

Table 6: RGB distributions and B-RGB-SD histogram of the Kodak dataset.
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B CORRELATION BETWEEN B-RGB-SD ACCORDING TO THE BLOCK SIZE

In the main paper, we used a block size of 162 to compute the B-RGB-SD of an image. However, the
B-RGB-SD values may vary depending on the block size. In particular, the ranking of these values is
crucial because we divided the Open Images dataset into five groups based on B-RGB-SD, to ensure
the validity of our results. Therefore, we calculate two types of correlation, Pearson correlation and
Spearman rank correlation, as shown in Table 7. This result demonstrates that our results hold true
if the block size does not exceed a certain threshold (e.g., 1282).

42 82 162 322 642 1282

42 1.00 0.98 0.93 0.84 0.72 0.58
82 0.98 1.00 0.98 0.92 0.81 0.68
162 0.93 0.98 1.00 0.98 0.90 0.79
322 0.84 0.92 0.98 1.00 0.97 0.88
642 0.72 0.81 0.90 0.97 1.00 0.96
1282 0.58 0.68 0.79 0.88 0.96 1.00

(a) Pearson correlation.

42 82 162 322 642 1282

42 1.00 0.99 0.94 0.86 0.75 0.61
82 0.99 1.00 0.98 0.93 0.83 0.70
162 0.94 0.98 1.00 0.98 0.91 0.80
322 0.86 0.93 0.98 1.00 0.97 0.89
642 0.75 0.83 0.91 0.97 1.00 0.96
1282 0.61 0.70 0.80 0.89 0.96 1.00

(b) Spearman rank correlation.

Table 7: Correlation between B-RGB-SD of images on the Open Images dataset, according to the
block size.

C RATE–DISTORTION ANALYSIS OF TEST SAMPLES

Figure 8 shows the BPP and PSNR for all test samples on Kodak and CLIC-P, across reconstruction
quality q from 1 to 6, without averaging them. Each gray line represents the same sample and can be
viewed as the rate–distortion curve for that sample. In this figure, when comparing the samples with
the same BPP, the samples with higher PSNR can be considered easier than the samples with lower
PSNR. Following each gray line, if the samples have the same reconstruction quality q, then the
easier samples are located in the upper-left region. For example, on Kodak, when the BPP is 0.25,
one sample has a PSNR of 24.0 with q of 1, while another sample has a PSNR of 38.0 with q of 5.
Then, the latter one can be considered simpler than the former one. When the latter’s reconstruction
quality reaches 1, following its rate–distortion curve, it is located in the upper-left region compared
to the former. This finding is consistent with our definition of easier and harder samples on average,
as explained in Figures 2(a) and (d).
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(b) CLIC-P.

Figure 8: Rate–distortion performance on test samples. Each dotted gray line means the same sample
according to the reconstructed quality q.
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D B-RGB-SD WHEN TRAINING AND TESTING

To ensure the feasibility of our analysis, we use a B-RGB-SD for each image. Nonetheless, when
training models, an image is cropped, resulting in multiple B-RGB-SDs. This does not allow us
to divide the entire dataset into the five disjoint groups, designed in Section 4. Instead, we present
the B-RGB-SD statistics for the five models designed during training. Table 8 provides the basic
statistics of B-RGB-SD when training and testing. For B-RGB-SD statistics during training, only
one epoch is processed. The mean value trends are generally similar, although there is overlap in the
interval.

Entire top 0-20% top 20-40% top 40-60% top 60-80% top 80-100%

Mean 0.0728 0.1169 0.0858 0.0695 0.0552 0.0366
Std. 0.0381 0.0357 0.0274 0.0246 0.0224 0.0199
Max 0.3778 0.3515 0.2844 0.2538 0.2042 0.1918
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(a) Training.

Entire top 0-20% top 20-40% top 40-60% top 60-80% top 80-100%

Mean 0.0656 0.1092 0.0776 0.0618 0.0482 0.0311
Std. 0.0285 0.0202 0.0053 0.0040 0.0039 0.0074
Max 0.3394 0.3394 0.0877 0.0690 0.0550 0.0412
Min 0.0008 0.0877 0.0690 0.0550 0.0412 0.0008

(b) Testing.

Table 8: Statistics of B-RGB-SD of the Open Images dataset when training and testing.

E DETAILS OF BPP AND PSNR

Training Dataset BPP/PSNR(q=1) BPP/PSNR(q=2) BPP/PSNR(q=3) BPP/PSNR(q=4) BPP/PSNR(q=5) BPP/PSNR(q=6)

Entire 0.1072/28.15 0.1803/29.85 0.2875/31.48 0.4339/33.33 0.6325/35.22 0.8863/37.18
top 0-20% 0.1136/28.32 0.1907/29.96 0.2958/31.56 0.4488/33.45 0.6532/35.37 0.9174/37.36
top 20-40% 0.1057/28.16 0.1770/29.80 0.2825/31.52 0.4312/33.38 0.6271/35.24 0.8806/37.20
top 40-60% 0.1007/27.99 0.1741/29.69 0.2764/31.42 0.4221/33.24 0.6153/35.13 0.8677/37.10
top 60-80% 0.1011/27.94 0.1682/29.56 0.2721/31.35 0.4170/33.16 0.6099/35.02 0.8593/36.96
top 80-100% 0.1035/27.94 0.1681/29.42 0.2674/31.15 0.4071/32.93 0.5968/34.83 0.8490/36.78

(a) Kodak.
Training Dataset BPP/PSNR(q=1) BPP/PSNR(q=2) BPP/PSNR(q=3) BPP/PSNR(q=4) BPP/PSNR(q=5) BPP/PSNR(q=6)

Entire 0.0786/29.93 0.1306/31.54 0.2056/33.04 0.3112/34.65 0.4575/36.25 0.6552/37.90
top 0-20% 0.0847/30.10 0.1392/31.63 0.2150/33.09 0.3249/34.75 0.4765/36.39 0.6863/38.07
top 20-40% 0.0785/29.95 0.1288/31.47 0.2044/33.07 0.3098/34.68 0.4550/36.25 0.6526/37.92
top 40-60% 0.0741/29.75 0.1263/31.41 0.1986/32.98 0.3025/34.55 0.4437/36.15 0.6395/37.82
top 60-80% 0.0744/29.72 0.1210/31.25 0.1945/32.92 0.2974/34.48 0.4371/36.06 0.6283/37.69
top 80-100% 0.0764/29.80 0.1205/31.20 0.1907/32.77 0.2886/34.28 0.4246/35.86 0.6154/37.56

(b) CLIC-P.

Table 9: BPP and PSNR according to the training dataset.
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