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Abstract

There is a widely-spread claim that GANs are difficult to train, and GAN1

architectures in the literature are littered with empirical tricks. We provide evidence2

against this claim and build a modern GAN baseline in a more principled manner.3

First, we derive a well-behaved regularized relativistic GAN loss that addresses4

issues of mode dropping and non-convergence that were previously tackled via a5

bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits6

local convergence guarantees, unlike most existing relativistic losses. Second, our7

new loss allows us to discard all ad-hoc tricks and replace outdated backbones used8

in common GANs with modern architectures. Using StyleGAN2 as an example,9

we present a roadmap of simplification and modernization that results in a new10

minimalist baseline—R3GAN. Despite being simple, our approach surpasses11

StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and12

compares favorably against state-of-the-art GANs and diffusion models.13

1 Introduction14

Generative adversarial networks (GANs; (11)) feature the ability to generate high quality images in15

a single forward pass. However, the original objective in Goodfellow et al. (11), is notoriously difficult16

to optimize due to its minimax nature. This leads to a fear that training might diverge at any point17

due to instability or lose diversity through mode collapse. While progress in GAN objectives has18

occurred (12; 20; 65; 43; 54), practically, the effects of brittle losses are still regularly felt, and this19

notoriety has had a lasting negative impact on GAN research.20

A second issue—partly motivated by this instability—is that existing popular GAN backbones like21

StyleGAN (30; 31; 27; 28) use many poorly-understood empirical tricks with little theory. For instance,22

StyleGAN uses a gradient penalized non-saturating loss (43) to increase stability (affecting sample23

diversity), but then employs a minibatch standard deviation trick (25) to increase sample diversity.24

Without tricks, the StyleGAN backbone still resembles DCGAN (51) from 2015, yet it is still the25

common backbone of SOTA GANs such as GigaGAN (23) and StyleGAN-T (57). Advances in GANs26

have been conservative compared to other generative models such as diffusion models (18; 63; 26; 29),27

where modern computer vision techniques such as multi-headed self attention (69) and backbones28

such as preactivated ResNet (15), U-Net (53) and vision transformers (ViTs) (9) are the norm. Given29

outdated backbones, it is not surprising that there is a widely-spread belief that GANs do not scale30

in terms of quantitative metrics like Frechet Inception Distance (17).31

We reconsider this situation: we show that by introducing a new regularized training loss, GANs32

gain improved training stability, which allows us to upgrade GANs with modern backbones. First,33

we propose a novel objective that augments the relativistic pairing GAN loss (RpGAN; (20)) with34

zero-centered gradient penalties (43; 54), improving stability (12; 54; 43). We show mathematically35

that gradient-penalized RpGAN enjoys the same guarantee of local convergence as regularized classic36

GANs, and that removing our regularization scheme induces non-convergence.37

Once we have a well-behaved loss, none of the GAN tricks are necessary (25; 31), and we are38

free to engineer a modern SOTA backbone architecture. We strip StyleGAN of all its features,39
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identify those that are essential, then borrow new architecture designs from modern ConvNets40

and transformers (41; 75). Briefly, we find that proper ResNet design (15; 55), initialization (77),41

and resampling (30; 31; 28; 78) are important, along with grouped convolution (74; 5) and no42

normalization (31; 29; 12; 70; 3). This leads to a design that is simpler than StyleGAN and improves43

FID performance for the same network capacity (2.77 vs. 3.78 on FFHQ-256).44

In summary, our work first argues mathematically that GANs need not be tricky to train and introduces45

a new regularized loss. Then, it empirically develops a simple GAN baseline that,without any tricks,46

compares favorably by FID to StyleGAN (30; 31; 28), other SOTA GANs (4; 37; 73), and diffusion47

models (18; 63; 68) across FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets.48

2 Serving Two Masters: Stability and Diversity with RpGAN +R1+R249

In defining a GAN objective, we tackle two challenges: stability and diversity. Some previous work50

deals with stability (30; 31; 28) and other previous work deals with mode collapse (20). We combine51

a stable method with a simple regularizer grounded by theory to overcome both.52

2.1 Traditional GAN53

A traditional GAN (11; 49) is formulated as a minimax game between a discriminator Dψ and a54

generator Gθ. Given real data x∼ pD and fake data x∼ pθ produced by Gθ, the most general form55

of a GAN is given by:56

L(θ,ψ)=Ez∼pz [f(Dψ(Gθ(z)))]+Ex∼pD [f(−Dψ(x))] (1)
where G tries to minimize L while D tries to maximize it. The choice of f is flexible (42; 38). In57

particular, f(t)=−log(1+e−t) recovers the classic GAN by Goodfellow et al. (11). For the rest of58

this work, this will be our choice of f (49).59

It has been shown that Equation 1 has convex properties when pθ can be optimized directly (11; 65).60

However, in practical implementations, the empirical GAN loss typically shifts fake samples beyond61

the decision boundary set byD, as opposed to directly updating the density function pθ. This deviation62

leads to a significantly more challenging problem, characterized by susceptibility to two prevalent63

failure scenarios: mode collapse/dropping1 and non-convergence.64

2.2 Relativistic f -GAN.65

We employ a slightly different minimax game named relativistic pairing GAN (RpGAN) by66

Jolicoeur-Martineau et al. (20) to address mode dropping. The general RpGAN is defined as:67

L(θ,ψ)=E z∼pz
x∼pD

[f(Dψ(Gθ(z))−Dψ(x))] (2)
Although Eq.2 differs only slightly from Eq.1, evaluating the critic difference has a fundamental impact68

on the landscape of L. Since Eq.1 merely requires D to separate real and fake data, in the scenario69

where all real and fake data can be separated by a single decision boundary, the empirical GAN loss70

encourages G to simply move all fake samples barely past this single boundary—this degenerate71

solution is what we observe as mode collapse/dropping. Sun et al. (65) characterize such degenerate72

solutions as bad local minima in the landscape of L, and show that Eq.1 has exponentially many bad73

local minima. The culprit is the existence of a single decision boundary that naturally arises when74

real and fake data are considered in isolation. RpGAN introduces a simple solution by coupling real75

and fake data, i.e. a fake sample is critiqued by its realness relative to a real sample, which effectively76

maintains a decision boundary in the neighborhood of each real sample and hence forbids mode77

dropping. Sun et al. (65) show that the landscape of Eq.2 contains no local minima that correspond78

to mode dropping solutions, and that every basin is a global minimum.79

2.3 Training Dynamics of RpGAN80

Although the landscape result (65) of RpGAN allows us to address mode dropping, the training81

dynamics of RpGAN have yet to be studied. The ultimate goal of Eq. 2 is to find the equilibrium (θ∗,ψ∗)82

such that pθ∗ = pD and Dψ∗ is constant everywhere on pD. Sun et al. (65) show that θ∗ is globally83

reachable along a non-increasing trajectory in the landscape of Eq.2 under reasonable assumptions.84

However, the existence of such a trajectory does not necessarily mean that gradient descent will find85

it. Jolicoeur-Martineau et al. show empirically that unregularized RpGAN does not perform well (20).86

Proposition I. (Informal) Unregularized RpGAN does not always converge using gradient descent.87

1While mode collapse and mode dropping are technically distinct issues, they are used interchangeably in
this context to describe the common problem where supp pθ does not fully cover supp pD .
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We confirm this proposition with a proof in Appendix H. We show analytically that RpGAN does88

not converge for certain types of pD, such as ones that approach a delta distribution. Thus, further89

regularization is necessary to fill in the missing piece of a well-behaved loss.90

Zero-centered gradient penalties. To tackle RpGAN non-convergence, we explore gradient91

penalties as the solution since it is proven that zero-centered gradient penalties (0-GP) facilitate92

convergent training for classic GANs (43). The two most commonly-used 0-GPs areR1 andR2:93

R1(ψ)=
γ

2
Ex∼pD

[
∥∇xDψ∥2

]
R2(θ,ψ)=

γ

2
Ex∼pθ

[
∥∇xDψ∥2

] (3)

R1 penalizes the gradient norm ofD on real data, andR2 on fake data. Analysis on the training dynam-94

ics of GANs has thus far focused on local convergence (47; 44; 43), i.e. whether the training at least95

converges when (θ,ψ) are in a neighborhood of (θ∗,ψ∗). In such a scenario, the convergence behavior96

can be analyzed (47; 44; 43) by examining the spectrum of the Jacobian of the gradient vector field97

(−∇θL,∇ψL) at (θ∗,ψ∗). The key insight here is that whenG already produces the true distribution, we98

want ∇xD=0, so thatG is not pushed away from its optimal state, and thus the training does not oscil-99

late. R1 andR2 impose such a constraint when pθ=pD. This also explains why earlier attempts at gra-100

dient penalties, such as the one-centered gradient penalty (1-GP) in WGAN-GP (12), fail to achieve con-101

vergent training (43) as they still encourageD to have a non-zero slope whenG has reached optimality.102

Since the same insight also applies to RpGAN, we extend our previous analysis and show that:103

Proposition II. (Informal) RpGAN with R1 or R2 regularization is locally convergent subject to104

similar assumptions as in Mescheder et al. (43).105

In Appendix I, our proof similarly analyzes the eigenvalues of the Jacobian of the regularized RpGAN106

gradient vector field at (θ∗,ψ∗). We show that all eigenvalues have a negative real part; thus, regularized107

RpGAN is convergent in a neighborhood of (θ∗,ψ∗) for small enough learning rates (43).108

Discussion. Another line of work (54) links R1 and R2 to instance noise (62) as its analytical109

approximation. Roth et al. (54) showed that for the classic GAN (11) by Goodfellow et al., R1110

approximates convolving pD with the density function of N (0,γI), up to additional weighting and111

a Laplacian error term. R2 likewise approximates convolving pθ with N (0,γI) up to similar error112

terms. The Laplacian error terms fromR1,R2 cancel whenDψ approachesDψ∗ . We do not extend113

Roth et al.’s proof (54) to RpGAN; however, this approach might provide complimentary insights114

to our work, which follows the strategy of Mescheder et al. (43).115

We demonstrate our loss in Appendix A where we focus on practical considerations such as global116

convergence. Building on Roth et al. (54), we apply bothR1 andR2 to improve global stability.117

3 A Roadmap to a New Baseline — R3GAN118

The well-behaved RpGAN +R1 +R2 loss alleviates GAN optimization problems, and lets us proceed119

to build a minimalist baseline—R3GAN—with recent network backbone advances in mind (41; 75).120

Rather than simply state the new approach, we will draw out a roadmap from the StyleGAN2121

baseline (27). This model (Config A; identical to (27)) consists of a VGG-like (60) backbone forG, a122

ResNetD, a few techniques that facilitate style-based generation, and many tricks that serve as patches123

to the weak backbone. Then, we remove all non-essential features of StyleGAN2 (Config B), apply124

our loss function (Config C), and gradually modernize the network backbone (Config D-E).125

We evaluate each configuration on FFHQ 256×256 (30). Network capacity is kept roughly the same126

for all configurations—both G and D have about 25M trainable parameters. Each configuration127

is trained until D sees 5M real images. We inherit training hyperparameters (optimizer settings,128

batch size, EMA decay length, etc.) from Config A unless otherwise specified. We tune the training129

hyperparameters for our final model and show the converged result in Sec. 4.130

Minimum Baseline (Config B). We strip away all StyleGAN2 features, retaining only the raw131

network backbone and basic image generation capability. The features fall into three categories:132

• Style-based generation: mapping network (30), style injection (30), weight modula-133

tion/demodulation (31), noise injection (30).134

• Image manipulation enhancements: mixing regularization (30), path length regularization (31).135

• Tricks: z normalization (25), minibatch stddev (25), equalized learning rate (25), lazy regulariza-136

tion (31).137
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Figure 1: Network architecture blocks.

Following (58; 57), we reduce the dimension of z to 64. The absence of equalized learning rate138

necessitates a lower learning rate, reduced from 2.5×10−3 to 5×10−5. Despite a higher FID of 12.46139

than Config-A, this simplified baseline produces reasonable sample quality and stable training. We140

compare this with DCGAN (51), an early attempt at image generation. Key differences include:141

a) Convergent training objective withR1 regularization.142

b) Smaller learning rate, avoiding momentum optimizer (Adam β1=0).143

c) No normalization layer inG orD.144

d) Proper resampling via bilinear interpolation instead of strided (transposed) convolution.145

e) Leaky ReLU in bothG andD, no tanh in the output layer ofG.146

f) 4×4 constant input forG, output skips forG, ResNetD.147

We discuss our findings about these principles in Appendix B and establish that a) through e) are148

critical to the success of StyleGAN2, and apply them to all subsequent configurations.149

Well-behaved loss function (Config C). We use the loss function proposed in Section 2 and this150

reduces FID to 11.65. We hypothesize that the network backbone in Config B is the limiting factor.151

General network modernization (Config D). First, we apply the 1-3-1 bottleneck ResNet archi-152

tecture (14; 15) to bothG andD. This is the direct ancestor of all modern vision backbones (41; 75).153

We also incorporate principles discovered in Config B and various modernization efforts from154

ConvNeXt (41). We categorize the roadmap of ConvNeXt as follows:155

i. Consistently beneficial: i.1) increased width with depthwise conv., i.2) inverted bottleneck, i.3)156

fewer activation functions, and i.4) separate resampling layers157

ii. Negligible performance gain: ii.1) large kernel depthwise conv. with fewer channels, ii.2) swap158

ReLU with GELU, ii.3) fewer normalization layers, and ii.4) swap batch norm. with layer norm.159

iii. Irrelevant to our setting: iii.1) improved training recipe, iii.2) stage ratio, and iii.3) “patchify” stem160

We aim to apply i) to our model, specifically i.3 and i.4 for the classic ResNet, while reserving i.1161

and i.2 for Config E. Many aspects of ii) were introduced merely to mimic vision transformers (40; 9)162

without yielding significant improvements (41). ii.3 and ii.4 are inapplicable due to our avoidance163

of normalization layers following principle c). ii.2 contradicts our finding that GELU deteriorates164

GAN performance, thus we use leaky ReLU per principle e). Liu et al. emphasize large conv kernels165

(ii.1) (41), but this results in slightly worse performance compared to wider 3×3 conv layers, so we166

do not adopt this ConvNeXt design choice. We discuss the architecture details in Appendix C.167
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Model FID↓
StyleGAN2 3.78
StyleGAN3-T 4.81
StyleGAN3-R 3.92
LDM 4.98
ADM (DDIM) 8.41
ADM (DPM-Solver) 8.40
Diffusion Autoencoder 5.81
Ours—Config E 2.77
With ImageNet feature leakage (36):
PolyINR* (61) 2.72
StyleGAN-XL* (58) 2.19
StyleSAN-XL* (66) 1.36Table 1: FFHQ-256. * denotes models that leak ImageNet features.

Bottleneck modernization (Config E). Now that we have settled on the overall architecture, we168

investigate how the residual block can be modernized, specifically i.1) and i.2). First, we explore i.1169

and replace the 3×3 convolution in the residual block with a grouped convolution. We set the group170

size to 16 rather than 1 (i.e. depthwise convolution as in ConvNeXt) as depthwise convolution is highly171

inefficient on GPUs and is not much faster than using a larger group size. With grouped convolution,172

we can reduce the bottleneck compression ratio to two given the same model size. This increases173

the width of the bottleneck to 1.5× as wide as Config A. Finally, we notice that the compute cost174

of grouped convolution is negligible compared to 1×1 convolution, and so we seek to enhance the175

capacity of grouped convolution. We apply i.2), which inverts the bottleneck width and the stem width,176

and which doubles the width of grouped convolutions without any increase in model size. Figure 1177

depicts our final design, which reflects modern CNN architectures.178

4 Experiments179

We evaluate our model on FFHQ (256×256) (30) for high resolution unimodal image synthesis, and180

high diversity generation on CIFAR-10 (34), and ImageNet (32×32) (6). We compare our model181

with various baselines, in Table 1, 2, and 3.182

We leave a detailed discussion of our results in Appendix E. Our model surpasses StyleGAN2 and183

StyleGAN3 by a large margin across datasets despite its simplicity. Unless with ImageNet feature184

leakage (56; 36) or certain regularization (79) that has been shown to overfit (76) on FFHQ 256×256,185

no GAN comes close to R3GAN in terms of FID. Our model also beats diffusion models despite186

having a considerably smaller model size and that it generates samples in one step.187
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Model FID↓
BigGAN (4) 14.73
TransGAN (69) 9.26
ViTGAN (37) 6.66
DDGAN (73) 3.75
Diffusion StyleGAN2 3.19
StyleGAN2 + ADA 2.42
StyleGAN3-R + ADA 10.83
DDPM 3.21
DDIM 4.67
VE (26) 3.11
VP (26) 2.48
Ours—Config E 1.97
With ImageNet feature leakage (36):
StyleGAN-XL* (58) 1.85

Table 2: CIFAR-10.

Model FID↓
Unconditional
DDPM++ (32) 8.42
VDM (33) 7.41
Conditional
MSGAN (24) 12.3
ADM (7; 48) 3.60
DDPM-IP (48) 2.87
Ours—Config E 1.27
With ImageNet feature leakage (36):
StyleGAN-XL* (58) 1.10

Table 3: ImageNet-32.
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Figure 2: Generator G loss for different objectives over training. Regardless of which objective is
used, training diverges with onlyR1 and succeeded with bothR1 andR2. Convergence failure with
onlyR1 was noted by Lee et al. (37).

Appendices377

A A Practical Demonstration of Our Loss.378

We experiment with how well-behaved our loss is on StackedMNIST (39) which consists of379

1000 uniformly-distributed modes. The network is a small ResNet (15) for G and D without any380

normalization layers (19; 71; 1; 67). Through the use of a pretrained MNIST classifier, we can381

explicitly measure how many modes of pD are recovered by pθ. Furthermore, we can estimate the382

reverse KL divergence between the fake and real samplesDKL(pθ ∥pD) via the KL divergence between383

the categorical distribution of pθ and the true uniform distribution.384

A conventional GAN loss with R1, as used by Mescheder et al. (43) and the StyleGAN se-385

ries (30; 31; 28), diverges quickly (Fig. 2). Next, while theoretically sufficient for local convergence,386

RpGAN with onlyR1 regularization is also unstable and diverges quickly2. In each case, the gradient387

ofD on fake samples explodes when training diverges. With bothR1 andR2, training becomes stable388

for both the classic GAN and RpGAN. Now stable, we can see that the classic GAN suffers from mode389

dropping, whereas RpGAN achieves full mode coverage (Table 4) and reducesDKL from 0.9270 to390

0.0781. As a point of contrast, StyleGAN (30; 31; 27; 28) uses the minibatch standard deviation trick391

to reduce mode dropping, improving mode coverage from 857 to 881 on StackedMNIST and with392

barely any improvement onDKL (25).393

Loss # modes↑ DKL↓
RpGAN +R1+R2 1000 0.0781
GAN +R1+R2 693 0.9270
RpGAN +R1 Fail Fail
GAN +R1 Fail Fail

Table 4: StackedMNIST (39) result for each loss function. The maximum possible mode coverage
is 1000. “Fail” indicates that training diverged early on.

R1 alone is not sufficient for globally-convergent training. While a theoretical analysis of this is difficult,394

our small demonstration still provides insights into the assumptions of our convergence proof. In395

particular, the assumption that (θ,ψ) are sufficiently close to (θ∗,ψ∗) is highly unlikely early in training.396

In this scenario, ifD is sufficiently powerful, regularizingD solely on real data is not likely to have397

much effect onD’s behavior on fake data and so training can fail due to an ill-behavedD on fake data.398

2Varying γ from 0.1 to 100 does not stabilize training.
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Thus, the practical solution is to regularize D on both real and fake data. The benefit of doing so399

can be viewed from the insight of Roth et al. (54): that applyingR1 andR2 in conjunction smooths400

both pD and pθ which makes learning easier than only smoothing pD. We also find empirically that401

with both R1 and R2 in place, D tends to satisfy Ex∼pD
[
∥∇xD∥2

]
≈Ex∼pθ

[
∥∇xD∥2

]
even early402

in the training. Jolicoeur-Martineau et al. (21) show that in this caseD becomes a maximum margin403

classifier—but if only one regularization term is applied, this does not hold.404

B Experimental Findings from Config B.405

Violating a), b), or c) often leads to training failures. Gidel et al. (10) show that negative momentum406

can improve GAN training dynamics. Since optimal negative momentum is another challenging407

hyperparameter, we do not use any momentum to avoid worsening GAN training dynamics.408

Studies (31; 29) suggest normalization layers harm generative models. Batch normalization (19)409

often cripples training due to dependencies across multiple samples, and is incompatible with410

R1, R2, or RpGAN that assume independent handling of each sample. Weaker data-independent411

normalizations (31; 29) might help; we leave this for future work. Early GANs may succeed despite412

violating a) and c), possibly constituting a full-rank solution (43) to Eq. 1.413

Violations of d) or e) do not significantly impair training stability but negatively affect sample414

quality. Improper transposed convolution can cause checkerboard artifacts, unresolved even with415

subpixel convolution (59) or carefully tuned transposed convolution unless a low-pass filter is applied.416

Interpolation methods avoid this issue, varying from nearest neighbor (25) to Kaiser filters (28). We417

use bilinear interpolation for simplicity. For activation functions, smooth approximations of (leaky)418

ReLU, such as Swish (52), GELU (16), and SMU (2), worsen FID. PReLU (13) marginally improves419

FID but increases VRAM usage, so we use leaky ReLU.420

All subsequent configurations adhere to a) through e). Violation of f) is acceptable as it pertains to421

the network backbone of StyleGAN2 (31), modernized in Config D and E.422

C Network Architecture Details of Config D423

Given i.3, i.4, and principles c), d), and e), we can replace the StyleGAN2 backbone with a modernized424

ResNet. We use a fully symmetric design for G and D with 25M parameters each, comparable to425

Config-A. The architecture is minimalist: each resolution stage has one transition layer and two residual426

blocks. The transition layer consists of bilinear resampling and an optional 1×1 conv for changing427

spatial size and feature map channels. The residual block includes five operations: Conv1×1→ Leaky428

ReLU→Conv3×3→Leaky ReLU→Conv1×1, with the final Conv1×1 having no bias term. For the429

4×4 resolution stage, the transition layer is replaced by a basis layer forG and a classifier head forD.430

The basis layer, similar to StyleGAN (30; 31), uses 4×4 learnable feature maps modulated by z via a431

linear layer. The classifier head uses a global 4×4 depthwise conv. to remove spatial extent, followed by432

a linear layer to produceD’s output. We maintain the width ratio for each resolution stage as in Config A,433

making the stem width 3× as wide due to the efficient 1×1 conv. The 3×3 conv in the residual block has434

a compression ratio of 4, following (14; 15), making the bottleneck width 0.75× as wide as Config A.435

To avoid variance explosion due to the lack of normalization, we employ fix-up initialization (77) for436

our modernized networks. Specifically, we zero-initialize the last convolutional layer in each residual437

block and scale down the initialization of the other two convolutional layers in the block by L−0.25,438

whereL is the number of residual blocks. We avoid other fix-up tricks, such as excessive bias terms439

and a learnable multiplier.440

D Roadmap Insights441

As per Table 5, Config A (vanilla StyleGAN2) achieves an FID of 7.52 using the official implementation442

on FFHQ-256. Config B with all tricks removed achieves an FID of 12.46—performance drops443

as expected. Config C, with a well-behaved loss, achieves an FID of 11.65. But, now training is444

sufficiently stable to improve the architecture.445

Config D, which improvesG andD based on the classic ResNet and ConvNeXt findings, achieves an446

FID of 9.95. The output skips of the StyleGAN2 generator are no longer useful given our new architec-447

ture; including them produces a worse FID of 10.17. Karras et al. find that the benefit of output skips is448

mostly related to gradient magnitude dynamics (28), and this has been addressed by our ResNet archi-449

tecture. For StyleGAN2, Karras et al. conclude that a ResNet architecture is harmful toG (31), but this450
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Configuration FID↓ G #params D #params

A StyleGAN2 7.516 24.767M 24.001M

B Stripped StyleGAN2
- z normalization

- Minibatch stddev
- Equalized learning rate

- Mapping network
- Style injection

- Weight mod / demod
- Noise injection

- Mixing regularization
- Path length regularization

- Lazy regularization

12.46 18.890M 23.996M

C Well-behaved Loss
+ RpGAN loss 11.77 18.890M 23.996M+R2 gradient penalty 11.65

D ConvNeXt-ify pt. 1
+ ResNet-ify G & D 10.17 23.400M 23.282M- Output skips 9.950 23.378M

E ConvNeXt-ify pt. 2
+ ResNeXt-ify G & D 7.507 23.188M 23.091M
+ Inverted bottleneck 7.045 23.058M 23.010M

Table 5: Model configuration performance and size.

is not true in our case as their ResNet implementation is considerably different from ours: 1) Karras et451

al. use one 3-3 residual block for each resolution stage, while we have a separate transition layer and two452

1-3-1 residual blocks; 2) i.3) and i.4) are violated as they do not have a linear residual block (55) and the453

transition layer is placed on the skip branch of the residual block rather than the stem; 3) the essential454

principle of ResNet (14)—identity mapping (15)—is violated as Karras et al. divide the output of the455

residual block by
√
2 to avoid variance explosion due to the absence of a proper initialization scheme.456

For Config E, we conduct two experiments that ablate i.1 (increased width with depthwise conv.) and457

i.2 (an inverted bottleneck). We add GroupedConv and reduce the bottleneck compression ratio to two458

given the same model size. Each bottleneck is now 1.5× the width of Config A, and the FID drops to459

7.51, surpassing the performance of StyleGAN2. By inverting the stem and the bottleneck dimensions to460

enhance the capacity of GroupedConv, our final model achieves an FID of 7.05, exceeding StyleGAN2.461

E Experiments Details462

E.1 Mode recovery — StackedMNIST (45)463

We repeat the earlier experiment in 1000-mode convergence on StackedMNIST (unconditional464

generation), but this time with our updated architecture and with comparisons to SOTA GANs and465

likelihood-based methods (Tab. 6, Fig. 5). One advantage brought up of likelihood-based models such466

as diffusion over GANs is that they achieve mode coverage (7). We find that most GANs struggle467

to find all modes. But, PresGAN (8), DDGAN (73) and our approach are successful. Further, our468

method outperforms all other tested GAN models in term of KL divergence.469
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Model # modes↑ DKL↓
DCGAN (51) 99 3.40
VEEGAN (64) 150 2.95
WGAN-GP (12) 959 0.73
PacGAN (39) 992 0.28
StyleGAN2 (31) 940 0.42
PresGAN (8) 1000 0.12
Adv. DSM (22) 1000 1.49
VAEBM (72) 1000 0.087
DDGAN (73) 1000 0.071
MEG (35) 1000 0.031
Ours—Config E 1000 0.029

Table 6: StackedMNIST 1000-mode coverage.

E.2 FID — FFHQ-256 (30) (Optimized)470

We train Config E model until convergence and with optimized hyperparameters and training schedule471

on FFHQ at 256× 256 (unconditional generation) (Tab. 1, Figs. 3 and 6). The hyperparameters472

and schedule are listed in Appendix J. We outperform existing StyleGAN methods, plus four more473

recent diffusion-based methods. This particular dataset experimental setting is so common that many474

methods (not listed here) use the bCR (79) trick—this has only been shown to improve performance on475

FFHQ-256 (not even at different resolutions of FFHQ) (79; 76). We use no such tricks in our method.476

Figure 3: Qualitative examples of sample generation from our Config E on FFHQ-256.
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E.3 FID — CIFAR-10 (34)477

We train Config E model until convergence and with optimized hyperparameters and training schedule478

on CIFAR-10 (conditional generation) (Tab. 2, Fig. 7). Our method outperforms many other GANs479

by FID even though the model has relatively small capacity. For instance, StyleGAN-XL (58) has480

18 M parameters in the generator and 125 M parameters in the discriminator, while our model has481

a 40 M parameters between the generator and discriminator combined (Fig. 4). Compared to diffusion482

models like LDM or ADM, GAN inference is significantly cheaper as it requires only one network483

function evaluation compared to the tens or hundreds of network function evaluations for diffusion484

models without distillation.485
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Figure 4: Number of parameters (millions) vs. FID-50K (log scale) on CIFAR-10. Lower is better.

Many state-of-the-art GANs are derived from Projected GAN (56), including StyleGAN-XL (58)486

and the concurrent work of StyleSAN-XL (66). These methods use a pre-trained ImageNet classifier in487

the discriminator. Prior work has shown that a pre-trained ImageNet discriminator can leak ImageNet488

features into the model (36), causing the model to perform better when evaluating on FID since it489

relies on a pre-trained ImageNet classifier for the loss. But, this does not improve results in perceptual490

studies (36). Our model produces its low FID without any ImageNet pre-training.491

E.4 FID — ImageNet-32 (6)492

We train Config E model until convergence and with optimized hyperparameters and training schedule493

on ImageNet-32 (conditional generation). We compare against recent GAN models and recent494

diffusion models in Table 3. We adjust the number of parameters in the generator of our model to match495

StyleGAN-XL (58)’s generator (84 million parameters). Specifically, we make the model significantly496

wider to match. Our method achieves comparable FID despite using a 60% smaller discriminator497

(Tab. 3) and despite not using a pre-trained ImageNet classifier.498

F Discussion and Limitations499

We have shown that a simplication of GANs is possible for image generation tasks, built upon a more500

stable RpGAN+R1+R2 objective with mathematically-demonstrated convergence properties that501

still provides diverse output. This stability is what lets us re-engineer a modern network architecture502

without the tricks of previous methods, producing the R3GAN model with competitive FID on503

the common datasets of Stacked-MNIST, FFHQ, CIFAR-10, and ImageNet-32 as an empirical504

demonstration of the mathematical benefits.505

The focus of our work is to elucidate the essential components of a minimum GAN for image generation.506

As such, we prioritize simplicity over functionality—we do not claim to beat the performance of507

every existing model on every dataset or task; merely to provide a new simple baseline that converges508
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easily. While this makes our model an ideal backbone for future GANs, it also means that it is not509

suitable to apply our model directly to downstream applications such as image editing or controllable510

generation, as our model lacks dedicated features for easy image inversion or disentangled image511

synthesis. For instance, we remove style injection functionality from StyleGAN even though this has a512

clear use. We also omitted common techniques that have been shown in previous literature to improve513

FID considerably. Examples include some form of adaptive normalization modulated by the latent514

code (7; 26; 30; 76; 50), and using multiheaded self attention at lower resolution stages (7; 26; 29).515

We aim to explore these techniques in a subsequent study.516

Further, our work is limited in its evaluation of the scalability of R3GAN models. While they show517

promising results on 32× 32 ImageNet, we are yet to verify the scalability on higher resolution518

ImageNet data or large-scale text to image generation tasks.519

Finally, as a method that can improve the quality of generative models, it would be amiss not to mention520

that generative models—especially of people—can cause direct harm (e.g., through personalized deep521

fakes) and societal harm through the spread of disinformation (e.g., fake influencers).522
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G Local convergence523

Following (43), GAN training can be formulated as a dynamical system where the update operator524

is given by Fh(θ,ψ)=(θ,ψ)+hv(θ,ψ). h is the learning rate and v denotes the gradient vector field:525

v(θ,ψ)=

(
−∇θL(θ,ψ)
∇ψL(θ,ψ)

)
(4)

Mescheder et al. (44) showed that local convergence near (θ∗,ψ∗) can be analyzed by examining the526

spectrum of the Jacobian JFh
at the equilibrium: if the Jacobian has eigenvalues with absolute value527

bigger than 1, then training does not converge. On the other hand, if all eigenvalues have absolute528

value smaller than 1, then training will converge to (θ∗,ψ∗) at a linear rate. If all eigenvalues have529

absolute value equal to 1, the convergence behavior is undetermined.530

Given some calculations (43), we can show that the eigenvalues of the Jacobian of the update operator531

λJFh
can be determined by λJv :532

λJFh
=1+hλJv . (5)

That is, given small enough h (43), the training dynamics can instead be examined using λJv , i.e., the533

eigenvalues of the Jacobian of the gradient vector field. If all λJv have a negative real part, the training534

will locally converge to (θ∗,ψ∗) at a linear rate. On the other hand, if some λJv have a positive real part,535

the training is not convergent. If all λJv have a zero real part, the convergence behavior is inconclusive.536

H DiracRpGAN: A demonstration of non-convergence537

Summary. To obtain DiracRpGAN, we apply Eq. 2 to the DiracGAN (43) problem setting. After538

simplification, DiracRpGAN and DiracGAN are different only by a constant. They have the same539

gradient vector field, therefore all proofs are identical to Mescheder et al. (43).540

Definition B.1. The DiracRpGAN consists of a (univariate) generator distribution pθ = δθ and a541

linear discriminator Dψ(x) = ψ ·x. The true data distribution pD is given by a Dirac distribution542

concentrated at 0.543

In this setup, the RpGAN training objective is given by:544

L(θ,ψ)=f(ψθ) . (6)
We can now show analytically that DiracRpGAN does not converge without regularzation.545

Lemma B.2. The unique equilibrium point of the training objective in Eq. 6 is given by θ=ψ=0.546

Moreover, the Jacobian of the gradient vector field at the equilibrium point has the two eigenvalues547

±f ′(0)iwhich are both on the imaginary axis.548

The gradient vector field v of Eq. 6 is given by:549

v(θ,ψ)=

(
−∇θL(θ,ψ)
∇ψL(θ,ψ)

)
=

(
−ψf ′(ψθ)
θf ′(ψθ)

)
(7)

and the Jacobian of v:550

Jv=
(

−ψ2f ′′(ψθ) −f ′(ψθ)−ψθf ′′(ψθ)
f ′(ψθ)+ψθf ′′(ψθ) θ2f ′′(ψθ)

)
(8)

Evaluating Jv at the equilibrium point θ=ψ=0 gives us:551

Jv
∣∣∣∣
(0,0)

=

(
0 −f ′(0)

f ′(0) 0

)
(9)

Therefore, the eigenvalues of Jv are λ1/2 =±f ′(0)i, both of which have a real part of 0. Thus, the552

convergence of DiracRpGAN is inconclusive and further analysis is required.553

Lemma B.3. The integral curves of the gradient vector field v(θ, ψ) do not converge to the554

equilibrium point. More specifically, every integral curve (θ(t),ψ(t)) of the gradient vector field555

v(θ,ψ) satisfies θ(t)2+ψ(t)2=const for all t∈ [0,∞).556

LetR(θ,ψ)= 1
2 (θ

2+ψ2), then:557

d

dt
R(θ(t),ψ(t))

=−θ(t)ψ(t)f ′(θ(t)ψ(t))+ψ(t)θ(t)f ′(θ(t)ψ(t))
=0 . (10)
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We see that the distance between (θ,ψ) and the equilibrium point (0,0) stays constant. Therefore,558

training runs in circles and never converges.559

Next, we investigate the convergence behavior of DiracRpGAN with regularization. For DiracRpGAN,560

bothR1 andR2 can be reduced to the following form:561

R(ψ)=
γ

2
ψ2 (11)

Lemma B.4. The eigenvalues of the Jacobian of the gradient vector field for the gradient-regularized562

DiracRpGAN at the equilibrium point are given by563

λ1/2=−γ
2
±
√
γ2

4
−f ′(0) (12)

In particular, for γ>0 all eigenvalues have a negative real part. Hence, gradient descent is locally564

convergent for small enough learning rates.565

With regularization, the gradient vector field becomes566

ṽ(θ,ψ)=

(
−ψf ′(ψθ)
θf ′(ψθ)−γψ

)
(13)

the Jacobian of ṽ is then given by567

Jṽ=
(

−ψ2f ′′(ψθ) −f ′(ψθ)−ψθf ′′(ψθ)
f ′(ψθ)+ψθf ′′(ψθ) θ2f ′′(ψθ)−γ

)
(14)

evaluating the Jacobian at θ=ψ=0 yields568

Jṽ
∣∣∣∣
(0,0)

=

(
0 −f ′(0)

f ′(0) −γ

)
(15)

given some calculations, we arrive at Eq.12.569

I General Convergence Results570

Summary. The proofs are largely the same as Mescheder et al. (43). We use the same proving571

techniques, and only slightly modify the assumptions and proof details to adapt Mescheder et al.’s effort572

to RpGAN. Like in (43), our proofs do not rely on unrealistic assumptions such as supppD=supppθ.573

I.1 Assumptions574

We closely follow (43) but modify the assumptions wherever necessary to tailor the proofs for RpGAN.575

Like in (43), we also consider the realizable case where there exists θ such thatGθ produces the true576

data distribution.577

Assumption I. We have pθ∗ = pD, and Dψ∗ =C in some local neighborhood of supppD, where578

C is some arbitrary constant.579

Since RpGAN is defined on critic difference rather than raw logits, we no longer require Dψ∗ to580

produce 0 on supppD, instead any constantC would suffice.581

Assumption II. We have f ′(0) ̸=0 and f ′′(0)<0.582

This assumption is the same as in (43). The choice f(t) =−log(1+e−t) adopted in the main text583

satisfies this assumption.584

As discussed in (43), there generally is not a single equilibrium point (θ∗,ψ∗), but a submanifold of585

equivalent equilibria corresponding to different parameterizations of the same function. It is therefore586

necessary to represent the equilibrium as reparameterization manifolds MG and MD. We modify587

the reparameterization h as follows:588

h(ψ)=Ex∼pD
y∼pD

[
|Dψ(x)−Dψ(y)|2+∥∇xDψ(x)∥2

]
(16)

to account for the fact that Dψ∗ is now allowed to have any constant value on supp pD. The589

reparameterization manifolds are then given by:590

MG={θ | pθ=pD} (17)
MD={ψ | h(ψ)=0} (18)
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We assume the same regularity properties as in (43) for MG and MD near the equilibrium. To state591

these assumptions, we need:592

g(θ)=Ex∼pθ [∇ψDψ|ψ=ψ∗ ] (19)
which leads to:593

Assumption III. There are ϵ-balls Bϵ(θ∗) and Bϵ(ψ∗) around θ∗ and ψ∗ so that MG ∩ Bϵ(θ
∗)594

and MD ∩ Bϵ(ψ∗) define C1-manifolds. Moreover, the following holds:595

(i) if v∈Rn is not in Tψ∗MD, then ∂2vh(ψ
∗) ̸=0.596

(ii) ifw∈Rm is not in Tθ∗MG, then ∂wg(θ∗) ̸=0.597

These two conditions have exactly the same meanings as in (43): the first condition indicates the598

geometry of MD can be locally described by the second derivative of h. The second condition implies599

thatD is strong enough that it can detect any deviation from the equilibrium generator distribution.600

This is the only assumption we have about the expressiveness ofD.601

I.2 Convergence602

We can now show the general convergence result for gradient penalized RpGAN, consider the gradient603

vector field with eitherR1 orR2 regularization:604

ṽi(θ,ψ)=

(
−∇θL(θ,ψ)

∇ψL(θ,ψ)−∇ψRi(θ,ψ)

)
(20)

note that the convergence result can also be trivially extended to the case where both R1 and R2605

are applied. We omit the proof for this case as it is redundant once the convergence with either606

regularization is proven.607

Theorem. Assume Assumption I, II and III hold for (θ∗,ψ∗). For small enough learning rates,608

gradient descent for ṽ1 and ṽ2 are both convergent to MG×MD in a neighborhood of (θ∗,ψ∗).609

Moreover, the rate of convergence is at least linear.610

We extend the convergence proof by Mescheder et al. (43) to our setting. We first prove lemmas611

necessary to our main proof.612

Lemma C.2.1. Assume J ∈R(n+m)×(n+m) is of the following form:613

J=

(
0 −B⊤

B −Q

)
(21)

whereQ∈Rm×m is a symmetric positive definite matrix andB∈Rm×n has full column rank. Then614

all eigenvalues λ of J satisfy ℜ(λ)<0.615

Proof. See Mescheder et al. (43), Theorem A.7.616

Lemma C.2.2. The gradient of L(θ,ψ) w.r.t. θ and ψ are given by:617

∇θL(θ,ψ)=E z∼pz
x∼pD

[f ′(Dψ(Gθ(z))−Dψ(x))

[∇θGθ(z)]
⊤∇xDψ(Gθ(z))] (22)

∇ψL(θ,ψ)=E z∼pz
x∼pD

[f ′(Dψ(Gθ(z))−Dψ(x))

(∇ψDψ(Gθ(z))−∇ψDψ(x))] (23)
Proof. This is just the chain rule.618

Lemma C.2.3. Assume that (θ∗,ψ∗) satisfies Assumption I. The Jacobian of the gradient vector619

field v(θ,ψ) at (θ∗,ψ∗) is then620

Jv
∣∣∣∣
(θ∗,ψ∗)

=

(
0 −K⊤

DG
KDG KDD

)
(24)

the termsKDD andKDG are given by621

KDD=f ′′(0)Ex∼pD
y∼pD

[(∇ψDψ∗(x)−∇ψDψ∗(y))

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤] (25)

KDG=f ′(0)∇θEx∼pθ [∇ψDψ∗(x)] |θ=θ∗ (26)
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Proof. Note that622

Jv
∣∣∣∣
(θ∗,ψ∗)

=

(
−∇2

θL(θ∗,ψ∗) −∇2
θ,ψL(θ∗,ψ∗)

∇2
θ,ψL(θ∗,ψ∗) ∇2

ψL(θ∗,ψ∗)

)
(27)

By Assumption I,Dψ∗ =C in some neighborhood of supppD. Therefore we also have ∇xDψ∗ =0623

and ∇2
xDψ∗ =0 for x∈supppD. Using these two conditions, we see that ∇2

θL(θ∗,ψ∗)=0.624

To see Eq.25 and Eq.26, simply take the derivatives of Eq.23 and evaluate at (θ∗,ψ∗).625

Lemma C.2.4. The gradient ∇ψRi(θ,ψ) of the regularization termsRi, i∈{1,2}, w.r.t. ψ are626

∇ψR1(θ,ψ)=γEx∼pD [∇ψ,xDψ∇xDψ] (28)
∇ψR2(θ,ψ)=γEx∼pθ [∇ψ,xDψ∇xDψ] (29)

Proof. See Mescheder et al. (43), Lemma D.3.627

Lemma C.2.5. The second derivatives ∇2
ψRi(θ

∗,ψ∗) of the regularization termsRi, i∈{1,2}, w.r.t.628

ψ at (θ∗,ψ∗) are both given by629

LDD=γEx∼pD [AA⊤] (30)
whereA=∇ψ,xDψ∗ . Moreover, both regularization terms satisfy ∇θ,ψRi(θ

∗,ψ∗)=0.630

Proof. See Mescheder et al. (43), Lemma D.4.631

Given Lemma C.2.3, Lemma C.2.5 and Eq.20, we can now show that the Jacobian of the regularized632

gradient field at the equilibrium point is given by633

Jṽ
∣∣∣∣
(θ∗,ψ∗)

=

(
0 −K⊤

DG
KDG MDD

)
(31)

where MDD =KDD−LDD. To prove our main theorem, we need to examine Jṽ when restricting634

it to the space orthogonal to T(θ∗,ψ∗)MG×MD.635

Lemma C.2.6. Assume Assumptions II and III hold. If v ̸=0 is not in Tψ∗MD, then v⊤MDDv<0.636

Proof. By Lemma C.2.3 and Lemma C.2.5, we have637

v⊤KDDv=f
′′(0)Ex∼pD

y∼pD

[
((∇ψDψ∗(x)−∇ψDψ∗(y))⊤v)2

] (32)
638

v⊤LDDv=γEx∼pD
[
∥Av∥2

]
(33)

By Assumption II, we have f ′′(0)<0. Therefore v⊤MDDv≤0. Suppose v⊤MDDv=0, this implies639

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤v=0 and Av=0 (34)
for all (x,y) ∈ supp pD × supp pD. Recall the definition of h(ψ) from Eq.16. Using the fact that640

Dψ∗ =C and ∇xDψ∗ =0 for x∈supp pD, we see that the Hessian of h(ψ) at ψ∗ is641

∇2
ψh(ψ

∗)=2Ex∼pD
y∼pD

[(∇ψDψ∗(x)−∇ψDψ∗(y))

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤+AA⊤] (35)
The second directional derivative ∂2vh(ψ) is therefore642

∂2vh(ψ)

=2Ex∼pD
y∼pD

[∣∣(∇ψDψ∗(x)−∇ψDψ∗(y))⊤v
∣∣2+∥Av∥2

]
=0 (36)

By Assumption III, this can only hold if v∈Tψ∗MD.643

Lemma C.2.7. Assume Assumption III holds. Ifw ̸=0 is not in Tθ∗MG, thenKDGw ̸=0.644

Proof. See Mescheder et al. (43), Lemma D.6.645

Proof for the main theorem. Given previous lemmas, by choosing local coordinates θ(α,γG) and646

ψ(β,γD) for MG and MD such that θ∗=0, ψ∗=0 as well as647

MG=Tθ∗MG={0}k×Rn−k (37)

MD=Tψ∗MD={0}l×Rm−l (38)
our proof is exactly the same as Mescheder et al. (43), Theorem 4.1.648
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J Hyperparameters, training configurations, and compute649

We implement our models on top of the official StyleGAN3 code base. While the loss function and650

the models are implemented from scratch, we reuse support code from the existing implementation651

whenever possible. This includes exponential moving average (EMA) of generator weights (25),652

non-leaky data augmentation (27), and metric evaluation (28).653

Training schedule. To speed up the convergence early in training, we specify a cosine schedule654

for the following hyperparameters before they reach their target values:655

• Learning rate656

• γ forR1 andR2 regularization657

• Adam β2658

• EMA half-life659

• Augmentation probability660

We call this early training stage the burn-in phase. Burn-in length and schedule for each hyperparameter661

are listed in Table 7 for each experiment. A schedule for the EMA half-life can already be found in662

Karras et al. (27), albeit they use a linear schedule. A lower initial Adam β2 is crucial to the initial large663

learning rate as it allows the optimizer to adapt to the gradient magnitude change much quicker. We664

use a large initial γ to account for that early in training: pθ and pD are far apart and a large γ smooths665

both distributions more aggressively which makes learning easier. Augmentation is not necessary666

untilD starts to overfit later on; thus, we set the initial augmentation probability to 0.667

Dataset augmentation. We apply horizontal flips and non-leaky augmentation (27) to all datasets668

where augmentation is enabled. Following (27), we include pixel blitting, geometric transformations,669

and color transforms in the augmentation pipeline. We additionally include cutout augmentation which670

works particularly well with our model, although it does not seem to have much effect on StyleGAN2.671

We also find it beneficial to apply color transforms less often and thus set their probability multiplier672

to 0.5 while retaining the multiplier 1 for other types of augmentations. As previously mentioned,673

we apply a fixed cosine schedule to the augmentation probability rather than adjusting it adaptively674

as in (27). We did not observe any performance degradation with this simplification.675

Network capacity. We keep the capacity distribution for each resolution the same as in (27; 28).676

We place two residual blocks per resolution which makes our model roughly 3× as deep, 1.5×∼3×677

as wide as StyleGAN2 while maintaining the same model size on CIFAR-10 and FFHQ. For the678

ImageNet model, we double the number of channels which results in roughly 4× as many parameters679

as the default StyleGAN2 configuration.680

Mixed precision training. We apply mixed precision training as in (27; 28) where all parameters are681

stored in FP32, but cast to lower precision along with the activation maps for the 4 highest resolutions.682

We notice that using FP16 as the low precision format cripples the training of our model. However,683

we see no problem when using BFloat16 instead.684

Class conditioning. For class conditional models, we follow the same conditioning scheme as685

in (27). For G, the conditional latent code z′ is the concatenation of z and the embedding of the686

class label c, specifically z′ = concat(z,embed(c)). For D, we use a projection discriminator (46)687

which evaluates the dot product of the class embedding and the feature vectorD′(x) produced by the688

last layer ofD, concretelyD(x)= embed(c) ·D′(x)⊤. We do not employ any normalization-based689

conditioning such as AdaIN (30), AdaGN (7; 26), AdaBN (4) or AdaLN (50) for simplicity, even690

though they improve FID considerably.691

Stacked MNIST. We base this model off of the CIFAR-10 model but without class conditioning. We692

disable all data augmentation and shorten the burn-in phase considerably. We use a constant learning693

rate and did not observe any benefit of using a lower learning rate later in the training.694

Compute resources. We train the Stacked MNIST and CIFAR-10 models on an 8× NVIDIA L40695

node. Training took 7 hours for Stacked MNIST and 4 days for CIFAR-10. The FFHQ model was696

trained on an 8× NVIDIA A6000 f0r roughly 3 weeks. The ImageNet model was trained on NVIDIA697

A100/H100 clusters and training took one day on 32 H100s (about 5000 H100 hours).698
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Hyperparameter Stacked MNIST CIFAR-10 FFHQ ImageNet
Resolution 32×32 32×32 256×256 32×32
Class conditional - ✓ - ✓
Number of GPUs 8 8 8 32
Duration (Mimg) 10 200 150 700
Burn-in (Mimg) 2 20 20 200
Minibatch size 512 512 256 4096
Learning rate 2×10−4 2×10−4→5×10−5 2×10−4→5×10−5 2×10−4→5×10−5

γ forR1 andR2 1→0.1 0.05→0.005 500→50 0.5→0.05
Adam β2 0.9→0.99 0.9→0.99 0.9→0.99 0.9→0.99
EMA half-life (Mimg) 0→0.5 0→5 0→0.5 0→50
Channels per resolution 768-768-768-768 768-768-768-768 96-192-384-768-768-768-768 1536-1536-1536-1536
ResBlocks per resolution 2-2-2-2 2-2-2-2 2-2-2-2-2-2-2 2-2-2-2
Groups per resolution 96-96-96-96 96-96-96-96 12-24-48-96-96-96-96 96-96-96-96
G params 20.73M 20.78M 23.06M 82.91M
D params 20.68M 21.28M 23.01M 86.55M
Dataset x-flips - ✓ ✓ ✓
Augment probability - 0→0.55 0→0.15 0→0.5

Table 7: Hyperparameters for each experiment.
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K Qualitative Results699

Figure 5: Qualitative examples of sample generation from our Config E on Stacked-MNIST.
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Figure 6: More qualitative examples of sample generation from our Config E on FFHQ-256.
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Figure 7: Qualitative examples of sample generation from our Config E on CIFAR-10.
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Figure 8: Qualitative examples of sample generation from our Config E on ImageNet-32.
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