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The past few years have witnessed a rapid growth of the deployment of automated
vehicles (AVs). Clearly, AVs and human-driven vehicles (HVs) will co-exist for
many years, and AVs will have to operate around HVs, pedestrians, cyclists, and
more, calling for fundamental breakthroughs in AI designed for mixed traffic to
achieve mixed autonomy. Thus motivated, we study heterogeneous decisionmaking
by AVs and HVs in a mixed traffic environment, aiming to capture the interactions
between human and machine decision-making and develop an AI foundation that
enables vehicles to operate safely and efficiently. There are a number of challenges
to achieve mixed autonomy, including 1) humans drivers make driving decisions
with bounded rationality, and it remains open to develop accurate models for HVs’
decision making; and 2) uncertainty-aware planning plays a critical role for AVs
to take safety maneuvers in response to the human behavior. In this paper, we
introduce a formulation of AV-HV interaction, where the HV makes decisions with
bounded rationality and the AV employs uncertainty-aware planning based on the
prediction on HV’s future actions. We conduct a comprehensive analysis on AV and
HV’s learning regret to answer the questions: 1) How does the learning performance
depend on HV’s bounded rationality and AV’s planning; 2) How do different decision
making strategies impact the overall learning performance? Our findings reveal some
intriguing phenomena, such as Goodhart’s Law in AV’s learning performance and
compounding effects in HV’s decision making process. By examining the dynamics
of the regrets, we gain insights into the interplay between human and machine
decision making.

1. Introduction
Automated vehicle (AV) is emerging as the fifth screen in our everyday life, after movies, televisions,
personal computers, and mobile phones [1, 2]. Their potential impact on safety and economic
efficiency is substantial [3–6]. For instance, the National Highway Traffic Safety Administration
(NHTSA) reported that preventable crashes in the United States caused $871 billion in economic and
societal losses in 2010—approximately 1.9% of the GDP. While over 30 U.S. states have enacted AV
legislation and AI-equipped vehicles continue to advance, experts acknowledge significant technical
challenges remain [7–9]. Perhaps the most fundamental challenge is achieving both safety and
efficiency in mixed-traffic environments, as AVs must coexist with human-driven vehicles (HVs),
pedestrians, cyclists, and other road users for the foreseeable future.
The complicated interactions between HVs and AVs could have significant implications on the traffic
efficiency given their different decision making characters. As such, a fundamental understanding on
the heterogeneous decision making in the interplay, especially the impact of HVs’ decision making
with bounded rationality on AVs’ performance, is crucial for achieving efficient mixed autonomy.
Existing works on modeling the interaction between AV and HV largely fall within the realm of
conventional game formulation, in which both agents try to solve the dynamic game and adopt
Nash equilibrium strategies [10–13]. This line of formulation faces the challenge of prohibitive
computational complexity [14]. Needless to say, the decision making of HV and AV are different
by nature. As supported by evidence from psychology laboratory experiments [15–17], human
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decision-making is often short-sighted and deviates from Nash equilibrium due to their bounded
rationality in the daily life [18–20]. In particular, HV’s bounded rationality is unknown a prior and
it remains challenging to develop an accurate model for HV’s decision making. As a result, it is
sensible for AVs’ decision making to leverage uncertainty-aware planning for safety maneuvers in
response to human behavior [21, 22]. Clearly, the heterogeneous decision making by HVs and AVs
exposes intrinsic complexities in the mixed autonomy.
Along the line of [13, 23], we consider a two-agent system with one AV and one HV, where the HV
takes the action by planning for a short time horizon, and the decision-making is sub-optimal and
noisy due to bounded rationality. The AV utilizes uncertainty-aware lookahead planning based
on predictions of the HV’s future actions. The primary objective of this study is to understand the
performance of heterogeneous decision making in the mixed autonomy by answering the following
questions: 1) How does the learning performance depend on HV’s bounded rationality and AV’s planning?
2) How do different decision making strategies between AV and HV impact the overall learning performance?
The main contributions of this paper can be summarized as follows:
(1)We first focus on the characterization of the regrets for both theHV and the AV, based onwhich
we identify the impact of bounded rationality and planning horizon on the learning performance.
In particular, we present the upper bound on the regret, first for the linear system dynamics model
case and then for the non-linear case. We start with the linear case, and show the accumulation
effect due to the AV’s prediction error and its impact on AV’s learning performance. Building on the
insight from the linear case, we model the prediction error as a diffusion process in the non-linear
case to capture the accumulation effect. By studying the upper bound, we identify the compounding
effects in HV’s decision making due to bounded rationality and the Goodhart’s law in AV’s decision
making associated with the planning horizon.
(2) We study the impact of HV’s bounded rationality on the overall learning performance and the
regret dynamics of AV andHV.We first establish the upper bound on the regret of the overall system
due to HV’s bounded rationality and AV’s uncertainty-aware planning. Our regret bound naturally
decompose into two parts, corresponding to the decision making of AV and HV, respectively. We
examine the regret dynamics of the overall system theoretically and show how do different learning
strategies between AV and HV affect the learning performance during each individual interaction
through empirical study. The experiments details are available in Appendix F.

2. Related Work

Mixed Autonomy. Prior work on mixed autonomy traffic has primarily focused on specific dynamics
models and empirical studies. For instance, [24] uses Bando’s model for vehicle behavior analysis,
while [25] studies AV’s impact on HV driving volatility using predetermined AV acceleration models.
The human factor has been examined through high-fidelity driving simulators [26], and stochastic
models have been proposed to capture human behavior uncertainty [27]. On the learning side,
[4] demonstrates congestion reduction using deep RL under the intelligent driver model (IDM).
Without imposing specific models on HV and AV’s decision making dynamics, our work focuses on
the performance of different learning strategies in the mixed autonomy.
HV-AV Interaction Model. For modeling HV-AV interactions specifically, several game-theoretic
approaches have been proposed. [10] and [13] use Stackelberg and two-player game formulations
respectively, while [12] develops a hierarchical planning scheme. Although [23] attempts to address
game formulation limitations using underactuated dynamical systems, it assumes identical decision-
making horizons for both vehicle types. While related fields like ad-hoc team problems [28] and
zero-shot coordination [29] provide empirical insights, they focus on either cooperative scenarios or
self-play robustness. Our work differs by analyzing the interaction between agents with different
decision-making strategies without assuming cooperation, particularly examining the impact of
opponent modeling errors on learning performance [30]. Despite the rich empirical results in the
related field, e.g., Ad-hoc team problem and zero-shot coordination, we remark that the theoretical
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analysis on the interaction between AV and HV is still lacking, especially considering their different
decision making. Moreover, our work deviates from the conventional game setting and aims to takes
steps to quantify the impact of AV and HV’s different decision making on the traffic system.
Model-based RL.MBRL with lookahead planning has shown promise in real-world applications
due to its data efficiency [31]. Recent works [32, 33] utilize lookahead policies with future rollouts
and terminal value functions to optimize action sequences. While [32] provides sub-optimality
analysis under approximate models, our work differs fundamentally: we assume AV has access
to environment dynamics but faces uncertainty from HV’s bounded rationality. Moreover, our
theoretical analysis uses regret with dynamically updating value functions, requiring significant
different analytical techniques than previous work [32–34].

3. Preliminary
Stochastic Game. We consider the Stochastic Game (SG) defined by the tuple M :=
(X ,UA,UH , P, rA, rH , γ) [35], where UA and UH are the action space for AV and HV, respectively.
Meanwhile, we assume the action space for HV and AV are with the same cardinality M and
let U = UA × UH . We denote X as the state space that contains both AV and HV’s states.
P (x′|x, uA, uH) : X × U × X → [0, 1] is the probability of the transition from state x to state
x′ when AV applies action uA and HV applies action uH . rH(x, uA, uH) : X × U → [0, Rmax],
rA(x, uA, uH) : X × U → [0, Rmax] is the corresponding reward for HV and AV. γ ∈ (0, 1) is the
discount factor. We denote the AV’s policy by π : X × U and use ûH(t) to represent AV’s prediction
on HV’s real action uH(t) at time step t. We use ρ0 to represent the initial state distribution.
Value Function. Given AV’s policy π, we denote the value function V π(x) : X → R as

E

[ ∞∑
t=0

γtrA(x(t), uA(t), uH(t))|x(0) = x, uH(t)

]
,

to measure the average accumulative reward staring from state x by following policy π. The expecta-
tion is taken over uA(t) ∼ π and x(t+ 1) ∼ P (x, uH(t), uA(t)).
We assume themaximumvalue of the value function to be Vmax. We defineQ-functionQπ(x, uA, uH) :
X × U → R as Qπ(x, uA, uH) = Eπ[

∑∞
t=0 γ

trA(t)|x(0) = x, uA(0) = uA, uH(0) = uH ] to represent
the expected return when the action uA, uH are chosen at the state x. The objective of AV is to find
an optimal policy π∗ given HV’s action uH such that the value function is maximized, i.e.,

π∗ = argmax
π

Ex∼ρ0,uA∼π(·|x,uH)[Q
π(x, uA, uH)]. (1)

Similarly, the objective function can be written as Ex∼ρ0 [V
π(x)].

Notations. We use ∥ · ∥ or ∥ · ∥2 to represent the Euclidean norm. ∥ · ∥F is used to denote Frobenius
norm. N (µ, σ2) is the normal distribution with mean µ and variance σ2. I is an identity matrix.

3.1. Modeling AV-HV Interaction: Heterogeneous Decision Making
In this section, we examine in detail the interaction between one AV and one HV in a mixed traffic
environment. More specifically, we have the following models to capture the interplay between
human and machine decision making in the mixed autonomy.
AV’s Decision Making via L-step lookahead planning. At time step t, after observing the current
state x(t), AV will first need to predict HV’s future action ûH(t+ i), i = 0, 1, 2, · · · , L− 1 due to the
unknown bounded rationality of HV. Based on this prediction, AV strives to find an action sequence
that maximizes the cumulative reward with the predicted HV actions using trajectory optimization.
In order to facilitate effective long-horizon reasoning, we augment the planning trajectory with a
terminal value function approximation Q̂t−1, which is obtained by evaluating the policy obtained
from previous time step. For convenience, we denote policy π̂t as the solution to maximizing the
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L-step lookahead planning objective, i.e.,

Q̂t(t) =E[

L−1∑
i=0

γirA(t+ i) + γLQ̂t−1(t+ L)],

where rA(t+i) := rA(x̂(t+i), uA(t+i), ûH(t+i)) and Q̂t−1(t+L) := Q̂t−1(x̂(t+L), uA(t+L), ûH(t+
L)). Meanwhile, x̂(t+ i) is the state that the system will end up with if HV chose action ûH(t+ i)
and AV chose uA(t+ i) at time step t+ i.
Then the policy π̂(x(t)|uH) is obtained by,

π̂(x(t)|uH) = arg max
uA(t)

max
{uA(t+l)}L−1

l=1

Q̂t(t), (2)

where uH := {uH(t)}Tt=1. It can be seen that AV’s policy is conditioned on HV’s policy via ûH(t).
Remark 3.1. Equation (2) can also be degenerated into many commonly used RL algorithms such as
actor-critic and we include the discussion in Appendix E.
HV’s DecisionMakingwith Bounded Rationality. HV’s decisionmaking has distinct characteristics.
As mentioned by the pioneering study of behavior theory [36], individuals have constraints in both
their understanding of their surroundings and their computational capacities. Additionally, they face
search costs when seeking sophisticated information in order to devise optimal decision rules.
Therefore, we propose to model human as responding to robots actions with bounded rationality.
We additionally assume HV choose the action by planning for a short time horizon, in contrast to
the long horizon planning in AV’s decision making. Specifically, at time step t, HV chooses the
(sub-optimal) action by planning ahead for N steps, i.e.,

ΦH(x(t), uA(t), uH(t)) :=

N−1∑
i=0

rH(x(t+ i), uA(t+ i), uH(t+ i)) (3)

Meanwhile, to underscore the impact of the bounded rationality in HV’s decision making, we use
u∗
H(t) := argmaxuH(t) maxuH(t+1),··· ,uH(t+N−1) ΦH to denote the optimal solution of Equation (3)

and uH(t) to denote the sub-optimal action chosen by HV. Note that HV’s policy is conditioned on
AV’s behavior uA(t) and we assume the time horizon N is short enough such that the human can
effectively extrapolate the robot’s course of action, i.e., uA(t+ i) is the true action taken by AV. We
remark that we do not assume HV has access to the overall plan of AV but only the first few time
steps. It has been shown in previous work [23] that predicting a short-term sequence of controls is
manageable for human, e.g., the AV will merge into HV’s lane after a short period of time.

4. Characterization of HV and AV’s Learning Performance

4.1. Regret of AV with L-step Lookahead Planning
In this subsection, we study the impact of bounded rationality and uncertainty-aware planning on
the performance of AV. To this end, we first quantify the performance gap between choosing optimal
actions and sub-optimal actions, for given HV’s behavior fixed. Therefore, conditioned on HV’s action
uH = {uH(t)}Tt=1, the regret for T interaction of AV is defined as

RA(T |uH) =
1

T

T∑
t=1

RegA(t) := Ex∼ρ0

[
1

T

T∑
t=1

(
V ∗(x|uH(t))− V π̂t(x)

)]
,

where we use V ∗(x|uH(t)) to denote the optimal value function attained by the optimal policy π∗

givenHV’s action uH . π̂t is the policy obtained in the t-th time stepwhile AV solvingL-step lookahead
planning objective Equation (2) based on its prediction on HV’s future actions. In particular, at each
time step t, conditioned on HV’s action uH(t), the optimal value function V ∗(x|uH(t)) is determined
by choosing a policy π∗

A(t) from policy space ΠA. Hence, the regret defined for AV is closely related
to adaptive regret [37]. Without loss of generality, we have a general model on HV’s prediction error.
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AV’s Prediction of HV’s Actions. Since HV’s bounded rationality is unknown to AV and the accurate
model on HV is thus challenging to obtain, we assume AV’s prediction of HV’s action ûH(t+ l) has
ϵA(t) difference from the HV’s underlying real (sub-optimal) action uH(t+ l), i.e.,

ûH(t+ l) = uH(t+ l) + ϵA(t+ l), l = 0, · · · , L, (4)
where we assume ϵA(t) ∼ N (µA, σ

2
AI) to be AV’s prediction error. Given the prediction on HV’s

actions, we first quantify the performance gapRegA(t) of AV at each time-step t. Thenwe characterize
the AV’s learning performance in terms of regretRA(T |uH) in the non-linear case while considering
the adaptive nature of AV’s learning process, e.g., the time-varying function approximation error.
An Illustrative Example: Performance Gap in the Linear Case. For ease of exposition, we first
consider the linear system dynamics model with system parameter A,BH , BA, i.e.,

x(t+ 1) = Ax(t) +BAuA(t) +BHuH(t).

In the linear case, it is easy to see the resulting state transition model when AV is planning for the
future steps based on the prediction of HV’s action: for l = 1, 2, · · · ,

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i), (5)

where we denote x(t) as the real state when AV choose uA(t) and HV chooses uH(t). It can be seen
that due to the error accumulation in AV’s prediction, the state transition model tends to depart from
the underlying true model significantly over prediction horizon l.
Remark 4.1 (Generalization of the Prediction Error Assumption). For ease of exposition, in Equa-
tion (4), we assume the AV’s prediction error follows the same distribution. While in practice,
AV’s prediction error may evolve over time as it accumulates more interaction history during their
interactions. our analysis only requires minor modification to address the time-varying case, e.g.,
ϵA(t) ∼ N (µA(t), σ

2
A(t)I). The major change lies in the joint distribution of the error accumulation

term in Equation (5). The detailed steps are deferred in Appendix D.
Next, we present the performance for a single interaction, considering assumptions about function
approximation error as follows.
Assumption 4.2. The value function approximation error in the t-th step is ϵv,t(x) := V ∗(x)− V̂t(x)
with mean Ex[ϵv,t(x)] = µv,t. The value function is upper bounded by Vmax.

In practice, the optimal value function can be estimated by using Monte-Carlo Tree Search (MCTS)
over a class of policies or the offline trainingwith expert prior [38]. DenoteCi = Ai−1BH and CA(l) =
∥
∑l

i=1 CiµA∥22+ ∥σA

(∑l
i=1 CiC

⊤
i

)
∥2F . Then, we have the following results on the performance gap

in time-step t.
Lemma 4.3 (AV’s Performance Gap in the Linear Case.). Suppose Assumption 4.2 holds. Then we have
the following upper bound on the performance gap of AV in the t-th step:

E
[
V ∗(x|uH)− V π̂t(x)

]
≤ γLµv,t +

∑L

l=1
(Vmax + lRmax)γ

l
√
CA(l).

Error Accumulation in Planning. In Lemma 4.3, we present a tight bound on the performance gap,
where the first term in the upper bound is associated with the function approximation error and
the second term is related to the AV’s prediction error on HV’s future action. Clearly, increasing the
planning horizon L can help to reduce the dependency on the accuracy of function approximation
in a factor of γL while risking the compounding error (the second term). Notably, the function
approximation error µv,t will change during the learning process (ref. Equation (2)) and further
have impact on AV’s performance gap.
Performance Gap in the Non-linear Case. Observing the error accumulation in the linear case (ref.
Equation (5)), The disparity between the actual state and the predicted state, denoted as x(t)− x̂(t),
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Figure 1: Numerical results onAV’s regret. (a) The impact of planning horizonL onAV’s performance
gap (ref. Lemma 4.4). (b) The impact of the planning horizon L on AV’s regret RA. (c) The impact
of planning horizon on regret dynamics RA(T ) during the interactions.
tends to grow noticeably with time step t. Thus inspired, for the general case where the systemmodel
is unavailable, we formulate the prediction error as a diffusion process, i.e., denote y(t) = x(t)− x̂(t),
then we have,

dy(t) = µAdt+Σ
1/2
A dW (t), y(0) = 0,

where tµA is the drift term adn tΣA := tσ2
AI is the variance term. W (t) is the Weiner process.

For simplicity, let EA(l) := (1+l)2l2

4 ∥µA∥22 + tr
(
σ2
A

(1+l)l
2 I

)
. Then we can have the following results

on the performance gap in the non-linear case.
Lemma 4.4 (AV’s Performance Gap in Non-linear Case). Suppose Assumption 4.2 holds, then we have
the upper bound of AV’s performance gap in the t-th step as follows,

E
[
V ∗(x|uH)− V π̂t(x)

]
≤ γLµv,t +

∑L

l=1
(Vmax + lRmax)γ

l
√
EA(l).

Goodhart’s Law and Lookahead Length. In Lemma 4.4, we examine the performance of AV through
the lens of Goodhart’s law, which predicts that increasing the optimization over a proxy beyond
some critical point may degrade the performance on the true objective. In our case, the planning over
predicted HV actions is equivalent to the optimization on a proxy object. Increasing the planning
horizon is corresponding to increase the optimization pressure. As shown in Fig. 1(a), where we
plot the upper bound of the learning performance by changing different planning horizon L, the
learning performance of AV clearly demonstrate the Goodhart’s law, when increasing the planning
horizon will initially help with the learning performance until a critical point. In practice, adjusting
the look-ahead length (e.g., through grid search) is essential to enable AV to achieve the desired
performance.
Regret Analysis in the Non-linear Case. To analyze the upper bound on the regret, we first impose
the following standard assumptions on the MDP.
Assumption 4.5 (Quadratic Reward Structure). The reward functions for AV and HV are the
quadratic function of AV’s action uA and HV’s action uH , respectively, i.e.,

rH(x, uA, uH) =fH(x, uA) + u⊤
HSHuH , rA(x, uA, uH) = fA(x, uH) + u⊤

ASAuA,

where SH and SA are positive definite matrix with largest eigenvalue smax. fH and fA are the reward
functions that capture the influence of other agent and can be non-linear.
We note that Assumption 4.5 is commonly used in the analysis of regret especially in model-based
RL [39–41] and the studies in mixed traffic [10, 13]. In practice, the estimation of the parameter SH

and SA can be achieved by various methods, e.g., Inverse Reinforcement Learning [10]. Based on
our findings in the performance gap, we now have the following result on the regret corresponding
to AV’s learning performance.
Let C = maxuA

uAµ
⊤
A(µAµ

⊤
A)

−1 and M be the cardinality of the action space UA and UH . Denote
λ =

√
eigmax(C

⊤SAC)smax, Γ := γL+1(1−γT (L+1))
1−γL+1 and Λ :=

∑T
k=0

∏k
i=0

(
γi(L+1) · γ(1−γL)

1−γ

)
. Then

we have the following result.
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Theorem 4.6 (Regret on AV’s Decision Making). Suppose Assumptions 4.2 and 4.5 hold, the regret of
AV’s decision making over T interactions is bounded above by

RA(T ) ≤
∑L

l=1
(Vmax + lRmax)γ

l
√
EA(l)+

γL

T

(
Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2)
)
,

Reduce the Regret by Adjusting the Lookahead Length. The upper bound in Theorem 4.6 is tight
and it reveals the impact of the approximation error (µv,0), prediction error (µA, σA) and lookahead
length L on the learning performance. Specifically, we observe from the second term in the upper
bound represents the accumulation of the function approximation error. The first term therein depends
on the initial function approximation error µv,0 and the last term is the compounding error due to
the AV’s prediction error during the T times interactions. Our key observations are as follows: (1)
Longer planning horizon, e.g., L = 10 in Fig. 1(b) and Fig. 1(c), will likely make the prediction error
more pronounced and dominate the upper bound. (2) While in the case when the planning horizon
is short, e.g., L = 1 in Fig. 1(b) and Fig. 1(c), we observe the function approximation error will
likely dominate the upper bound. The empirical results provide the insights on how to adjust the
lookahead length in practice. For instance, if the function approximation error is more pronounced
than the prediction error, it is beneficial to use longer planning horizon L. The proof of AV’s regret
is relegated to Appendix A.

4.2. Regret of HV with Bounded Rationality
Given AV’s action uA, we define the regret for HV conditioned on AV’s action uA as follows:

RH(T |uA) = Ex(0)∼ρ0

[
1

T

T∑
t=1

(Φ∗
H(t)− Φ(t))

]
,

whereΦ∗
H(t) := ΦH(x(t), u∗

H(t), uA(t)) is the optimal value and it is determined by choosing a policy
π∗
H(t) from policy space ΠH such that Φ(x, πt

A, πH) is maximized. Φ(t) := ΦH(x(t), uH(t), uA(t))
represents the value achieved when HV chooses sub-optimal action due to bounded rationality.
For ease of exposition, we assume HV’s decision making is myopic and HV’s planning horizon is
N = 1, such thatΦH(x(t), uA(t), uH(t)) := rH(x(t), uA(t), uH(t)). Meanwhile, we assumeHVmakes
sub-optimal decision as follows,

uH(x(t), uA(t)) = u∗
H(x(t), uA(t)) + ϵH(t)

where ϵH(t) ∼ N (µH ,ΣH) is due to bounded rationality of humans and it is not known by AV.

Let CH = maxuH
uHµ⊤

H(µHµ⊤
H)−1 and λH =

√
eigmax(C

⊤
HSHCH)smax, then we have the following

results on the upper bound of HV’s regret which shows the impact of bounded rationality on HV’s
performance. The proof of Theorem 4.7 is available in Appendix B.
Theorem 4.7 (Regret for HV.). Suppose Assumption 4.5 holds. Then we have the regret of HV’s decision
making over T interactions to be bounded above by

RH(T ) ≤ smaxM · σ2
H + (smax + λH)∥µH∥2

5. Regret Dynamics in Mixed Autonomy
Aiming to understand "How do different decisionmaking strategies impact the overall learning performance?",
especially on the impact of HV’s bounded rationality on AV’s performance, we study the regret
dynamics in this section. More concretely, we denote the regret for the whole system as,

RA−H(T ) :=
1

T

T∑
t=1

(
E
[
V ∗(x|u∗

H(t))− V π̂t(x)
]︸ ︷︷ ︸

(i)

+E [Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), uH(t))]︸ ︷︷ ︸

(ii)

)
,

where V ∗(x|u∗
H(t)) is the optimal value function when HV also takes the optimal action u∗

H(t), e.g.,
u∗
H(t) = argmaxuH

Φ(x(t), u∗
A(t), uH). Meanwhile Φ(x(t), u∗

A(t), u
∗
H(t)) is the optimal value when
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Figure 2: Empirical studies on AV and HV’s decision making on the overall performance.

AV takes the optimal action u∗
A(t) = argmaxuA

V ∗(x, uA, u
∗
H(t)) (without prediction error or function

approximation error) while HV takes optimal action u∗
H . Intuitively, regret RA−H(T ) is defined as

the difference between the best possible outcome, i.e., both AV and HV act and response to each
other optimally, and the realized outcome, i.e., AV makes decision with prediction error and function
approximation error while HV makes decisions with bounded rationality. Specifically, we note that
the regret definition RA−H can be naturally decomposed into two parts such that term (i) and term
(ii) characterize the impact of HV’s (AV’s) decision making on AV (HV), respectively.
Term (i). Notice that term (i) inRA−H(T ) can be decoupled as

V ∗(x|u∗
H)− V π̂t(x) := (V ∗(x|u∗

H)− V ∗(x|uH)) + (V ∗(x|uH)− V π̂t(x)).

The first term is induced by the sub-optimality of HV while the second term is the performance gap
of AV, i.e., RegA(t).
Term (ii). Similarly, we can decouple term (ii) into two parts, i.e.,

(Φ(x(t), u∗
A(t), u

∗
H)− Φ(x(t), uA(t), u

∗
H)) + (Φ(x(t), uA(t), u

∗
H)− Φ(x(t), uA(t), uH(t))) ,

where the impact of AV’s decision making is shown as the first term and the second term is the
performance gap of HV, i.e., RegH(t).
Denote ΨA(l)=

√
(1+l)2l2

4 ∥µA∥2
2+tr(σ2

A
(1+l)l

2 I) and ΨH(l)=

√
(1+l)2l2

4 ∥µH∥2
2+tr(σ2

H
(1+l)l

2 I). For ease of presen-
tation, we use notation Ψv = Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2) to represent the regret term
in Theorem 4.6 and ΞH = smaxM · σ2

H + (smax + λH)∥µH∥2 to represent the term in Theorem 4.7.
Hence, building upon our results in Theorem 4.6 and Theorem 4.7, we give the upper bound of
RA−H(T ) in the following corollary.
Corollary 5.1 (Regret of the HV-AV Interaction System). Suppose Assumptions 4.5 holds. Then we have
the upper bound on the regret of AV-HV system as follows,

RA−H(T ) ≤
L∑

l=1

(Vmax + lRmax)γ
l(2ΨA(l) + ΨH(l)) + ΞH +

1

T
γLΨv

Corollary 5.1 shows the impact of HV and AV’s decision making on the overall learning performance
through termsΨA,Ψv andΨH ,ΞH , respectively. In what follows, we conduct the empirically studies
to thoroughly examine the impact of each agent while holding another agent fixed.
Impact of AV’s decision making on the overall system performance. (1) Implications on choosing
discounting factors. Our analysis reveals three key findings regarding AV’s decision-making impact.
(1) First, the choice of discount factor significantly influences how prediction errors (µA) affect system
performance. As shown in Fig. 2(b), larger discount factors amplify the impact of prediction errors
by placing greater emphasis on future rewards, evidenced by the increasing separation between
performance curves at different µA values. (2) Second, Fig. 3(a) demonstrates that while initial
function approximation error (µv,0) strongly impacts regret during early interactions, its influence
diminishes over time as the value function updates during learning. This aligns with the last term in
Corollary 5.1. (3) Third, our results provide clear guidance on training priorities between function
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Figure 3: Empirical results on how AV and HV’s decision making have impact on the overall regret
dynamics, i.e., take regret as function of T .

(a) µA, µH v.s. RA +RH . (b) µA, µH v.s. RA−H .

Figure 4: Illustration of the impact of µA, µH on (a) the regret summation and (b) the overall regret.

approximation and prediction model improvements. Comparing Fig. 3(a) and Fig. 3(b), reducing
prediction error (µA) from 0.4 to 0.2 yields a substantial 30% reduction in regret (from 4000 to
1800), while halving the function approximation error only reduces regret by 0.06% (from 51.41 to
51.38). This suggests that improving predictionmodels offers significantly greater benefits for system
performance. The complete proof of these results can be found in Corollary 5.1 (Appendix C).
Impact of HV’s Bounded Rationality on the overall system performance. As illustrated in Fig.
2(c), we conduct the experiments on the relationship between regret and human’s decision making
error µH by setting different discounting factors. In Fig. 3(c), we can see that the regret difference
caused by µH can be consistent during the interaction, which can be related to the second term in
the upper bound ofRA−H . Moreover, we also demonstrate the impact of HV’s decision making on
AV (and vice versa) in Fig. 4. For instance, in Figure 4(b), a given uH will constrain the best possible
outcome that AV can achieve, e.g., the projection on the µA-Regret plane.
Remark 5.2 (Extension beyond two-agent case). Our analysis approach is feasible to extend beyond
one AV and one HV setting and we outline the preliminary steps in Appendix G.

6. Conclusion
In this work, we take the regret analysis approach to address the questions 1) “How does learning per-
formance depend on HV’s bounded rationality and AV’s planning horizon?” and 2) “How do different decision
making strategies between AV and HV impact the overall learning performance?”. To this end, we propose
a formulation that captures heterogeneous HV-AV interactions and derive regret upper bounds
for both vehicle types. Our analysis reveals two key phenomena: a Goodhart’s law effect in AV’s
planning-based RL with predicted human actions, and error accumulation in HV’s decision-making
due to bounded rationality. We characterize the overall system performance through theoretical
bounds and empirical studies, demonstrating the impact of different learning strategies on system
efficiency.
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Appendix

A. Proof of AV’s Regret.
Proxy in the System Dynamics. In the linear case, we first derive the resulting state transition
model when AV is planning for the future steps while using the prediction of HV’s action. The
corresponding state dynamics can be written as, i.e., after observing x(t),

x̂(t+ 1) =Ax̂(t) +BAuA(t) +BH ûH(t)

=Ax(t) +BAuA(t) +BHuH(t) +BHϵA(t)

:=x(t+ 1) +BHϵA(t)

where x(t+ 1) is the true state when AV and HV takes action uA(t) and uH(t).
Then at the next step, we have,

x̂(t+ 2) =Ax̂(t+ 1) +BAuA(t+ 1) +BH ûH(t+ 1)

=Ax̂(t+ 1) +BAuA(t+ 1) +BH ûH(t+ 1)

=Ax(t+ 1) +BAuA(t+ 1) +BHuH(t+ 1) +ABHϵA(t) +BHϵA(t+ 1)

It can be seen that the estimated state and the real state has the following relationship,

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i). (6)

Quantify the Regret. Recall the definition of the regret (performance gap), i.e.,

RegA(T ) :=Ex∼ρ0
[
1

T

T∑
t=1

(
V ∗(x(t))− V π̂(x(t))

)
]

RegA(t) ≜V ∗(x(t))− V πA(x(t))︸ ︷︷ ︸
FA Error

+ V πA(x(t))− V π̂A(x(t)︸ ︷︷ ︸
Modeling Error and Lookahead

:=V ∗(x(t))− V π(x(t))︸ ︷︷ ︸
(1)

+V π(x(t))− V π̂(x(t))︸ ︷︷ ︸
(2)

(7)

For simplicity, we define the following notations,
τ̂ trajectory obtained by running π̂A with function approximation error (FA)
τ trajectory obtained by running π with FA error
τ∗ trajectory obtained by running in M without FA error
ut = (uA(t), uH(t))

Meanwhile, we use π̂ to denote the policy obtained by running lookahead on a inaccurate model
and π is the policy using the accurate model. Note that in both cases, the terminal cost are estimated
by V̂ (with function approximation error).
Part 1. Impact of the Function Approximation Error. We first quantify the first term (1) in Equa-
tion (7) as follows,

V ∗ (x0)− V π (x0) =Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (sL)

]
− Eτ

[∑
γtr (xt, ut) + γLV π (xL)

]
=Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
+ Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV π (xL)

]
=Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
+ γLEτ [V

∗ (xL)− V π (xL)] (8)
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Assumptions on the approximation error. We assume that the function approximation error is ϵv
with mean µv and variance Σv , i.e.,

V ∗(x)− V̂ (x) = ϵv(x)

Bringing the above relation to the first two terms of Equation (8) gives us,
Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL) + γLϵv(xL)

]
Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
= Eτ

[∑
γtr (xt, ut) + γLV̂ (x) (xL) + γLϵv(xL)

]
Then we have,

V ∗ (x0)− V π (x0)

= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL) + γLϵv(xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV̂ (x) (xL) + γLϵv(xL)

]
+ γLEτ [V

∗ (xL)− V π (xL)]

= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV̂ (x) (xL)

]
+ γL (Eτ∗ [ϵv(xL)]− Eτ [ϵv(xL)])

+ γLEτ

[
V̂ (xL) + ϵv(xL)− V π (xL)

]
= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL)

]
− Eτ

[∑
γtr (xt, ut)

]
+ γLEτ∗ [ϵv(xL)]− γLEτ [V

π (xL)]

=
(
Eτ∗

[∑
γtr (xt, ut)

]
− Eτ

[∑
γtr (xt, ut)

])
+ γL

(
Eτ∗

[
V̂ (x)(xL)

]
− Eτ

[
V̂ (x)(xL)

])
+ γLEτ∗ [ϵv(xL)]

First term: (1) (Eτ∗ [
∑

γtr (xt, ut)]− Eτ [
∑

γtr (xt, ut)]).
Assume the reward function is bounded by Rmin ≤ r(x, u) ≤ Rmax,∀ (x, u). Then we have

1− γL

1− γ
(Rmin −Rmax) ≤ (1) ≤ 1− γL

1− γ
Rmax

Second term: (2) γL
(
Eτ∗

[
V̂ (x)(xL)

]
− Eτ

[
V̂ (x)(xL)

])
. By assuming the function approximation

value is bounded by [V̂min, V̂max], we have,
γL(V̂min − V̂max) ≤ (2) ≤ γLV̂max

Second term: (3) γLEτ∗ [ϵv(xL)]

γLϵv,min ≤ (3) ≤ γLϵv,max

Alternatively we have
(3) = γLµv

By combing all three parts, we have the upper bound and lower bound as follows,

V ∗ (x0)− V π (x0) ≤
1− γL

1− γ
Rmax + γLV̂max + γLϵv,max

V ∗ (x0)− V π (x0) ≥
1− γL

1− γ
(Rmin −Rmax) + γL(V̂min − V̂max) + γLϵv,min
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Part 2. The Impact of the Modeling Error in the L-step Planning. Now we are ready to quantify
the second term in Equation (7).
We first define Ul as follows. For any 0 ≤ l ≤ L, define Ul to be the l-step value expansion that rolls
out the true model P for the first l steps and the approximate model P̂ for the remaining L− l steps:

Ul =

l−1∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] +

L−1∑
t=l

γtExt∼P̂π
t−l◦P

π
l (·|x) [R

π (xt)]

+ γLExL∼P̂π
L−l◦P

π
l (·|x)

[
V̂ (xL)

]
,

where P̂π
L−l ◦ Pπ

l (· | x) denotes the distribution over states after rolling out l steps with P and t− l

steps with P̂ .
P̂π
t−l ◦ Pπ

l (· | x) =
∑
x′∈X

Pπ
l (x′ | x) P̂π

t−l (· | x′)

Then we have,
UL =V π(x(t))

U0 =V π̂(x(t))

Hence we have,

V π (x(t))− V π̂(x(t)) = UL − U0 =

L−1∑
l=0

Ul+1 − Ul

To analyze each term in the sum, we re-arrange Ul in the following ways

Ul =

l−1∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] + γlExl∼Pπ
l (·|x)

[
V π̂
L−l (xl)

] (9)

Ul =

l∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] + γl+1Exl+1∼P̂π◦Pπ
l (·|x)

[
V π̂
L−l−1 (xl+1)

]
. (10)

where we denote V π̂
L (xl) :=

∑L−1
t=0 γtExt∼P̂π

t (x) [R
π (xt)]+γLExL∼P̂π

L (x)

[
V̂ (xH)

]
. Note that V̂ is not

the same as V π̂, where the latter represents the value of running the current policy π̂ with L step
lookahead planning over a inaccurate model with a terminal cost estimation V̂ .
Now applying Equation (10) to Ul and Equation (9) to Ul+1, then we have,

Ul+1 − Ul =

l∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] + γl+1Exl+1∼Pπ
l+1(·|x)

[
V π
P̂ ,L−l−1

(xl+1)
]

−
l∑

t=0

γtExt∼Pπ
t (·|x) [R

π (xt)]− γl+1Exl+1∼P̂π◦Pπ
l (·|x)

[
V π
P̂ ,L−l−1

(xl+1)
]

=γl+1Exl∼Pπ
l (·|x),ul∼π(·|xl)

[
Ex′∼P (·|xl,ul)

[
V π̂
L−l−1 (x

′)

]

− Ex′∼P̂ (·|xl,ul)

[
V π̂
L−l−1 (x

′)
]]

=γl+1Exl∼Pπ
l (·|x),ul∼π(·|xl)

[∫
x′

(
P (x′ | xl, ul)− P̂ (x′ | xl, ul)

)
V π̂
L−l−1(x

′)dx′
]

:=γl+1Exl∼Pπ
l (·|x),ul∼π(·|xl)[D(xl+1|P, P̂ )],
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where we denote D(xl+1|P, P̂ ) =
∫
x′

(
P (x′ | xl, ul)− P̂ (x′ | xl, ul)

)
V π̂
L−l−1(x

′)dx′.

It can be seen that D(xl+1) is directly relevant to the lookahead length l and the modeling error
P̂ − P . In the linear case, the longer lookahead length makes the difference between P and P̂ more
significant, i.e., Equation (6). Next, we give the expression forD(xl+1|P, P̂ ) to show its relation with
the lookahead length L.

D(xl+1|P, P̂ ) =

∫
x′

(
P (x′ | xl, ul)− P̂ (x′ | xl, ul)

)
V π̂
L−l−1(x

′)dx′

Linear Case. Recall Equation (6),

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i),

where ϵA ∼ N (µA,ΣA). Then we have,

P̂ (x′ | xl, ul) = P(
l∑

i=1

Ai−1BHϵA(t+ l − i) = x′ −Axl −Bul)

Given ϵA follows a Gaussian distribution, we have
l∑

i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

Ai−1BHµA,

l∑
i=1

Ai−1BHΣA(A
i−1BH)⊤)

Then we have
l∑

i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

CiµA, σ
2
A

l∑
i=1

CiC
⊤
i )

where Ci := Ai−1BH .
For simplicity, assume Ai−1BH = I , then we have

l∑
i=1

Ai−1BHϵA(t+ l − i) ∼ N (l · µA, lσ
2
AI) (11)

Meanwhile, we have the underlying true dynamics of the system is
x(t+ 1) = Ax(t) +BAuA(t) +BHuH(t) + ϵp(t).

Then we have,
P (x′ | xl, ul) = P(ϵp = x′ −Axl −Bul)

Notice that ϵp ∼ N (0, σ2
pI).

Then the difference between P and P̂ boils down to the difference between two Normal distribution.
We have the following results,

W (P̂ , P ) =

√√√√∥
L∑

i=1

CiµA∥22 + ∥(σA

(
l∑

i=1

CiC⊤
i

)
− σp)I∥2F

Or in the simple case

W (P̂ , P ) =

√
l2∥µA∥22 + ∥(σA

√
l − σp)I∥2F
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Assume the value function is bounded by Vmax = suph

∥∥∥V̂ π̂
l

∥∥∥
L
, i.e., the maximum Lipschitzness of

the estimated value function over all possible horizons. Now we have,
Ul+1 − Ul ≤ Vmaxγ

l+1Exl+1
[D(xl+1)] ≤ Vmaxγ

l+1Exl+1
[W (P̂ , P )] (12)

whereW is the Wasserstein distance.
Then we have

UL − U0 ≤ Vmax

L∑
l=1

γlExl+1,ul+1∼π[W (P̂ (·|x, u), P (·|x, u))]

Combining two parts gives upper bound.

By adding the upper bound of the two parts, we obtain the upper bounds and lower bound for the
performance difference,
Linear Case, no FA error. In this case, we have the regret as follows,

RegA(t) ≤
1− γL

1− γ
Rmax + Vmax

L∑
l=1

√
l2∥µA∥22 + ∥(σA

√
l − σp)I∥2F

Linear Case, with FA error.

RegA(t) ≤
1− γL

1− γ
Rmax + Vmax

L∑
l=1

√
l2∥µA∥22 + ∥(σA

√
l − σp)I∥2F + γLϵv,max

Non-linear Case, with FA error.

RegA(t) ≤
1− γL

1− γ
Rmax + γLV̂max + γLϵv,max

+Vmax

L∑
l=1

γlExl+1,ul+1∼π[W (P̂ (·|x, u), P (·|x, u))]

Treat the Prediction Error as a Diffusion Process. Recall the diffusion process:
dx(t) =µdt+ σdW (t)

Drift: µt =E[x(t)− x(0)]

Variance: σ2t =Var[x(t)− x(0)]

where W (t) is a wiener process, i.e., dW (t) = εt
√
dt, εt ∼ N (0, 1). Alternatively in the discrete case,

we have x(t)− x(0) = µt+ σW (t). In our setting, due to the compounding error in the lookahead
planning, the difference between true state and predicted state becomes more and more different
as the time horizon expands. Define the difference between the true state and predicted state as
y(t) = x̂(t)− x(t), then we assume the prediction error follows a diffusion process, i.e.,

dy(t) = µAdt+ΣAdW (t), y(0) = 0

For simplicity, assume ΣA = σ2
AI .

Then we can obtain that at time t, the prediction error follows a Gaussian distribution, i.e., y(t) ∼
N (tµA, tσ

2
AI). Then we have the Wasserstein distance P̂ and P as follows [42],

W (P̂l+1 − P ) =

√
(1 + l)2l2

4
∥µA∥22 + tr

(
σ2
A

(1 + l)l

2
I + σ2

pI − 2σ2
Aσ

2
p

(1 + l)l

2
I

)
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Finally, we obtain the upper bound for the non-linear case as follows:

RegA(t) ≤
1− γL

1− γ
Rmax + γLV̂max + γLµv,t

+ Vmax

L∑
l=1

γl

√
(1 + l)2l2

4
∥µA∥22 + tr

(
σ2
A

(1 + l)l

2
I + σ2

pI − 2σ2
Aσ

2
p

(1 + l)l

2
I

)
Regret over time T . Nowwe consider the regret over time t = 1, 2, · · · , T . Assume the current policy
is π̂t and the learned value function is V̂t. Recall that AV chose its policy in the following way,

• Estimate value function using policy π̂t:

Q̂t+1 =

(
L∑

i=1

E
[
γirA(x̂(t+ i), uA(t+ i), ûH(t+ i))

]
+ γL+1Q̂t(x̂(t+ L+ 1), û(t+ L+ 1))

)
,

• Derive the greedy policy (as in MPC):
π̂t+1 = arg max

uA(t+1)
max

uA(t+2),··· ,uA(t+L)
Q̂t+1

It can be seen that due to the update of the value function Q̂. Next we show the difference between
Q̂t+1 and Q̂t. Recall thatwe assumeV ∗−V̂t = ϵv , andwedenote (with abuse of notation)Q∗−Q̂t = ϵt.
Now we have

Q̂t+1 −Q∗ = γL+1ϵt +

L∑
i=1

γi(r̂A − rA),

where we denote r̂A = rA(x̂(t+ i), uA(t+ i), ûH(t+ i)) and rA = rA(x̂(t+ i), uA(t+ i), uH(t+ i)).
Similar to the analysis to HV regret, we have

µv,t+1 := E[ϵt+1] ≤ γL+1µv,t +
γ(1− γL)

1− γ
(RegA)

where RegA = msσ2
A + (s+ λ)∥µA∥2.

Now we are ready to derive the regret for AV as follows,

RegA(T ) =
1

T

T∑
t=1

Reg(t)

≤

(
1− γL

1− γ
Rmax + γLV̂max

+ Vmax

L∑
l=1

γl

√
(1 + l)2l2

4
∥µA∥22 + tr

(
σ2
A

(1 + l)l

2
I + σ2

pI − 2σ2
Aσ

2
p

(1 + l)l

2
I

))

+
γL

T

(
γL+1(1− γT (L+1))

1− γL+1
µv,0 +

T∑
k=0

k∏
i=0

(
γi(L+1) · γ(1− γL)

1− γ
RegA

))

=
∑L

l=1
(Vmax + lRmax)γ

l

√
(1 + l)2l2

4
∥µA∥22 + tr

(
σ2
A

(1 + l)l

2
I

)
+

γL

T

(
Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2)
)
,

where Γ := γL+1(1−γT (L+1))
1−γL+1 and Λ :=

∑T
k=0

∏k
i=0

(
γi(L+1) · γ(1−γL)

1−γ

)
.
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B. Proof of HV’s Regret.
Due to the bounded rationality, HV does not choose the optimal action and thus introduces the
regret as follows

RegH(T ) :=
1

T

T∑
t=1

RegH(t) =E [Φ(x(t), u∗
H(t), ûA(t))− Φ(x(t), uH(t), ûA(t))] ,

where we assume that HV can observe the action of AV in a timely manner. Next, we impose the
assumptions on the reward structure to be quadratic, i.e.,

rH(x, uA, uH) = fH(x, uA) + u⊤
HSHuH , (13)

where SH are positive definite matrices.
Then we have the regret for HV to be,

RegH(t) =E
[
(u∗

H(t))⊤SHu∗
H(t)− (uH(t))⊤SHuH(t)

]
=
1

2
E

[
(u∗

H(t) + uH(t))
⊤
SH (u∗

H(t)− uH(t))

+ (u∗
H(t)− uH(t))

⊤
SH (u∗

H(t) + uH(t))

]

=
1

2
E
[(

(u∗
H(t) + uH(t))

⊤
SHϵH(t) + ϵH(t)⊤SH (u∗

H(t) + uH(t))
)]

=
1

2
E
[(

(2u∗
H(t) + ϵH(t))

⊤
SHϵH(t) + ϵH(t)⊤SH (2u∗

H(t) + ϵH(t))
)]

=E
[
ϵH(t)⊤SHϵH(t) + u∗

H(t)⊤SHϵH(t) + ϵH(t)⊤SHu∗
H(t)

]
=Tr(SHΣH) + µ⊤

HSHµH + u∗
H(t)⊤SHµH + µ⊤

HSHu∗
H(t)

Furthermore, we have the following assumptions on the matrices

• ΣH = σHI , where I is an identity matrix.
• The dimension of the action space is n
• 0 < smin ≤ eig(SH) ≤ smax, where eig(SH) is the eigenvalue of SH .
• There exist a matrix C such that CminµH ≤ u∗

H(t) ≤ CµH , notice that u∗
H depends on AV’s

action.

With those assumptions in place, we have the upper bound for the regret as follows:
RegH(T ) ≤ nsmax · σ2

H + (smax + λ)∥µH∥2

where λ :=
√

eigmax(C
⊤SHC) · smax.

C. Proof of Corollary 5.1
We denote the regret for the whole system as RA−H(T ), i.e., RA−H(T ) :=

1

T

T∑
t=1

(
E
[
V ∗(x|u∗

H(t))− V π̂t(x)
]︸ ︷︷ ︸

(i)

+E [Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), uH(t))]︸ ︷︷ ︸

(ii)

)
,

where V ∗(x|u∗
H(t)) is the optimal value function when HV also takes the optimal action u∗

H(t), e.g.,
u∗
H(t) = argmaxuH

Φ(x(t), u∗
A(t), uH). Notice that both term (i) and term (ii) can be decomposed in
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the following way
V ∗(x|u∗

H(t))− V π̂t(x)

=V ∗(x|u∗
H(t))− V ∗(x|uH(t))︸ ︷︷ ︸

(a)

+V ∗(x|uH(t))− V π̂t(x)︸ ︷︷ ︸
(b)

Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), uH(t))

=Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), u

∗
H(t))︸ ︷︷ ︸

(a)

+Φ(x(t), uA(t), u
∗
H(t))− Φ(x(t), uA(t), uH(t))︸ ︷︷ ︸

(b)

In the decomposition above, term (b) is related to AV and HV’s regret, respectively. Nowwe quantify
term (a).
AV. Term (a) is related to V ∗ function and we need to show that due to the bounded rationality of
HV, it has direct impact on AV’s overall best possible performance, i.e., denote the trajectory collected
by running through MDPM with HV’s action u∗

H as τopt, while the trajectory collected with HV’s
action uH is denoted as τ , then we have

(a) =Eτopt

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
=Eτopt

[∑
γtr (xt, ut)

]
− Eτ

[∑
γtr (xt, ut)

]
+ Eτopt

[
γLV ∗ (sL)

]
− Eτ

[
γLV ∗ (sL)

]
=

L∑
i=1

γi
(
ηi,opt(x, u)− ηi(x, u)

)
r(x, u) + γL

∫
x

P[x|sL−1, u
∗
L−1]− P[x|xL−1, uL−1]V

∗(x)

≤
L∑

i=1

γi · iϵmrmax + γLLVmaxϵm,

where ϵm is the total variation between M and M̂ due to HV’s noisy action as the disturbance is
upper bounded by ϵm. The explicate formulation of the upper bound is available in Prop. 2.1 [43].
HV. Term (a) is related to Φ and we have (a) ≤ Rmax

Denote ΨA(l)=

√
(1+l)2l2

4 ∥µA∥2
2+tr(σ2

A
(1+l)l

2 I) and ΨH(l)=

√
(1+l)2l2

4 ∥µH∥2
2+tr(σ2

H
(1+l)l

2 I). For ease of presen-
tation, we use notation Ψv = Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2) to represent the regret term
in Theorem 4.6 and ΞH = smaxM · σ2

H + (smax + λH)∥µH∥2 to represent the term in Theorem 4.7.
Hence, building upon our results in Theorem 4.6 and Theorem 4.7, we give the upper bound of
RA−H(T )

RA−H(T ) ≤
L∑

l=1

(Vmax + lRmax)γ
l(2ΨA(l) + ΨH(l)) + ΞH +

1

T
γLΨv

D. General Setting with Time-varying Prediction Error
Distribution.

Multimodal Predictions in Autonomous Driving. In the context of trajectory prediction in au-
tonomous driving, multimodality arises from the fact that, given the observed information, there can
be multiple plausible future trajectories for the HV. Consequently, the AV necessitates the ability to
learn from the historical interactions with HV and adjust its own prediction model. Toward this end,
we consider the general setting for AV’s prediction error distribution, i.e., we assume the prediction
error follows a time-variant distribution as follows,

ϵA(t) ∼ N (µA(t), σ
2
A(t)I), (14)

where µA(t) is the time-varying mean and σ2
A(t) is the time-varying variance. In what follows, we

demonstrate the major modification (in blue) of the proof of regret derived in the main paper.
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Linear Case. Recall Equation (6),

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i),

where ϵA(t) ∼ N (µA(t),ΣA(t)). Then we have,

P̂ (x′ | xl, ul) = P(
l∑

i=1

Ai−1BHϵA(t+ l − i) = x′ −Axl −Bul)

Given ϵA follows Gaussian distribution, we have
l∑

i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

Ai−1BHµA(i),

l∑
i=1

Ai−1BHΣA(i)(A
i−1BH)⊤)

Then we have
l∑

i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

CiµA(i),

l∑
i=1

σ2
A(i)CiC

⊤
i )

where Ci := Ai−1BH .
For simplicity, assume Ai−1BH = I , then we have

l∑
i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

µA(i),

l∑
i=1

σ2
A(i)I) (15)

It can be seen that the accumulation error term Equation (15) (Equation (11)) is the major change
that will affect the theoretical analysis. It is worth mentioning that in the non-linear case, we consider
a special type of time-varying prediction error, i.e.,

µA(t) =tµA (16)
σ2
A(t) =tσ2

A (17)

E. Generalization of AV and HV’s Learning Strategies.
AV’s Learning Strategies. We clarify that Equation (2) can be degenerated into many commonly
used RL algorithms, for instance,

• (Model-free Case) Set L = 1, Equation (2) is the model-free Q-function update and our
regret analysis still holds.

• (Actor-Critic Case) Let Q-function and policy π be parameterized by θ and ϕ, respectively,
Then Equation (2) can be learned by using Actor-Critic, i.e., in the actor step, θ is updated
by maximizing the L-step look-ahead objective and ϕ is updated using policy gradient. Note
that in this case, the approximation error in both Actor and Critic update can be encapsulate
into ϵv,t as in Assumption 1. Our proof of the regret remains the same.

HV’s Learning Strategies. In Equation (3), we consider AV’s decision making to beN -step planning
while we do not impose any constrains on the length of N . In particular, when N → ∞, the decision
making of HV is related to dynamic programming (assume the model is available) and otherwise,
the decision making of AV is in the same spirit of Model Predictive Control (MPC).

F. Experimental Settings.
In this section, we include the detailed parameter setup when conducting the experiments. The
default setting is as follows:
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• γ = 0.85

• L = 5

• µv,0 = 10

• Vmax = 10

• Rmax = 1

• µA = 1.8

• σA = 1

• M = 10

In Figure 4 we choose the parameters as follows:

• γ = 0.5

• T = 5

• Vmax = 10

• Rmax = 1

• σA = 0.1

• σH = 0.1

• smax = 2

• λ = 10

• M = 10

• l = 2

We list the parameter settings of Figure 1(a), Figure 1(b) and Figure 2(a) in Table 1, Table 2 and
Table 3, respectively.

Parameter Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
γ 0.85 0.85 0.85 0.85 0.55

µv,0 10 10 10 10 10
Vmax 10 10 20 10 10
Rmax 1 5 1 1 1
µA 0.8 1.8 1.8 1.8 1.8
σA 1 1 1 1 1
M 10 10 10 10 10

Table 1: Parameter Settings in Figure 1(a)

Parameter Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
γ 0.85 0.85 0.85 0.85 0.55

µv,0 10 10 10 10 10
Vmax 10 10 20 10 10
Rmax 1 5 1 1 1
µA 0.8 1.8 1.8 1.8 1.8
σA 1 1 1 1 1
M 10 10 10 10 10
T 10 5 5 5 5

Table 2: Parameter Settings in Figure 1(b)
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Parameter Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
γ 0.85 0.85 0.85 0.85 0.55

µv,0 10 10 10 10 10
Vmax 10 10 20 10 10
Rmax 1 5 1 1 1
µA 0.8 1.8 1.8 1.8 1.8
σH 0.1 0.5 0.1 0.1 0.1
σA 1 1 1 1 1
M 10 10 10 10 10
T 5 10 10 10 10

Table 3: Parameter Settings in Figure 2(a)

G. Extension beyond Two Agent Case.
ur analysis approach is feasible to extend beyond one AV and one HV setting. Assume there are NH

number of HVs andNA number of AVs in themixed traffic system. With abuse of notations, we define
the action vector for AVs and HVs as follows, at time step t, uH(t) = [uH,1(t), uH,2(t), · · · , uH,NH

(t)],
uA(t) = [uA,1(t), uA,2(t), · · · , uA,NA

(t)]. By defining the prediction error as in Equation (4) and HVs’
bounded rationality as in Section 4.2, our analysis framework still can be applied. The dimension of
the approximation error term and the bounded rationality term is thus NA and NH times higher
than the two-agent case. Hence, the resulting regret in Theorem 3 and Theorem 4 are NA and NH

times higher than the two-agent case.

23


	.  Introduction
	.  Related Work
	.  Preliminary
	.  Modeling AV-HV Interaction: Heterogeneous Decision Making

	.  Characterization of HV and AV's Learning Performance
	.  Regret of AV with L-step Lookahead Planning
	.  Regret of HV with Bounded Rationality

	.  Regret Dynamics in Mixed Autonomy
	.  Conclusion
	.  Proof of AV's Regret.
	.  Proof of HV's Regret.
	.  Proof of Corollary 5.1
	.  General Setting with Time-varying Prediction Error Distribution.
	.  Generalization of AV and HV's Learning Strategies.
	.  Experimental Settings.
	.  Extension beyond Two Agent Case.

