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Abstract

Federated instruction tuning enables multiple clients to collaboratively fine-tune a
shared large language model (LLM) that can follow humans’ instructions without
directly sharing raw data. However, existing literature impractically requires
that all the clients readily hold instruction-tuning data (i.e., structured instruction-
response pairs), which necessitates massive human annotations since clients’ data is
usually unstructured text instead. Addressing this, we propose a novel and flexible
framework FedIT-U2S, which can automatically transform unstructured corpus
into structured data for federated instruction tuning. FedIT-U2S consists two key
steps: (1) few-shot instruction-tuning data generation, where each unstructured data
piece together with several examples is combined to prompt an LLM in generating
an instruction-response pair. To further enhance the flexibility, a retrieval-based
example selection technique is proposed, where the examples are automatically
selected based on the relatedness between the client’s data piece and example pool,
bypassing the need of determining examples in advance. (2) A typical federated
instruction tuning process based on the generated data. Overall, FedIT-U2S can
be applied to diverse scenarios as long as the client holds valuable text corpus,
broadening the application scope of federated instruction tuning. We conduct a
series of experiments on three domains (medicine, knowledge, and math), showing
that our proposed FedIT-U2S can consistently and significantly brings improvement
over the base LLM.

1 Introduction

Instruction tuning has become one of the most imperative components in training contemporary
instruction-followed large language models (LLMs) [1, 2, 3, 4], where typically, the training samples
are collected from diverse sources by a central party [5, 6, 7]. However, these data could contain sen-
sitive (e.g., private or proprietary) information that cannot be directly shared, making such centralized
learning paradigm inapplicable especially for domains such as medicine [8] and finance [9].

Addressing this, federated learning [10, 11] has emerged as a well-suited technique to achieve
instruction tuning of LLMs without direct data sharing. In federated instruction tuning (FedIT), each
party (i.e., client) keeps its private data locally and shares the instruction-tuned LLM with the central
server, while the server aggregates LLMs from multiple parties and distributes the aggregated LLM
back to participating parties. Such paradigm has attracted massive attention and interests from both
academia [12, 13, 14] and industry [15, 16, 17].

Despite extensive efforts dedicated to FedIT, existing methods impractically rely on the assumption
that each party possesses structured instruction-tuning data (i.e., instruction-response pairs), which
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significantly constrains the real-world applicability of FedIT. In practice, while clients may possess
valuable data locally, this data often exists in an unstructured format (just strings of text) rather than
naturally aligns with the structured format required for IT [18]. Consequently, current FedIT systems
face challenges in scalability, as they necessitate manual annotation of data by each client.

To fill this gap, we propose a novel and flexible framework FedIT-U2S, which can automatically
transform unstructured corpus into structured instruction-tuning data for FedIT, bypassing the massive
human efforts required for data annotation. Specifically, FedIT-U2S consists of two key steps: few-
shot instruction-tuning data generation and FedIT on the generated data. (1) The server first distributes
an open-sourced general LLM and a few examples (could be as few as only one) to participating
clients. During data generation, each client queries the LLM to generate multiple instruction pairs,
where each pair is generated by feeding the LLM with a prompt that is composed of few examples
as the context and a sampled piece of its unstructured data. To further enhance the generality
and scalability of FedIT-U2S, we propose a retrieval-based example selection approach, where for
each sampled piece of unstructured data, similarity scores are computed by comparing it with all
the examples sent from the server, after which the top-k examples are selected as the few-shot
examples in the context for data generation. (2) Subsequently, typical federated instruction tuning
is launched based on the general LLM and the generated datasets in the previous step. Considering
communication and computation efficiency, LoRA [19] is applied and therefore only a small set of
parameters are learned and communicated. Overall, our FedIT-U2S framework makes FedIT system
as practical as Google’s GBoard application (next word prediction) [20], where the supervision data
directly comes from user’s data without any manual effort.

To verify the effectiveness of our proposed framework, we conduct a series of experiments covering
three domains (i.e., medicine, knowledge, and math). We show that across these domains, our FedIT-
U2S consistently improves the performance of the general LLM on the corresponding downstream
task. Besides, we show the effectiveness of several designs, including retrieval-based example
selection and filtering during data generation, providing potential directions for further improving the
performance of FedIT-U2S.

Our contributions are as follows:

1. We propose the first end-to-end framework (FedIT-U2S) for directly leveraging unstructured data
for federated instruction tuning of large language models.

2. We propose a retrieval-based example selection technique and a few-shot data generation mecha-
nism, which automatically selects examples for higher relatedness and generates structured data in
an expected manner.

3. We verify the effectiveness of FedIT-U2S through a series of experiments on multiple domains.

2 Related Work

Federated Learning of Large Language Models. Federated learning is a privacy-preserving
machine learning paradigm that enables multiple clients to collaboratively train machine learning
models without sharing their raw data [10, 11]. With the rise of large language models (LLMs),
researchers have recently begun to consider federated training of LLMs to safeguard client data
privacy or to address the scarcity of publicly available data [21, 12], which has attracted massive
attention and interests from both academia [12, 13, 14] and industry [15, 16, 17].

Specifically, OpenFedLLM [12] offers an integrated framework and provides a comprehensive
empirical study to show the potential of federated instruction tuning of LLMs (FedIT). Similarly,
FederatedScope-LLM [17] and FedML-LLM [15] provide frameworks that implement FedIT; while
FedLLM-Bench [13] offers real-world datasets and benchmarks. Besides frameworks and bench-
marks [22], a series of methods are proposed to target various perspectives including safety align-
ment [23], privacy [24], heterogeneous computation [25].

However, existing literature assumes that client data is structured in the form of instruction-response
pairs, overlooking the reality that client data often exists in an unstructured format. In such cases,
clients are required to annotate data before participating in FedIT, which is labor-intensive and limits
its broader adoption. In this paper, we address this issue for the first time by proposing FedIT-U2S,
a method that automates the transformation of unstructured client data into structured data prior to
FedIT. This reduces the need for manual annotation and broadens the applicability of FedIT.
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Figure 1: Overview of our proposed FedIT-U2S. It consists of two key steps: data generation and
FedIT. Data generation is required only once before FedIT. (1) For each raw unstructured data piece,
clients select a few examples by retrieving from an example database to construct a few-shot template,
prompting the LLM to generate an instruction-response pair. (2) Typical federated instruction tuning
starts based on the generated structured instruction-tuning data.

Data Generation in Large Language Models. The quality and quantity of data play a critical
role in the training of large language models. However, manually generating and annotating data is
labor-intensive and hard to scale up. Addressing this, the community turns to using LLMs to generate
high-quality data [26, 27, 28, 29]. For example, Self-Instruct [30] leverages 8 in-context examples to
prompt LLMs for generating new instruction samples. WizardLM [26] instructs ChatGPT to generate
diverse instructions via evolving prompt. MATRIX [31] instructs the LLMs to generate data for value
alignment via social simulation. Genie [18] employs few-shot methods [32] to transform unstructured
data into three kinds of structured data. Instruction Pre-training [27] generates instruction-tuning data
to augment pre-training.

In this paper, we for the first time consider utilizing clients’ unstructured data for FedIT of LLMs by
leveraging the LLMs for data generation. We apply few-shot generation technique for its simplicity
and effectiveness; while we believe that there could be other techniques applied to our scenario.

3 Methodology

In this section, we first introduce the overall framework of our proposed FedIT-U2S (Figure 1), which
consists of two key steps: few-shot instruction-tuning data generation (which transforms unstructured
data into structured instruction-tuning data pairs) and federated instruction tuning on the generated
data. Then, we detail our design of retrieval-based example selection for few-shot data generation.

3.1 Pipeline of FedIT-U2S

At the beginning of FedIT-U2S, the server first distributes an open-sourced general LLM (denoted
by θ∗) and a set of examples (unstructured and structured text pairs, denoted by O) to participating
clients.

Step 1: few-shot instruction-tuning data generation. Suppose there are M clients in the system and
each client m holds an unstructured dataset Du

m = {di}Nm
i=1, where di is a data piece and Nm denotes

the number of data pieces. Since such unstructured data cannot be directly used for instruction tuning,
it conventionally requires each client’s efforts to manually create instruction-response pairs for tuning,
which is costly and faces the challenges of scaling up. To address this, we design to automatically
transform the unstructured data into a structured instruction-response format via a few-shot data
generation process, which leverages LLM’s in-context learning capability [32].

Specifically, upon receiving example set O = {(di,xi,yi)}Oi=1, where O is the example number, di

is an unstructured data document, xi and yi is the document-grounded instruction and response re-
spectively, each client selects several (denoted by k) examples as few-shot examples prompt the LLM
θ∗. Denote the instruction for generation as I and the selected examples as S = {(d̂i, x̂i, ŷi)}ki=1,
given a user’s data piece d, the prompt P is constructed as: P = Concat(I,S,d), where Concat
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denotes the concatenation operation (see full prompt in A). Note that these examples can be either
randomly selected for diversity or selected according to relatedness between user data and examples
for better diversity-relatedness trade-off, which will be detailed in Section 3.2. Based on the prompt,
the LLM θ∗ will generate an instruction-response pair: (x,y) = f(P ;θ∗). Therefore, by iterating
on client’s unstructured dataset Du

m = {di}Nm
i=1, we obtain a structured dataset for instruction tuning:

Ds
m = {xi,yi}Nm

i=1.

Since the responses of LLMs are in an open-ended form and there are randomness during generation,
some generated data might fall short in terms of data quality. Therefore, additional data filtering is
necessary for enhancing the data quality. Here, we consider two filtering mechanisms: rule-based
filtering to remove data with undesired format and reward-based filtering to ensure the quality of
selected data. Specifically, we first filter out data that does not follow the format of instruction-
response pair. Secondly, we use an publicly available reward model to score the generated data
samples and select the top two-thirds samples. This enables us to select data that is more aligned
with human preference since reward model is trained to model human preference.

Step 2: federated instruction tuning on the generated data. With the generated data, a typical
process of federated instruction tuning is started. Considering computation and communication
efficiency, we apply LoRA [19] as the parameter-efficient fine-tuning technique. Suppose there are T
rounds of federated learning rounds in total. At each round t, the server sends the model parameters
θt to each available client. Then, each client m initializes its local trainable parameters with θt,
keeps the base model parameters θ∗ fixed, and starts supervised fine-tuning on its generated dataset
Ds

m = {xi,yi}Nm
i=1, where the model learns to predict the response yi given the instruction xi. By

fine-tuning for several steps, each client m obtains a fine-tuned model parameters θt
m and sends it

to the server. Finally, the server aggregates model parameters of clients to obtain the global model
parameters for the next round: θt+1 =

∑
m pmθt

m, where pm = Nm∑
i Ni

is the relative dataset size of
client m.

3.2 Retrieval-based Example Selection for Few-Shot Generation

The chosen examples (i.e., the context) in the prompt could significantly affect the behaviour of
LLMs [33, 34], resulting in different quality of the genrated data. Therefore, to generate high-
quality structured data, selecting appropriate few-shot examples is essential. Generally, examples
that closely match the target text in terms of content and structure tend to produce more effective
results. However, in practical applications, manually identifying suitable examples can be a time-
consuming process, making it inflexible in adapting to diverse scenarios. To mitigate this challenge,
we propose a retrieval-based example selection method for few-shot generation which automatically
selects few-shot examples from a mixed example pool according to similarity between user data and
examples.

Given the set of examples sent from the server O = {(di,xi,yi)}Oi=1, each client aims to select k
examples for each of its sampled unstructured data piece. Specifically, for each data piece d, we
compute the similarity Sim(d,di) for each di in the example pool O using BERT Score as the
metric, which gives a similarity score that reflects the relatedness between the target data piece
and the example’s content. Subsequently, we rank the similarity scores and select top-k examples
S = {(d̂i, x̂i, ŷi)}ki=1, which are mostly likely to guide the LLM to generate high-quality and
highly-related data. The other procedures remain unchanged as in Section 3.1.

4 Experiments

4.1 Experimental Details

Training Dataset. We consider three datasets for our experiments [27], which cover domains
including medicine, knowledge, and math. Specifically, PubMedQA [35] is a medical dataset for
biomedical research question answering with corresponding abstracts as the context. HotpotQA [36]
is a dataset of Wikipedia-based questions with supporting facts as the context. AQUA_RAT [37]
is a math dataset for algebraic word problems answering. The problems, together with solutions,
form the context. We select 10,000 samples from each dataset for the experiments [27], with each
sample comprising a piece of original unstructured text, along with a human annotated instruction
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PubMedQA HotpotQA AQUA_RAT
BERT Score ROUGE-L BERT Score ROUGE-L BERT Score ROUGE-L

Base Model 0.1483 0.1496 0.0566 0.2380 -0.0171 0.1529
FedIT-U2S 0.1876 0.1727 0.1774 0.2942 0.0885 0.2383
FedIT-U2S (Filtered) 0.2043 0.1859 0.2439 0.3226 0.1131 0.2452
FedAvg on Human Data 0.2306 0.2017 0.2701 0.3531 0.1381 0.2890

Table 1: Experiments on three datasets: PubMedQA (medical), HotpotQA (knowledge), and
AQUA_RAT (math). Our proposed FedIT-U2S consistently brings performnace improvement com-
pared to base model. FedIT-U2S (Filtered) hugely fills the gap between base model and FedAvg on
human-annotated data, indicating the effectiveness of our proposed method in bypassing massive
human efforts in annotation.

and response, both derived from the text. Only the unstructured text is used in our method FedIT-U2S,
while the human annotated instruction-response pairs are used to implement FedAvg as a reference to
verify the effectiveness of our method.

Implementation Details. Our implementation is based on the open-sourced codebase Open-
FedLLM* [12]. We use Vicuna-7B [38] as the base model and set the learning rate as 2e−5

with a batch size of 16. The communication round is set to 200 and 2 clients are sampled out of 5
each round to participate federated instruction tuning. We use reward-model-deberta-v3-large-v2 as
the reward model following [18]. We select k = 3 examples for few-shot generation.

Evaluation Metrics. (1) BERT Score: BERT Score [39] is an evaluation metric for natural language
generation that measures the similarity between a candidate sentence and reference sentences by
leveraging contextual embeddings from pre-trained language models like BERT. (2) ROUGE-L:
ROUGE-L [40] is an evaluation metric used for summarization and text generation tasks, focusing
on the longest common subsequence (LCS) between a candidate sentence and a reference sentence.
ROUGE-L evaluates the extent to which the candidate sentence preserves the order and content of
the reference, providing a more holistic assessment of the generated text’s quality. We select 50
samples from each dataset to serve as the test set. We compare the model-generated responses to the
gold standard answers (i.e., human-annotated answers in the test set) by calculating BERT Score and
ROUGE-L to assess performance.

Compared LLMs. (1) The base LLM, i.e., the Vicuna model without additional tuning; (2) the base
LLM tuned via FedAvg on human-annotated data, which serves as a performance reference; (3) the
base LLM tuned by our FedIT-U2S without filtering technique; and (4) the base LLM tuned by our
FedIT-U2S with filtering technique.

4.2 Experimental Results

Comparisons with baselines. In Table 1, we compare models trained via our methods on generated
data with base model and model trained via FedAvg [10] on human-annotated data (as a reference).
Experiments are conducted on three datasets and evaluated by two metrics. From the table, we see
that (1) our methods consistently and significantly improves the performance of the base model across
datasets and evaluation metrics, indicating the effectiveness of our proposed methods. Specifically,
in HotpotQA, our method can achieve 0.1873 higher BERT Score (0.2439 v.s. 0.0566). (2) Our
methods hugely fill the gap between base model and that tuned via FedAvg on human data, further
verifying FedIT-U2S’s effectiveness. However, there is still a room for improvement, calling for
more future works to further enhance the performance. With the increasing generation capability of
LLMs [29, 28], we even believe that there is potential for surpassing this baseline (FedAvg on human
data). (3) Although the data filtered using the reward model is smaller in quantity, it brings a more
significant improvement to the model’s performance, indicating the importance of data quality in this
scenario.

Analysis of example selection for few-shot generation. The effectiveness of few-shot generation
may heavily rely on the chosen examples in the context. Therefore, here, we deeply analyze the
example selection by conducting a series of experiments on HotpotQA dataset since we observe a

*https://github.com/rui-ye/OpenFedLLM
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Experimental Setup Bert Score ROUGE-L

Base Model 0.0566 0.2380
① Random 0 + 3 (3 out-domain examples) 0.0868 0.2211
② Random 1 + 2 (1 in-domain and 2 out-domain examples) 0.1143 0.2426
③ Fixed 3 + 0 (3 fixed in-domain examples) 0.1774 0.2942
④ Random 3 + 0 (3 randomly selected in-domain examples) 0.2128 0.3054
⑤ Retrieval-based Selection from A Mixed Pool 0.2035 0.2994

Table 2: Experiments on HotpotQA dataset for analysis of example selection during few-shot data
generation. The results show that our proposed automated retrieval-based selection technique can
achieves comparable performance compared to selecting in-domain examples (which requires prior
knowledge).

(a) PubMedQA (b) HotpotQA (c) AQUA_RAT

Figure 2: The t-SNE visualization of embeddings of instruction-response pairs in PubMedQA,
HotpotQA and AQUA_RAT. Blue dots represent generated data, while red dots represent human-
annotated data. The close proximity of each pair of red and blue dots indicates that the generated
data closely aligns with the human-annotated data.

large improvement in previous experiments. In this experiment, the example pool has 50 samples
in total, covering five domains: medicine, math, knowledge, common sense, and daily life. We
consider the following setups of few-shot generation in our proposed FedIT-U2S: ① Random 0 + 3: 3
out-domain examples are randomly selected (e.g., for medical task, examples from other domains
are randomly selected); ② Random 1 + 2: 1 in-domain and two out-domain examples are randomly
selected; ③ Fixed 3 + 0: 3 fixed in-domain examples are selected for all generation; ④ Random
3 + 0: 3 in-domain examples are randomly selected; ⑤ Retrieval-based Selection: 3 examples are
automatically selected from a mixed example pool by our retrieval-based example selection technique.

The experimental results are shown in Table 2. (1) Compared to the base model, ①, which introduces
out-domain examples for few-shot generation, does not bring evident improvement while ②-⑤ all
bring consistent improvement. This indicates the importance of selecting appropriate examples
for few-shot data generation. (2) Comparing ①, ②, and ④, we can see that increasing the number
of in-domain examples consistently brings more performance improvement, indicating the value
of introducing in-domain examples to facilitate generation. (3) Comparing ③ and ④, we see that
randomly selecting in-domain examples performs better than selecting fixed examples, indicating
the value of example diversity in generation. (4) Comparing ④ and ⑤, we see that our proposed
retrieval-based selection from a mixed pool performs comparably to selecting examples from a
in-domain pool (which requires prior knowledge), indicating the effectiveness of our retrieval-based
selection technique. This result suggests that equipped with this technique, our proposed FedIT-U2S
framework can be automatically deployed in various domains without much prior knowledge.

Comparisons of generated and human-annotated data. To better understand our method, we
further analyze the characteristics of our generated data by comparing it with human-annotated data
from two perspectives: embedding visualization and case studies.

(1) Embedding visualization: Here, we use t-SNE [41] to visualize the data points of generated and
human-annotated data. For each dataset, 200 generated and human-annotated sample pairs, sharing
the same context, are selected. The embeddings of the concatenated instruction and response texts
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Figure 3: Example illustration.

are extracted via sentence-transformers† and mapped to a two-dimensional space via t-SNE. The
final 2D embeddings are plotted as shown in Figure 2, where blue and red dots represent generated
and human-annotated data respectively. From the figure, we observe close proximity between the
generated and human data points, indicating a high degree of alignment between the generated and
human data across the datasets.

(2) Case Study: In Figure 3, we show a specific example of generated data sample from PubMedQA.
The human-annotated data sample with the same context is also given for comparison. Instructions
of both samples ask about the effectiveness of HA injections in treating knee OA. The generated
response conveys a meaning similar to human-annotated response based on the context.

These two aspects of comparison demonstrate that our generated data is highly similar to the manually
annotated data in both content and structure, reflecting the high quality of the generated data.

5 Conclusions

This paper proposes FedIT-U2S, which directly leverages clients’ unstructured text data to achieve
federated instruction tuning of large language models. FedIT-U2S consists of two key steps: few-shot
instruction-tuning data generation and federated instruction tuning on the generated data. During data
generation, for each unstructured data piece, a client firstly selects related examples via a retrieval-
based example selection mechanism and then uses these examples for guiding the LLM to generate
instruction-response pair based on the data piece. A typical process of federated instruction tuning is
then conducted based on the generated data. Experiments on three domains (medicine, knowledge,
and math) verify the effectiveness of our proposed FedIT-U2S. Our method for the first time enables
clients with unstructured data to be involved in the process of federated instruction tuning, which
occupy a large proportion in practice and are underutilized previously. We believe that this work can
contribute to broadening the application scope of federated instruction tuning.

†https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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A Appendix

Listing 1: Few-shot prompt template
Given the next [document], create a [question] and [answer] pair that
are grounded in the main point of the document , don ’t add any
additional information that is not in the document. The [question] is
by an information -seeking user and the [answer] is provided by a
helping AI Agent.

[document ]: {The content of document 1}

### Response:
[question ]: {The content of question 1}
[answer ]: {The content of answer 1}

[document ]: {The content of document 2}

### Response:
[question ]: {The content of question 2}
[answer ]: {The content of answer 2}

[document ]: {The content document 3}

### Response:
[question ]: {The content of question 3}
[answer ]: {The content of answer 3}

[document ]: {The content of the target text}

### Response:
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