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Abstract
Large Language Models (LLMs) have shown001
significant promise in medical knowledge ac-002
quisition and question-answering. However,003
they can hallucinate and produce factually in-004
correct outcomes, even with domain-specific005
pretraining. Previous retrieval-augmented gen-006
eration (RAG) approaches have had limited007
success in mitigating these hallucinations. We008
introduce JMLR (Jointly Trained LLM and In-009
formation Retrieval), which integrates the re-010
triever within the LLM architecture during the011
fine-tuning phase. In this framework, LLM012
parameters are updated via cross-entropy loss,013
while retriever parameters are optimized us-014
ing rank loss. This synchronized training015
enhances JMLR’s capability to retrieve clin-016
ical guidelines and leverage medical knowl-017
edge for reasoning and answering questions,018
all while reducing computational demands.019
We evaluated JMLR on a critical medical020
question-answering application, demonstrat-021
ing that JMLR-13B (70.5%) outperforms the022
previous state-of-the-art model, Meditron-70B023
(68.9%), and Llama2-13B with RAG (67.7%)024
on a medical question-answering dataset. Fur-025
thermore, in the USMLE factuality score as-026
sessed by GPT-4, JMLR showed a greater re-027
duction in hallucinations (0.2463) compared028
to Claude3 Haiku (0.2337), Claude3 Opus029
(0.2356), and GPT-3.5 (0.2187). Comprehen-030
sive evaluations indicate that JMLR-13B im-031
proves reasoning quality and effectively re-032
duces hallucinations. Additionally, JMLR-13B033
trains significantly faster (148 GPU hours) than034
Meditron-70B (42630 GPU hours). This work035
offers a novel and efficient knowledge enhance-036
ment method for healthcare, highlighting the037
potential of integrating retrieval and LLM train-038
ing for medical question-answering systems. 1039

1 Introduction040

Effective clinical decision-making relies on a log-041

ical diagnostic chain, which requires specialized042

1We will release code and data set soon.

Figure 1: JMLR achieved the highest average accuracy
across the MMLU-Medical, MedMcQA, MedQA, and
Amboss datasets, utilizing only 148 GPU hours.

knowledge that isn’t widely accessible, present- 043

ing a major healthcare challenge. Large Language 044

Models (LLMs) show promise in making this criti- 045

cal medical knowledge more accessible (Peng et al., 046

2023; Yang et al., 2023). Traditionally, LLMs 047

have been developed for general tasks using data 048

from diverse online sources, leading to a lack of 049

high-quality, domain-specific information, espe- 050

cially in medicine (Wornow et al., 2023; Singhal 051

et al., 2023a). Previous researches expand medical 052

knowledge by continuing training general domain 053

LLMs with domain-specific datasets. (Yunxiang 054

et al., 2023; Zhang et al., 2023; Toma et al., 2023). 055

However, LLMs face the significant challenge of 056

“hallucination”, where models generate plausible 057

but incorrect or unverified information (Ji et al., 058

2023; Bang et al., 2023). Such errors raise serious 059

concerns in healthcare, where accuracy is imper- 060

ative (Ahmad et al., 2023). Hence, recent works 061

proposed retrieval augmented generation (RAG): 062

they first train a retriever to obtain relevant doc- 063

uments from a general domain corpus based on 064

the input query and then train an LLM to gener- 065

ate a response based on the input query and the 066

retrieved documents (Lewis et al., 2020; Borgeaud 067
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et al., 2022a; Cheng et al., 2023; Hiesinger et al.,068

2023; Xiong et al., 2024). By retrieving domain-069

specific documents, RAG identifies relevant knowl-070

edge and provides contextual grounding for LLMs,071

thereby alleviating hallucination issues (Shuster072

et al., 2021; Zhu et al., 2023).073

Although RAG shows high accuracy in bench-074

marks for open-domain question answering, its ef-075

fectiveness in specific domains is yet in challenge076

because retrievers trained in the general domain077

usually perform worse than those fine-tuned in the078

specific domain (Gao et al., 2023; Zhao et al.,079

2022; Thakur et al., 2021). Fine-tuning retrievers080

requires document-query pairs, which may not be081

readily available for a specific domain. Labeling082

such medical pairs specifically for this purpose in-083

curs additional time and financial costs. Moreover,084

RAG trains retriever and LLM separately. When085

training LLM with a frozen retriever, the retrieval086

may not be optimized to align with LLM to pro-087

duce the correct answer (Asai et al., 2024; Yoran088

et al., 2023; Rubin et al., 2022). In this study, we in-089

troduce a novel method to jointly train retrieval and090

LLM. Although the method is generalizable, we091

focus on evaluating it in the medical domain, where092

the accuracy of the generated content is crucial.093

Specifically, we introduce Joint Medical LLM094

and Retrieval Training (JMLR), a novel approach095

that jointly train LLM and retriever. As shown in096

Figure 2, JMLR presents a novel approach com-097

pared to the traditional pretrain-finetune process.098

JMLR enhances question answering by fetching099

relevant domain-specific documents that maximize100

the potential of LLMs. This involves including101

each retrieved document in the initial input ques-102

tion before the LLM’s response attempt, thereby103

augmenting the input to train the LLM for answer104

generation. For training jointly, JMLR introduces a105

unique mechanism called LLM-Rank loss to train106

the retriever. This is achieved by evaluating the im-107

provement in LLM’s performance upon including108

any candidate retrieved documents. We calculate109

the log probability of the LLM’s answer with each110

candidate, adopting the negative of these values111

as the relevance score for each candidate. When112

reducing this loss, the retriever is trained to pri-113

oritize candidate documents that significantly aid114

the LLM. Our results show that the joint training115

improves medical question answering, especially116

in scenarios requiring nuanced understanding and117

specific information retrieval.118

To validate JMLR’s effectiveness in reducing 119

computational resource requirements and fully 120

utilizing given knowledge, we designed three 121

experimental setups. These experiments evalu- 122

ated whether direct fine-tuning, instead of tradi- 123

tional pretraining, would improve JMLR’s perfor- 124

mance. We utilized external data resources for 125

retrieval, including the MIMIC-IV dataset (John- 126

son et al., 2020), medical textbooks, and di- 127

verse medical documents for knowledge expan- 128

sion. We experimented with different LLMs, in- 129

cluding PMC-Llama, Meditron, GPT-3.5 with or 130

without MedRAG (Wu et al., 2023; Chen et al., 131

2023b; Achiam et al., 2023). Our JMLR-7B has 132

demonstrated superior results, achieving an impres- 133

sive 62.3% accuracy, outperforming the traditional 134

method’s 53.2% on the medical QA dataset. Our 135

13B model (70.5%) surpasses the performance of 136

both the open-source medical LLM (Meditron 70B: 137

68.9%) and closed-source general LLM (GPT-3.5: 138

54.9%). Furthermore, to demonstrate the effective- 139

ness of our approach in reducing hallucination, we 140

conducted evaluations using the UMLS factuality 141

score and GPT-4 score. Our method was compared 142

against several SOTA models, including Claude3 143

Haiku, Claude3 Opus, and GPT-3.5. The results in- 144

dicate that our model outperforms the others, with 145

scores of UMLS factuality: 0.2463 and GPT-4: 146

4.3036, compared to GPT-3.5 (UMLS factuality: 147

0.2187, GPT-4: 4.0620), Claude3 Haiku (UMLS 148

factuality: 0.2337, GPT-4: 4.0559), and Claude3 149

Opus (UMLS factuality: 0.2356, GPT-4: 4.3449). 150

Moreover, evaluation by domain experts supports 151

the superior performance of JMLR. We summarize 152

our key contributions as follows: 153

• We propose a novel method that jointly 154

trains retrieval and LLMs, resulting in JMLR- 155

13B surpassing the state-of-the-art 70B open- 156

source model in several medical question- 157

answering benchmarks. 158

• Through comprehensive automated and hu- 159

man evaluations, we demonstrate that JMLR- 160

13B consistently enhances models’ reasoning 161

quality while significantly reducing halluci- 162

nations, achieving superior reasoning ability 163

compared to Claude3-Opus. 164

• JMLR shows promise to enhance domain- 165

specific retrieval by fully eliminating addi- 166

tional human annotation. 167
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Figure 2: Comparison between different domain adaptation methods: traditional domain pretraining method (left),
RAG (middle), and JMLR (right). JMLR retrieves the documents to reduce the hallucination. Parameters are
updated simultaneously for the retriever and large language models (LLM) models, leading the retriever to know
which domain-specific document is helpful for LLM to give a reasonable answer.

• To train 7B model with domain specific knowl-168

edge, our JMLR achieve a better computation169

efficiency with 100 GPU hours. This is a con-170

siderable reduction compared to Meditron’s171

pretrain-finetune process, where pretraining172

alone takes 588 hours, and finetuning adds an173

additional 36 hours.174

2 Problem Formulation & Traditional175

Method176

Given a set of medical questions Q and a set of177

medical documents D containing medical knowl-178

edge, our goal is to construct a language model M179

that can provide accurate answers.180

Formally, for each question qi ∈ Q, there is a181

corresponding correct answer a∗i within a set of182

options Ai, where a∗i ∈ Ai. The model M maps183

each question to a predicted answer:184

âi = M(qi,D; θ)185

where θ represents the parameters of the model.186

Our objective is to find the optimal parameters θ∗187

that minimize the loss function L, which measures188

the discrepancy between the predicted answer âi189

and the correct answer a∗i :190

θ∗ = argmin
θ

|Q|∑
i=1

L(âi, a∗i )191

The loss function can be instantiated as a cross-192

entropy loss for classification tasks, where the num-193

ber of classes is equal to the number of options.194

To solve this problem, previous methods pre- 195

trained LLM to learn medical knowledge for a med- 196

ical LLM, and then finetuned medical LLM on med- 197

ical QA task (Chen et al., 2023b; Wu et al., 2023; 198

Yunxiang et al., 2023; Toma et al., 2023). Specif- 199

ically, such traditional pretrain-finetune pipeline 200

first continued pretraining general domain LLMs 201

on medical documents D with next-token predic- 202

tion loss function, and then finetuned the medical 203

LLMs to select a∗i given question qi and option 204

description with loss function L. 205

3 Method 206

In comparison to traditional method, JMLR did 207

not pretrain LLM on medical documents. In- 208

stead, JMLR selected question-related medical doc- 209

uments as additional context during fine-tuning of 210

an open-domain LLM. Specifically, given a ques- 211

tion qi, we trained retriever to find helpful medical 212

documents from D, which was then used to train 213

LLM to generate the final answer a∗i . 214

3.1 Retriever 215

For information retrieval, we adopted the Col- 216

BERT model (Santhanam et al., 2021), using its 217

pre-trained weights as initialization. ColBERT 218

employs BERT-based encoders to independently 219

transform both queries and documents into bags 220

of embeddings. A single BERT model is shared 221

between the query and document encoders, but 222

the inputs are differentiated using special tokens: 223

[Q] for queries and [D] for documents. For a 224

query q = q0q1 . . . ql, the input is tokenized into 225
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BERT’s WordPiece tokens, and the sequence is for-226

matted as [CLS] [Q] q0q1 . . . ql. For documents227

d = d0d1 . . . dn, the input sequence is similarly228

tokenized and formatted as [CLS] [D] d0d1 . . . dn.229

Both the padded query and document token se-230

quences are passed through BERT, followed by231

subsequent processing to compute embeddings Eq232

and Ed. Specifically:233

Eq := CNN(BERT ([Q]q0q1 . . . ql))

Ed := Filter (CNN (BERT ([D]d0d1 . . . dn)))
234

Sq,d :=
∑

i∈[|Eq |]

max
j∈[|Ed|]

Eqi · ET
dj

235

Here, Eq represents the normalized embeddings236

for queries, processed through a CNN layer ap-237

plied to BERT’s output. For documents, Ed fol-238

lows the same normalization and CNN steps but239

includes an additional filtering operation to remove240

embeddings corresponding to punctuation tokens,241

as determined by a predefined list. This filtering242

reduces unnecessary embeddings and ensures more243

effective document representations.244

3.2 LLM245

We adapted Llama as our LLM model. The original246

Llama model (Touvron et al., 2023) supports only247

a maximum of 4k tokens, which poses a challenge248

when multiple documents are retrieved. To address249

this, we utilized the Shifted Sparse Attention (S2-250

Attn) mechanism (Chen et al., 2023a), which can251

be used to process long sequences by mitigating252

the high memory cost and slow processing time253

associated with standard self-attention in LLMs.254

S2-Attn divides input into sequence spans within255

self-attention modules and introduces shifted pat-256

terns for inter-span information exchange. This ex-257

tends context length efficiently without extra com-258

putational costs and achieves near-baseline perfor-259

mance.260

3.3 JMLR Architecture261

However, Colbert matches queries and documents262

based on the retriever similarity not helpful, return-263

ing scores and documents. To enable the retriever264

system to return documents that are more help-265

ful for providing accurate answers to Llama, we266

constructed the JMLR architecture. Let Q be a267

set of queries, D be a corpus of domain-specific268

documents, and Y be the ground truth answers269

(y1, y2, ...) for queries. Our task is to construct a270

function f parameterized by θ, which generates an271

answer Ŷ ∈ Ŷ based on questions Q ∈ Q and a 272

set of documents D ⊆ D. 273

The objective is to simultaneously learn the
optimal parameters θ∗ and ϕ∗ that minimize
the combined loss on the retrieved docu-
ments and the generated answers, formalized as:
(θ∗, ϕ∗) = argminθ,ϕ E(Q,Y )∼T [L(fY (Q, fR(Q;ϕ), θ), Y )]

where L is a loss function that evaluates the cor-
rectness of the answer and the helpfullness of the
retrieved documents. The retrieval function fR is
defined by:

fR(Q;ϕ) = arg⊤D⊆D,|D|=kSq,d(Q,D;ϕ)

and the similarity function Sq,d(Q,D;ϕ) scores 274

how relevant each document D is to the question 275

Q. 276

The combined optimization involves updating
both θ and ϕ through gradient descent to minimize
the expected loss:

∇(θ, ϕ) ∝ ∇θ,ϕL(fY (Q, fR(Q;ϕ), θ), Y )

where ∇θ,ϕL denotes the gradient of the loss func- 277

tion with respect to both sets of parameters. This 278

dual-parameter optimization ensures that the re- 279

trieval function is aligned with the needs of the 280

answer function, enhancing both the accuracy of 281

the responses and the relevance of the information 282

retrieved. 283

To solve this, the JMLR architecture employs 284

a rank loss, Lrank, to link the LLM and retriever 285

systems. The content quality generated by the 286

LLM influences the retriever’s parameter updates. 287

Specifically, if a returned document Di reduces the 288

LLM’s loss function L̂ more than another docu- 289

ment Dj , it indicates that Di is more helpful for 290

answering the query than Dj . Correspondingly, the 291

retriever’s scoring function should assign a higher 292

score to Di. Our rank loss ensures alignment be- 293

tween the LLM’s loss and the retriever’s scoring 294

function: documents that contribute to lower LLM 295

loss receive higher scores. 296

Since the scoring function is computed by the 297

retriever, we use the rank loss to update both the 298

LLM and retriever simultaneously based on the 299

gradient ∇(θ, ϕ). To address the large variance 300

in scores generated by the retriever, we normalize 301

them to obtain Ŝ. 302

L = Lrank + L(fY (Q, fR(Q;ϕ)), θ, Y ), 303
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Figure 3: Overview of the JMLR architecture. Un-
like traditional retrieval-augmented generation (RAG)
models, which separately optimize the retriever and the
LLM, our approach jointly trains both components by
minimizing a combined loss. Specifically, the retriever
scores candidate documents based on their relevance to
the query Q using the similarity function Sq,d(Q,D;ϕ).
The top k documents are retrieved and passed to the
LLM to generate answers Ŷ . A rank loss Lrank is em-
ployed to align the retriever’s scoring function with the
LLM’s loss function. Documents that contribute to re-
ducing the LLM’s loss are assigned higher scores by
the retriever. This joint optimization ensures that the
retriever provides documents that are more helpful for
answer generation, while the LLM learns to utilize rele-
vant documents effectively. The dynamic selection of
documents further enhances robustness by exposing the
LLM to both useful and irrelevant documents, enabling
it to discern and integrate useful knowledge more effec-
tively.

where Lrank is defined as:304

Lrank := − 1

M

M∑
i=1

I(Li ̸= 0) · Fi,305

where M is the number of queries in the training306

set, and Fi is calculated as:307

Fi = I(Li) log(Ci) + (1− I(Li)) log(1− Ci).308

Here, Ci represents the contrastive logits, defined309

as:310

Ci = Normalize(Sqi,dk)− Normalize(Sqi,dj ),311

where Sqi,dk and Sqi,dj are the similarity scores312

assigned to documents dk and dj , respectively.313

We define y′(q, dj) as the answer generated by314

the LLM for query q based on the retrieved docu-315

ment dj . The decision-based loss differences are316

calculated as:317

Li = L̂i(y, y
′(q, dj))− L̂j(y, y

′(q, dk)).318

For JMLR training, the dataset consists of319

question-answer (QA) pairs, where the input is a320

question and the output includes the correct answer321

and rationale. During training, the top 7 docu- 322

ments with the highest scores are aggregated and 323

fed into the model. Initially, we extract the top 324

30 documents based on the retriever’s scores. In 325

each iteration, these scores are used for weighted 326

random sampling, where documents with higher 327

scores have a greater likelihood of selection. This 328

ensures that the set of documents inputted into the 329

LLM varies dynamically. By exposing the LLM to 330

both useful and irrelevant documents, this approach 331

enhances its robustness, enabling it to better discern 332

relevant knowledge from noisy information. 333

4 Experiment 334

4.1 Dataset 335

Medical document and Benchmark: Data qual- 336

ity of medical documents is important for LLMs to 337

answer medical questions. Previous work primarily 338

sourced from a wide array of medical research arti- 339

cles and clinical guidelines. Research papers, like 340

those found in PubMed, provide foundational and 341

current information on healthcare. Clinical guide- 342

lines are thoroughly designed protocols developed 343

to assist clinicians in making decisions given pa- 344

tient medical history. Other high-quality medical 345

documents to retrieve include medical textbooks. 346

Medical Benchmark: The MedQA dataset (Jin 347

et al., 2021), sourced from the official USMLE web- 348

site, includes questions for Step 1, Step 2 CK, and 349

Step 3, reflecting the complex medical knowledge 350

and ethical scenarios faced by medical students and 351

practitioners from June 2022 to March 2023. The 352

Amboss question bank enhances our training mate- 353

rial with diverse questions for the same exams. The 354

MedMCQA dataset comprises 194,000 multiple- 355

choice questions from Indian medical entrance 356

exams, covering 2,400 healthcare topics across 357

21 medical subjects (Pal et al., 2022). Addition- 358

ally, MMLU-Medical, selected from the MMLU 359

dataset (Hendrycks et al., 2020), focuses on nine 360

key subjects relevant to medical knowledge. Lack- 361

ing a training set, we evaluate this dataset using an 362

LLM originally trained on MedMCQA, applying 363

supervised fine-tuning to each QA dataset and as- 364

sessing their performance on the corresponding test 365

sets, with MedQA and Amboss providing detailed 366

rationales. Details are shown in Appendix 10.2. 367

4.2 Evaluation Metrics 368

For automated metrics, we used accuracy to eval- 369

uate the model’s ability to select the correct final 370
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Model MedQA Amboss MMLU-M MedMCQA AVG

GPT-3.5 50.2 49.1 69.4 51.0 54.9
GPT-4 74.7 82.1 88.4 69.5 78.6
Meditron-70B 60.7 76.4 73.6 65.1 68.9
RAG-13B 59.9 76.9 69.9 64.2 67.7
JMLR-13B 62.5 81.2 72.8 65.5 70.5

Table 1: Comparison between JMLR and SOTA open
(Meditron, RAG, JMLR) or closed (GPT-3.5/4) LLMs.

choice. We evaluated the rationale quality using371

metrics UMLS-F and GPT-4 score. UMLS-F is a372

factuality metric based on F1 score between entities373

in gold explanation and generated explanation 2.374

GPT-4 score is a reference-free metric. GPT-4 was375

asked to rate the generated explanation on a Lik-376

ert scale from 1 to 5 (higher better) along the 3377

dimensions: question comprehension (e.g., indica-378

tion the question has been understood), recall of379

knowledge (e.g., mention of a relevant and/or cor-380

rect fact for answering the question), and medical381

reasoning (e.g., correct reasoning for answering the382

question) (Singhal et al., 2023a). We put GPT-4-383

score prompts in Table 9.384

For human evaluation, we engaged three medical385

professionals to review and assess a small sample386

of 50 questions drawn from the test sets. These387

doctors were asked to provide their preference for388

the rationales generated by two models (GPT-3.5389

and JMLR-13b) given the gold rationale.390

To validate the reliability of the selected auto-391

mated metrics, we calculated the Cohen’s Kappa392

between UMLS-F and expert preference, as well393

as Kappa between the GPT-4 score and expert pref-394

erence, obtaining results of 0.69 and 0.81, respec-395

tively. These results indicate that both metrics ex-396

hibit substantial to almost perfect agreement with397

human evaluation.398

5 Main Results399

As shown in Table 1, our JMLR with 13B parame-400

ters outperforms previous SOTA open access model401

Meditron 70B parameters and even closed access402

model such as GPT-3.5.403

5.1 Domain Retrieval > Domain Pretrain404

Domain retrieval models (both RAG-7B and our405

JMLR-7B) outperform domain-pretrained LLMs406

across all medical QA benchmarks, as shown in Ta-407

ble 2. In the MedQA and Amboss datasets, where408

JMLR-7B not only outperforms baselines but does409

so with a notable margin, scoring 51.3% in MedQA410

2More UMLS-F details can be found in Appendix 10.8

Model MedQA Amboss MMLU-M MedMCQA AVG
Llama 2 44.0 46.5 56.3 54.4 50.3
Meditron* 47.9 50.1 55.6 59.2 53.2
RAG# 47.3 50.7 63.8 62.1 55.9
JMLR# 51.3 68.3 65.3 64.1 62.3

Table 2: Comparison between domain retrieval (#) and
domain pretraining (*) using models of the same 7B
size and domain data (Open Guidelines).

and 68.3% in Amboss. This is particularly signifi- 411

cant when compared to Meditron-7B, which scores 412

47.9% and 50.1% in these datasets, respectively. 413

The trend continues in MMLU-Medical and MedM- 414

cQA datasets, JMLR-7B achieved scores of 65.3% 415

and 64.1%, surpassing the scores of Meditron-7B 416

(55.6% and 59.2%). Overall, the results illustrate 417

that JMLR-7B model, on average, achieves about a 418

17% improvement in performance over its closest 419

competitor, Meditron-7B. This highlights the ef- 420

fectiveness of our training method and the substan- 421

tial advancements it brings to the field of medical 422

benchmarking. 423

The enhanced performance of JMLR-7B can be 424

partially attributed to its use of Llama-2 as the foun- 425

dational model, showcasing significantly higher av- 426

erage performance than other pre-trained baselines. 427

However, the distinct edge comes from our inte- 428

grated training approach that combines retriever 429

and LLM. This methodology not only further en- 430

hances Llama-2’s performance in medical bench- 431

marks but also equips the retriever component with 432

the ability to effectively source relevant and ben- 433

eficial documents to aid the LLM in answering 434

questions. In contrast, GPT-3.5, when devoid of 435

medical guidelines, has been known to make basic 436

mistakes, such as recommending vaccinations to 437

pregnant women—a practice that contradicts med- 438

ical norms as documented in Table 7. Our model, 439

with the support of guidelines, avoids such errors. 440

This synergistic approach substantially reduces hal- 441

lucinations and bolsters the model’s overall relia- 442

bility. 443

5.2 Joint Training > RAG 444

During fine-tuning, synchronously updating both 445

the Retriever and LLM yields better results than 446

updating only the LLM. Table 1 shows that JMLR 447

models significantly outperform traditional RAG 448

methods. For example, JMLR-13B’s scores (72.8% 449

on MMLU, 65.5% on MedMcQA) is far superior 450

to RAG-13B (69.9% on MMLU, 64.2% on MedM- 451

cQA). This result suggests that without updating 452

the retriever, the documents retrieved may be rele- 453
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vant to the question but not necessarily helpful to454

the LLM’s response. Joint training ensures that the455

retriever learns which documents are beneficial for456

LLM. To evaluate the adaptability of the JMLR re-457

triever, we further applied it to other LLMs. Specif-458

ically, we employed different retrievers to identify459

relevant documents, which were then provided to460

GPT-3.5 for generating the final answer. The re-461

triever trained with JMLR attained an average ac-462

curacy of 57.5%, while the retriever from RAG463

achieved an accuracy of 56.7%. In addition, we464

present a case study in Table 7, where JMLR re-465

trieves closely related cases. These results indicate466

that the JMLR retriever effectively identifies doc-467

uments that not only support Llama but also aid468

GPT-3.5 in selecting the correct answers.469

5.3 Enhancing Model Rationale Quality470

Haiku Opus GPT3.5 JMLR

UMLS Factuality 0.2337 0.2356 0.2187 0.2463
GPT-4 Overall 4.0559 4.2449 4.0620 4.3036
GPT-4 Comprehension 4.7107 4.7561 4.7549 4.7661
GPT-4 Reasoning 3.6701 4.0976 3.6863 4.0101
GPT-4 Recall 3.6726 3.8780 3.6849 4.1661

Table 3: UMLS-F and GPT-4 score across 4 different
models (e.g., Claude3, GPT3.5, JMLR-13B).

In addition to significantly improving the471

model’s performance in QA accuracy, JMLR also472

plays a crucial role in helping the model generate473

higher-quality rationales with fewer hallucinations.474

As shown in the Table 3, both UMLS Factuality475

and GPT-4 Overall scores show that JMLR-13B476

outperforms the other three models, demonstrat-477

ing its high-quality rational generation. This result478

aligns with our expert evaluations on the small sam-479

ples, where JMLR-13B achieved a win rate of 0.61480

compared to GPT-3.5.481

Specifically, GPT-4 Comprehension primarily482

measures the plausibility of generated reasons. As483

shown in Table 3, the scores for GPT-4 Comprehen-484

sion are uniformly high across all models, with only485

minor differences, indicating that all these models486

can generate logically coherent explanations for the487

questions. GPT-4 Reasoning evaluates medical log-488

ical reasoning abilities. JMLR-13B stands out in489

this critiria because its retrieval guidelines include490

valuable content, such as information on Differen-491

tial Diagnosis, which aids the model in more effec-492

tively associating key information like symptoms,493

diseases, and medications presented in the ques-494

tions. Finally, GPT-4 Recall assesses factuality, i.e.,495

whether the model can hit the critical information496

points. Our results demonstrate that JMLR-13B 497

achieves the most significant improvement in this 498

criteria. The high-quality documents retrieved by 499

JMLR-13B provide the necessary key information, 500

allowing the model to generate higher-quality ratio- 501

nales around these key points. The assessments of 502

UMLS Factuality are similar to GPT-4 Recall, and 503

their final results are consistent. We further explore 504

this in the appendix 10 and provide case studies to 505

support our findings. 506

6 Ablation Study 507

MedQA Amboss

FT-Llama-7B 44.0 46.5
FT-Llama-7B-ColBERT 40.6 45.6
JMLR-7B-Separate 55.3 69.0
JMLR-7B 56.2 71.2

Table 4: We conducted an ablation study to verify the
necessity of the JMLR training method. We discussed
retrieval versus no retrieval and asynchronous training
versus joint training. Ultimately, we found that the
JMLR training method significantly outperformed the
other approaches.

To assess the effects of fine-tuning and informa- 508

tion retrieval on QA accuracy, we compare JMLR- 509

7B (on medical documents) with the following new 510

baselines: The JMLR-7B-Separate model updates 511

the parameters of both Llama and the retriever sim- 512

ilar to JMLR-7B, but in an asynchronous man- 513

ner. Initially, it fixes the parameters of the re- 514

triever while only updating those of Llama. Sub- 515

sequently, it reverses this process, updating only 516

the retriever’s parameters using rank loss. The 517

FT-Llama-7B+ColBERT model, on the other hand, 518

freezes the retriever in a manner akin to RAG-7B. 519

However, the retriever in this setup is solely applied 520

during inference and not during fine-tuning. The 521

FT-Llama-7B serves as a naive fine-tuned baseline 522

where the retriever is not employed. We fine-tuned 523

the Llama 2-7B on the training sets. The accu- 524

racy are shown in Table 4. From the table, we can 525

observe that: 526

• FT-Llama-7B+ColBERT (44.0% on MedQA, 527

46.5% on Amboss) showed significant improve- 528

ments over FT-Llama-7B, indicating that the 529

fine-tuning phase notably enhanced Llama’s ca- 530

pabilities in medical QA. However, this phase 531

did not effectively leverage medical guidelines. 532

• JMLR-7B-Separate model achieved superior 533

performance (55.3% on MedQA and 69.0% 534

7



on Amboss), surpassing the FT-Llama-7B-535

ColBERT (40.6% on MedQA, 45.6% on Am-536

boss). The distinctive fine-tuning approach of537

JMLR-7B-Separate, which integrates medical538

documents during the tuning phase, enables the539

model to utilize medical resources more effec-540

tively.541

• JMLR-7B (56.2% on MedQA, 71.2% on Am-542

boss) uses a joint training approach that facil-543

itates the retrieval of highly relevant medical544

documents, surpassing the JMLR-7B-Seperate545

(55.3% on MedQA, 69.0% on Amboss). The546

result demonstrate that jointly training(update547

the whole parameters in every step) Llama and548

ColBERT outperforms training the two sepa-549

rately(such as REALM training method).550

7 Related Work551

Medical Large Language Model Medical552

LLMs have evolved from adapting models like553

BERT with biomedical datasets (Gu et al., 2021;554

Lee et al., 2020) to incorporating knowledge graphs555

(Yasunaga et al., 2022). Architectures such as GPT556

(Bubeck et al., 2023) and Llama (Touvron et al.,557

2023) have been trained on domain-specific (Wu558

et al., 2023; Gema et al., 2023; Yunxiang et al.,559

2023; Zhang et al., 2023; Labrak et al., 2024) or560

synthetic data (Tran et al., 2023; Han et al., 2023;561

Kweon et al., 2023). Recent advancements have562

scaled up data and model parameters, resulting563

in models like GatorTronGPT (Peng et al., 2023)564

and Clinical-Camel (Toma et al., 2023), alongside565

research on Flan-PaLM and PaLM-2’s medical566

reasoning using chain-of-thought (Singhal et al.,567

2023a,b; Wei et al., 2022; Wang et al., 2022).568

Additionally, Meditron (Chen et al., 2023b), an569

open-source medical LLM suite with 7B and 70B570

parameters, demonstrates superior performance571

against leading benchmarks and comparable re-572

sults to GPT-3.5 and Med-PaLM-2. However, per-573

formance gains have plateaued despite increased574

model size, failing to effectively address model for-575

getting (Wang et al., 2023; Luo et al., 2023). To576

counter this, our study integrates a retriever with577

LLMs during training, offering 7B and 13B ver-578

sions that outperform traditional pre-trained mod-579

els, with our 13B model exceeding even Meditron580

70B.581

Retrieval-Augmented Language Models In the582

clinical domain, LLMs’ factual inaccuracies pose583

significant risks, such as misdiagnoses (Petroni 584

et al., 2019; Sung et al., 2021; Yao et al., 2022; 585

Singhal et al., 2023a). Integrating external knowl- 586

edge repositories enhances LLM performance 587

across NLP tasks (Min et al., 2022). Traditional 588

retrieval-augmented generation (RAG) models rely 589

on static retrieval components that often fail to 590

integrate documents effectively (Yu, 2022; Izac- 591

ard et al., 2022). Innovations like Atlas (Izacard 592

et al., 2022) and RETRO (Borgeaud et al., 2022b) 593

have advanced the use of external data, but chal- 594

lenges persist in blending this information with 595

LLM outputs. Some methods, like REALM (Guu 596

et al., 2020), REPLUG (Shi et al., 2023), and RA- 597

DIT (Lin et al., 2023), attempt to enhance docu- 598

ment relevance by training unsupervised retrievers. 599

However, these systems often lack fully synchro- 600

nized training between the retriever and the LLM. 601

For example, REALM updates the retriever inter- 602

mittently after training the LLM for fixed steps, 603

while REPLUG focuses solely on retriever opti- 604

mization, freezing the LLM parameters. Atlas and 605

RA-DIT only update the query encoder in the re- 606

triever. These approaches fail to jointly optimize 607

the retriever and LLM as a unified system. In con- 608

trast, our method synchronizes the training of both 609

the retriever and LLM end-to-end, ensuring the 610

retriever dynamically aligns with the LLM’s evolv- 611

ing outputs. This joint optimization boosts docu- 612

ment relevance and external knowledge integration. 613

Experiments demonstrate that our approach out- 614

performs traditional stepwise methods, achieving 615

superior performance. 616

8 Conclusion 617

This study introduces JMLR framework, signifi- 618

cantly enhancing performance in medical QA and 619

reasoning tasks. The JMLR models not only outper- 620

form existing state-of-the-art models in efficiently 621

handling medical resources but also effectively re- 622

duce hallucinations in information generation, im- 623

proving the accuracy and reliability of answers and 624

explanations. Experimental results demonstrate 625

substantial performance improvements across mul- 626

tiple medical benchmark tests, validating the ef- 627

fectiveness of integrating retriever and language 628

model training. Furthermore, the reasoning capa- 629

bilities of the JMLR model have been recognized 630

by both GPT-4 and medical professionals, further 631

confirming its potential and reliability. 632
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9 Limitations and Ethical Considerations633

This study offers valuable insights but also comes634

with several limitations that we would like to high-635

light:636

• Domain Specificity: Our research exclusively637

focuses on the task of medical QA and reason-638

ing. The adaptation of the proposed method639

to other domains remains unexplored. This640

suggests that our approach may need further641

validation and adjustments before being ap-642

plied to different fields.643

• Expertise of Annotators: We relied on 3644

doctors as annotators for human evaluation645

and preference results. While they are qual-646

ified to provide expert medical opinions and647

insights, employing more qualified domain648

experts as annotators would enhance the sta-649

tistical significance of our results. We leave650

this to future work, along with addressing con-651

cerns about fairness, generalizability to other652

domains/languages, and potential biases inher-653

ent in LLMs.654

Privacy Implications Despite significant ad-655

vancements in the performance of medical knowl-656

edge acquisition and question-answering systems,657

privacy protection becomes a paramount concern658

when dealing with sensitive medical data. In par-659

ticular, our model utilizes data from textbooks and660

public guideline.661

Bias Considerations Furthermore, while we662

strive to enhance the model’s performance across663

multiple medical question-answering datasets, we664

must acknowledge that the choice and composition665

of datasets could introduce or exacerbate biases666

within the model. For example, if training data pre-667

dominantly comes from certain geographic loca-668

tions or populations, the model might exhibit biases669

towards medical conditions or treatment methods670

outside those groups. This could limit the fairness671

and effectiveness of the model when applied glob-672

ally. Future research should consider training with673

more diverse and comprehensive datasets to reduce674

potential biases and enhance the model’s universal675

applicability.676

Broader Impacts Our study represents an im-677

portant step forward in advancing AI applications678

in the field of medicine, but its broader societal679

impacts also require careful consideration. In par- 680

ticular, automated medical question-answering sys- 681

tems hold great potential in improving healthcare 682

efficiency and accuracy but could also impact the 683

roles of medical professionals and patient care prac- 684

tices. For instance, reliance on these systems may 685

sometimes reduce direct communication between 686

doctors and patients or might influence physicians’ 687

clinical judgment. Therefore, implementing these 688

technological solutions should be approached with 689

caution, ensuring they serve as a complement, not 690

a replacement, to the toolkit of medical profes- 691

sionals. Moreover, the public’s understanding and 692

acceptance of these systems are crucial for their 693

widespread use, necessitating enhanced education 694

and transparency. 695

In summary, while our research demonstrates 696

the potential of leveraging large language models 697

and information retrieval techniques in medical 698

question-answering systems, close attention must 699

be paid to the ethical considerations of privacy, 700

bias, and broader societal impacts. Future work 701

should aim to address these challenges, ensuring 702

the development and application of these technolo- 703

gies benefit the healthcare system and society as a 704

whole. 705
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10 Appendix1030

10.1 Medical Corpus1031

Corpus #Doc.
PubMed 23.9M
Textbooks 18
Cancer Care Ontario 87
Center for Disease Control and Prevention 621
Canadian Medical Association 431
International Committee of the Red Cross 49
National Institute for Health and Care Excellence 1.7k
Strategy for Patient-Oriented Research 217
World Health Organization 223
WikiDoc 33k

Table 5: For each medical corpus source, we provide the
number of distinct documents, the approximate articles
across all documents

10.2 MedQA Dataset1032

The MedQA dataset (Jin et al., 2021), sourced di-1033

rectly from the official USMLE website, included1034

a range of sample questions for Step1, Step2CK,1035

and Step3, released between June 2022 and March1036

2023. These questions represent the complex med-1037

ical knowledge and ethical scenarios that medical1038

students and practitioners are expected to navigate.1039

Additionally, Amboss question bank is a com-1040

prehensive resource widely used by medical pro-1041

fessionals and students. This dataset provided an1042

extensive array of Step1, Step2CK, and Step3-type1043

questions, further enriching our training material1044

with practical and diverse medical scenarios.1045

The MedMCQA dataset comprises 194k1046

multiple-choice questions from Indian medical en-1047

trance exams, covering 2.4k healthcare topics and1048

21 medical subjects (Pal et al., 2022).1049

MMLU-Medical is selected from the MMLU1050

dataset (Hendrycks et al., 2020), focused on nine1051

subjects most pertinent to medical and clinical1052

knowledge — high school biology, college biology,1053

college medicine, professional medicine, medical1054

genetics, virology, clinical knowledge, nutrition,1055

and anatomy. Since this dataset has no training1056

set, we opt to evaluate it using the LLM originally1057

trained on MedMCQA.1058

We individually apply supervised finetuning on1059

each QA dataset and subsequently assess their per-1060

formance on the corresponding test sets, unless1061

otherwise specified. MedQA and Amboss both1062

offer detailed rationale with long explanations.1063

10.3 Baselines 1064

For comparison with traditional domain pretraining 1065

method, we used Meditron, an open source LLM 1066

pretrained on clinical guidelines and research pa- 1067

pers (Chen et al., 2023b). We also compared with 1068

other closed source LLMs such as OpenAI GPT- 1069

3.5, GPT-4 (Achiam et al., 2023), and Anthropic- 1070

Claude 3 (Anthropic, 2024) For the rationale eval- 1071

uation experiment, we didn’t include Meditron be- 1072

cause it cannot generate a valid rationale in our 1073

experiments. We didn’t include GPT-4 because it 1074

was used as the evaluator. To validate the benefit 1075

of joint training, we also compared JMLR with its 1076

naive version: RAG, which freezes the retriever 1077

and fetches the same document given a question. 1078

10.4 Case Study 1079

We presented four specific examples to further un- 1080

derstand why JMLR outperforms other public mod- 1081

els as shown in Table 7 and Table 8. The first 1082

three examples are from the Amboss dataset. Due 1083

to privacy concerns with Amboss, we cannot dis- 1084

play the complete content of these questions. The 1085

last example is from a USMLE question. Our an- 1086

swers for the first two questions are correct, while 1087

GPT-3.5 responded incorrectly. Although both our 1088

model and GPT-3.5 answered the last two questions 1089

correctly, there were some differences in the ratio- 1090

nale generated. For the first example, we found 1091

that JMLR’s retrieval function could extract simi- 1092

lar questions, leading the model to answer incor- 1093

rectly regarding direction. The retrieved document 1094

served as a background, fully utilizing the previ- 1095

ously fine-tuned dataset. In the second example, 1096

we noticed that GPT-3.5 made a common-sense 1097

error: vaccination is not recommended for preg- 1098

nant women in such cases. Even though GPT-3.5 1099

has learned far more medical documents than our 1100

model by using pretraining or finetuning, it does 1101

not mean that the model will apply all medical 1102

knowledge correctly, even for some basic medical 1103

issues. In the third example, both we and GPT-3.5 1104

answered correctly, but the rationale generated by 1105

GPT-3.5 differed significantly from the correct an- 1106

swer’s rationale: GPT-3.5 simply stated some facts 1107

without providing a logical reason. However, our 1108

model gave a more detailed and logical explana- 1109

tion of why there are decreased circulating T cells, 1110

as JMLR could retrieve related documents, such 1111

as some documents about SCID, to better under- 1112

stand the underlying principles. The last example 1113
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differs from the first three, as the highest-scoring1114

document retrieved was from public guideline. The1115

guideline provides a detailed introduction to PCOS1116

and its symptoms, helping the model better explain.1117

In contrast, GPT-3.5 simply correlated the symp-1118

toms straightforwardly without thoroughly analyz-1119

ing other related symptoms, which can often lead1120

to diagnostic errors, even though it answered this1121

question correctly. Our model, however, performed1122

a comprehensive analysis.1123

10.5 More Ablation Study1124

During training, we set the number of background1125

documents to seven, maintaining this count during1126

the inference phase as well. This quantity is opti-1127

mal, according to our experiments, as illustrated1128

in the figure 4. We employed the JMLR method1129

to train the LLM on the MedQA dataset, retriev-1130

ing varying numbers of documents. The perfor-1131

mance is at its weakest when only one document1132

is retrieved; this insufficiency leads to a lack of1133

adequate medical knowledge for the model. As we1134

increase the number of retrieved documents, the1135

model’s performance gradually improves, reach-1136

ing its peak with seven documents. However, once1137

this number increases to ten, performance again1138

declines due to retrieving an excess of irrelevant1139

documents, which hinders the model’s ability to1140

answer questions effectively.1141

To further demonstrate the applicability of our1142

method across different large language models1143

(LLMs), we conducted experiments on LLaMA1144

3 8B. In these experiments, we replaced the re-1145

trievable documents with training sets from other1146

strong baselines. As shown in Table 6, our method1147

(JMLR-8B) still achieved state-of-the-art (SOTA)1148

performance, with scores of 74.7% on MedQA and1149

70.3% on MedMCQA. These results surpass other1150

models, including Meerkat-8B and LLaMA-3-8B,1151

further validating the effectiveness and generaliz-1152

ability of our approach.1153

Table 6: Model Performance on MedQA and MedM-
CQA

Model MedQA (%) MedMCQA (%)
Meerkat-8B 74.0 62.7
Self-BioRAG-7B 48.6 44.0
BioMistral-7B 50.6 48.1
LLaMA-3-8B 64.9 68.5
JMLR-8B (Ours) 74.7 70.3

10.6 Training Resource 1154

In our study, we utilized various training resources 1155

to evaluate the performance of different models 1156

on medical question-answering (QA) datasets. Ac- 1157

cording to the data, for MedQA datasets, JMLR- 1158

13B, which requires 148 GPU hours for training, 1159

significantly outperforms Meditron-70B, which 1160

necessitates 42,630 GPU hours. In comparison, 1161

JMLR-7B needs approximately 100 GPU hours, 1162

RAG-7B requires 72 GPU hours, and RAG-13B 1163

needs 128 GPU hours. 1164

The training time for JMLR models is consid- 1165

erably lower than that for Meditron-70B, though 1166

slightly higher than RAG-13B. However, JMLR 1167

models achieve state-of-the-art (SOTA) perfor- 1168

mance. Interestingly, we observe a substantial per- 1169

formance improvement in RAG-13B compared to 1170

RAG-7B. This improvement can be attributed to the 1171

fact that RAG models struggle to effectively learn 1172

how to understand or utilize medical documents. 1173

As a result, the performance of RAG-7B is limited 1174

by its model size. Conversely, RAG-13B, with its 1175

increased model size, is better able to comprehend 1176

documents, leading to enhanced performance. Our 1177

JMLR models, on the other hand, excel in enabling 1178

the model to understand and utilize medical doc- 1179

uments effectively. This capability is reflected in 1180

their SOTA performance across multiple datasets, 1181

demonstrating the efficacy of our approach in med- 1182

ical QA tasks. 1183

10.7 Training Details 1184

Both our training process and the conventional fine- 1185

tuning approach employ the AdamW optimizer, 1186

with β1 = 0.9, β2 = 0.95, and eps = 1 × 10−5. 1187

We implement a cosine learning rate schedule, in- 1188

corporating a warmup phase that accounts for 10% 1189

of the training duration and decays the learning 1190

rate to 10% of its peak value. In alignment with 1191

the practices outlined in Llama 2-chat (Touvron 1192

et al., 2023), our training employs a learning rate 1193

of 1× 10−5, a weight decay factor of 0.1, and man- 1194

ages a batch size of 2. The finetuning phase spans 1195

5 epochs for all iterations. However, we apply a 1196

distinct learning rate for ColBERT, set at 3e − 5. 1197

The optimization strategy for training ColBERT 1198

mirrors that used for Llama 2. Throughout these 1199

experiments, we utilize four A100 80 GB GPUs. 1200
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Figure 4: The horizontal axis represents the number of documents retrieved in JMLR, while the vertical axis shows
the accuracy of JMLR tested on the USMLE.

10.8 Factuality metrics: UMLS-F11201

The assessment of factual accuracy in LLMs out-1202

put leverages the UMLS concept overlap metric.1203

The Unified Medical Language System (UMLS),1204

established by (Bodenreider, 2004), significantly1205

contributes to the biomedical domain’s interoper-1206

ability. It achieves this by amalgamating and dis-1207

seminating a comprehensive collection of biomedi-1208

cal terminologies, classification systems, and cod-1209

ing standards from many sources. By doing so,1210

UMLS aids in reconciling semantic variances and1211

representational disparities found across different1212

biomedical concept repositories.1213

For the identification and alignment of medical1214

named entities within texts to their corresponding1215

biomedical concepts in UMLS, we employed the1216

Scispacy library 3. Scispacy excels in identifying1217

and clarifying entities, thus facilitating the accurate1218

association of named entities found in LLMs output1219

with the relevant UMLS concepts. This capability1220

is critical for evaluating the LLMs output’s factual1221

accuracy.1222

The analytical process for LLMs output utilizes1223

metrics of precision and recall. Precision repre-1224

sents the ratio of concepts present in both the LLM1225

output and ground truth content, serving as a mea-1226

sure of the LLM output’s factual correctness. In1227

contrast, recall evaluates how well the information1228

in the LLM output matches the intended content,1229

reflecting the relevance of the presented informa-1230

3We used the Scispacy en_core_sci_lg model.

tion. 1231

To calculate these metrics, we consider the con- 1232

cept sets from both the ground truth (Cref ) and the 1233

LLM output (Cgen). The formulas for recall and 1234

precision are as follows: 1235

Recall =
|Cref ∩ Cgen|

|Cref |

Precision =
|Cref ∩ Cgen|

|Cgen|
.

The F1 score, derived from the above precision 1236

and recall values, is reported to provide a balanced 1237

measure of LLMs output’s accuracy and relevance. 1238

10.9 Prompt for Evaluation 1239

For GPT-4 evaluation, we assessment each result 1240

from three ways: comprehension, reasoning step 1241

and recall of knowledge. The prompt is shown in 1242

Table 9 1243
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1 Q1: A 48-year-old man...
Answer:
GPT-3.5:
The correct answer is A) Cerebral edema.
Explanation: This patient presents with symptoms consistent with alcohol withdrawal syndrome (AWS), which can manifest as seizures (alcohol withdrawal
seizures) due to abrupt cessation or reduction of alcohol intake in a chronic heavy drinker. AWS seizures typically occur within 48 hours of reducing alcohol
intake.
This patient’s laboratory findings are indicative of hyponatremia (low serum sodium), which is common in severe alcohol withdrawal due to the syndrome of
inappropriate antidiuretic hormone secretion (SIADH). SIADH leads to water retention and dilutional hyponatremia.
The risk of cerebral edema is increased in patients with severe hyponatremia who are rapidly corrected to normal serum sodium levels. Rapid correction of
hyponatremia can lead to osmotic shifts of water into the brain cells, causing cerebral edema, which may result in neurological deterioration, seizures, coma, and
death. This risk is particularly high in chronic alcoholics due to adaptive changes in brain osmolytes.
Given the patient’s current status, urgent treatment to normalize serum sodium levels (such as with hypertonic saline infusion) puts him at increased risk for
cerebral edema. Therefore, careful monitoring and slow correction of hyponatremia are essential in this patient to avoid this potentially fatal complication.
Our:
This patient’s presentation is consistent with alcohol withdrawal syndrome (AWS), which is characterized by autonomic hyperactivity, tremulousness, and
seizures. AWS can occur in patients with a history of chronic alcohol use disorder who abruptly stop drinking or significantly reduce their alcohol intake. The
syndrome is thought to be due to the withdrawal of the inhibitory effects of alcohol on the central nervous system.
The most common complication of AWS is seizures, which can occur within 48 hours of the last drink. Seizures are often generalized tonic-clonic seizures and
can be life-threatening. Other complications include delirium tremens (DTs), which is characterized by hallucinations, confusion, and autonomic instability. DTs
can also lead to seizures and death.
The treatment of AWS involves supportive care, including hydration, benzodiazepines, and possibly antipsychotics. In severe cases, hospitalization may be
necessary for close monitoring and management of complications.
Osmotic myelinolysis (also known as central pontine myelinolysis) is a condition that can occur in patients with severe hyponatremia (low sodium levels in the
blood) who are treated with rapid correction of their sodium levels. This condition is characterized by demyelination of the central nervous system, leading to
neurologic symptoms such as confusion, seizures, and coma.
Given the patient’s presentation and history of chronic alcohol use disorder, the most appropriate treatment is supportive care for AWS, including hydration,
benzodiazepines, and possibly antipsychotics. Rapid correction of his sodium levels is not indicated due to the risk of osmotic myelinolysis.
Expertise Comment: GPT-3.5 incorrectly interpreted the patient’s symptoms as primarily related to Alcohol Withdrawal Syndrome (AWS) without adequately
considering the patient’s laboratory results, particularly the severe hyponatremia (serum sodium 112 mEq/L). Although seizures can indeed accompany AWS,
in this case, the diagnosis and treatment of hyponatremia should be the primary focus. Moreover, it incorrectly associated the risks of rapid correction of
hyponatremia with cerebral edema. In fact, the main risk of rapidly correcting hyponatremia is osmotic myelinolysis, not cerebral edema. Osmotic myelinolysis
results from rapid changes in blood osmolarity, leading to damage to the myelin sheath of brain neurons.
Retrieve: A 48-year-old man is brought to the emergency department by his wife 20 minutes after she witnessed him vigorously shaking for about 1 minute.
During this episode, he urinated on himself. He feels drowsy and has nausea. He has a history of chronic alcoholism; he has been drinking 15 beers daily for the
past 3 days. Before this time, he drank 8 beers daily. His last drink was 2 hours ago. He appears lethargic. His vital signs are within normal limits. Physical
and neurologic examinations show no other abnormalities. On mental status examination, he is confused and not oriented to time. Laboratory studies show:
Hematocrit 44.0% Leukocyte count 12,000/mm3 Platelet count 320,000/mm3 Serum Na+ 112 mEq/L Cl- 75 mEq/L K+ 3.8 mEq/L HCO3- 13 mEq/L Urea
nitrogen 6 mEq/L Creatinine 0.6 mg/dL Albumin 2.1 g/dL Glucose 80 mg/dL Urgent treatment for this patient’s current condition puts him at increased risk for
which of the following adverse events?Ä: Cerebral edema B: Cardiac arrhythmia C: Hyperglycemia D: Osmotic myelinolysis E: Wernicke encephalopathy
Correct Answer: D

Q2: A 27-year-old gravida 2, para 1 comes...
Answer:
GPT-3.5:
Based on the clinical presentation described, the most likely diagnosis for this patient is Rubella (German measles) infection during pregnancy, which can lead to
congenital rubella syndrome (CRS) in the fetus if contracted during the first trimester. The typical symptoms of rubella include a maculopapular rash starting on
the face and spreading downwards, along with lymphadenopathy and joint swelling.
Given the risk of congenital rubella syndrome to the fetus, the most appropriate next step in management is:
C) Vaccination
Vaccination against rubella is contraindicated during pregnancy due to the risk of causing CRS. However, after delivery, the patient should receive the rubella
vaccine to prevent future infections. This will not only protect the patient from future rubella infections but also prevent the risk of transmitting the virus to
others, including vulnerable populations such as pregnant women.
Options A, D, and E are not appropriate in this scenario. Oral acyclovir therapy (Option A) is used for herpes simplex virus infections, not rubella. Reassurance
and symptomatic therapy (Option D) may provide comfort but do not address the potential risk to the fetus. Intravenous immunoglobulin therapy (Option E) is
not indicated for rubella infection during pregnancy. Termination of pregnancy (Option B) is not necessary unless there are severe fetal abnormalities detected on
further evaluation.
Our:
The patient’s history of a rash that started on her face and progressed downwards, along with the presence of postauricular lymphadenopathy, is suggestive
of rubella infection. Rubella is a highly contagious viral infection that is spread through respiratory droplets or direct contact with infected secretions. It is
characterized by a prodrome of malaise, low-grade fever, and lymphadenopathy, followed by the appearance of a pink maculopapular rash that begins on the face
and spreads downwards. The rash is usually itchy and lasts for 3-5 days.
Rubella infection during pregnancy, especially during the first trimester, can have serious consequences for the developing fetus. It can cause congenital rubella
syndrome (CRS), which is characterized by a wide range of birth defects, including cataracts, deafness, heart defects, and intellectual disability.
The most appropriate next step in management for this patient is termination of pregnancy. This is because the risk of CRS is high if the fetus is exposed to
rubella during the first trimester, and the risk of birth defects outweighs the potential benefits of continuing the pregnancy.
Options A, B, C, and E are not appropriate in this case. Acyclovir is used to treat herpes simplex virus infections, not rubella. Vaccination is not recommended
during pregnancy due to the risk of fetal infection. Reassurance and symptomatic therapy are not sufficient to prevent the risk of CRS. Intravenous immunoglobulin
therapy is not indicated for rubella infection during pregnancy.
Expertise Comment: GPT-3.5 made a made a basic error; it’s not appropriate to vaccinate during pregnancy.

Table 7: Case Study For Retrieval Documents.
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1 Q4: A 1-year-old girl is brought to the physician...
Answer:
GPT-3.5:
Given the clinical presentation and findings described, this patient is most likely suffering from severe combined immunodeficiency (SCID), which is characterized
by a deficiency in both T and B lymphocytes. The additional finding most likely to be present in this patient with SCID is: D) Decreased circulating T cells SCID
is a primary immunodeficiency disorder characterized by profound defects in both cellular and humoral immunity. Patients with SCID typically have absent or
markedly reduced T cell counts, as T cell development and function are severely impaired. This deficiency in T cells predisposes patients to recurrent, severe, and
often life-threatening infections. While B cells may also be affected in SCID, the absence of T cells is the primary hallmark of the disease. Therefore, decreased
circulating T cells (Option D) would be the most likely additional finding in this patient. Other options such as increased circulating IgE (Option B) or increased
circulating neutrophils (Option F) are less specific to SCID and could be seen in a variety of other conditions.
Our:
Correct Answer: D Decreased circulating T cells
This patient’s severe combined immunodeficiency (SCID) is most likely due to an autosomal recessive adenosine deaminase deficiency (the second most common
cause of SCID), which results in disrupted purine metabolism and accumulation of metabolites (including deoxyadenosine and dATP) that are toxic to maturing
lymphocytes. Accumulation of dATP also inhibits the function of ribonucleotide reductase, which is essential for the generation of deoxynucleotides, thereby
impairing the proliferation of lymphocytes. These effects on lymphocytes proliferation and maturation lead to a decreased number of circulating T cells, B
cells, and NK cells, resulting in both cellular and humoral immunodeficiency. Clinically, patients with SCID have no tonsils, no palpable lymph nodes, and a
rudimentary thymus. In contrast, X-linked SCID (the most common variant) is caused by a defect in the IL-2 receptor, which is required for T-cell proliferation.
Thus, X-linked SCID manifests with a decrease in circulating T cells and a normal number of B cells. Congenital immunodeficiency disorders
Decreased levels of circulating parathyroid hormone in association with immunodeficiency can be seen in patients with DiGeorge syndrome. This syndrome also
manifests with thymic hypoplasia and, possibly, the absence of tonsils. However, other features of CATCH-22 (e.g., congenital heart disease, dysmorphic facial
features, hypocalcemia) would also be expected. Increased deoxyadenosine concentration in both the serum and urine and absent tonsils are not associated with
DiGeorge syndrome. Increased circulating IgE levels can be seen in patients with Job syndrome, which is an immunodeficiency characterized by impaired
neutrophil recruitment to the site of infection. Further manifestations would typically include coarse facial features, eosinophilia, severe eczema, and recurrent
abscess formation. Increased deoxyadenosine concentration in both the serum and urine, absent tonsils, and an absent thymus shadow on x-ray are not associated
with Job syndrome. Circulating B cells are decreased (not increased) in SCID due to adenosine deaminase deficiency and in X-linked agammaglobulinemia, an
immunodeficiency characterized by a defective Bruton tyrosine kinase gene. Although X-linked agammaglobulinemia can also present with recurrent, severe
pyogenic infections beginning > 4–6 months after birth, it is extremely rare in girls given its mode of inheritance. Absent thymic shadow, tonsillar hypoplasia,
and elevated deoxyadenosine levels are also not consistent with this diagnosis. In X-linked SCID (the most common variant), the number of circulating B cells is
normal. This patient’s severe combined immunodeficiency (SCID) is most likely due to an autosomal recessive adenosine deaminase deficiency (the second most
common cause of SCID), which results in disrupted purine metabolism and accumulation of metabolites (including deoxyadenosine and dATP) that are toxic to
maturing lymphocytes. Accumulation of dATP also inhibits the function of ribonucleotide reductase, which is essential for the generation of deoxynucleotides,
thereby impairing the proliferation of lymphocytes. These effects on lymphocytes proliferation and maturation lead to a decreased number of circulating T cells,
B cells, and NK cells, resulting in both cellular and humoral immunodeficiency. Clinically, patients with SCID have no tonsils, no palpable lymph nodes, and a
rudimentary thymus. In contrast, X-linked SCID (the most common variant) is caused by a defect in the IL-2 receptor, which is required for T
Expertise Comment: GPT-3.5’s explanation of the pathology is unclear, such as the specific type of SCID (Severe Combined Immunodeficiency caused by
adenosine deaminase deficiency) and how this condition affects the proliferation and maturation of lymphocytes, leading to a reduced number of T cells.
Retrieve: ...The treatment for mild to moderate cases is mainly supportive, with early treatment of infections and prophylaxis with trimethoprim-sulfamethoxazole
if needed, but severe cases require definitive therapy with hematopoietic stem cell transplantation. Congenital immunodeficiency disorders A defect in the
interleukin-2 receptor subunit gamma gene (IL2RG) is the most common mutation associated with severe combined immunodeficiency (SCID), which can
manifest soon after birth with recurrent episodes of otitis media, candidiasis, and sepsis. However, patients would also typically show failure to thrive and have a
history of chronic diarrhea. A CBC, moreover, would reveal a low absolute lymphocyte count (< 1000/mm3). Delayed umbilical cord separation would not
be expected. A defect in Bruton tyrosine kinase (BTK) is responsible for X-linked agammaglobulinemia (XLA), which may result in recurrent otitis media
from infection with extracellular bacteria such as S. pneumoniae and H. influenzae. However, infants with B-cell defects such as XLA typically do not develop
symptoms before 32̆0136 months because they generally retain passively acquired maternal antibodies up to this age. Delayed umbilical cord separation would
also not be expected. Moreover, candidiasis is more commonly seen in defects involving T cells and granulocytes than in isolated primary defects of antibody
production such as XLA. Defective NADPH oxidase results in chronic granulomatous disease (CGD), which may manifest in infancy with candidiasis (since C.
albicans is catalase-positive) and neutrophilia during episodes of infection. However, these infections tend to remain localized, and sepsis is not as common as
in other primary immune deficiency syndromes. Other pathognomonic features of CGD include GI obstruction and urinary retention caused by granulomas.
Delayed umbilical cord separation would not be expected. Defective microtubules due to a loss of function of the lysosomal trafficking regulator gene (LYST)
is the underlying pathophysiology of Chediak-Higashi syndrome (CHS), which can result in systemic candidiasis. However, patients with CHS would have
neutropenia, not neutrophilia. Features such as oculocutaneous albinism and/or ocular motility disorders (e.g., strabismus, nystagmus) would also be present.
Delayed umbilical cord separation would not be expected. A defectively organized actin cytoskeleton due to a mutation in the WAS gene is the underlying cause
of Wiskott-Aldrich syndrome (WAS), which can manifest in infancy with recurrent otitis media as well as scaly erythematous lesions in the diaper area due
to atopic dermatitis. However, the absence of thrombocytopenia on a CBC essentially rules out WAS. Delayed umbilical cord separation would also not be
expected...

Table 8: Case Study For Retrieval Documents
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1 Q3: A 27-year-old woman presents to the office with concerns about her long struggle with her physical appearance since adolescence. She says she has
always been l̈argeänd was constantly targeted by her classmates and coworkers for being so. Her main concern at the moment is her acne and unwanted
facial hair on her upper lip, for which she often visits a local spa. She has tried numerous diet plans, exercise regimens, and cosmetic products with little
to no effect. Recently, she underwent a glucose tolerance test that showed a plasma glucose level of 160 mg/dL (8.9 mmol/L) after 2 hours of a 75 g dose
of oral glucose. She has a family history of type 2 diabetes mellitus and a menstrual cycle that occurs every 45 days. Her pulse is 72/min and the blood
pressure is 138/80 mm Hg. On physical examination, her height is 160 cm (5 ft 3 in) and her weight is 85 kg (187 lb), and she has severe inflammatory
acne over the cheeks and forehead and dark coarse hairs on the back. What is the most likely diagnosis of this patient? A: Hypothyroidism B: Idiopathic
hirsutism C: Cushing’s disease D: Polycystic ovarian syndrome (PCOS) E: Ovarian hyperthecosis
Answer:
GPT-3.5:
The most likely diagnosis for this patient is: D: Polycystic ovarian syndrome (PCOS) PCOS is a common endocrine disorder in women of reproductive age,
characterized by hyperandrogenism, irregular menstrual cycles, and polycystic ovaries on ultrasound. The clinical features seen in this patient, including acne,
unwanted facial hair (hirsutism), obesity, irregular menstrual cycles, and a family history of type 2 diabetes mellitus, are all consistent with PCOS. Other options:
A: Hypothyroidism - While hypothyroidism can present with weight gain and menstrual irregularities, it is less likely given the presence of hirsutism and obesity
in this patient. B: Idiopathic hirsutism - This is unlikely as idiopathic hirsutism typically presents with hirsutism without other features of PCOS such as irregular
menstrual cycles and obesity. C: Cushing’s disease - While Cushing’s disease can present with weight gain and hirsutism, it is less likely in this patient as there
are no signs of hypercortisolism such as central obesity, buffalo hump, or purple striae. E: Ovarian hyperthecosis - This is a rare condition characterized by
luteinization of ovarian stromal cells leading to hyperandrogenism. However, PCOS is a more common cause of hirsutism and irregular menstrual cycles in
young women.

Our:
The patient’s history of being "large" since adolescence, a family history of type 2 diabetes mellitus, and a menstrual cycle that occurs every 45 days, along with
her physical examination findings of severe inflammatory acne over the cheeks and forehead and dark coarse hairs on the back, are suggestive of polycystic ovary
syndrome (PCOS). PCOS is a common endocrine disorder among women of reproductive age and is characterized by hyperandrogenism, chronic anovulation,
and polycystic ovaries on ultrasound. The condition is associated with insulin resistance, which can lead to hyperglycemia and impaired glucose tolerance, as
seen in this patient’s glucose tolerance test.
The other options listed are not as likely given the patient’s presentation:
A: Hypothyroidism is characterized by a slowing of metabolic processes, including growth and development, and is not associated with the symptoms or findings
seen in this patient.
B: Idiopathic hirsutism is a condition characterized by excessive hair growth in women, often on the face, chest, and back, but it does not typically present with
the other symptoms or findings seen in this patient.
C: Cushing’s disease is a condition caused by excessive production of cortisol, which can lead to weight gain, central obesity, and facial rounding, but it does not
typically present with the other symptoms or findings seen in this patient.
D: Polycystic ovarian syndrome (PCOS) is a common endocrine disorder among women of reproductive age and is characterized by hyperandrogenism, chronic
anovulation, and polycystic ovaries on ultrasound. The condition is associated with insulin resistance, which can lead to hyperglycemia and impaired glucose
tolerance, as seen in this patient’s glucose tolerance test.
E: Ovarian hyperthecosis is a condition characterized by excessive production of androgens by the ovaries, which can lead to hirsutism and acne, but it does not
typically present with the other symptoms or findings seen in this patient.

Expertise Comment: Our explanation is slightly more detailed in terms of linking the patient’s specific symptoms to the characteristics of PCOS and explaining
why other diagnoses are less likely. It provides a more comprehensive understanding of PCOS and its relation to the patient’s symptoms and test results. On the
other hand, GPT-3.5 offers a more concise but still accurate diagnosis.

GPT-4 System
“Act as a USMLE evaluator, your role involves assessing and comparing a medical student’s explanation to the provided
target answer. Begin the assessment by carefully reviewing the provided target answer. Then, based on following specific
criteria, determine the score for the student’s answer.”
Evaluation Criteria
“For each diagnosis, evaluate the medical student explanation base on the following three questions:”
Question 1
“Does the medical student’s answer contain any evidence of incorrect reading comprehension? (indication the question has
not been understood)”
Question 2
“Does the medical student’s answer contain any evidence of incorrect reasoning steps? (incorrect rationale for answering the
question)”
Question 3
“Does the medical student’s answer contain any evidence of incorrect recall of knowledge? (mention of an irrelevant and/or
incorrect fact for answering the question)”
Input “Medical student’s answer: Reason generated by model
“Medical student’s answer: Reason generated by model
“Target answer: Ground truth reason
“Background Question: Question
Output Format “ Your evaluation should be provided in JSON format, as follows(don’t generate any other information):
{{"case 1": {{"question 1": "The score for question 1", "question 2": "The score for question 2", "question 3": "The score for
question 3", }}, "case 2": "score for case 2 with the same format as case 1","case 3": "score for case 3 with the same format
as case 1", "overall score": "the average score for question 1, 2, 3", "reason": "the reason why you give the score"}}

Table 9: Evaluation Prompt for GPT-4.
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MMLU MedMCQA MedQA Amboss Average

Non Corpus

PMC-Llama-7B 59.7 57.6 42.4 43.7 50.9
Llama 2-7B 56.3 54.4 44.0 46.5 50.3
Meditron-7B 55.6 59.2 47.9 50.1 53.2
ChatGPT 69.4 51.0 50.2 49.1 54.9
Meditron70B 73.6 65.1 60.7 76.4 68.9

Open Guidelines

RAG-7B 63.8 62.1 47.3 50.7 55.9
RAG-13B 69.8 63.4 56.8 60.7 62.7
RAG-ChatGPT 68.9 55.2 53.3 49.3 56.7
JMLR-7B 65.3 64.1 51.3 68.3 62.3
JMLR-13B 70.1 64.5 59.5 79.6 68.4

All Corpus

RAG-7B 62.1 62.4 54.6 70.7 62.5
RAG-13B 69.9 64.2 59.9 76.9 67.7
JMLR-ChatGPT 70.1 55.3 54.3 50.1 57.5
JMLR-7B 64.3 64.2 56.2 71.2 64.0
JMLR-13B 72.8 65.5 62.5 81.2 70.5

MedRAG Corpus MedRAG-ChatGPT 75.5 58.0 53.6 48.8 59.0

Table 10: Since Meditron-70B has already been tested on MedQA, we are directly using its results (Chen et al.,
2023b). For ChatGPT, we utilized the API of GPT-3.5-turbo to conduct tests on both MedQA and Amboss datasets.
For RAG-7B and RAG-13B, we employed the same medical guidelines and medical QA bank that we used with
JMLR.
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