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Abstract
Data pruning – the combinatorial task of select-
ing a small and representative subset from a large
dataset, is crucial for mitigating the enormous
computational costs associated with training data-
hungry modern deep learning models at scale.
Since large-scale data collections are invariably
noisy, developing data pruning strategies that re-
main robust even in the presence of corruption is
critical in practice. Existing data pruning methods
often fail under high corruption rates due to their
reliance on empirical mean estimation, which is
highly sensitive to outliers. In response, this work
proposes Geometric Median (GM) Matching, a
novel k-subset selection strategy that leverages
the GM, a robust estimator with an optimal break-
down point of 1/2; to enhance resilience against
noisy data. Our method iteratively selects a k-
subset such that the mean of the subset approxi-
mates the GM of the (potentially) noisy dataset,
ensuring robustness even under arbitrary corrup-
tion. We provide theoretical guarantees, showing
that GM MATCHING enjoys an improved O(1/k)
convergence rate, outperforming O(1/

√
k) scal-

ing of uniform sampling, even under arbitrary
corruption. Extensive experiments across image
classification and image generation tasks demon-
strate that GM MATCHING consistently outper-
forms existing pruning approaches, particularly
in high-corruption settings; making it a strong
baseline for robust data pruning.

1. Introduction
The recent success of deep learning has been largely fueled
by the training of gigantic models on vast amounts of train-
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ing data (Radford et al., 2018; 2021b; Brown et al., 2020;
Touvron et al., 2023; Kaplan et al., 2020; Hestness et al.,
2017). However, such large-scale training is usually associ-
ated with enormous computational costs, hindering the path
to democratizing AI (Paul et al., 2021).

Data pruning – the combinatorial task of reducing a large
training set into a small informative subset (Feldman, 2020;
Agarwal et al., 2005; Muthukrishnan et al., 2005; Har-Peled,
2011; Feldman & Langberg, 2011), is a promising approach
to reduce the enormous computational and storage costs of
modern deep learning.

1.1. Robustness vs Diversity

Consequently, a large body of recent work has been pro-
posed to solve the combinatorial subset selection problem.
At a high level, these approaches rely on some carefully de-
signed importance scoring criterion to rank the training sam-
ples, retaining a fraction of them as representative samples
(super samples) used for training the downstream model.
For example, spatial sampling approaches (Xia et al., 2022;
Joshi & Mirzasoleiman, 2023; Sorscher et al., 2022; Needell
et al., 2014) calculate the importance score of a sample in
terms of the distance from the centroid of its corresponding
class marginal. Samples closer to the centroid are consid-
ered the most prototypical (easy) and those far from the
centroid are treated as least prototypical (hard). Canonical
scoring criteria have also been developed in terms of gra-
dients (Paul et al., 2021), uncertainty (Pleiss et al., 2020),
and forgetfulness (Toneva et al., 2018). Notably, the spa-
tial distance-based score is closely related to the gradient
/ uncertainty / forgetting-based score. Samples close (far
away) to the class centroid are often associated with smaller
(larger) gradient norm / lower (higher) uncertainty / harder
(easier) to forget (Paul et al., 2021; Sorscher et al., 2022;
Xia et al., 2022).

In the ideal scenario i.e. in the absence of any corruption,
hard examples are known to contribute the most towards
downstream generalization performance (Katharopoulos &
Fleuret, 2018; Joshi et al., 2009; Huang et al., 2010; Balcan
et al., 2007) as they often encode the most discriminative
and task-relevant information in the dataset (Xu et al., 2020).
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However, in the realistic noisy scenarios involving outliers,
this strategy often fails since the noisy examples are wrongly
deemed informative for training (Zhang & Sabuncu, 2018;
Park et al., 2024). To mitigate this issue, existing pruning
methods, tailored for such noisy scenarios, aim to retain the
most prototypical / easy samples (Pleiss et al., 2020; Jiang
et al., 2018; Har-Peled et al., 2007; Shah et al., 2020; Shen
& Sanghavi, 2019). Yet, by prioritizing samples far from
the decision boundary, these methods overlook less proto-
typical but uncorrupted and highly informative examples.
This bias introduces a fundamental robustness vs. diversity
trade-off (Xia et al., 2022), where emphasizing robustness
can lead to a lack of diversity in the pruned subset. This
limitation not only results in suboptimal generalization per-
formance but, in extreme cases, can also lead to degenerate
solutions (Sugiyama & Kawanabe, 2012).

Moreover, real-world scenarios frequently deviate from ide-
alized assumptions, making it challenging or infeasible to
adapt selection criteria and methodologies to diverse and un-
predictable conditions. Consequently, despite its drawbacks
in prioritizing informative examples, random sampling re-
mains the industry standard due to its simplicity, efficiency,
and ease of implementation. Due to space constraints, a
more detailed related work is deferred to Appendix C.

1.2. Overview of Our Approach

To go beyond these limitations, we investigate the k-subset
selection problem under the Gross Corruption Framework
(Definition 1), where 0 ≤ ψ < 1

2 fraction of the samples are
allowed to be arbitrarily perturbed. This allowance for
arbitrary corruption enables us to capture many practical
robustness scenarios – including corrupt features / labels
and adversarial attacks.

We make a key observation that: existing pruning methods
typically use the empirical mean to calculate the centroid of
the samples, which then guides the selection process based
on how representative those samples are. However, the
empirical mean is highly susceptible to outliers – in fact,
it is possible to construct a single adversarial example to
arbitrarily perturb the empirical mean (Figure 1).

As a consequence, in the presence of arbitrary corruption,
the conventional distinction between easy (robust) and hard
samples breaks down, leading to the selection of subsets
that are significantly compromised by corruptions (2).

In response, we propose a novel subset selection strategy
that fosters balanced diversity, effectively navigating vari-
ous regions of the distribution while avoiding distant, noisy
points. Specifically, we formulate the subset selection prob-
lem as one of minimizing the Maximum Mean Discrep-
ancy (Gretton et al., 2012) between the empirical distribu-
tion induced by the selected subset and that of the underlying

Algorithm 1 GEOMETRIC MEDIAN MATCHING

(initialization)
A finite collection of grossly corrupted (Definition 1) ob-
servations D = {xi ∈ Rd}ni=1; pretrained encoder ϕ(·) :
Rd → Rs e.g. CLIP (Radford et al., 2021b); initial weight
vector θ0 ∈ Rs; number of sampling batches B, population
fraction for GM computation 0 < γGM ≤ 1.

(compute embeddings)
Φ = {ωi = ϕ(xi) ∈ Rs : ∀xi ∈ D}
(pick random nGM-subset for GM computation)
ΦGM

i.i.d∼ Φ, where,|ΦGM| = γGM|Φ| ≤ n
(compute ϵ-approximate geometric median)
µGM

ϵ (ΦGM) = argminz∈Rs

∑
ωi∈ΦGM

∥z− ωi∥
(partition data into batches)
D =

⋃B
b=1Db

(initialize subset)
DS ← ∅
for batch index b = 1, . . . B do

(load batch embeddings)
Φb = {ωi ∈ Φ : xi ∈ Db}
for iterations t = 0, 1, . . . , k/B do

(find embedding closest to θt)
ω := argmaxωi∈Φb

⟨θt, ωi⟩
(update direction parameter)

θt+1 := θt +

[
µGM

ϵ (Φb)− ω
]

(update selected subset)
DS := DS ∪ x where, ω = ϕ(x)
(update the batch embedding set)
Φb := Φb \ ω

end
end
return: DS

true (uncorrupted) distribution. Our key idea is to replace
the empirical mean with a robust surrogate – Geometric
Median (GM)(Definition 3) (Weber et al., 1929; Weiszfeld,
1937) – a classical estimator of the central tendency, inher-
ently robust to outliers.

In particular, we optimize over finding a k-subset that mini-
mizes the distance between the subset’s empirical mean and
the GM of the (potentially noisy) dataset over some appro-
priate embedding space, using herding (Welling, 2009) style
greedy iterative updates. We call our algorithm Geometric
Median (GM) Matching as described in Algorithm 1.

Intuitively, GM MATCHING can be viewed as a robust gen-
eralization of Kernel Herding (Chen et al., 2010). By re-
placing its vulnerable empirical mean with the GM, we
inherit the favorable O(1/k) convergence of Kernel Herd-
ing while adding robustness to adversarial and heavy-tailed
noise, bridging moment-matching and robust estimation in
a unified framework.
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(a) No Corruption (ψ = 0) (b) 20% Corruption (ψ = 0.2) (c) 40% Corruption (ψ = 0.4)

Figure 1: ROBUST MEAN ESTIMATION: As the corruption rate 0 ≤ ψ < 1
2

increases ( representing the fraction of samples drawn from
an adversary-chosen distribution), the empirical mean increasingly deviates from the true uncorrupted mean. In contrast, the geometric
median (GM) remains robust and stays closer to the uncorrupted (oracle) mean, demonstrating its resilience to outliers.

(a) RANDOM (b) EASY (c) HARD

(d) MODERATE (e) HERDING (f) GM MATCHING

Figure 2: DATA PRUNING IN THE WILD: subset 10% of the examples from anisotropic Gaussian (blue) where 40% replaced by
an adversarial distribution (red). We compare GM MATCHING with (RANDOM), (EASY) samples closest to the centroid, (HARD)
samples farthest from the centroid, (MODERATE) samples closest to the median distance from the centroid, and (KERNEL HERDING) (6).
GM MATCHING yields significantly more robust subset than the other approaches.

1.3. Contributions

Overall, our contributions can be summarized as follows:

• We introduce a principled formulation of the k-subset se-
lection problem under the Gross Corruption model (Defi-
nition 1), allowing up to 50% of the data to be arbitrarily
corrupted. This generalizes prior noise models such as
Huber contamination and Byzantine failure, and captures
a wide range of real-world noise scenarios such as label
noise, outliers, and adversarial attacks. To the best of our
knowledge, this is the first theoretical and algorithmic
treatment of robust data pruning under such a general
corruption model.

• We demonstrate that state-of-the-art pruning strategies
– including those designed for robustness – fail under
gross corruption due to their reliance on the empirical

mean, which has an asymptotic breakdown point of zero.
Through both formal analysis (Lemma 2) and illustrative
examples (Figure 1, Figure 8), we show how even a sin-
gle adversarial point can arbitrarily skew moment-based
selection methods.

• Motivated by this key observation, we propose a robust al-
ternative: Geometric Median(GM) Matching. Our method
selects a subset whose empirical mean approximates the
Geometric Median (GM) of the full (potentially corrupted)
dataset. We formalize this as a robust moment matching
objective (6), and solve it via a greedy, herding (Chen
et al., 2010) style iterative selection procedure (Algo-
rithm 1). Unlike prior approaches, GM MATCHING lever-
ages the optimal 1/2 breakdown point of GM, ensuring
robustness even under adversarial perturbations.

• We provide rigorous theoretical analysis showing that
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GM MATCHING converges to a bounded neighborhood of
the true (uncorrupted) underlying mean at anO(1/k) rate
(Theorem 1). This matches the best-known rates from
Kernel Herding in clean settings, and crucially, contin-
ues to hold under arbitrary corruption. As a corollary,
we derive bounds on the Maximum Mean Discrepancy
(MMD) between the selected subset and the clean dis-
tribution (Lemma 1), establishing formal generalization
guarantees.

• We also propose a practical, batched version of the al-
gorithm, that enables efficient computation at scale as
outlined in Algorithm 1. Our method incorporates two
key engineering strategies: (i) sub-sampling for GM esti-
mation, and (ii) batched greedy selection. We analyze the
computational complexity and demonstrate that batching
yields near-linear speedups without significantly compro-
mising performance.

• We conduct comprehensive experiments across a range
of tasks — including image classification, unsupervised
distribution matching, and image generation. Our bench-
marks cover diverse noise types: feature corruptions, label
noise, and adversarial attacks. In all settings, the proposed
approach consistently outperforms existing methods, es-
pecially under high corruption and aggressive pruning
(often by >10%), establishing it as a state-of-the-art ro-
bust coreset selection strategy.

• Our analysis and visualizations (Figure 2) highlight how
GM MATCHING balances robustness and diversity —
avoiding the degeneracies of “easy-only” pruning while
excluding adversarial outliers. This addresses a key open
problem in the pruning literature: how to retain task-
relevant examples near the decision boundary without
being misled by corrupted points.

2. Problem Setup : Robust Data Pruning
Given a set of n samples, data pruning (or coreset selection)
aims to find a k-subset that is representative of the under-
lying distribution. If such a subset can be found compute-
efficiently, then training a parametric model on the sub-
set typically yields similar generalization performance as
training on the entire dataset, while resulting in significant
speedup when k ≪ n.

CORRUPTION MODEL: However, real-world data is of-
ten noisy and imperfect due to the difficulty and expense
of obtaining perfect semantic annotations, adversarial at-
tacks, or simply measurement noise. To account for such
realistic scenarios, we study the combinatorial k-subset
selection problem under Gross Corruption Framework (Def-
inition 1) (Diakonikolas et al., 2019) that generalizes both
the Huber Contamination (Huber, 1992), and the Byzantine
Failure model (Lamport et al., 1982).

Definition 1 (Gross Corruption). Given observationsD =

{xi ∈ Rd i.i.d∼ p(x)}ni=1, an adversary inspects all the
samples and arbitrarily perturbs ψ ∈ [0, 12 ) fraction of
them. We will refer to such a set of samples D = DG ∪ DB
as ψ-corrupted , where DB, DG denote the sets of corrupt
and clean samples respectively.

The goal of Robust Data Pruning is thus to select a k-subset
DS ⊆ D where |DS | = k that encapsulates the underlying
uncorrupted distribution p(x) induced by subsetDG without
any a-priori knowledge about the corrupted samples.

Let, p̂S denote the empirical measure induced by DS . Then,
we aim to solve:

min
DS⊆D

Λ

(
p̂S(x)

∥∥∥∥ p(x)) (1)

for some appropriate divergence measure Λ. As discussed
in Section 3, the proposed GM MATCHING (Algorithm 1)
finds the subset by minimizing the Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012) between p̂S and
the true underlying uncorrupted distribution p.

We measure the robustness of subset selection algorithms
via breakdown point (Donoho & Huber, 1983; Lopuhaa
et al., 1991; Davies & Gather, 2007) – a classic tool in
robust optimization to assess the resilience of an estimator.

Definition 2 (Breakdown Point). The breakdown point εT
of an estimator T (·) is the smallest fraction of corrupted
samples that can cause it to diverge arbitrarily:

ζT = inf

{
ψ ≥ 0 : sup

DB

∥∥∥∥T (D)− T (DG)

∥∥∥∥ =∞
}

(2)

T (·) achieves the optimal breakdown point ζ∗T = 1/2 if it
remains bounded ∀ 0 ≤ ψ < 1/2.

PROXY ENCODER: Identifying sample importance is an
ill-posed problem without some notion of similarity among
the samples. Hence, we assume access to a proxy encoder
ϕ : Rd → H that maps raw inputs into a separable embed-
ding space (potentially infinite-dimensional), i.e., a Repro-
ducing Kernel Hilbert Space (RKHS) H with inner prod-
uct determined by a positive-definite kernel ω(x,x′) =
⟨ϕ(x), ϕ(x′)⟩H The RKHS structure ensures that inner
products in H define a well-behaved notion of similar-
ity i.e. semantically similar samples remain close while
dissimilar ones are well separated. We further assume
that ϕ(·) is a characteristic feature map i.e. the mapping
p 7→ µp = Ex∼p

[
ϕ(x)

]
is injective. Simply put, for any

two distributions p and q: µp = µq =⇒ p = q. In practice,
we instantiate such embeddings with pretrained foundation
models, e.g., CLIP encoders (Radford et al., 2021a) – explic-
itly trained via a contrastive objective (Chen et al., 2020)
to map semantically similar examples closer together while
pushing dissimilar ones apart.
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CIFAR-100

Method / Ratio 20% 30% 40% 60% 80% 100% Mean ↑
Random 50.26±3.24 53.61±2.73 64.32±1.77 71.03±0.75 74.12±0.56 78.14±0.55 62.67
Herding 48.39±1.42 50.89±0.97 62.99±0.61 70.61±0.44 74.21±0.49 78.14±0.55 61.42
Forgetting 35.57±1.40 49.83±0.91 59.65±2.50 73.34±0.39 77.50±0.53 78.14±0.55 59.18
GraNd-score 42.65±1.39 53.14±1.28 60.52±0.79 69.70±0.68 74.67±0.79 78.14±0.55 60.14
EL2N-score 27.32±1.16 41.98±0.54 50.47±1.20 69.23±1.00 75.96±0.88 78.14±0.55 52.99
Optimization-based 42.16±3.30 53.19±2.14 58.93±0.98 68.93±0.70 75.62±0.33 78.14±0.55 59.77
Self-sup.-selection 44.45±2.51 54.63±2.10 62.91±1.20 70.70±0.82 75.29±0.45 78.14±0.55 61.60
Moderate-DS 51.83±0.52 57.79±1.61 64.92±0.93 71.87±0.91 75.44±0.40 78.14±0.55 64.37
GM Matching 55.93± 0.48 63.08± 0.57 66.59± 1.18 70.82± 0.59 74.63± 0.86 78.14± 0.55 66.01

Tiny ImageNet

Random 24.02±0.41 29.79±0.27 34.41±0.46 40.96±0.47 45.74±0.61 49.36±0.25 34.98
Herding 24.09±0.45 29.39±0.53 34.13±0.37 40.86±0.61 45.45±0.33 49.36±0.25 34.78
Forgetting 22.37±0.71 28.67±0.54 33.64±0.32 41.14±0.43 46.77±0.31 49.36±0.25 34.52
GraNd-score 23.56±0.52 29.66±0.37 34.33±0.50 40.77±0.42 45.96±0.56 49.36±0.25 34.86
EL2N-score 19.74±0.26 26.58±0.40 31.93±0.28 39.12±0.46 45.32±0.27 49.36±0.25 32.54
Optimization-based 13.88±2.17 23.75±1.62 29.77±0.94 37.05±2.81 43.76±1.50 49.36±0.25 29.64
Self-sup.-selection 20.89±0.42 27.66±0.50 32.50±0.30 39.64±0.39 44.94±0.34 49.36±0.25 33.13
Moderate-DS 25.29±0.38 30.57±0.20 34.81±0.51 41.45±0.44 46.06±0.33 49.36±0.25 35.64
GM Matching 27.88±0.19 33.15±0.26 36.92±0.40 42.48±0.12 46.75±0.51 49.36±0.25 37.44

Table 1: (CLEAN) IMAGE CLASSIFICATION: Comparing (Test Accuracy) pruning algorithms on CIFAR-100 and Tiny-ImageNet in
the uncorrupted setting. ResNet-50 is used both as proxy and for downstream classification.

3. Geometric Median Matching
In the uncorrupted setting i.e. when ψ = 0, a natural and
theoretically grounded approach for data pruning is to for-
mulate it as a combinatorial MOMENT MATCHING objective:

argmin
DS⊆D
|DS |=k

[
∆2 :=

∥∥∥∥ 1

|D|
∑
xi∈D

ϕ(xi)−
1

k

∑
xi∈DS

ϕ(xi)

∥∥∥∥2]
(3)

where the goal is to find a k-subset such that the empir-
ical mean of the subset closely approximates that of the
full dataset. Note that, (3) is an instance of the famous set
function maximization problem – known to be NP-hard via
a reduction from k-set cover (Feige, 1998). Remarkably,
(Mirzasoleiman et al., 2020) demonstrated a transforma-
tion into a submodular set cover problem, allowing efficient
solutions via greedy algorithms (Nemhauser et al., 1978).
Despite strong theoretical guarantees in the uncorrupted
setting, the moment matching objective can result in arbi-
trarily poor solutions under gross corruption (Definition 1)
∀ψ > 0. The vulnerability can be attributed to the estima-
tion of target moment via empirical mean – notorious for its
sensitivity to outliers. To illustrate, consider a single adver-

sarial sample xB =

(
|D|µB −

∑
x∈D\xB ϕ(x)

)
forcing

the empirical mean to an adversary chosen arbitrary target
µB. This implies that the empirical mean can’t tolerate
even a single grossly corrupted sample i.e. yields lowest
possible asymptotic breakdown point of 0. Consequently,
optimizing over (3) no longer guarantees convergence to the
true underlying (uncorrupted) moment µG = Ex∈DG ϕ(x).
Instead, the subset selection can be hijacked by a single bad
sample, warping the solution towards an adversarial target.

ROBUST MOMENT MATCHING : Building on this key
observation, we propose to solve a robust variant (6) of
the moment matching objective (3) instead. The key idea
is to replace the empirical mean with a robust surrogate
estimator of the target moment, mitigating its susceptibility
to corrupted samples.

A well-designed robust estimator µ̃ should guarantee that
the estimation error, ∆ = ∥µ̃− µG∥ ≤ δ remains bounded,
even under ψ-corruption (Definition 1). In this context, Geo-
metric Median (GM) ( Definition 3) – a well-studied spatial
estimator, known for several nice properties like rotation
and translation invariance and optimal breakdown point of
1/2 under gross corruption (Minsker et al., 2015; Kemper-
man, 1987) ( Figure 1,7,8). Moreover, GM is guaranteed to
lie in the relative interior of the convex hull of the majority
(good) points i.e. µGM ∈ CG , making it an attractive choice
to estimate the target moment.

Definition 3 (Geometric Median). Given a finite collec-
tion of observations {ϕ(x1), ϕ(x2), . . . ϕ(xn)} defined over
Hilbert space H ∈ Rd, equipped with norm ∥ · ∥ and in-
ner ⟨·⟩ operators, the geometric median (Fermat-Weber
point) (Weber et al., 1929) µGM is defined as:

µGM = argmin
z∈H

[
ρ(z) :=

n∑
i=1

∥∥∥∥z− ϕ(xi)

∥∥∥∥] (4)

Computing the GM exactly, is known to be algebraically
intractable (Bajaj, 1988), making it necessary to rely on ap-
proximation methods to estimate the GM (Weiszfeld, 1937;
Vardi & Zhang, 2000; Cohen et al., 2016). We call a point
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Method / Selection ratio 20% 30% 40% 60% 80% 100% Mean ↑
CIFAR-100 with 20% corrupted images

Random 40.99±1.46 50.38±1.39 57.24±0.65 65.21±1.31 71.74±0.28 74.92±0.88 57.11
Herding 44.42±0.46 53.57±0.31 60.72±1.78 69.09±1.73 73.08±0.98 74.92±0.88 60.18
Forgetting 26.39±0.17 40.78±2.02 49.95±2.31 65.71±1.12 73.67±1.12 74.92±0.88 51.30
GraNd-score 36.33±2.66 46.21±1.48 55.51±0.76 64.59±2.40 70.14±1.36 74.92±0.88 54.56
EL2N-score 21.64±2.03 23.78±1.66 35.71±1.17 56.32±0.86 69.66±0.43 74.92±0.88 41.42
Optimization-based 33.42±1.60 45.37±2.81 54.06±1.74 65.19±1.27 70.06±0.83 74.92±0.88 54.42
Self-sup.-selection 42.61±2.44 54.04±1.90 59.51±1.22 68.97±0.96 72.33±0.20 74.92±0.88 60.01
Moderate-DS 42.98±0.87 55.80±0.95 61.84±1.96 70.05±1.29 73.67±0.30 74.92±0.88 60.87
GM Matching 47.12±0.64 59.17±0.92 63.45±0.34 71.70±0.60 74.60±1.03 74.92±0.88 63.21

Tiny ImageNet with 20 % corrupted images

Random 19.99±0.42 25.93±0.53 30.83±0.44 37.98±0.31 42.96±0.62 46.68±0.43 31.54
Herding 19.46±0.14 24.47±0.33 29.72±0.39 37.50±0.59 42.28±0.30 46.68±0.43 30.86
Forgetting 18.47±0.46 25.53±0.23 31.17±0.24 39.35±0.44 44.55±0.67 46.68±0.43 31.81
GraNd-score 20.07±0.49 26.68±0.40 31.25±0.40 38.21±0.49 42.84±0.72 46.68±0.43 30.53
EL2N-score 18.57±0.30 24.42±0.44 30.04±0.15 37.62±0.44 42.43±0.61 46.68±0.43 30.53
Optimization-based 13.71±0.26 23.33±1.84 29.15±2.84 36.12±1.86 42.94±0.52 46.88±0.43 29.06
Self-sup.-selection 20.22±0.23 26.90±0.50 31.93±0.49 39.74±0.52 44.27±0.10 46.68±0.43 32.61
Moderate-DS 23.27±0.33 29.06±0.36 33.48±0.11 40.07±0.36 44.73±0.39 46.68±0.43 34.12
GM Matching 27.19±0.92 31.70±0.78 35.14±0.19 42.04±0.31 45.12±0.28 46.68±0.43 36.24

Table 2: (FEATURE CORRUPTION) IMAGE CLASSIFICATION: Experiments comparing pruning methods when 20% of the images are
corrupted. ResNet-50 is used for both proxy (data pruning) and downstream training.
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Figure 3: SAMPLING CONVERGENCE (RECOVERING ANISOTROPIC GAUSSIAN): Comparison of convergence rates for Mean
Discrepancy, defined as ∆2 = ∥µG − µk∥2, as a function of sample size k under varying corruption rates. Without corruption, both
Herding and GM Matching achieve a quadratic improvement (1/k) over random sampling (1/

√
k). In the presence of corruption, GM

Matching demonstrates superior robustness, maintaining convergence while Herding is significantly impacted.

µGM
ϵ ∈ H an ϵ accurate GM if:

n∑
i=1

∥∥∥∥µGM
ϵ − ϕ(xi)

∥∥∥∥ ≤ (1 + ϵ)

n∑
i=1

∥∥∥∥µGM − ϕ(xi)

∥∥∥∥ (5)

We adopt the popular Weiszfeld Algorithm ( Algorithm 2)
for approximating the GM due of its efficiency, numerical
stability and simplicity. We refer the reader to Appendix G,
for more details and results on computing GM.

Leveraging the breakdown and translation invariance prop-
erties of GM we solve for the following objective:

argmin
DS⊆D
|DS |=k

(
∆2

GM :=

∥∥∥∥µGM
ϵ − 1

k

∑
xi∈DS

ϕ(xi)

∥∥∥∥2) (6)

In other words, we aim to find a k-subset DS such that
the empirical mean of the subset µk = 1

k

∑
xi∈DS

ϕ(xi)
approximately matches the GM of the input dataset D.

Consequently, we perform herding style greedy minimiza-
tion (Chen et al., 2010) of the error (6). Starting with a
suitably chosen θ0 ∈ H; we repeatedly perform the follow-
ing updates, adding one sample at a time, k times:

xt+1 := argmax
x∈D

⟨θt, ϕ(x)⟩ (7)

θt+1 := θt +

(
µGM

ϵ − ϕ(xt+1)

)
(8)

We refer to the resulting robust data pruning approach as
GM MATCHING (Algorithm 1).

3.1. Theoretical Analysis

Notably, GM MATCHING is an infinite memory, determin-
istic process as at any iteration t = T , θT encapsulates the

6
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entire sampling history:

θT = θ0 + TµGM
ϵ −

T∑
t=1

ϕ(xt)

Conceptually, θT represents the vector pointing towards
under-sampled regions of the target distribution induced
by D at iteration T . Greedy updates in the direction that
reduces the accumulated error encourage the algorithm to
explore underrepresented regions of the feature space, pro-
moting diversity. By matching the GM rather than the
empirical mean, the algorithm imposes larger penalties on
outliers, which lie farther from the core distribution, pri-
oritizing samples near the convex hull of uncorrupted
points CG = conv{ϕB(x)|x ∈ DG}. As a result, the algo-
rithm promotes diversity in a balanced manner, effectively
exploring different regions of the distribution while avoid-
ing distant, noisy points, thus mitigating the robustness vs.
diversity trade-off discussed in Section 1.
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Figure 4: GM SCALING (CONVERGENCE): Comparison of
Mean Estimation Error i.e. deviation of GM from the oracle mean
∥µGM

ϵ − µG∥2 w.r.t sample size |D| and corruption rate ψ.

CONVERGENCE GUARANTEE: Our convergence analysis
leverages two key properties of GM – its robustness under
gross corruption and the fact that it is guaranteed to lie in
the interior of the convex hull of the majority (good) sam-
ples (Boyd & Vandenberghe, 2004). First, we exploit the
robustness property of GM to get an upper bound on the
estimation error w.r.t the underlying oracle mean (Acharya
et al., 2022; Chen et al., 2017). Next, we use the property
that GM is guaranteed to lie in the interior of the convex
hull of the majority of the samples (Boyd & Vandenberghe,
2004).Combining these two results, we establish the follow-
ing convergence guarantee:

Theorem 1. Suppose that we are given a set of grossly
corrupted samples D = DG ∪ DB (Definition 1), an ϵ
approx. GM(·) oracle (4) and characteristic feature map
ϕ(·) : Rd → H. Further assume that ∥ϕ(x)∥ ≤ R ∀x ∈ D
for some constant R. Then, GM MATCHING guarantees
that the mean of the selected k-subset DS ⊆ D con-
verges to a δ-neighborhood of the uncorrupted (true) mean

µG = Ex∈DG (ϕ(x)) at the rate O(1/k) such that:

δ2 ≤ 8|DG |2

(|DG | − |DB|)2
σ2
G +

2ϵ2

(|DG | − |DB|)2
(9)

where, σ2
G = 1

|DG |
∑

x∈DG
E∥ϕ(x) − µG∥2 denotes the

variance of the uncorrupted samples.

This result suggests that, even under gross corruption,
GM MATCHING converges to a neighborhood of the true
mean, where the neighborhood radius depends on two
terms – the first term depends on the variance of the un-
corrupted samples and the second term depends on how
accurately the GM is calculated. Furthermore, the bound
holds ∀α = DB/DG < 1 implying GM Matching remains
robust even when 1/2 of the samples are arbitrarily cor-
rupted, i.e. it achieves the optimal breakdown point of
1/2. Furthermore, GM MATCHING achieves a convergence
rate of O(1/k) — a quadratic improvement over random
sampling O(1/

√
k). As a straightforward consequence of

Theorem 1, we have:

Lemma 1.

∆2 =

∥∥∥∥µ(DS)− µ(DG)

∥∥∥∥2 ≤ O( 1

k2

)
+

16

(1− α)2
σ2
G +

4ϵ2

|DG |2(1− α)2
(10)

By matching µ(DS) to µ(DG), we ensure that DS cap-
tures the uncorrupted distribution’s first moment in the
RKHS. Specifically, because ϕ(·) is a characteristic feature
map, bounding

∥∥µ(DS) − µ(DG)
∥∥ immediately bounds

ΛMMD
(
p̂S , p

)
. In turn, If the subset satisfies ∆ ≤ δ, then

the expected risk difference between models trained on DS
and D can be bounded as O(δ2), assuming the model class
exhibits Lipschitz continuity in expectation (Shalev-Shwartz
& Ben-David, 2014). Detailed proofs in Appendix E.

3.2. Computational Complexity Analysis

Ensuring computational efficiency is paramount in large-
scale, real-world applications. Below, we outline the three
major cost components in GM MATCHING:
(A. Compute Embeddings) For inputs divided into L ≈
O(d) patches / tokens, the computational cost of com-
puting CLIP ViT (Radford et al., 2021a) ϕ(·) : Rd →
Rs embedding is ≈ O(dh2 + d2h) where h is the hid-
den size of the encoder. (B. Compute GM) Weiszfeld’s
algorithm(Algorithm 2) converges in the worst case as
O(s/ϵ) i.e. to compute µGM

ϵ over the embeddings incurs
≈ O(ns/ϵ). (C. Sampling Iterations) Each iteration of
GM MATCHING computes inner products between all points
in D and a direction vector θ ∈ Rs incurring ≈ O(nks)
compute. Additionally, storing the embeddings gives rise to

7
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O(ns) space complexity. Thus, the overall time complexity
can be expressed as:

TGMM ≈ O(n(dh2 + d2h+ s/ϵ+ ks))

To improve efficiency, we propose a two-fold batching strat-
egy as outlined in Algorithm 1: (1. Subsampling for GM):
Instead of computing GM over the entire dataset, we com-
pute it over a randomly chosen γGM-fraction (0 < γGM ≤ 1),
reducing complexity to O(nγGMs/ϵ). The deviation of GM
from the true mean depends on the variance of the clean
population (Theorem 1). In practice, for sufficiently large
γGM, the variance increase is negligible compared to the sav-
ings (Figure 4). (2. Batched GM MATCHING Iterations):
Instead of selecting all k samples at once, we divide the itera-
tions into B batches, selecting k/B samples per batch. This
results in a linear reduction of inner product computations
per iteration, lowering the complexity to O(nsk/B).

100 101 102 103 104

Coreset Size (k)

10 4

10 3

10 2

10 1

100

M
om

en
t 

M
at

ch
in

g 
Er

ro
r

Batch Size(b)

1
32
64
128
256
512
1024

Figure 5: GMM SCALING (CONVERGENCE): Comparing mo-
ment matching error ∥µG − µk∥2 of GM MATCHING across dif-
ferent batch size (b).

However, choosing too small of a batch size can increase
variance and slow down convergence (Figure 5). In practice,
with a moderate batch size, this additional error is often
negligible, while the speedup is substantial. Incorporating
these two ideas results in overall complexity:

T̃GMM = O
(
n(dh2 + d2h+ ks/B + γGMs/ϵ)

)
We provide additional discussion and wall clock experi-
ments in Appendix G.1,H.

4. Experiments
In this section, we outline our experimental setup, present
our key empirical findings, and discuss deeper insights into
the performance of GM MATCHING.

Due to space constraint, we only present a small subset of
results in the main paper; a larger set of experiments and
implementation details can be found in Appendix I.

4.1. Image Classification

To ensure reproducibility, our experimental setup is identical
to (Xia et al., 2022). We compare GM MATCHING with the

following baselines: (1) Random; (2) Herding (Welling,
2009); (3) Forgetting (Toneva et al., 2018); (4) GraNd-
score (Paul et al., 2021); (5) EL2N-score (Paul et al., 2021);
(6) Optimization-based (Yang et al., 2022); (7) Self-sup.-
selection (Sorscher et al., 2022) and (8) Moderate (Xia et al.,
2022) across three popular Image Classification datasets –
Tiny-ImageNet, CIFAR10/100. Our experiments span popu-
lar deep nets including ResNet-18/50, VGG-16, ShuffleNet,
SENet, EfficientNet-B0.

IDEAL (NO CORRUPTION) SCENARIO: Our first sets
of experiments involve performing data pruning across se-
lection ratio ranging from 20% - 80% in the uncorrupted
setting. The corresponding results, presented in Table 1,
indicate that while GM Matching is developed with robust-
ness scenarios in mind, it outperforms the existing strong
baselines even in the clean setting. Overall, on both CIFAR-
100 and Tiny ImageNet, GM Matching improves over the
prior methods > 2% on average. In particular, we note that
GM Matching enjoys larger gains in the low data selection
regime, while staying competitive at low pruning rates.

CORRUPTION SCENARIOS: To understand the perfor-
mance of data pruning strategies in presence of corruption,
we experiment with three different sources of corruption –
image corruption, label noise and adversarial attacks.

ROBUSTNESS TO IMAGE CORRUPTION: In these ex-
periments, the input images are corrupted – a popular ro-
bustness setting, often encountered when training models
on real-world data (Hendrycks & Dietterich, 2019; Szegedy
et al., 2013). To corrupt images, we apply: Gaussian noise,
random occlusion, resolution reduction, fog, and motion
blur to parts of the corrupt samples i.e. to say if m samples
are corrupted, each type of noise is added to one a random
m/5 of them, while the other partitions are corrupted with a
different noise. The results are presented in Table 2. We ob-
serve that GM Matching outperforms all the baselines across
all pruning rates improving ≈3% across both datasets on
an average. We note that, the gains are more consistent and
profound in this setting than the clean setting.

ROBUSTNESS TO LABEL CORRUPTION: Next, we con-
sider another important corruption scenario where a fraction
of the training examples are mislabeled. We conduct experi-
ments with synthetically injected symmetric label noise (Li
et al., 2022; Patrini et al., 2017; Xia et al., 2020). The re-
sults are summarized in Table 3(Left). Encouragingly, GM
Matching outperforms the baselines by ≈ 12%. Since,
mislabeled samples come from different class - they tend to
be spatially quite dissimilar, being less likely to be picked
by GM matching, explaining the superior performance.

ROBUSTNESS TO ADVERSARIAL ATTACKS: Finally,
we experiment with adversarial attacks that add impercepti-
ble but adversarial noise on natural examples (Szegedy et al.,
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CIFAR-100 (PGD Attack) CIFAR-100 (GS Attack)

Method / Ratio 20% 30% 20% 30%

Random 43.23±0.31 52.86±0.34 44.23±0.41 53.44±0.44
Herding 40.21±0.72 49.62±0.65 39.92±1.03 50.14±0.15
Forgetting 35.90±1.30 47.37±0.99 37.55±0.53 46.88±1.91
GraNd-score 40.87±0.84 50.13±0.30 40.77±1.11 49.88±0.83
EL2N-score 26.61±0.58 34.50±1.02 26.72±0.66 35.55±1.30
Optimization-based 38.29±1.77 46.25±1.82 41.36±0.92 49.10±0.81
Self-sup.-selection 40.53±1.15 49.95±0.50 40.74±1.66 51.23±0.25
Moderate-DS 43.60±0.97 51.66±0.39 44.69±0.68 53.71±0.37
GM Matching 45.41±0.86 51.80±1.01 49.78±0.27 55.50±0.31

CIFAR-100 (Label noise) Tiny ImageNet (Label noise)

Method / Ratio 20% 30% 20% 30%

Random 34.47±0.64 43.26±1.21 17.78±0.44 23.88±0.42
Herding 42.29±1.75 50.52±3.38 18.98±0.44 24.23±0.29
Forgetting 36.53±1.11 45.78±1.04 13.20±0.38 21.79±0.43
GraNd-score 31.72±0.67 42.80±0.30 18.28±0.32 23.72±0.18
EL2N-score 29.82±1.19 33.62±2.35 13.93±0.69 18.57±0.31
Optimization-based 32.79±0.62 41.80±1.14 14.77±0.95 22.52±0.77
Self-sup.-selection 31.08±0.78 41.87±0.63 15.10±0.73 21.01±0.36
Moderate-DS 40.25±0.12 48.53±1.60 19.64±0.40 24.96±0.30
GM Matching 52.64±0.72 61.01±0.47 25.80±0.37 31.71±0.24

Table 3: (Left) (LABEL NOISE) IMAGE CLASSIFICATION: Comparing (Test Accuracy) pruning methods on CIFAR-100 and
TinyImageNet datasets, under 20% Symmetric Label Corruption, at 20% and 30% selection ratio. ResNet-50 is used both as proxy and
for downstream classification. Side-by-side comparison of (Test Accuracy) pruning methods under adversarial attacks (left) and label
noise (right) across CIFAR-100 and Tiny ImageNet datasets. ResNet-50 is used both as proxy and for downstream classification. (Right)
(ADVERSARIAL ATTACK) IMAGE CLASSIFICATION: . Comparing (Test Accuracy) pruning methods under PGD and GS attacks.
ResNet-50 is used both as proxy and for downstream classification.
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Figure 6: DIFFUSION (FID): We train DDPM on MNIST across different sampling fraction and corruption rates using different
sampling strategies. GM MATCHING consistently outperformed other approaches especially under corruption.

2013; Huang et al., 2010). Specifically, we employ two pop-
ular adversarial attack algorithms – PGD attack (Madry
et al., 2017) and GS Attacks (Goodfellow et al., 2014) on
models trained with CIFAR-100 and Tiny-ImageNet to gen-
erate adversarial examples. Following this, various pruning
methods are applied to these adversarial examples, and the
models are retrained on the curated subset of data. The
results are summarized in Table 3(Right). Similar to other
corruption scenarios, even in this setting, GM MATCHING
outperforms the baselines yielding ≈ 3% average gain over
the best performing baseline.

4.2. Unconditional Image Generation

To further validate our approach, we conduct experiments
on an unconditional image generation task using a diffu-
sion model. Specifically, we train a U-Net with Denoising
Diffusion Probabilistic Models (DDPM) (Ho et al., 2020)
on the MNIST dataset. Given the importance of selecting
informative training samples, we compare our proposed ge-
ometric median-based sampling method (GM MATCHING)
against multiple baseline selection strategies: (RANDOM)
selection, (EASY) samples closest to the centroid, (HARD)
samples farthest from the centroid, (MODERATE) samples
with distances closest to the median, and (KERNEL HERD-
ING) (Welling, 2009). To assess the resilience of different

selection methods, we introduce a range of structured per-
turbations in the training data, including Gaussian noise,
uniform noise, random patches, Cutout augmentations, and
entirely random images (Figure 18). We perform sample
selection over CLIP ViT-B/32 (Radford et al., 2021a) em-
beddings (Figure 19). The performance of each sampling
method is summarized (FID Score) in Figure 6, where
GM MATCHING consistently outperforms other approaches
by a significant margin. These findings underscore the ef-
fectiveness of geometric median-based selection in robustly
curating training subsets for generative modeling.

Code is available publicly at Github.

5. Conclusion and Limitations
We introduced GM MATCHING, a novel data pruning strat-
egy that ensures resilience under corruption, with theoretical
and empirical validation. However, it relies on approximate
GM computation, which can face challenges in degener-
ate cases. Additionally, its performance depends on the
quality of the embedding space, which may be suboptimal
in biased or poorly calibrated encoders. Addressing these
challenges with efficient approximations and adaptive em-
bedding strategies is a promising avenue for future work.
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Impact Statement
This work presents a method for robust data pruning, aimed
at improving the efficiency and reliability of machine learn-
ing systems trained on large, potentially noisy datasets. By
enabling models to learn from smaller, cleaner subsets, our
approach reduces the computational burden and improves
robustness – making it easier to train models in a data ef-
ficient manner, even in imperfect real world settings. The
proposed method is task-agnostic and broadly applicable,
with potential benefits across a wide array of domains —
particularly where resilience to corrupted or adversarial data
is critical. While the algorithm itself is neutral, any data
pruning approach may risk amplifying biases if the embed-
ding space or selection criteria reflect underlying societal
or structural imbalances. We therefore encourage users to
pair this method with fair, well-audited encoders and to
critically evaluate the representativeness of selected subsets,
especially in high-stakes applications.

Overall, this work contributes to a central goal in machine
learning: learning effectively from imperfect data. We be-
lieve the potential benefits are significant, but we also em-
phasize the importance of careful, responsible deployment
and continued ethical scrutiny.
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A. Notations and Abbreviations

a A scalar (integer or real)

a A vector

A A matrix

a A scalar random variable

a A vector-valued random variable

A,A A set

[a, b] The real interval including a and b

A\B Set subtraction, i.e., the set containing the elements of A
that are not in B

ai Element i of the random vector a

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or
over a variable whose type has not been specified

f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes we write
f(x) and omit the argument θ to lighten notation)

||x||p Lp norm of x

1(condition) is 1 if the condition is true, 0 otherwise

GM MATCHING Geometric Median Matching

B. Additional Definitions
Definition 4 (Multivariate Gaussian). A Multivariate Gaussian (or normal) distribution for a random vector x ∈ Rd with
mean µ and covariance matrix Σ has the probability density function:

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
(11)

Definition 5 (Isotropic Gaussian). A Gaussian distribution is said to be isotropic if its covariance matrix is a scalar
multiple of the identity matrix:

Σ = σ2I (12)

where, σ2 > 0 is the variance (common to all dimensions) and I is the d× d identity matrix.

In this case, the density function simplifies to:

p(x) =
1

(2πσ2)d/2
exp

(
− 1

2σ2
∥x− µ∥2

)
(13)

Key characteristics:

• Equal variance in all directions: Every component of x has the same variance σ2.

• No correlations: The off-diagonal elements of the covariance matrix are zero.

• Circular (or spherical in higher dimensions): Level sets of the density (contours) are circles (or spheres) centered at µ.
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Definition 6 (Anisotropic Gaussian). A Gaussian distribution is anisotropic if its covariance matrix is a general symmetric
positive definite matrix that is not a scalar multiple of the identity:

Σ ̸= σ2I (14)

In this case, the full density function remains:

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (15)

Key characteristics:

• Different variances along different axes: The eigenvalues of Σ determine the variance along the corresponding eigen-
directions.

• Possible correlations: Off-diagonal entries may be nonzero, indicating correlations between components.

• Elliptical contours: The level sets of the density are ellipsoids, which can be elongated in some directions and compressed
in others.

Definition 7 (Discrete Derivative). For a set function f : 2E → R ,S ⊆ E , e ∈ E \ S the discrete derivative or the
marginal gain of f at S with respect to e is defined as:

∆f (e|S) = f(S ∪ {e})− f(S) (16)

Definition 8 (Submodularity). A set function f : 2E → R is submodular if ∀A ⊆ B ⊆ E and e ∈ E \ B the following
holds:

∆f (e|A) ≥ ∆f (e|B) (17)

It can be shown that it is equivalent to the following condition:

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) (18)

Definition 9 (Convex Hull). Given a set S ⊆ Rd, the convex hull of S is defined as the set of all convex combinations of
points in S, i.e.

conv(S) =

{
m∑
i=1

λixi : xi ∈ S, λi ≥ 0,

m∑
i=1

λi = 1, m ∈ N

}
.

C. Related Work
A large body of recent works have been proposed to solve the data selection problem as detailed below:

IMPORTANCE SAMPLING :

One set of data pruning approaches rely on some carefully designed pruning metrics to rank the training samples based on
the scores and retain a fraction of them as representative samples, used for training the downstream model. For example, (Xia
et al., 2022; Joshi & Mirzasoleiman, 2023; Sorscher et al., 2022) calculate the importance score of a sample in terms of
the distance from the centroid of its corresponding class marginal. Samples closer to the centroid are considered most
prototypical (easy) and those far from the centroid are treated as least prototypical (hard). While this work primarily
focuses on spatial approaches, it is worth mentioning that the canonical importance scoring criterion have been proposed
in terms gradient norm (Paul et al., 2021; Needell et al., 2014), uncertainty (Pleiss et al., 2020; Garg & Roy, 2023) and
forgetfulness (Toneva et al., 2018; Feldman & Zhang, 2020). Typically, samples closer to the class centroid in feature space
tend to have lower gradient norms, exhibit lower uncertainty, and are harder to forget during training. In contrast, samples
farther from the centroid generally have higher gradient norms, greater uncertainty, and are easier to forget (Paul et al., 2021;
Sorscher et al., 2022; Xia et al., 2022). However, such scoring-based selection methods typically rely on the empirical mean
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to define centroids, making them brittle under data corruption—a vulnerability that becomes critical in noisy or adversarial
settings.

MOMENT MATCHING METHODS :

A second family of methods tackles data selection as an optimization problem, aiming to match certain statistical mo-
ments—such as means, losses, or gradients—between the subset and the full dataset. These techniques, often rooted in
coreset construction, select a subset whose empirical properties approximate those of the entire dataset (Chen et al., 2010;
Campbell & Broderick, 2018; Dwivedi & Mackey, 2021). A notable extension is gradient-based moment matching (Mirza-
soleiman et al., 2020), which seeks to preserve the full dataset’s gradient dynamics within the selected subset, enabling
efficient yet faithful training.

SUBSET SELECTION FROM NOISY DATA :

Despite substantial advances in subset selection algorithms for large-scale datasets, most existing methods are designed for
idealized, clean training data. In practical scenarios, however, real-world datasets are often noisy—affected by mislabeled
examples, corrupted features, or adversarial attacks. Unfortunately, extending traditional subset selection methods to such
noisy settings remains an under-explored challenge. A key limitation of many classical approaches lies in their dependence
on the empirical mean—a statistic known to be highly sensitive to outliers and heavy-tailed distributions. As we formally
demonstrate in Lemma 2, this renders them brittle under arbitrary corruption, where even a small fraction of adversarial points
can severely skew the selection process. Consequently, any method that uses the empirical mean as a reference—either
directly (e.g., centroid-based selection) or indirectly (e.g., gradient- or uncertainty-based ranking)—inherits the same
fundamental vulnerability.

Several recent works have attempted to address robustness, but often in narrowly scoped settings. For instance, methods
tailored to label noise (Pleiss et al., 2020; Park et al., 2024) typically rely on techniques such as relabeling or sample
reweighting, assuming access to a relatively clean subset or side information. These strategies can be effective in controlled
scenarios but do not generalize well to broader corruption types such as input perturbations, distribution shift, or structural
outliers.

Another class of methods mitigate noise by aggressively pruning away uncertain or atypical examples—often selecting
only the most prototypical or easy-to-learn samples (Shah et al., 2020; Toneva et al., 2018; Jiang et al., 2018; Har-
Peled et al., 2007). While such selection improves robustness by avoiding noisy outliers, it inadvertently sacrifices
diversity, discarding informative hard examples that are essential for learning decision boundaries. This introduces a well-
known robustness–diversity tradeoff (Xia et al., 2022; Feldman & Zhang, 2020), where safe selection leads to suboptimal
generalization. To balance this trade-off, Xia et al. (2022) proposed a moderation strategy that retains samples closest to
the median distance from the class centroid—aiming to avoid both overly hard and overly easy examples. However, this
approach still fundamentally relies on spatial distances measured from the empirical mean, making it vulnerable to corruption
that distorts this reference point. Furthermore, while a few recent works have studied robust subset selection in a theoretical
manner, they are either limited to linear models(Xu et al., 2025) or assume simplified theoretical frameworks(Thompson,
2022; Park et al., 2024), strong assumptions (Qian et al., 2017). These works stop short of providing practical algorithms or
generalization guarantees applicable to modern, highly nonlinear deep learning systems.

In contrast, our work introduces a simple, theoretically grounded algorithm for subset selection under arbitrary data
corruption, bridging the gap between robustness and diversity. GM MATCHING generalizes to deep models and real-world
noisy data, offering provable guarantees under the Gross Corruption.

CONNECTION TO KERNEL HERDING :

GM MATCHING builds upon the classical Kernel Herding framework (Welling, 2009; Chen & Welling, 2010; Bach et al.,
2012), which selects representative subsets that match the mean embedding of the data distribution in a reproducing kernel
Hilbert space (RKHS). While Kernel Herding offers favorable convergence guarantees O(1/k) vs. O(1/

√
k) for random

sampling; it relies on the empirical mean, making it vulnerable to outliers and adversarial corruption. GM MATCHING
preserves the moment-matching spirit of Kernel Herding but replaces the empirical mean with the geometric median (GM),
a robust estimator with a breakdown point of 1/2. This simple substitution significantly improves robustness without
compromising convergence. To our knowledge, GM MATCHING is the first method to combine robust estimation with
herding-style greedy selection, enabling provably fast and stable subset selection even under high rates of data corruption.
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D. Lemma 2 : Vulnerability of Importance Score based Pruning
In the ideal setting, given a batch of i.i.d samples µy = µG

y = Ex∼DG (x). However, the presence of even a single grossly
corrupted sample can cause the centroid estimate to deviate arbitrarily from the true mean. Consider a single grossly corrupt
sample (xB

i , yi) such that :

xB
i =

∑
(xi,yi)∈D

1(yi = y)µB
y −

∑
(xi,yi)∈D\(xB

i ,yi)

1(yi = y)xi (19)

resulting in shifting the estimated centroid ∆µy = µB
y − µG

y

Lemma 2. A single gross corrupted sample (19) causes the importance scores to deviate arbitrarily:

∆d(xi, yi) = ∥∆µy∥2 − 2

(
xi − µG

y

)T

∆µy (20)

Implying, these methods yield the lowest possible asymptotic breakdown of 0.

D.1. Proof of Lemma 2

Proof. The original importance score without the corrupted sample is:

d(xi, yi) = ∥xi − µG
y ∥22 (21)

The importance score with the corrupted sample affecting the centroid is:

d′(xi, yi) = ∥xi − µB
y ∥22 (22)

We can calculate the deviation as:

∆d(xi, yi) = d(xi, yi)− d′(xi, yi)

=

(
xi − µB

y

)T(
xi − µB

y

)
−

(
xi − µG

y

)T(
xi − µG

y

)
The result follows by expanding and defining ∆µy = µB

y − µG
y ■

E. Proof of Theorem 1
We restate the theorem for convenience:

Theorem 1 Given a set of Grossly-corrupted samples D = DG ∪ DB (Definition 1) and an ϵ approx. GM(·) oracle (4).
Further assume that ∥x∥ ≤ R ∀x ∈ D for some constant R. Then, GM MATCHING guarantees that the mean of the selected
k-subset DS ⊆ D converges to a δ-neighborhood of the uncorrupted (true) mean µ(DG) = Ex∈DG (x) at the rate O( 1k )
such that:

δ2 = E
∥∥∥∥µGM

ϵ (D)− µ(DG)

∥∥∥∥2 ≤ 8|DG |
(|DG | − |DB|)2

∑
x∈DG

E
∥∥∥∥x− µ(DG)

∥∥∥∥2 + 2ϵ2

(|DG | − |DB|)2
(23)

Proof. For notational simplicity, WLOG we will assume that the samples are already in RKHS i.e. we drop the notation ϕ(·)
for the proof i.e. we assume that xi is already projected on the positive definite kernel space using a characteristic mapping
ϕ(·). We prove Theorem 1 in two main steps:

E.1. Bounding Estimation Error from Approximate Geometric Median

We will first establish the following result which follows from the definition of GM; see also (Lopuhaa et al., 1991;
Minsker et al., 2015; Cohen et al., 2016; Chen et al., 2017; Li et al., 2019; Wu et al., 2020; Acharya et al., 2022) for similar
adaptations.
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Lemma 3. Given a set of α-corrupted samples D = DG ∪ DB ( Definition 1), and an ϵ-approx. GM(·) oracle (4), then we
have:

E
∥∥∥∥µGM

ϵ (D)− µ(DG)

∥∥∥∥2 ≤ 8|DG |
(|DG | − |DB|)2

∑
x∈DG

E
∥∥∥∥x− µ(DG)

∥∥∥∥2 + 2ϵ2

(|DG | − |DB|)2
(24)

where, µGM
ϵ (D) is the ϵ-approximate GM over the entire (α-corrupted) dataset; and µ(DG) =

1
|DG |

∑
xi∈DG

xi denotes the
mean of the (underlying) uncorrupted set.

Now we prove this bound:

Note that, by using the triangle inequality, we can write:∑
xi∈D

∥∥∥∥µGM
ϵ (D)− xi

∥∥∥∥ ≥ ∑
xi∈DB

(∥∥∥∥xi

∥∥∥∥− ∥∥∥∥µGM
ϵ (D)

∥∥∥∥)+
∑

xi∈DG

(∥∥∥∥µGM
ϵ (D)

∥∥∥∥− ∥∥∥∥xi

∥∥∥∥) (25)

=

( ∑
xi∈DG

−
∑

xi∈DB

)∥∥∥∥µGM
ϵ (D)

∥∥∥∥+
∑

xi∈DB

∥∥∥∥xi

∥∥∥∥− ∑
xi∈DG

∥∥∥∥xi

∥∥∥∥ (26)

=

(
|DG | − |DB|

)∥∥∥∥µGM
ϵ (D)

∥∥∥∥+
∑
xi∈D

∥∥∥∥xi

∥∥∥∥− 2
∑

xi∈DG

∥∥∥∥xi

∥∥∥∥. (27)

Now, by definition (5); we have that:∑
xi∈D

∥∥∥∥µGM
ϵ (D)− xi

∥∥∥∥ ≤ inf
z∈H

∑
xi∈D

∥∥∥∥z− xi

∥∥∥∥+ ϵ ≤
∑
xi∈D

∥∥∥∥xi

∥∥∥∥+ ϵ (28)

Combining these two inequalities, we get:(
|DG | − |DB|

)∥∥∥∥µGM
ϵ (D)

∥∥∥∥ ≤ ∑
xi∈D

∥∥∥∥xi

∥∥∥∥− ∑
xi∈D

∥∥∥∥xi

∥∥∥∥+ 2
∑

xi∈DG

∥∥∥∥xi

∥∥∥∥+ ϵ (29)

This implies: ∥∥∥∥µGM
ϵ (D)

∥∥∥∥ ≤ 2(
|DG | − |DB|

) ∑
xi∈DG

∥∥∥∥xi

∥∥∥∥+
ϵ(

|DG | − |DB|
) (30)

Squaring both sides, ∥∥∥∥µGM
ϵ (D)

∥∥∥∥2 ≤
[

2(
|DG | − |DB|

) ∑
xi∈DG

∥∥∥∥xi

∥∥∥∥+
ϵ(

|DG | − |DB|
)]2

(31)

≤ 2

[
2(

|DG | − |DB|
) ∑

xi∈DG

∥∥∥∥xi

∥∥∥∥
]2

+ 2

[
ϵ(

|DG | − |DB|
)]2

(32)

Where the last step is a well-known consequence of the triangle inequality and AM-GM inequality.

Taking expectation on both sides, we have:

E
∥∥∥∥µGM

ϵ (D)
∥∥∥∥2 ≤ 8|DG |(

|DG | − |DB|
)2

∑
xi∈DG

E
∥∥∥∥xi

∥∥∥∥2 + 2ϵ2(
|DG | − |DB|

)2 (33)

20



Geometric Median (GM) Matching

Since, GM is translation equivariant, we can write:

E
[

GM

({
xi − µ(DG)|xi ∈ D

})]
= E

[
GM

({
xi|xi ∈ D

})
− µ(DG)

]
(34)

Consequently, we have that :

E
∥∥∥∥µGM

ϵ (D)− µ(DG)

∥∥∥∥2 ≤ 8|DG |(
|DG | − |DB|

)2

∑
xi∈DG

E
∥∥∥∥xi − µ(DG)

∥∥∥∥2 + 2ϵ2(
|DG | − |DB|

)2

This concludes the proof of Lemma 3

E.2. Convergence of the Greedy Updates

We will now show that GM MATCHING converges to µGM
ϵ (D) at O( 1k ).

It suffices to show that the error δ =
∥∥∥∥µGM

ϵ (D)− 1
k

∑
xi∈S xi

∥∥∥∥→ 0 asymptotically. We will follow the proof technique

in (Chen et al., 2010) mutatis-mutandis to prove this result. We also assume that D contains the support of the resulting
noisy distribution.

We start by defining a GM-centered marginal polytope as the convex hull –

Mϵ := conv
{
x− µGM

ϵ (D) |x ∈ D
}

(35)

Then, we can rewrite the update equation (8) as:

θt+1 = θt + µGM
ϵ (D)− xt+1 (36)

= θt − (xt+1 − µGM
ϵ (D) (37)

= θt −
(
argmax

x∈D
⟨θt,x⟩ − µGM

ϵ (D)
)

(38)

= θt − argmax
m∈Mϵ

⟨θt,m⟩ (39)

= θt −mt (40)

Now, squaring both sides we get :

∥θt+1∥2 = ∥θt∥2 + ∥mt∥2 − 2⟨θt,mt⟩ (41)

Rearranging the terms we get:

∥θt+1∥2 − ∥θt∥2 = ∥mt∥2 − 2⟨θt,mt⟩ (42)

= ∥mt∥2 − 2∥mt∥∥θt∥⟨
θt
∥θt∥

,
mt

∥mt∥
⟩ (43)

= 2∥mt∥
(
1

2
∥mt∥ − ∥θt∥⟨

θt
∥θt∥

,
mt

∥mt∥
⟩
)

(44)

Assume that ∥xi∥ ≤ r ∀xi ∈ D. Then we note that,

∥xi − µGM
ϵ (D)∥ ≤ ∥xi∥+ ∥µGM

ϵ (D)∥ ≤ 2r
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Plugging this in, we get:

∥θt+1∥2 − ∥θt∥2 ≤ 2∥mt∥
(
r − ∥θt∥⟨

θt
∥θt∥

,
mt

∥mt∥
⟩
)

(45)

Recall that, µGM
ϵ (D) is guaranteed to be in the relative interior of conv{x |x ∈ D} (Lopuhaa et al., 1991; Minsker et al.,

2015). Consequently, ∃κ-ball around µGM
ϵ (D) contained insideM and we have ∀t > 0

⟨ θt
∥θt∥

,
mt

∥mt∥
⟩ ≥ κ > 0 (46)

This implies, ∀t > 0

∥θt∥ ≤
r

κ
(47)

Expanding the value of θt, we have:

∥∥θk∥∥ =

∥∥∥∥θ0 + kµGM
ϵ (D)−

k∑
i=1

xk

∥∥∥∥ ≤ r

κ
(48)

Apply Cauchy-Schwarz inequality: ∥∥∥∥kµGM
ϵ (D)−

k∑
i=1

xk

∥∥∥∥ ≤ ∥∥θ0∥∥+
r

κ
(49)

Normalizing both sides by the number of iterations k∥∥∥∥µGM
ϵ (D)− 1

k

k∑
i=1

xk

∥∥∥∥ ≤ 1

k

(∥∥θ0∥∥+
r

κ

)
(50)

Thus, we have that GM MATCHING converges to µGM
ϵ at the rate O( 1k ).

Combining this with Lemma 3, completes the proof of Theorem 1. ■

F. Proof of Lemma 1
We restate the lemma for convenience:

Lemma 1: Suppose that we are given a set of grossly corrupted samples D = DG ∪ DB (Definition 1), an ϵ approx. GM(·)
oracle (4) and bounded, characteristic feature map ϕ(·) : Rd → H. Then, GM MATCHING guarantees that:

∆2 =

∥∥∥∥µ(DS)− µ(DG)

∥∥∥∥2 ≤ O( 1

k2

)
+

16

(1− α)2
σ2
G +

4ϵ2

|DG |2(1− α)2
(51)

where, α = |DB|/|DG | < 1 is the ratio of corrupted and clean samples. µ(DS) and µ(DG) denote the mean of the selected
subset and the true uncorrupted mean respectively.

Proof. We begin by decomposing the overall error using the triangle inequality:

∆2 =

∥∥∥∥µ(DS)− µ(DG)

∥∥∥∥2 (52)

=

∥∥∥∥(µ(DS)− µGM
ϵ (D)

)
+

(
µGM

ϵ (D)− µ(DG)

)∥∥∥∥2 (53)

≤ 2

∥∥∥∥µ(DS)− µGM
ϵ (D)

∥∥∥∥2 + 2

∥∥∥∥µGM
ϵ (D)− µ(DG)

∥∥∥∥2 (54)
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Bounding the first term. The herding-style greedy procedure is designed to iteratively reduce the discrepancy between
the empirical mean of the selected subset and the robust target moment µGM

ϵ (D). Standard results from the analysis of
kernel herding imply that ∥∥∥∥µ(DS)− µGM

ϵ (D)
∥∥∥∥ = O

(1
k

)
(55)

Thus, there exists a constant C1 > 0 such that∥∥∥∥µ(DS)− µGM
ϵ (D)

∥∥∥∥2 ≤ C1

k2
. (56)

Bounding the second term. By Theorem 1, the robust estimator µGM
ϵ (D) satisfies∥∥∥∥µGM

ϵ (D)− µ(DG)

∥∥∥∥2 ≤ 8|DG |2

(|DG | − |DB|)2
σ2(DG) +

2ϵ2

(|DG | − |DB|)2
. (57)

Since |DG | − |DB| = |DG |(1− α) with α = |DB|/|DG | < 1, we can rewrite the bound as∥∥∥∥µGM
ϵ (D)− µ(DG)

∥∥∥∥2 ≤ 8

(1− α)2
σ2(DG) +

2ϵ2

|DG |2(1− α)2
. (58)

Multiplying both sides by 2 yields:

2

∥∥∥∥µGM
ϵ (D)− µ(DG)

∥∥∥∥2 ≤ 16

(1− α)2
σ2(DG) +

4ϵ2

|DG |2(1− α)2
. (59)

Combining the bounds. Substituting the bounds from (56) and (59) into (54), we obtain

∆2 ≤ 2C1

k2
+

16

(1− α)2
σ2(DG) +

4ϵ2

|DG |2(1− α)2
.

Since the constant 2C1 can be absorbed into the O(1/k2) term, we conclude that

∆2 ≤ O
( 1

k2

)
+

16

(1− α)2
σ2(DG) +

4ϵ2

|DG |2(1− α)2
.

This completes the proof. ■

G. Computing Geometric Median
As discussed in Section 3, the Geometric Median (GM) also known as the Fermat-Weber point (Weber et al., 1929), is a
robust measure of central tendency for a set of observations. Given a finite collection of observations {x1,x2, . . .xn} defined
over Hilbert spaceH ∈ Rd, equipped with norm ∥ · ∥ and inner ⟨·⟩ operators, the geometric median(Definition 3) (Weber
et al., 1929) GM({x1,x2, . . .xn}) is defined as the solution to the optimization problem:

µGM = argmin
z∈Rd

ρ(z), where ρ(z) =

n∑
i=1

∥xi − z∥ (60)

where ρ(z) is the sum of Euclidean distances from z to the data points, as illustrated in Figure 7.

Note that, in contrast, the empirical mean µ̂ is defined as the minimizer of the squared Euclidean distances:

µ̂ = argmin
z∈Rd

ρ(z), where ρ(z) =

n∑
i=1

∥xi − z∥2 (61)
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Figure 7: GEOMETRIC MEDIAN VISUALIZATION: The plots illustrate the computation of the geometric median (denoted by the pink
circle) for three different spatial point configurations: (a) Triangle, (b) Pentagon, and (c) Random. The color gradient represents the sum
of distances ρ(z) from a candidate point z to all data points, with darker regions indicating smaller values of ρ(z). The white dashed lines
show the connections between the geometric median and the data points, emphasizing how the geometric median minimizes the total
Euclidean distance to all points. Additionally, the Voronoi regions formed around the data points visually partition the space based on
proximity, offering insight into how the geometric median balances contributions from each point. In symmetric configurations such as (a)
and (b), the Voronoi structure highlights the symmetry in influence regions, leading to a geometric median located at the center. For the
random configuration (c), the irregular Voronoi regions illustrate the varying influence of data points, with the geometric median robustly
adapting to minimize the total distance while down-weighting the effect of outlier-like points.

Minimizing the squared Euclidean distances ensures computational simplicity, as a closed-form solution exists:

µ̂ =
1

n

n∑
i=1

xi (62)

which follows from the first-order optimality conditions of convex quadratic minimization. However, this also makes the
empirical mean sensitive to outliers, as extreme values have a disproportionately large effect on the sum of squared distances.
On the other hand, the linear penalty in the GM computation ensures that the objective is less influenced by outliers, as
deviations are not amplified quadratically.

X0

X1

Mean (Oracle)
Mean (Estimate)
Geometric Median (GM)

(a) No Corruption (ψ = 0)

X0

X1

Mean (Oracle)
Mean (Estimate)
Geometric Median (GM)

(b) 20% Corruption (ψ = 0.2)

X0

X1

Mean (Oracle)
Mean (Estimate)
Geometric Median (GM)

(c) 40% Corruption (ψ = 0.4)

Figure 8: ROBUST MEAN ESTIMATION: This figure illustrates the deviation of the Empirical Mean (red) and Geometric Median
(purple) from the Oracle Mean (green) as the fraction of corrupted samples 0 ≤ ψ < 1/2 is varied. The uncorrupted distribution is shown
in Blue, while the adversarial distribution is shown in red. At ψ = 0, all estimators align closely with the oracle mean. As ψ increases,
the empirical mean is significantly influenced by the corrupted samples, drifting toward the corrupted distribution. In contrast, the GM
remains robust, staying closer to the oracle mean demonstrating the resilience of the GM in the presence of corruptions.

G.1. Approximate GM : The Weiszfeld Algorithm

Note that the GM optimization problem is inherently non-smooth due to the presence of the Euclidean norm ∥xi − z∥ which
leads to non-differentiability at points where multiple distances are equal, making gradient-based optimization difficult.
Furthermore, computing the exact geometric median is NP-hard in dimensions d ≥ 2 (Bajaj, 1988), as it involves solving a
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high-degree polynomial system without a closed-form solution.

As a result, a long line of research has focused on developing efficient approximation methods, and several algorithms have
been proposed (Weiszfeld, 1937; Vardi & Zhang, 2000; Cohen et al., 2016) to compute ϵ-approx GM instead.

Recall that, an ϵ-approximate geometric median (5), denoted by µGM
ϵ , satisfies:

n∑
i=1

∥∥∥∥µGM
ϵ − xi

∥∥∥∥ ≤ (1 + ϵ)

n∑
i=1

∥∥∥∥µGM − xi

∥∥∥∥
where µGM is the exact geometric median.

In this work, we adopt the celebrated Weiszfeld algorithm (Algorithm 2) – an iterative procedure for approximating the
geometric median by leveraging a re-weighted averaging scheme.

Algorithm 2 (WEISZFELD, 1937) COMPUTING ϵ-APPROX. GM

Input:
Observations {xi ∈ Rd}ni=1, initial guess z(0) ∈ Rd, convergence threshold ϵ > 0, and regularization parameter δ > 0.
Initialization:
Initialize z(0) (e.g., as the arithmetic mean of {xi}), set iteration counter k ← 0.
while not converged (i.e., ∥z(k+1) − z(k)∥ ≥ ϵ) do

(compute update step)

z(k+1) ←
∑n

i=1
xi

∥xi−z(k)∥+δ∑n
i=1

1
∥xi−z(k)∥+δ

(update iteration counter)
k ← k + 1

end
Return: z∗ ← z(k)

Note that the subgradient of ρ(z) at any point z is given by:

∂ρ(z) =

n∑
i=1

z− xi

∥xi − z∥
. (63)

Let f(z) = ∥z− xi∥, where:

f(z) =
√

(z− xi)⊤(z− xi).

The Euclidean norm can be expressed as:

∥z− xi∥ =

√√√√ d∑
j=1

(zj − xij)2.

Define g(z) = (z− xi)
⊤(z− xi), so:

f(z) =
√
g(z).

Using the chain rule, the gradient of f(z) with respect to z is:

∇zf(z) =
1

2
√
g(z)
∇zg(z).

The function g(z) is given by:
g(z) = (z− xi)

⊤(z− xi),
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and its gradient is:
∇zg(z) = 2(z− xi).

Substituting ∇zg(z) into the chain rule:

∇zf(z) =
1

2
√
g(z)

· 2(z− xi).

Since
√
g(z) = ∥z− xi∥, we have:

∇z∥z− xi∥ =
z− xi

∥z− xi∥
.

thus we have that the subgradient of the Euclidean norm ∥z− xi∥ with respect to z is:

∇z∥z− xi∥ =
z− xi

∥z− xi∥
.

To find the optimal solution z∗, we can solve the condition:

0 ∈ ∂ρ(z∗)

Substituting z = z∗ and re-arranging the terms, we get:

z∗ =

∑n
i=1

xi

∥xi−z∗∥∑n
i=1

1
∥xi−z∗∥

.

Since this equation is non-linear in z∗, solving it directly is infeasible. Instead, the Weiszfeld algorithm approximates z∗

iteratively using the update:

z(k+1) =

∑n
i=1

xi

∥xi−z(k)∥∑n
i=1

1
∥xi−z(k)∥

where z(k) is the estimate at the k-th iteration.

This update step can be interpreted as a re-weighted average, where the weights are inversely proportional to the distance of
each point xi from the current estimate z(k). Points closer to z(k) contribute most to the next estimate.

Handling Non-Differentiability : At points where z(k) = xi i.e. the current estimate coincides with one of the observations,
the term ∥xi − z(k)∥ = 0 results in division by zero. To address this, the algorithm excludes the term corresponding to xi

from the summation. Alternatively, the subgradient of ∥xi − z∥ at z = xi can be defined as:

∂∥xi − z∥ =

{
z−xi

∥xi−z∥ if z ̸= xi,

{g : ∥g∥ ≤ 1} if z = xi.

Convergence and Regularization: Notably, the Weiszfeld algorithm converges under mild conditions if the initial point
z(0) is not chosen at one of the data points. Convergence can be shown using fixed-point theory or by analyzing the decrease
in the objective function ρ(z) at each iteration. However, convergence is only guaranteed to a local minimum if the data
points xi are not in general position (e.g., collinear points in R2). To handle singularities, we modify the denominator to
avoid division by zero:

z(k+1) =

∑n
i=1

xi

∥xi−z(k)∥+δ∑n
i=1

1
∥xi−z(k)∥+δ

where δ > 0 is a small regularization term.
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(a) Geometric Median (µGM)

10
1

10
2

10
3

10
4

number of samples

10
4

10
3

10
2

10
1

10
0

2
=

G
2

corruption rate( )
0
0.05
0.1
0.15
0.2

(b) Empirical Mean (µ̂)

Figure 9: MEAN ESTIMATION ERROR SCALING FOR RECOVERING ANISOTROPIC GAUSSIAN : Comparison of Mean Estimation
Error i.e. deviation from the oracle mean using Geometric Median (GM) µGM and Empirical Mean (EM) µ̂ as a function of sample size
and amount of corruption. GM is computed using Weiszfeld Algorithm Algorithm 2. The x - axis represents the sample size i.e. the
number of samples drawn i.i.d. from an anisotropic Gaussian, with a fraction 0 ≤ ψ < 1/2 of them corrupted by an adversarially chosen
distribution. The plots depict the convergence behavior of both methods across varying corruption rates, highlighting the robustness of
GM in the presence of outliers. The plots further emphasize the effect of sample size on estimation error for both the estimators.

H. Additional Details on Computational Complexity Analysis
H.1. GM Scaling Law

We now discuss the computational complexity of GM computation over n points in Rd:

Weiszfeld’s algorithm proceeds by iteratively updating the current estimate z(k) via a re-weighted average of the data points.
Each iteration requires:

1. Distance evaluations: Computing ∥xi − z(k)∥ for all i = 1, 2, . . . , n. Each distance in Rd is evaluated in O(d) time,
so this step costs O(nd) per iteration.

2. Update step: Forming the weighted average z(k+1) =
(∑

i
xi

∥xi−z(k)∥

)/(∑
i

1
∥xi−z(k)∥

)
also takes O(nd) time.

Hence, each iteration costs O(nd).

Although Weiszfeld’s algorithm is guaranteed to converge under mild conditions, the rate of convergence depends on the
geometric configuration of the data points:

• Non-degenerate (typical) case: If the geometric median µGM lies strictly in the interior (i.e., it does not coincide with
any xi and is at a positive distance from each data point), then Weiszfeld’s iteration converges linearly near the optimum.
The number of iterations to achieve an ϵ-accurate solution typically scales as O(log(1/ϵ)).

• Degenerate (worst) case: If the geometric median coincides with (or lies extremely close to) some data point(s), the
objective can lose strict convexity and the Weiszfeld update may progress more slowly. In the worst theoretical analyses,
the iteration count can grow as O(1/ϵ).

Putting it together, let K denote the iteration count required for an ϵ-accurate estimate. We have:

Time per iteration = O(nd),

K =

{
O
(
log(1/ϵ)

)
(typical, non-degenerate),

O
(
1/ϵ

)
(worst-case, degenerate).
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Figure 10: SCALING LAWS (WALL CLOCK) FOR GM COMPUTATION: This figure shows the scaling behavior for computing the
geometric median using Weiszfeld algorithm ( Algorithm 2) in terms of the wall clock time (TGM ) as a function of population size.
The x-axis represents the number of samples (n) on a logarithmic scale, and the y-axis shows the average wall clock time (TGM ) on a
logarithmic scale. Each curve corresponds to a different embedding dimension (d), ranging from 32 to 4096. The results were generated
using synthetic data drawn from a standard normal distribution, with the geometric median computed iteratively until convergence
(tolerance ϵ = 10−5, maximum iterations = 100). For each combination of n and s, wall clock time was averaged across 10 random seed.
The computational cost increases with both n and s: for fixed n, the scaling with s is approximately linear, while for fixed s, scaling
with n exhibits sub-linear to near-linear growth. These results emphasize the trade-offs in selecting n and s for practical applications.
Experiments were run on a single-threaded CPU setup. These results confirm that the practical runtime aligns with the expected time
complexity of O(ns log(1/ϵ)) in typical scenarios, showcasing the efficiency of Weiszfeld algorithm for high-dimensional data.

Thus, the overall time complexity is either O
(
nd log(1/ϵ)

)
in the typical scenario or O

(
nd (1/ϵ)

)
in the worst case. In

practice, degeneracies are rare for generic data, and Weiszfeld’s algorithm often converges quite rapidly to a high-accuracy
solution. In Figure 10, we empirically validate the theoretical scaling behavior of the geometric median computation,
demonstrating how the wall clock time T GM scales with the number of samples n and embedding dimension s.

H.2. GM MATCHING Scaling Law

We show how the batching scheme scales w.r.t wall-clock time in Figure 11 – almost linear scaling can be observed.

H.3. Variance Considerations

In reducing computational costs, the use of sub-sampling for the robust GM, and batching in the GM MATCHING selection
process inevitably introduces additional variance into the estimation and selection outcomes. In this section, we dissect the
variance implications of these strategies, stressing that any gain in efficiency incurs a trade-off with statistical precision—a
quintessential no free lunch scenario: faster computation comes with the cost of reduced statistical precision.

Note that the deviation of GM from the true mean depends on the variance of the clean population (Theorem 1). This implies
that, when estimating GM over a subset of the data, as the variance of the population increases :

∆(σ2) ≈ O
((1− λGM

λGM

)
· σ

2(DG)

n

)
(64)

Thus, while sub-sampling offers a significant computational speedup by reducing the number of points used, it also amplifies
the estimation variance—a trade-off that must be carefully balanced by choosing an appropriate sub-sampling fraction
relative to the intrinsic noise level of the data. In practice, however, we notice that for sufficiently large γGM, the variance
increase is negligible compared to the savings as evidenced in Figure 9.

Similarly, batching in the GM MATCHING selection process, where the selection of the k-subset is partitioned into B smaller
batches, inherently introduces additional error terms in the convergence. Firstly, for each batch, the herding convergence
suffers a constant bias penalty because each batch only selects k/B samples instead of k samples, thereby incurring an error
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Figure 11: SCALING LAWS (WALL CLOCK) FOR BATCH GM MATCHING as a function of coreset size (k) across varying batch
sizes (b). Log-log scale highlights the computational cost trends for batch sizes ranging from 1 to 1024.

term on the order of O(B/k). Moreover, the overall estimate is formed as the mean of the batch estimates, which introduces
an additional variance component arising from the averaging of independent errors across batches. This variance term scales
as O(1/

√
B) i.e. ∥∥∥∥µ(DS)− µGM

ϵ (D)
∥∥∥∥ ≤ O(Bk

)
+O

(
1√
B

)
. (65)

This implies that, while batching can result in significant speedups – too small a batch size can also slow down convergence.
In practice, we find that, with a moderate batch size, this additional error is often negligible, while the speedup is substantial
as demonstrated in Figure 5.

I. Additional Experimental Details
In this section, we will provide more detail on our experiments from Section 4, share additional results and provide more
detailed discussion.

Our experiments are divided into three fundamental learning paradigms:

• Approximating from Noisy Distributions

• Image Classification

• Image Generation

By dividing the experiments into these categories, we ensure that GM MATCHING is tested across a wide spectrum of tasks,
covering unsupervised, supervised, and generative learning scenarios. Detailed analyses in each paradigm help uncover not
just the strengths of GM MATCHING but also potential limitations or areas where further improvements can be made. In each
experiment, the performance of GM MATCHING is rigorously compared to established baselines, offering clear evidence of
its competitive edge in handling noisy data, enhancing classification, and generating realistic outputs – demonstrating the
practical applicability and versatility of GM MATCHING across a wide array of machine learning challenges.

I.1. Baselines

We compare GM MATCHING (see Algorithm 1) against several baseline subset selection methods.

These baselines include:

• Random: Samples are selected uniformly at random. This approach serves as a strong baseline that does not incorporate
any structure from the data – widely adopted in practical applications due to its simplicity and strong performance under
idealized conditions.
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• Easy: (Shah et al., 2020): This strategy selects samples that are closest to the centroid of the dataset. These “easy” samples
are presumed to be representative of the core data distribution, but may under-represent the data’s diversity, especially in
the presence of noise.

• Hard: (Joshi et al., 2009): This approach selects samples that are farthest from the centroid. While these “hard” samples
may capture edge cases or outliers, they can also be overly sensitive to noise and may not adequately reflect the central
structure of the clean distribution.

• Moderate: (Xia et al., 2022): This strategy selects samples that are closest to the median distance from the centroid. This
approach aims to balance the representation of the data by avoiding the extremes of the distribution, thereby providing a
more stable and robust subset.

• Kernel Herding: (Chen et al., 2010) kernel herding employs a greedy algorithm to select samples that minimize the
discrepancy between the empirical distribution and the target distribution in a reproducing kernel Hilbert space which
forms the basis of this work.

• Forgetting (Toneva et al., 2018): Data points that are easily forgotten during optimization are chosen.

• GraNd-score (Paul et al., 2021): Data points with larger loss gradient norms are included.

• EL2N-score (Paul et al., 2021): This focuses on data points with larger norms of the error vector, which is the difference
between the predicted class probabilities and the one-hot label encoding.

• Optimization-based (Yang et al., 2022): This method uses the influence function (Koh & Liang, 2017) to select data
points that minimize the generalization gap under strict constraints.

• Self-sup.-selection (Sorscher et al., 2022): After self-supervised pre-training and clustering, data points are selected based
on their distance to the nearest cluster centroid, with the number of clusters set to the number of classes to avoid tuning.
Points with larger distances are chosen.

For GM MATCHING, the GM is approximated via Algorithm 2 (Weiszfeld, 1937). The optimization routine terminates,
either when the GM approximation error is small ϵ0 or after a maximum number of iterations Tmax is reached. ϵ0 = 10−8

and Tmax = 1000 are used for all the experiments.

I.2. Approximating from Noisy Distributions

We simulate a Gaussian Mixture Model (GMM) comprising both clean and adversarial components to evaluate robust
moment estimation in noisy datasets. The clean and corrupt samples are drawn from two anisotropic Gaussian distributions:

pclean(x) = N (x;µ,Σ) , padv(x) = N (x;µ′,Σ′). (66)

In our experiments, the two Gaussians are well-separated in the 2D plane, ensuring a clear notion of “clean” vs. “adversarial”
clusters with means and covariances:

µ =

[
0
0

]
, Σ =

[
1 −0.5
−0.5 0.5

]
, µ′ =

[
10
6

]
, Σ′ =

[
1 0.5
0.5 0.5

]
. (67)

Assuming that a fraction ψ of the data is corrupted, the input data is modeled as a mixture:

pcorrupt(x) = (1− ψ) pclean(x) + ψ padv(x). (68)

The objective is to select a subset DS of samples such that the subset induced distribution pS(x) is as close to the clean
distribution pclean(x). We generate a total of n = 103 samples, where ψn samples are generated from padv(x) and the rest of
the (1− ψ)n samples are generated from pclean(x), and the sampling algorithms subset 10% of the samples.
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(a) UNIFORM (b) EASY (c) HARD

(d) MODERATE (e) HERDING (f) GM MATCHING

Figure 12: No Corruption : We select 10% of the samples using: (UNIFORM) Random Sampling, (EASY) Selection of samples closest
to the centroid. (HARD) Selection of samples farthest from the centroid. (MODERATE) Selection of samples closest to the median distance
from the centroid. (HERDING) Moment Matching, (GM MATCHING) Robust Moment (GM) Matching (6).

I.2.1. ROBUSTNESS TO CORRUPTION

Firstly, in Figure 1,8, we observe that as the fraction of adversarial samples ψ increases, the empirical mean of the noisy
data set drifts noticeably towards the adversarial group. In contrast, GM remains anchored near the true uncorrupted mean µ.
This divergence underscores the vulnerability of classical moment estimators to even modest levels of noise – a phenomenon
well documented in robust statistics (Huber, 1992; Diakonikolas & Kane, 2019).

In our robust sampling experiments, we observe that when ψ = 0 i.e. the no-corruption scenario, all methods trivially
capture the clean distribution, but as soon as a fraction of the data is adversarial, many standard strategies fail to consistently
filter out the adversarial cluster. However, as ψ increases as demonstrated in Figure 12,13,2, 14 – methods like uniform
sampling or even heuristic approaches (Easy, Hard, and Moderate), as well as standard Kernel Herding, begin to pick up an
increasing number of adversarial points. Their selected subsets start to show a clear dual-group pattern, which results in a
mixed empirical distribution that deviates from pclean(x).

In contrast, GM MATCHING yields a significantly more robust subset than these baseline methods, effectively filtering out
adversarial noise while preserving the intrinsic structure of the clean data. The robustness of GM MATCHING becomes
particularly prominent at high corruption levels (ψ = 0.4, ψ = 0.45) where most other methods fail. This demonstrates the
potential of the proposed strategy to serve as a powerful tool for robust moment estimation in noisy and adversarial settings.

I.2.2. ABLATIONS WITH PROXY ENCODER

Next, we examine the impact of various kernel maps on the performance of GM MATCHING, particularly in the presence of
data corruption. Using a Gaussian mixture model as our testbed, we empirically evaluated different kernels to understand
their ability to capture the underlying data structure and robustness under noise.

In Figure 15, we experiment with polynomial kernels:

ω(x,x′) = (⟨x,x′⟩+ c)d (69)

where, c is a constant (typically set to 1) and d is the degree of the polynomial. We tried varying degrees d = {1, 3, 5, 10},
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(a) UNIFORM (b) EASY (c) HARD

(d) MODERATE (e) HERDING (f) GM MATCHING

Figure 13: 20% Corruption: In this experiment, 20% of the samples are corrupted – drawn from a adversary chosen distribution (red).
We select 10% samples using: (UNIFORM) Random Sampling, (EASY) Selection of samples closest to the centroid. (HARD) Selection of
samples farthest from the centroid. (MODERATE) Selection of samples closest to the median distance from the centroid. (HERDING)
Moment Matching, (GM MATCHING) Robust Moment (GM) Matching (6). We see that while EASY remains robust, it is clearly sampling
from low-density areas – failing to capture the prototypical samples.

highlighting how increased degree improves representational capacity while potentially amplifying noise when data are
corrupted 20% corruption.

I.3. Image Classification

This set of experiments evaluates the performance of GM MATCHING when applied to Image Classification tasks. To ensure
reproducibility, our experimental setup – including baselines, neural architectures, and choice of hyper-parameters – is
identical to (Xia et al., 2022).

I.3.1. EXPERIMENTAL SETUP

We evaluate the performance of GM MATCHING against multiple popular data pruning baselines, namely Random selection,
Moderate (Xia et al., 2022), Forgetting (Toneva et al., 2018), Kernel Herding (Chen et al., 2010), GraNd-score (Paul et al.,
2021), EL2N-score (Paul et al., 2021), and Self-supervised Selection (Sorscher et al., 2022). These baselines are evaluated
across both standard (uncorrupted) and robustness-focused experimental settings.

Our robust sampling experiments assess the resilience of each algorithm to a variety of data corruptions, measuring their
generalization capabilities beyond conventional training conditions. Specifically, we investigate three key robustness
scenarios: (1) direct corruptions applied to images (Appendix I.3.3), (2) label noise (Appendix I.3.4), and (3) adversarial
attacks (Appendix I.3.5) across different corruption intensities.

Additionally, we conduct a series of ablation studies to analyze the impact of incorporating a Proxy Encoder within the
GM MATCHING pipeline. These studies examine how changes in network architecture and distribution shifts between the
pretraining distribution (proxy) and downstream tasks affect pruning efficacy. These experiments provide deeper insights
into the role of the Proxy Encoder and its influence on the overall performance of GM MATCHING.

We conduct experiments on widely used image classification benchmarks, including CIFAR-10/100 (Krizhevsky, 2009),
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(a) UNIFORM (b) EASY (c) HARD

(d) MODERATE (e) HERDING (f) GM MATCHING

Figure 14: Toy Example: 45% of the samples are corrupted i.e. drawn from an adversary chosen distribution (red). We compare
several baselines for choosing 10% samples: (UNIFORM) random sampling, (EASY) selects of samples closest to the centroid. (HARD)
Selection of samples farthest from the centroid. (MODERATE) selects samples closest to the median distance from the centroid. (HERDING)
moment matching, (GM MATCHING) robust moment (GM) matching (6). Clearly GM Matching is significantly more robust and diverse
than the other approaches even at such high corruption rates.

Tiny-ImageNet (Le & Yang, 2015), and ImageNet-1K (Deng et al., 2009). Our study spans multiple popular neural network
architectures, such as ResNet-18/50 (He et al., 2016), VGG-16 (Simonyan & Zisserman, 2014), ShuffleNet (Ma et al., 2018),
SENet (Hu et al., 2018), EfficientNet-B0 (Tan & Le, 2019), and ViT-S (Dosovitskiy et al., 2020; Lee et al., 2021).

For CIFAR-10/100 datasets, the training configuration consists of a batch size of 128, SGD optimizer with momentum (0.9),
weight decay of 5× 10−4, and an initial learning rate of 0.1. The learning rate undergoes step-wise decay by a factor of 5
at epochs 60, 120, and 160, totaling 200 epochs. Data augmentation strategies incorporate random cropping and random
horizontal flipping.

For Tiny-ImageNet and ImageNet-1k experiments, we use a batch size of 256, SGD optimizer with momentum (0.9), weight
decay of 1× 10−4, and an initial learning rate of 0.1. The learning rate decreases by a factor of 10 at epochs 30 and 60,
across 90 total epochs, employing random horizontal flipping for data augmentation.

For computational practicality, particularly due to the scale of datasets and the complexity of geometric median computation,
we employ the approximate Weiszfeld solver (Algorithm 2) for estimating the GM. Specifically, to further enhance
computational efficiency without significant performance compromise, the solver computes the median over a randomly
selected subset consisting of 50% of the training data points.

To account for variability and ensure statistical robustness, each experimental configuration is independently replicated
across five distinct random seeds. Performance metrics are reported with variance to transparently capture and reflect the
consistency of each method.

I.3.2. IDEAL (NO CORRUPTION) SCENARIO

Our initial set of experiments evaluates the effectiveness of different data pruning strategies under an ideal, uncorrupted set-
ting. We systematically prune datasets at selection ratios ranging from 20% to 80%, assessing the downstream classification
performance across two widely used benchmarks: CIFAR-100 and Tiny ImageNet. The corresponding results, presented
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Figure 15: POLYNOMIAL KERNEL: GM MATCHING experiments under 20% corruption using a polynomial kernel. Sub-figures
(a)–(d) illustrate the effect of varying the polynomial degree (1, 3, 5, and 10, respectively) on the kernel mapping performance. The
comparison highlights how increasing the degree can influence robustness and representational capacity in corrupted settings.

ImageNet-1k

Method / Ratio 60% 70% 80% 90% 100% Mean ↑

Random 87.91 ± 0.37 88.63 ± 0.95 89.52 ± 0.73 89.57 ± 0.60 90.86 ± 0.71 89.30
Herding 88.25 ± 2.16 88.81 ± 1.06 89.60 ± 0.58 90.41 ± 0.33 90.86 ± 0.71 89.59
Forgetting 88.83 ± 0.92 89.81 ± 0.97 89.94 ± 0.26 90.41 ± 0.58 90.86 ± 0.71 89.97
GraNd-score 88.48 ± 1.73 89.82 ± 2.07 89.94 ± 0.81 90.41 ± 0.62 90.86 ± 0.71 89.90
EL2N-score 88.48 ± 2.81 89.82 ± 1.14 90.34 ± 0.87 90.57 ± 0.46 90.86 ± 0.71 90.01
Self-sup.-selection 87.59 ± 2.61 89.56 ± 1.97 90.74 ± 0.27 90.49 ± 0.98 90.86 ± 0.71 89.49
Moderate-DS 89.23 ± 0.96 89.94 ± 0.74 90.65 ± 0.51 90.75 ± 0.35 90.86 ± 0.71 90.29
GM Matching 90.28 ± 0.38 90.54 ± 0.19 90.72 ± 0.26 90.84 ± 0.32 90.86 ± 0.71 90.65

Table 4: (CLEAN) IMAGE CLASSIFICATION: Downstream Test Accuracy (Top-5) (%) of a ResNet-50 trained on a 60%, 70%, 80%,
and 90% subset of ImageNet-1k, where the subset is selected via several benchmark data pruning algorithms(Appendix I.1). The best
result in each case is in bold.

in Table 1, demonstrate that despite being designed with robustness-oriented applications in mind, GM MATCHING surpasses
existing strong baselines even in the standard, clean setting. Across both datasets, GM MATCHING achieves an average
improvement of over 2% compared to prior methods. Notably, its performance gains are particularly pronounced in the
low-data selection regime (20%-40%), where it significantly outperforms competing pruning techniques. In Table 4, we
observe similar improvements with GM MATCHING on ImageNet-1k. This suggests that GM MATCHING is especially
effective in scenarios where data efficiency is critical, making it a promising approach for resource-constrained settings.

I.3.3. ROBUSTNESS TO IMAGE CORRUPTION

In real-world applications, machine learning models are often deployed in environments where the input data is imperfect,
degraded, or subject to various forms of corruption. This degradation can stem from sensor noise, environmental conditions,
transmission artifacts, or adversarial perturbations.

To systematically evaluate the robustness of data pruning strategies under such conditions, we introduce structured image
corruptions into the dataset and assess the downstream test accuracy across varying levels of pruning.

Specifically, we adopt the following practical perturbation types, drawing from established robustness bench-
marks (Hendrycks & Dietterich, 2019; Szegedy et al., 2013) as -

• Gaussian Noise: Models real-world sensor noise by adding random perturbations sampled from a standard normal
distribution.

• Random Occlusion: Mimics missing or occluded regions in images by replacing random patches with black or noisy
pixels.

• Resolution Reduction: Simulates low-quality images by applying aggressive down-sampling and up-sampling, introducing
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CIFAR-100

Method / Selection ratio 20% 30% 40% 60% 80% 100% Mean ↑
No Corruption

Random 50.26±3.24 53.61±2.73 64.32±1.77 71.03±0.75 74.12±0.56 78.14±0.55 62.67
Herding 48.39±1.42 50.89±0.97 62.99±0.61 70.61±0.44 74.21±0.49 78.14±0.55 61.42
Forgetting 35.57±1.40 49.83±0.91 59.65±2.50 73.34±0.39 77.50±0.53 78.14±0.55 59.18
GraNd-score 42.65±1.39 53.14±1.28 60.52±0.79 69.70±0.68 74.67±0.79 78.14±0.55 60.14
EL2N-score 27.32±1.16 41.98±0.54 50.47±1.20 69.23±1.00 75.96±0.88 78.14±0.55 52.99
Optimization-based 42.16±3.30 53.19±2.14 58.93±0.98 68.93±0.70 75.62±0.33 78.14±0.55 59.77
Self-sup.-selection 44.45±2.51 54.63±2.10 62.91±1.20 70.70±0.82 75.29±0.45 78.14±0.55 61.60
Moderate-DS 51.83±0.52 57.79±1.61 64.92±0.93 71.87±0.91 75.44±0.40 78.14±0.55 64.37
GM Matching 55.93± 0.48 63.08± 0.57 66.59± 1.18 70.82± 0.59 74.63± 0.86 78.14± 0.55 66.01

5% Feature Corruption

Random 43.14±3.04 54.19±2.92 64.21±2.39 69.50±1.06 72.90±0.52 77.26±0.39 60.79
Herding 42.50±1.27 53.88±3.07 60.54±0.94 69.15±0.55 73.47±0.89 77.26±0.39 59.81
Forgetting 32.42±0.74 49.72±1.64 54.84±2.20 70.22±2.00 75.19±0.40 77.26±0.39 56.48
GraNd-score 42.24±0.57 53.48±0.76 60.17±1.66 69.16±0.81 73.35±0.81 77.26±0.39 59.68
EL2N-score 26.13±1.75 39.01±1.42 49.89±1.87 68.36±1.41 73.10±0.36 77.26±0.39 51.30
Optimization-based 38.25±3.04 50.88±6.07 57.26±0.93 68.02±0.39 73.77±0.56 77.26±0.39 57.64
Self-sup.-selection 44.24±0.48 55.99±1.21 61.03±0.59 69.96±1.07 74.56±1.17 77.26±0.39 61.16
Moderate-DS 46.78±1.90 57.36±1.22 65.40±1.19 71.46±0.19 75.64±0.61 77.26±0.39 63.33
GM Matching 49.50±0.72 60.23±0.88 66.25±0.51 72.91±0.26 75.10±0.29 77.26±0.39 64.80

10% Feature Corruption

Random 43.27±3.01 53.94±2.78 62.17±1.29 68.41±1.21 73.50±0.73 76.50±0.63 60.26
Herding 44.34±1.07 53.31±1.49 60.13±0.38 68.20±0.74 74.34±1.07 76.50±0.63 60.06
Forgetting 30.43±0.70 47.50±1.43 53.16±0.44 70.36±0.82 75.11±0.71 76.50±0.63 55.31
GraNd-score 36.36±1.06 52.26±0.66 60.22±1.39 68.96±0.62 72.78±0.51 76.50±0.63 58.12
EL2N-score 21.75±1.56 30.80±2.23 41.06±1.23 64.82±1.48 73.47±1.30 76.50±0.63 46.38
Optimization-based 37.22±0.39 48.92±1.38 56.88±1.48 67.33±2.15 72.94±1.90 76.50±0.63 56.68
Self-sup.-selection 42.01±1.31 54.47±1.19 61.37±0.68 68.52±1.24 74.73±0.36 76.50±0.63 60.22
Moderate-DS 47.02±0.66 55.60±1.67 62.18±1.86 71.83±0.78 75.66±0.66 76.50±0.63 62.46
GM Matching 48.86±1.02 60.15±0.43 66.92±0.28 72.03±0.38 73.71±0.19 76.50±0.63 64.33

20% Feature Corruption

Random 40.99±1.46 50.38±1.39 57.24±0.65 65.21±1.31 71.74±0.28 74.92±0.88 57.11
Herding 44.42±0.46 53.57±0.31 60.72±1.78 69.09±1.73 73.08±0.98 74.92±0.88 60.18
Forgetting 26.39±0.17 40.78±2.02 49.95±2.31 65.71±1.12 73.67±1.12 74.92±0.88 51.30
GraNd-score 36.33±2.66 46.21±1.48 55.51±0.76 64.59±2.40 70.14±1.36 74.92±0.88 54.56
EL2N-score 21.64±2.03 23.78±1.66 35.71±1.17 56.32±0.86 69.66±0.43 74.92±0.88 41.42
Optimization-based 33.42±1.60 45.37±2.81 54.06±1.74 65.19±1.27 70.06±0.83 74.92±0.88 54.42
Self-sup.-selection 42.61±2.44 54.04±1.90 59.51±1.22 68.97±0.96 72.33±0.20 74.92±0.88 60.01
Moderate-DS 42.98±0.87 55.80±0.95 61.84±1.96 70.05±1.29 73.67±0.30 74.92±0.88 60.87
GM Matching 47.12±0.64 59.17±0.92 63.45±0.34 71.70±0.60 74.60±1.03 74.92±0.88 63.21

Table 5: Image Corruption ( CIFAR 100 ): Comparing (Test Accuracy) pruning methods when 20% of the images are corrupted.
ResNet-50 is used both as proxy and for downstream classification.
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Tiny ImageNet

Method / Ratio 20% 30% 40% 60% 80% 100% Mean ↑

No Corruption

Random 24.02±0.41 29.79±0.27 34.41±0.46 40.96±0.47 45.74±0.61 49.36±0.25 34.98
Herding 24.09±0.45 29.39±0.53 34.13±0.37 40.86±0.61 45.45±0.33 49.36±0.25 34.78
Forgetting 22.37±0.71 28.67±0.54 33.64±0.32 41.14±0.43 46.77±0.31 49.36±0.25 34.52
GraNd-score 23.56±0.52 29.66±0.37 34.33±0.50 40.77±0.42 45.96±0.56 49.36±0.25 34.86
EL2N-score 19.74±0.26 26.58±0.40 31.93±0.28 39.12±0.46 45.32±0.27 49.36±0.25 32.54
Optimization-based 13.88±2.17 23.75±1.62 29.77±0.94 37.05±2.81 43.76±1.50 49.36±0.25 29.64
Self-sup.-selection 20.89±0.42 27.66±0.50 32.50±0.30 39.64±0.39 44.94±0.34 49.36±0.25 33.13
Moderate-DS 25.29±0.38 30.57±0.20 34.81±0.51 41.45±0.44 46.06±0.33 49.36±0.25 35.64
GM Matching 27.88±0.19 33.15±0.26 36.92±0.40 42.48±0.12 46.75±0.51 49.36±0.25 37.44

5% Feature Corruption

Random 23.51±0.22 28.82±0.72 32.61±0.68 39.77±0.35 44.37±0.34 49.02±0.35 33.82
Herding 23.09±0.53 28.67±0.37 33.09±0.32 39.71±0.31 45.04±0.15 49.02±0.35 33.92
Forgetting 21.36±0.28 27.72±0.43 33.45±0.21 40.92±0.45 45.99±0.51 49.02±0.35 33.89
GraNd-score 22.47±0.23 28.85±0.83 33.81±0.24 40.40±0.15 44.86±0.49 49.02±0.35 34.08
EL2N-score 18.98±0.72 25.96±0.28 31.07±0.63 38.65±0.36 44.21±0.68 49.02±0.35 31.77
Optimization-based 13.65±1.26 24.02±1.35 29.65±1.86 36.55±1.84 43.64±0.71 49.02±0.35 29.50
Self-sup.-selection 19.35±0.57 26.11±0.31 31.90±0.37 38.91±0.29 44.43±0.42 49.02±0.35 32.14
Moderate-DS 24.63±0.78 30.27±0.16 34.84±0.24 40.86±0.42 45.60±0.31 49.02±0.35 35.24
GM Matching 27.46±1.22 33.14±0.61 35.76±1.14 41.62±0.71 46.83±0.56 49.02±0.35 36.96

10% Feature Corruption

Random 22.67±0.27 28.67±0.52 31.88±0.30 38.63±0.36 43.46±0.20 48.40±0.32 33.06
Herding 22.01±0.18 27.82±0.11 31.82±0.26 39.37±0.18 44.18±0.27 48.40±0.32 33.04
Forgetting 20.06±0.48 27.17±0.36 32.31±0.22 40.19±0.29 45.51±0.48 48.40±0.32 33.05
GraNd-score 21.52±0.48 26.98±0.43 32.70±0.19 40.03±0.26 44.87±0.35 48.40±0.32 33.22
EL2N-score 18.59±0.13 25.23±0.18 30.37±0.22 38.44±0.32 44.32±1.07 48.40±0.32 31.39
Optimization-based 14.05±1.74 29.18±1.77 29.12±0.61 36.28±1.88 43.52±0.31 48.40±0.32 29.03
Self-sup.-selection 19.47±0.26 26.51±0.55 31.78±0.14 38.87±0.54 44.69±0.29 48.40±0.32 32.26
Moderate-DS 23.79±0.16 29.56±0.16 34.60±0.12 40.36±0.27 45.10±0.23 48.40±0.32 34.68
GM Matching 27.41±0.23 32.84±0.98 36.27±0.68 41.85±0.29 46.35±0.44 48.40±0.32 36.94

20% Feature Corruption

Random 19.99±0.42 25.93±0.53 30.83±0.44 37.98±0.31 42.96±0.62 46.68±0.43 31.54
Herding 19.46±0.14 24.47±0.33 29.72±0.39 37.50±0.59 42.28±0.30 46.68±0.43 30.86
Forgetting 18.47±0.46 25.53±0.23 31.17±0.24 39.35±0.44 44.55±0.67 46.68±0.43 31.81
GraNd-score 20.07±0.49 26.68±0.40 31.25±0.40 38.21±0.49 42.84±0.72 46.68±0.43 30.53
EL2N-score 18.57±0.30 24.42±0.44 30.04±0.15 37.62±0.44 42.43±0.61 46.68±0.43 30.53
Optimization-based 13.71±0.26 23.33±1.84 29.15±2.84 36.12±1.86 42.94±0.52 46.88±0.43 29.06
Self-sup.-selection 20.22±0.23 26.90±0.50 31.93±0.49 39.74±0.52 44.27±0.10 46.68±0.43 32.61
Moderate-DS 23.27±0.33 29.06±0.36 33.48±0.11 40.07±0.36 44.73±0.39 46.68±0.43 34.12
GM Matching 27.19±0.92 31.70±0.78 35.14±0.19 42.04±0.31 45.12±0.28 46.68±0.43 36.24

Table 6: Image Corruption ( Tiny ImageNet ): Comparing (Test Accuracy) pruning methods under feature (image) corruption.
ResNet-50 is used both as proxy and for downstream classification.
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Geometric Median (GM) Matching

CIFAR-100 (Label noise) Tiny ImageNet (Label noise)

Method / Ratio 20% 30% 20% 30% Mean ↑
20% Label Noise

Random 34.47±0.64 43.26±1.21 17.78±0.44 23.88±0.42 29.85
Herding 42.29±1.75 50.52±3.38 18.98±0.44 24.23±0.29 34.01
Forgetting 36.53±1.11 45.78±1.04 13.20±0.38 21.79±0.43 29.33
GraNd-score 31.72±0.67 42.80±0.30 18.28±0.32 23.72±0.18 28.05
EL2N-score 29.82±1.19 33.62±2.35 13.93±0.69 18.57±0.31 23.99
Optimization-based 32.79±0.62 41.80±1.14 14.77±0.95 22.52±0.77 27.57
Self-sup.-selection 31.08±0.78 41.87±0.63 15.10±0.73 21.01±0.36 27.27
Moderate-DS 40.25±0.12 48.53±1.60 19.64±0.40 24.96±0.30 31.33
GM Matching 52.64±0.72 61.01±0.47 25.80±0.37 31.71±0.24 42.79

35% Label Noise

Random 24.51±1.34 32.26±0.81 14.64±0.29 19.41±0.45 22.71
Herding 29.42±1.54 37.50±2.12 15.14±0.45 20.19±0.45 25.56
Forgetting 29.48±1.98 38.01±2.21 11.25±0.90 17.07±0.66 23.14
GraNd-score 23.03±1.05 34.83±2.01 13.68±0.46 19.51±0.45 22.76
EL2N-score 21.95±1.08 31.63±2.84 10.11±0.25 13.69±0.32 19.39
Optimization-based 26.77±0.15 35.63±0.92 12.37±0.68 18.52±0.90 23.32
Self-sup.-selection 23.12±1.47 34.85±0.68 11.23±0.32 17.76±0.69 22.64
Moderate-DS 28.45±0.53 36.55±1.26 15.27±0.31 20.33±0.28 25.15
GM Matching 43.33± 1.02 58.41± 0.68 23.14± 0.92 27.76± 0.40 38.16

Table 7: Robustness to Label Noise: Comparing (Test Accuracy) pruning methods on CIFAR-100 and TinyImageNet datasets, under
20% and 35% Symmetric Label Corruption, at 20% and 30% selection ratio. ResNet-50 is used both as proxy and for downstream
classification.

pixelation artifacts.

• Fog: Emulates atmospheric distortions by overlaying a simulated fog effect – resulting in reduced contrast and visibility.

• Motion Blur: Models dynamic distortions caused by camera motion or moving objects during exposure.

To introduce diverse corruption across the dataset while ensuring a balanced distribution, we apply each corruption type
uniformly at random to the corrupted samples. Instead of assigning fixed partitions, this approach ensures that each
sample has an equal probability of being affected by any of the five corruption types. This stochastic allocation results
in a heterogeneous mix of corruptions, compelling models to generalize across multiple degradation patterns rather than
overfitting to a specific type of distortion.

The results of our experiments, presented in Tables 5 and 6, evaluate the impact of increasing corruption levels (5%, 10%, and
20%) on various pruning methods. Across both CIFAR-100 and Tiny ImageNet, GM MATCHING consistently outperforms
all baselines, achieving an average accuracy improvement of ≈ 3% over the next-best approach.

This performance gap is amplified at higher corruption levels, where GM MATCHING maintains superior test accuracy.
Moreover, the gains are also significant at aggressive pruning ratios (20%-40%), where GM MATCHING improves test
accuracy by 2-4% over baselines. This trend aligns with its strong performance in data-scarce settings, reinforcing its ability
to preserve robustness even when training data is significantly reduced.

Among baselines, Random Selection exhibits a steady performance drop with increasing corruption, confirming its inability
to retain robustness. Herding and Moderate-DS, while effective in standard settings, struggle under high corruption levels.
Forgetting and Optimization-based methods show inconsistent results, likely due to their reliance on training dynamics
that become unstable when corrupted samples are introduced. GraNd-score and EL2N-score, which prioritize loss-based
selection, perform well in clean settings but degrade significantly under corruption, suggesting vulnerability to adversarial
perturbations. Self-supervised Selection remains competitive but fails to match GM MATCHING, particularly at higher
corruption intensities.
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Geometric Median (GM) Matching

Tiny ImageNet (Label Noise)

Method / Ratio 20% 30% 40% 60% 80% 100% Mean ↑
Random 17.78±0.44 23.88±0.42 27.97±0.39 34.88±0.51 38.47±0.40 44.42±0.47 28.60
Herding 18.98±0.44 24.23±0.29 27.28±0.31 34.36±0.29 39.00±0.49 44.42±0.47 28.87
Forgetting 13.20±0.38 21.79±0.43 27.89±0.22 36.03±0.24 40.60±0.31 44.42±0.47 27.50
GraNd-score 18.28±0.32 23.72±0.18 27.34±0.33 34.91±0.19 39.45±0.45 44.42±0.47 28.34
EL2N-score 13.93±0.69 18.57±0.31 24.56±0.34 32.14±0.49 37.64±0.41 44.42±0.47 25.37
Optimization-based 14.77±0.95 22.52±0.77 25.62±0.90 34.18±0.79 38.49±0.69 44.42±0.47 27.12
Self-sup.-selection 15.10±0.73 21.01±0.36 26.62±0.22 33.93±0.36 39.22±0.12 44.42±0.47 27.18
Moderate-DS 19.64±0.40 24.96±0.30 29.56±0.21 35.79±0.36 39.93±0.23 44.42±0.47 30.18
GM Matching 25.80±0.37 31.71±0.24 34.87±0.21 39.76±0.71 41.94±0.23 44.42±0.47 34.82

Table 8: Pruning with Label Noise (TinyImageNet): Comparing (Test Accuracy) pruning methods under 20% Symmetric Label
Corruption across wide array of selection ratio. ResNet-50 is used both as proxy and for downstream classification.

I.3.4. ROBUSTNESS TO LABEL CORRUPTION

Next, we consider label noise – a prevalent issue in real-world datasets, where obtaining perfectly annotated data is impractical
due to human labeling errors, dataset aggregation inconsistencies, or adversarial data manipulations. Consequently, it is
crucial to assess the ability of data pruning methods to select informative samples while filtering out mislabeled examples,
ensuring robustness to noisy annotations.

To systematically evaluate pruning methods under label noise, we introduce synthetically injected symmetric label noise, a
widely used corruption paradigm in robust learning (Li et al., 2022; Patrini et al., 2017; Xia et al., 2020). In this setting, a
fraction of training labels is randomly flipped to a different class, simulating annotation errors encountered in large-scale
weakly labeled datasets. We experiment with two corruption levels (20% and 35% label noise) and report test accuracy
across different pruning ratios.

Interestingly, in both CIFAR-100 and Tiny ImageNet, training ResNet50 in a subset selected by GM MATCHING outperforms
all competing methods by a large margin ( Table 7,8). For instance, at 20% label noise, when selecting 30% of samples from
CIFAR-100, GM MATCHING achieves 61.01% accuracy, compared to 48.53% (Moderate-DS) and 45.78% (Forgetting).
At 35% label noise, the performance gap widens, with GM MATCHING achieving 58.41%, while the closest baseline
(Moderate-DS) lags behind at 36.55%. Similar trends hold for Tiny ImageNet, where GM MATCHING outperforms the best
baseline by 4-6% across different noise levels. Overall, on average GM MATCHING outperforms the baselines by ≈ 12%
when selecting a small 20 − 30%. Moreover, when Vision Transformers are trained on a 20% subset of CIFAR-10 data
chosen by GM MATCHING, they achieve ≈ 10% improvement over previous robust data selection algorithms (Table 10).

Since mislabeled examples originate from random class assignments, they tend to be spatially dissimilar from their
intended class distributions. As a result, GM MATCHING is less likely to select such noisy examples, leading to improved
generalization despite high noise levels.

I.3.5. ROBUSTNESS TO ADVERSARIAL ATTACKS

Adversarial attacks pose a fundamental challenge to the reliability of deep learning models, as they introduce imperceptible
but highly effective perturbations to input samples, forcing misaligned predictions (Szegedy et al., 2013; Huang et al., 2010).

To assess the robustness of data pruning methods in adversarial settings, we experiment with two widely used attack
techniques:

• Projected Gradient Descent (PGD) (Madry et al., 2017): A strong iterative attack that optimizes perturbations by taking
multiple gradient ascent steps, maximizing the model’s loss function.

• Gradient Sign Attack (GS) (Goodfellow et al., 2014): A single-step adversarial attack that perturbs the input along the
gradient of the loss function, often serving as a computationally efficient alternative to PGD.

Using these attack methods, we generate adversarial examples from models trained on CIFAR-100 and Tiny ImageNet. We
then apply different data pruning strategies to these adversarial datasets and retrain models on the curated subsets to analyze
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Geometric Median (GM) Matching

CIFAR-100 (PGD Attack) CIFAR-100 (GS Attack)

Method / Ratio 20% 30% 20% 30% Mean ↑
Random 43.23±0.31 52.86±0.34 44.23±0.41 53.44±0.44 48.44
Herding 40.21±0.72 49.62±0.65 39.92±1.03 50.14±0.15 44.97
Forgetting 35.90±1.30 47.37±0.99 37.55±0.53 46.88±1.91 41.93
GraNd-score 40.87±0.84 50.13±0.30 40.77±1.11 49.88±0.83 45.41
EL2N-score 26.61±0.58 34.50±1.02 26.72±0.66 35.55±1.30 30.85
Optimization-based 38.29±1.77 46.25±1.82 41.36±0.92 49.10±0.81 43.75
Self-sup.-selection 40.53±1.15 49.95±0.50 40.74±1.66 51.23±0.25 45.61
Moderate-DS 43.60±0.97 51.66±0.39 44.69±0.68 53.71±0.37 48.42
GM Matching 45.41 ±0.86 51.80 ±1.01 49.78 ±0.27 55.50 ±0.31 50.62

Tiny ImageNet (PGD Attack) Tiny ImageNet (GS Attack)

Method / Ratio 20% 30% 20% 30% Mean ↑
Random 20.93±0.30 26.60±0.98 22.43±0.31 26.89±0.31 24.21
Herding 21.61±0.36 25.95±0.19 23.04±0.28 27.39±0.14 24.50
Forgetting 20.38±0.47 26.12±0.19 22.06±0.31 27.21±0.21 23.94
GraNd-score 20.76±0.21 26.34±0.32 22.56±0.30 27.52±0.40 24.30
EL2N-score 16.67±0.62 22.36±0.42 19.93±0.57 24.65±0.32 20.93
Optimization-based 19.26±0.77 24.55±0.92 21.26±0.24 25.88±0.37 22.74
Self-sup.-selection 19.23±0.46 23.92±0.51 19.70±0.20 24.73±0.39 21.90
Moderate-DS 21.81±0.37 27.11±0.20 23.20±0.13 28.89±0.27 25.25
GM Matching 25.98 ±1.12 30.77 ±0.25 29.71 ±0.45 32.88 ±0.73 29.84

Table 9: Robustness to Adversarial Attacks. Comparing (Test Accuracy) pruning methods under PGD and GS attacks. ResNet-50 is
used both as proxy and for downstream classification.

their effectiveness in retaining robustness. The results with ResNet-50 are summarized in Table 9, and the experiments with
ViT are presented in Table 10.

Similar to other corruption scenarios, across both datasets and attack types, GM MATCHING consistently outperforms all
baseline pruning methods, yielding an average accuracy improvement of 3% over the next-best approach. Specifically,
under PGD attacks on CIFAR-100, GM MATCHING achieves 45.41% accuracy at 20% selection, compared to 43.60%
(Moderate-DS) and 40.87% (GraNd-score). Similarly, in Tiny ImageNet under GS attacks, GM MATCHING maintains the
highest mean accuracy of 29.84%, outperforming Moderate-DS (25.25%) and Self-supervised Selection (21.90%).

I.3.6. ABLATIONS WITH PROXY ENCODER

Since the input features (e.g. images) often reside on a non-separable manifold, data pruning strategies rely on proxy models
to map raw input samples into a separable embedding space, where importance scores can be assigned more effectively.

A. IDEALIZED SETTING : In the standard setting, the proxy model used for sample selection is identical to the model used
for downstream training—both in terms of architecture and dataset. This represents an idealized scenario, where the feature
representations used to evaluate sample importance remain consistent throughout training. Since the proxy and final models
are identical, performance differences between pruning methods directly reflect the effectiveness of sample selection, rather
than being confounded by architectural mismatches. Since no external factors (such as domain shifts) interfere, the results
from this setup serve as a benchmark for understanding the best-case scenario for sample selection.

All the experiments reported in Tables 5–9 follow this framework: We perform data pruning on CIFAR-100 and Tiny
ImageNet, using ResNet-50 as both the proxy model (for selecting samples) and the downstream classifier (for final training).
The proxy model assigns importance scores to training samples, and a subset is selected accordingly. A new ResNet-50 is
then trained from scratch on the pruned dataset, ensuring that no information leakage occurs between sample selection and
final training. This methodology remains consistent across clean data, label noise, feature corruption, and adversarial attack
settings, providing a direct comparison of how pruning strategies perform across diverse learning conditions.

By maintaining this controlled setup, we isolate the true impact of different pruning strategies, ensuring that their ability
to retain the most valuable and generalizable training samples is the sole factor influencing performance. This establishes
a strong foundation before extending the analysis to more complex settings involving distribution shifts and network
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Geometric Median (GM) Matching

CIFAR-100 (ViT-S)

Method No Corruption Noisy Feature Label Noise Adv. Attack Mean ↑
Random 33.80±0.54 31.29±0.61 26.67±0.54 31.01±0.45 30.19
Herding 32.16±0.37 31.75±0.22 32.27±0.53 31.28±0.66 31.37
Forgetting 33.52±0.73 24.45±0.29 26.24±1.07 28.26±1.95 28.12
GraNd-score 22.49±0.47 18.40±0.11 22.13±0.90 19.27±1.27 20.07
EL2N-score 26.15±0.21 23.27±0.68 24.80±0.72 20.26±1.68 23.12
Optimization-based 31.84±0.63 30.12±0.73 30.12±0.70 29.36±0.75 30.36
Self-sup.-selection 33.35±0.31 30.72±0.90 29.16±0.27 28.49±0.56 30.93
Moderate-DS 34.43±0.32 32.73±0.35 31.86±0.49 32.61±0.40 32.91
GM MATCHING 40.81±0.87 38.26±0.68 42.11±0.36 39.45±0.82 40.66

Table 10: IMAGE CLASSIFICATION (VIT-S): We compare the downstream test accuracy of various data selection methods on simulated
CIFAR-100 (using ViT-S) under different corruption types: No Corruption, Noisy Feature, Label Noise, and Adversarial Attack. All
experiments are performed with a fixed selection ratio of 20%, using ResNet-50 as both the proxy and downstream classifier. Our method,
GM MATCHING, consistently outperforms all baselines—demonstrating superior robustness to corrupted data, with larger performance
gains at higher corruption levels. Mean and standard deviation (%) are reported over multiple runs. The best result in each case is
highlighted in bold.

ResNet-50→SENet ResNet-50→EfficientNet-B0

Method / Ratio 20% 30% 20% 30% Mean ↑
Random 34.13±0.71 39.57±0.53 32.88±1.52 39.11±0.94 36.42
Herding 34.86±0.55 38.60±0.68 32.21±1.54 37.53±0.22 35.80
Forgetting 33.40±0.64 39.79±0.78 31.12±0.21 38.38±0.65 35.67
GraNd-score 35.12±0.54 41.14±0.42 33.20±0.67 40.02±0.35 37.37
EL2N-score 31.08±1.11 38.26±0.45 31.34±0.49 36.88±0.32 34.39
Optimization-based 33.18±0.52 39.42±0.77 32.16±0.90 38.52±0.50 35.82
Self-sup.-selection 31.74±0.71 38.45±0.39 30.99±1.03 37.96±0.77 34.79
Moderate-DS 36.04±0.15 41.40±0.20 34.26±0.48 39.57±0.29 37.82
GM Matching 37.93±0.23 42.59±0.29 36.31±0.67 41.03±0.41 39.47

Table 11: NETWORK TRANSFER (NO CORRUPTION) PROXY ENCODER: (Tiny-ImageNet) Model Transfer Results. A ResNet-50
proxy is used to find important samples which are then used to train SENet and EfficientNet.

mismatches.

However, a critical question remains:

How well do samples selected by a proxy model generalize when trained on a different architecture or dataset ?

In real-world applications, the model used for data selection (proxy model) is often different from the final model used for
training due to hardware constraints, deployment considerations, or domain shifts. An ideal pruning strategy should ensure
that the selected subset remains highly effective, even when the final model differs from the one used during selection.

To investigate this, we perform comprehensive ablation studies across multiple proxy selection scenarios, evaluating the
robustness to distribution shifts and network mismatches i.e. to say that samples selected via a proxy network should
generalize well when trained on unseen (during sample selection) networks / domains.

B. GENERALIZATION TO UNSEEN NETWORK : In this setting, the proxy model and downstream classifier are trained
on the same dataset, meaning there is no distribution shift. However, the proxy model’s architecture differs from the final
training model, testing whether a pruned subset remains useful across different network designs. This scenario simulates
practical constraints where a proxy model is used for data selection, but the final model needs to be optimized for different
architectural properties (e.g., mobile-friendly architectures).

In Table 11, we use a ResNet-50 proxy trained on TinyImageNet (no corruption) to select samples from the same dataset
for downstream training. Instead of using ResNet-50 for final training, we train with different architectures on the pruned
subset:
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Geometric Median (GM) Matching

ResNet-50→ VGG-16 ResNet-50→ ShuffleNet

Method / Ratio 20% 30% 20% 30% Mean ↑
No Corruption

Random 29.63±0.43 35.38±0.83 32.40±1.06 39.13±0.81 34.96
Herding 31.05±0.22 36.27±0.57 33.10±0.39 38.65±0.22 35.06
Forgetting 27.53±0.36 35.61±0.39 27.82±0.56 36.26±0.51 32.35
GraNd-score 29.93±0.95 35.61±0.39 29.56±0.46 37.40±0.38 33.34
EL2N-score 26.47±0.31 33.19±0.51 28.18±0.27 35.81±0.29 31.13
Optimization-based 25.92±0.64 34.82±1.29 31.37±1.14 38.22±0.78 32.55
Self-sup.-selection 25.16±1.10 33.30±0.94 29.47±0.56 36.68±0.36 31.45
Moderate-DS 31.45±0.32 37.89±0.36 33.32±0.41 39.68±0.34 35.62
GM Matching 35.86±0.41 40.56±0.22 35.51±0.32 40.30±0.58 38.47

20% Label Corruption

Random 23.29±1.12 28.18±1.84 25.08±1.32 31.44±1.21 27.00
Herding 23.99±0.36 28.57±0.40 26.25±0.47 30.73±0.28 27.39
Forgetting 14.52±0.66 21.75±0.23 15.70±0.29 22.31±0.35 18.57
GraNd-score 22.44±0.46 27.95±0.29 23.64±0.10 30.85±0.21 26.22
EL2N-score 15.15±1.25 23.36±0.30 18.01±0.44 24.68±0.34 20.30
Optimization-based 22.93±0.58 24.92±2.50 25.82±1.70 30.19±0.48 25.97
Self-sup.-selection 18.39±1.30 25.77±0.87 22.87±0.54 29.80±0.36 24.21
Moderate-DS 23.68±0.19 28.93±0.19 28.82±0.33 32.39±0.21 28.46
GM Matching 28.77±0.77 34.87±0.23 32.05±0.93 37.43±0.25 33.28

20% Feature Corruption

Random 26.33±0.88 31.57±1.31 29.15±0.83 34.72±1.00 30.44
Herding 18.03±0.33 25.77±0.34 23.33±0.43 31.73±0.38 24.72
Forgetting 19.41±0.57 28.35±0.16 18.44±0.57 31.09±0.61 24.32
GraNd-score 23.59±0.19 30.69±0.13 23.15±0.56 31.58±0.95 27.25
EL2N-score 24.60±0.81 31.49±0.33 26.62±0.34 33.91±0.56 29.16
Optimization-based 25.12±0.34 30.52±0.89 28.87±1.25 34.08±1.92 29.65
Self-sup.-selection 26.33±0.21 33.23±0.26 26.48±0.37 33.54±0.46 29.90
Moderate-DS 29.65±0.68 35.89±0.53 32.30±0.38 38.66±0.29 34.13
GM Matching 33.45±1.02 39.46±0.44 35.14±0.21 39.89±0.98 36.99

PGD Attack

Random 26.12±1.09 31.98±0.78 28.28±0.90 34.59±1.18 30.24
Herding 26.76±0.59 32.56±0.35 28.87±0.48 35.43±0.22 30.91
Forgetting 24.55±0.57 31.83±0.36 23.32±0.37 31.82±0.15 27.88
GraNd-score 25.19±0.33 31.46±0.54 26.03±0.66 33.22±0.24 28.98
EL2N-score 21.73±0.47 27.66±0.32 22.66±0.35 29.89±0.64 25.49
Optimization-based 26.02±0.36 31.64±1.75 27.93±0.47 34.82±0.96 30.10
Self-sup.-selection 22.36±0.30 28.56±0.50 25.35±0.27 32.57±0.13 27.21
Moderate-DS 27.24±0.36 32.90±0.31 29.06±0.28 35.89±0.53 31.27
GM Matching 27.96±1.60 35.76±0.82 34.11±0.65 40.91±0.84 34.69

Table 12: NETWORK TRANSFER (CORRUPTED) PROXY ENCODER: : A ResNet-50 proxy (pretrained on TinyImageNet) is used to
find important samples from Tiny-ImageNet; which is then used to train a VGGNet-16 and ShuffleNet. We repeat the experiment across
multiple corruption settings - clean; 20% Feature / Label Corruption and PGD attack when 20% and 30% samples are selected.
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Geometric Median (GM) Matching
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(b) 20% Label Noise
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(c) 40% Label Noise

Figure 16: DOMAIN TRANSFER ( IMAGENET-1K → CIFAR-10 ) PROXY ENCODER: CIFAR10, corrupted with label noise is
pruned using a (proxy) ResNet-18 pretrained on ImageNet-1k. A ResNet-18 is trained from scratch on the subset. We compare our
method GM MATCHING with geometric pruning baselines: UNIFORM, EASY,HARD, MODERATE, HERDING.

• SENet – A model optimized for channel-wise attention mechanisms, which enhances feature selection by adaptively
recalibrating channel-wise responses.

• EfficientNet-B0 – A lightweight model designed for mobile and resource-efficient inference, using a combination of
depthwise convolutions and width scaling to optimize performance while maintaining parameter efficiency.

• VGG-16 – A deep convolutional network with uniform architecture, known for its simple yet effective design, using
fixed-size convolution filters and max pooling layers.

• ShuffleNet – A model specifically designed for speed and efficiency, utilizing group convolutions and channel shuffling to
maximize accuracy while maintaining low computational overhead.

In Table 12, we also experiment with similar network mismatch scenarios, in the presence of various types and levels of
corruption.

Both sets of experiments demonstrate that GM MATCHING consistently outperforms all pruning baselines, ensuring that
selected samples remain informative and transferable across different network architectures. SENet and EfficientNet-B0
benefit the most from pruning, likely due to their adaptive feature recalibration and efficiency optimizations, while VGG-
16 and ShuffleNet show greater sensitivity to pruning and corruption, struggling more under distribution shifts. Under
corruption, loss-based selection methods (GraNd, EL2N) degrade significantly, whereas representative selection methods
(Moderate-DS, Herding) hold up better under mild corruption but fail under severe noise.

These results highlight the importance of selecting subsets that generalize well, not only across different architectures
but also under varying levels of corruption, reinforcing GM MATCHING as a highly robust and adaptable pruning strategy
suitable for diverse deployment scenarios.

C. GENERALIZATION TO UNSEEN DOMAIN.

In many real-world applications, deep learning models are pretrained on large-scale datasets (e.g., ImageNet) before being
adapted to a different, often smaller, target dataset (e.g., CIFAR-10). This introduces a distribution shift between the dataset
used for proxy-based sample selection and the dataset used for final training. If a pruning method is truly effective, it should
be able to identify samples that generalize well across different data distributions, ensuring that the selected subset remains
informative even if the proxy model was never explicitly trained on the target dataset.

To investigate this, we conduct experiments where the proxy model and downstream classifier share the same architecture,
but the proxy model is pretrained on a different dataset, introducing a distribution shift. By keeping the architecture constant,
we isolate the impact of dataset shift while avoiding confounding factors related to network differences.

In Figure 16, a ResNet-18 pretrained on ImageNet is used to select samples from CIFAR-10, which are then used to train a
new ResNet-18 from scratch. This setup closely mirrors real-world transfer learning scenarios, where large-scale pretraining
is leveraged to prune or curate training data for a smaller, domain-specific dataset before training a new model. The key
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Figure 17: DOMAIN TRANSFER ( IMAGENET-1K → CIFAR-10 ) PROXY ENCODER : We train a Linear Classifier on CIFAR10;
over embeddings obtained from a frozen ResNet-18 pretrained on ImageNet-1k. The dataset was pruned using the same encoder. We
compare GM MATCHING with several geometric pruning baselines ( Appendix I.1): Uniform, Easy, Hard, Moderate, Herding across no
corruption, 20% and 30% label noise settings.

objective is to determine whether the subset selected by a proxy trained on a different dataset remains informative and
structurally representative of the target dataset when used for full downstream training.

Furthermore, in Figure 17, we introduce an even more challenging setting by freezing the pretrained (on ImageNet) ResNet-
18 and training only a linear classifier on top of the extracted CIFAR-10 features. Unlike the full fine-tuning approach,
this method eliminates any feature adaptation between datasets, forcing the classifier to rely entirely on the quality of the
selected samples. This makes it a more rigorous test of how well the pruned subsets inherently align with robust, transferable
representations, ensuring that the selected data itself is informative, rather than merely benefiting from feature adaptation
during training.

The results from Figure 16 17 demonstrate that GM MATCHING consistently outperforms all baselines, ensuring that selected
samples remain highly informative and transferable despite the distribution shift. When fully fine-tuned, models trained on
GM MATCHING pruned subsets achieve higher accuracy than those trained on subsets selected by other methods, indicating
that it effectively identifies structurally important and generalizable samples. In the frozen feature setting, performance gaps
between pruning strategies become even more pronounced, with Hard and Easy pruning strategies performing significantly
worse, highlighting their reliance on feature adaptation rather than inherently meaningful sample selection. Loss-based
methods (GraNd-score, EL2N-score) degrade under dataset shifts, suggesting that they may over-prioritize easy-to-learn
samples that do not generalize well across domains. These findings emphasize that effective pruning strategies must go
beyond dataset-specific heuristics and instead focus on selecting robust, transferable samples that remain useful even under
feature extraction constraints, reinforcing the advantage of GM MATCHING in real-world transfer learning applications.

D. GENERALIZATION TO BOTH UNSEEN DOMAIN AND NETWORK.

In many real-world scenarios, both domain and architecture mismatches occur simultaneously — a setting where the data
selection model differs from the downstream training model both in terms of dataset and architecture. For instance, models
like CLIP (Radford et al., 2021a) are often used as frozen, large-scale pretrained encoders on generic web-scale data (e.g.,
YFCC), whereas final deployment models may be lightweight CNNs (e.g., ResNet-18) trained from scratch on task-specific
datasets like CIFAR.

To assess the robustness of pruning strategies in this challenging setting, we construct an experiment where a frozen CLIP
ViT-B/32 encoder — pretrained on a generic dataset — is used as a proxy to embed CIFAR-10 samples and perform subset
selection via GM MATCHING. A ResNet-18 model is then trained from scratch on the selected subset using only CIFAR-10
labels. This setup introduces both a domain shift (CLIP never trained on CIFAR-10) and a network shift (ViT to ResNet).

We evaluate performance across multiple corruption regimes: a clean dataset, as well as with 20% and 40% label noise.
Table 13 presents the results across three subset sizes (10, 100, 1000 samples per class), showing the classification accuracy
of ResNet-18 trained on these subsets.

Across all corruption levels and subset sizes, GM MATCHING consistently outperforms all baselines. For instance, in the
40% label noise setting, GM MATCHING achieves 43.7% mean accuracy — a full 3% higher than the next best method
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CIFAR-10 (ViT-B/32 → ResNet-18)

Method / Size 10 100 1000 Mean ↑
No Corruption

Random 23.2 ± 3.9 42.4 ± 2.3 86.8 ± 0.7 50.8
Easy 27.4 ± 0.4 42.5 ± 0.5 84.2 ± 0.3 51.4
Hard 19.8 ± 1.7 39.7 ± 1.0 86.1 ± 0.2 48.5
Herding 24.9 ± 1.6 45.7 ± 0.6 86.8 ± 0.4 52.5
Moderate 24.0 ± 1.8 44.5 ± 2.7 86.1 ± 1.3 51.5
GM Matching 25.6 ± 0.2 47.6 ± 1.9 86.9 ± 0.3 53.4

20% Label Noise

Random 18.0 ± 2.4 36.4 ± 0.9 75.5 ± 0.7 43.3
Easy 24.2 ± 0.6 40.7 ± 1.1 76.5 ± 1.9 47.1
Hard 13.1 ± 1.9 22.7 ± 0.7 67.2 ± 0.5 34.3
Herding 22.7 ± 0.3 38.5 ± 1.5 76.6 ± 1.3 45.9
Moderate 23.0 ± 1.3 39.8 ± 1.3 75.9 ± 1.3 46.2
GM Matching 26.0 ± 0.9 41.1 ± 1.8 77.8 ± 0.4 48.3

40% Label Noise

Random 16.8 ± 2.0 28.3 ± 2.2 66.2 ± 0.8 37.1
Easy 22.5 ± 1.5 34.1 ± 1.5 70.5 ± 1.1 42.4
Hard 12.8 ± 1.3 16.5 ± 1.6 51.4 ± 1.9 26.9
Herding 18.0 ± 1.4 30.1 ± 0.9 65.1 ± 1.4 37.7
Moderate 20.2 ± 1.3 34.0 ± 1.7 67.8 ± 1.5 40.7
GM Matching 23.3 ± 1.8 36.8 ± 1.4 71.0 ± 1.3 43.7

Table 13: NETWORK AND DOMAIN TRANSFER - PROXY ENCODER: A pretrained CLIP ViT-B/32 proxy encoder is used to find (10,
100, 1000) samples per class from CIFAR-10. Consequently, a ResNet-18 is trained on the selected subset. We perform the experiment
across - clean; 20% and 40% Label Noise.

(Moderate, 40.7%). Notably, the advantage of GM MATCHING is particularly prominent at smaller subset sizes (e.g., 10
samples/class), suggesting that it is more effective at isolating informative, transferable samples even when the proxy
encoder and downstream model differ significantly.

These findings highlight a key strength of GM MATCHING: its ability to select subsets that retain semantic structure and
predictive utility, even when selected in a drastically different representation space than where the model is ultimately
trained. By anchoring the selection process on the geometric median — a robust estimator that captures the core of the data
distribution — GM MATCHING exhibits strong generalization under simultaneous domain and architecture shifts, making
it a practical and principled choice for real-world deployment settings involving large-scale, black-box, or frozen proxy
encoders.

I.4. Unconditional Image Generation

To further validate our approach, we conduct experiments on an unconditional image generation task using a diffusion
model. Specifically, we train a U-Net on the MNIST dataset, with Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020), which learns to generate images through a gradual denoising process. We perform sample selection with CLIP
ViT-B/32 (Radford et al., 2021a) embeddings as demonstrated in Figure 19.

The fundamental idea behind diffusion models is to learn the reverse of a gradual noise corruption process applied to training
images. This forward diffusion process progressively adds Gaussian noise to an image across a sequence of time-steps
t = 1, . . . , T , following the Markovian formulation:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (70)

where, xt represents the image at timestep t and βt ∈ (0, 1) denotes the noise variance at timestep t, following a predefined
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(a) Clean Samples (b) (Additive) Gaussian Noise (c) (Additive) Uniform Noise

(d) Random Patches (e) Cutout Noise (f) Random Noise

Figure 18: Image Corruption: Visualization of various noise types and sample categories. Each sub-figure demonstrates a
distinct type of data corruption or clean sample used in the experiments.

schedule. The generative process aims to learn a function pθ(xt−1|xt) that can reverse this diffusion, thereby reconstructing
clean images from noise. The learned denoising function is parameterized using a deep neural network that predicts the
noise component in a given sample, enabling the recovery of realistic image distributions.

To evaluate the quality of the generated samples, we use the Fréchet Inception Distance (FID), which measures the
Wasserstein-2 distance between the feature distributions of real and generated images:

FID =

∥∥∥∥µr − µg

∥∥∥∥2 + Tr
(
Σr +Σg − 2(ΣrΣg)

1/2

)
(71)

where (µr,Σr) and (µg,Σg) are the mean and covariance of the real and generated feature distributions respectively, and
Tr(·) denotes the trace operator. Lower FID values indicate that the generated images more closely resemble the real data
distribution.

I.4.1. EXPERIMENTAL SETUP

For training stability and optimal convergence, we adopt specific hyperparameter settings. The batch size is set to 128
to ensure efficient mini-batch updates. The learning rate is fixed at 1 × 10−4, tuned for stable convergence. We use the
AdamW optimizer due to its adaptive learning rate properties and weight decay regularization. The number of diffusion
time-steps is set to 1000, providing sufficient granularity for high-resolution generative refinement. A linear noise schedule
is applied where βt increases linearly over time-steps, preventing abrupt changes in noise levels. To ensure robustness in our
conclusions, we conduct multiple training runs with different random seeds, mitigating the impact of initialization biases
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(a) Clean Samples (b) (Additive) Gaussian Noise (c) (Additive) Uniform Noise

(d) Random Patches (e) Cutout Noise (f) Random Noise

Figure 19: (PROXY EMBEDDING SPACE) t-SNE Visualization of CLIP ViT-B/32 Embeddings of a subset of MNIST
images from Figure 18: (a) Clean (baseline), and where 45% samples corrupted with (b) Gaussian noise, (c) Uniform noise,
(d) Random patches, (e) Cutout noise.

and training variability.

Our experiments involve running the model across multiple random seeds to ensure statistical robustness. Results are
compared using FID scores to determine the effectiveness of different data selection strategies in training the diffusion model.
We compare GM MATCHING against multiple baseline geometric subset selection strategies(Appendix I.1): Random, Easy,
Hard, Moderate, and Kernel Herding.

To further stress-test these selection methods, we introduce structured perturbations into the training data, simulating realistic
noise and adversarial conditions. These perturbations include Gaussian noise, which applies additive white noise pixel-wise;
uniform noise, which perturbs pixel intensities randomly; random patches, which corrupt localized regions with random
pixel values; cutout augmentations, which mask out rectangular sections of images; and completely random images, which
introduce purely random noise samples into training batches. Visual examples of these corrupted data samples are presented
in Figure 18.

I.4.2. DISCUSSION

Figure 6 depicts the generative performance of the diffusion model when trained on the selected subset. Evidently,
GM MATCHING consistently achieves FID scores across all subset sizes and corruption scenarios, clearly demonstrating its
superior performance in terms of generating high-quality samples. In the clean (no corruption) setting, at smaller subset
sizes (10%-20%), GM MATCHING substantially outperforms the baseline methods. While all methods eventually converge
to similar performance levels at full dataset size (100%), the early advantage of GM MATCHING highlights its efficiency in
selecting representative subsets. Under moderate (20%)corruption, GM MATCHING maintains a significant performance
advantage, especially at smaller subset sizes (10%-40%). This result suggests that GM MATCHING effectively identifies
high-quality training subsets even in the presence of moderately corrupted data, thereby preserving generative quality.
At higher (30%)corruption rates, GM MATCHING demonstrates remarkable robustness against higher corruption levels.
In contrast, methods such as "Hard" sampling significantly degrade in performance due to sensitivity to corrupted data.
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(a) Random (b) Easy (c) Hard

(d) Moderate (e) Herding (f) GM MATCHING

Figure 20: (No Corruption) Visualization of Generated Samples 40% sampling

GM MATCHING, however, remains stable and consistently achieves superior FID scores, emphasizing its robustness in more
challenging scenarios.

Visual analyses provide additional insights into the effectiveness of GM Matching, particularly when comparing subsets
of clean versus noisy training data. In Figure 20, we present visualizations of generated samples obtained from the UNet
trained via DDPM on a 40% subset of MNIST. All subset selection methods produce visually comparable and clear digit
images under these clean conditions, demonstrating that, in an ideal scenario without data corruption, the impact of different
subset selection methods on visual quality is minimal. However, Figure 21 highlights significant differences in generated
samples when the same model is trained on a 40% subset derived from data subjected to severe corruption (30%). Baseline
methods, such as Random, Easy, and Hard selection, result in samples with substantial visual distortion and ambiguity. In
contrast, GM MATCHING notably produces clear and well-defined digit representations, emphasizing its superior robustness
and capability to effectively mitigate the adverse effects of corrupted data during training. Collectively, these visual results
reinforce our quantitative findings (Figure 6), clearly underscoring the suitability and robustness of GM MATCHING in
challenging data corruption scenarios for training diffusion models.
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(a) Random (b) Easy (c) Hard

(d) Moderate (e) Herding (f) GM MATCHING

Figure 21: (30% Corruption) Visualization of Generated Samples 40% sampling
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