
A Neural Reinforcement Learning Approach
to Gas Turbine Control

Anton Maximilian Schaefer, Daniel Schneegass, Volkmar Sterzing, and Steffen Udluft
Department of Learning Systems, Information & Communications, Corporate Technology

Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
Email: {Schaefer.Anton.ext, Daniel.Schneegass.ext, Volkmar.Sterzing, Steffen.Udluft}@siemens.com

Telephone: +49-89-636-44441, Fax: +49-89-636-49767

Abstract— In this paper we present a new Neural Network
based approach to control a gas turbine for stable operation on
high load. We use a combination of Recurrent Neural Networks
(RNN) and Reinforcement Learning (RL). We start by applying
an RNN to identify the minimal state space of a gas turbine’s
dynamics. Based on this we determine the optimal control policy
by standard RL methods. We proceed to a so called Recurrent
Control Neural Network (RCNN), which combines these two
steps into one integrated Neural Network.

Our approach has the advantage that by using Neural
Networks we can easily deal with the high dimensions of a
gas turbine and due to the high system-identification quality of
RNN cope with the, in general, only limited amount of available
data. We demonstrate the proposed methods on an exemplary
gas turbine model where, compared to standard controllers, it
strongly improves the performance.

I. INTRODUCTION

Presently and in the foreseeable future alternative and
renewable energy sources become more and more important.
As a consequence gas turbines are, due to their good ecolog-
ical properties in comparison with coal-fired power plants,
increasingly deployed. Because of their high operational
flexibility, they also serve as a compensation for the less
predictable energy production of alternative energy sources.
To guarantee a smooth operation at high or dynamic loads it
is desirable to use sophisticated controllers, which are able to
take short and long-term influences into account. For this rea-
son we applied a combination of Recurrent Neural Networks
(RNN) [1], [2] and Reinforcement Learning (RL) [3] as a
meta-controller, supporting the traditional controller, which
was based on physical knowledge and expert’s experience. In
doing so we achieve a significant improvement in the turbine
operation.

Reinforcement Learning [3] is an ideal approach to solve
optimal control problems by learning a policy, which max-
imises or respectively minimises a desired outcome. Relating
to the gas turbine, it basically considers a controller (agent)
and the turbine’s parameters (environment), with which the
controller interacts by carrying out different actions. For
each interaction it can see the outcome of his action. In
other words it gets a reward, which is used to optimise its
policy, i.e., its future actions based on the respective states.
Low dimensional problems or ones with finite discrete state
space, are generally solved by table-based RL methods such
as Q-Learning [4], where the value of each state-action-
combination is stored, or Temporal-Difference methods on

local basis functions [3]. For higher dimensional state or
continuous action spaces, like we are confronted with at a
gas turbine, these methods become unfeasible. In those cases
an optimal system identification of the underlying dynamics
is of avail. Besides that, as the amount of available data
is generally limited, data-efficiency becomes an important
requirement. For that reason model-based RL approaches
experienced an increasing interest during the last years.

For controlling a gas turbine we present two new model-
based methods based on Recurrent Neural Networks (RNN).
In a first approach we apply an RNN to condense the
high dimensional state space of the gas turbine, i.e., we
identify the minimal dimension of the turbine’s dynamics in
an information conserving and dynamical way. The reduced
state space can then be used by standard (table-based) RL
methods. Further we introduce our Recurrent Control Neural
Network (RCNN) [5], which basically consists of two parts.
An RNN with dynamically consistent overshooting, i.e.,
which uses its own predictions as future inputs [2], for
identifying the dynamics and an additional control Neural
Network with the particular task to learn the optimal policy,
i.e., the optimal mapping from states to actions, of the RL
problem. Furthermore, its structure is adapted to the RL
environment by adding action and reward clusters.

There have already been a few attempts to control a gas
turbine with (Feedforward) Neural Networks [6], [7], [8], but
none of those offers the same capabilities and flexibility we
gain by combining RL and RNN.

The paper consists of five parts. We start with a short
introduction into the modelling of open dynamical systems
by RNN, which we extend by dynamically consistent over-
shooting. We then show how these RNN can be used for an
efficient reduction of a high dimensional state space, which
can serve as a basis for standard RL methods (sec. II). Sub-
sequently we present the Recurrent Control Neural Network
(RCNN), which combines the system dynamics identification
and the learning of the optimal control in one integrated
network (sec. III). Finally we apply our combined approach
and the RCNN on a simulation of a gas turbine and compare
their performance (sec. IV). We conclude with a short
summary and an outlook on future research (sec. V).



II. STATE SPACE IDENTIFICATION BY RNN

Open dynamical systems in discrete time can be described
by a set of equations, consisting of a state transition and an
output equation

sd
t = g(sd

t−1, xt) state transition

yd
t+1 = h(sd

t ) output equation
(1)

where g and h are measurable functions, xt represents the
external inputs, sd

t the inner states and yd
t the outputs of the

system (t = 1, . . . , T and T ∈ N) [1], [9].
Generally in technical or economic applications the inner

state sd
t of a system is at least partially unknown, i.e., one

can only observe a certain number of variables, which might
have an influence on the system’s dynamics. In contrary, for
solving an optimal control problem the knowledge about the
dynamics is essential as it allows to estimate the (future)
influence of a certain action. Therefore an accurate and
robust system, i.e., state space, identification is an important
precondition for an optimal control, i.e., for a real-world
application of RL methods.

It has been shown that RNN of the form

st = tanh(Ast−1 + Bxt + θ)

yt+1 = Cst

(2)

can approximate any open dynamical system (eq. 1) and are
therefore a good method for (complex and high-dimensional)
system identification [10]. Here, the state transition equation
st (eq. 2) is a nonlinear transformation of the previous state
st−1 and the external influences xt using weight matrices
A and B of appropriate dimension and a bias θ, which
handles offsets in the input variables xt. The network’s
output yt+1 is computed from the present state st employing
matrix C. It is therefore a nonlinear composition applying
the transformations A, B, and C. Note, that the state space
of the RNN (eq. 2), st, in general does not have the same
dimension as the one of the original open dynamical system
(eq. 1) sd

t . It basically depends on the system’s complexity
and the desired information accuracy.

The approximation of an open dynamical system (eq. 1)
by an RNN of equation 2 is done by solving a parameter
optimisation problem, i.e., minimising the error between the
network’s output yt and the observed data yd

t with respect to
an arbitrary error measure, e.g. equation 3, by adjusting the
networks weight matrices A,B, and C as well as the bias θ.

T
∑

t=1

∥

∥yt − yd
t

∥

∥

2
→ min

A,B,C,θ
(3)

This can be achieved by finite unfolding in time using
shared weight matrices A, B, and C, which share the same
memory for storing their weights, i.e., the weight values
are the same at each time step τ of the unfolding (τ =
t, t− 1, t− 2, ..., t−m, where m is the number of unfolded
time steps) and for every pattern t (t ≥ m) [2], [9]. It
guarantees that we have the same dynamics in every unfolded
time step τ . By using unfolding in time the RNN can be

trained with a shared weights extension of the standard error
backpropagation algorithm [11].

In its simplest form RNN unfolded in time only provide
a one step prediction of the variables of interest, yd

t+1.
With regard to RL, i.e. an optimal state space identification,
this is generally insufficient. For that reason we extend the
autonomous part of the RNN into the future (τ > t) by so-
called dynamically consistent overshooting, i.e., we iterate
matrices A and C a finite number of n time steps in future
direction and use the network’s own predictions as future
inputs [1], [2]. By overshooting we increase the system
approximation capability of the RNN, as the learning is
forced to place more emphasis on modelling the autonomous
dynamics of the network, i.e., overshooting supports the
extraction of useful information from input vectors, which
are more distant to the output [1].

Dynamical consistency solves the problem of the unavail-
able external information xd

τ in the overshooting, respectively
future, part (τ > t) of the network. Neglecting these
missing influences would be equivalent to the assumption
that the environment of the dynamics stays constant, i.e., that
the external influences are not significantly changing, when
the network is iterated into future direction. Considering
external variables with a high impact on the dynamics of
interest, this becomes very questionable and might lead to
bad generalisation performances. In RNN with dynamically
consistent overshooting we therefore use the network’s own
predictions as a replacement for the unknown future inputs.
This implies that we do not only forecast the variables of
interest yd

τ but all environment data xd
τ . As a side effect this

allows for an integrated modeling of the dynamics of interest.
Note, that due to shared weights for dynamically consistent
overshooting no additional parameters are used. The RNN
with dynamically consistent overshooting can be described
by the following equations1:

sτ =

{

tanh(Asτ−1 + Bxd
τ + θ) ∀τ ≤ t

tanh(Asτ−1 + Bxτ + θ) ∀τ > t

xτ+1 = Csτ

∑

t

∑

τ

‖xτ − xd
τ‖

2 → min
A,B,C,θ

(4)

This can be easily represented in an architectural form
(fig. 1), where in the overshooting part (τ > t) of the network
the dashed connections between the outputs xτ and the states
sτ provide dynamical consistency. The dotted links indicate
that the network can be (finitely) further unfolded in past and
future.

Besides their capability to approximate non-linear
dynamical systems, RNN have the advantage that by using,
in contrast to, e.g., Radial Basis Function (RBF) Networks
and Support Vector Machines (SVMs) with local kernels,

1The parameter τ is hereby always bounded by the length of the (past)
unfolding m and the length of the overshooting n, such that we have τ ∈
{t − m, . . . , t + n} for all t ∈ {m, . . . , T − n} with T as the available
number of data patterns [2], [5].



xt−1xt−2xt−3

s t−2

xt

s t−1

xt+1

s t

B B B

C

B

A A
C

xt+3

s t+2s t+1

C

x

C

x

C

t−1t−2

C

t+2x

A

θ

A A

B B

θ θ θ θθ

t
x

s t−3

Fig. 1. RNN with dynamically consistent overshooting

global, sigmoidal basis functions, they are well able to cope
with higher dimensions. Therefore they are suited to break
the curse of dimensionality [12].

Considering optimal control we use the RNN to identify
the system’s minimal, approximately Markovian state space
out of the observed high-dimensional data. We provide the
RNN with all observables at each time step t as inputs and
respectively targets xd

τ and identify the underlying system.
Here, the dimension of the inner state sτ of the RNN is set
to a desired value, which is minimal but sufficient to learn
the problem’s dynamics. In doing so, we can compress the
observable’s system information to the problem’s essential
state space. The dimension of sτ just has to be large enough
to evolve the original system development. In a way, we can
say that we use the RNN for a dynamical system feature
selection. Still, it is not a feature selection in the general
meaning as we always take all available information into
account and do not extract the most important ones. This
has the particular advantage that the dimension reduction,
i.e. variable compression, is done in an information conserv-
ing way. This also distinguishes our approach from dimen-
sion reductions with Feedforward Neural Networks, where,
out of construction, one cannot incorporate the system’s
development.

Having a lower dimensional model of the regarded prob-
lem we can apply standard and well-known RL algorithms
like Prioritised Sweeping [3], which only work for small
dimensions, to determine an optimal policy.

Note, that a similar approach has been already validated
for an artificial partially observable problem [13]. Here, the
RNN was applied for a reconstruction of the (low dimen-
sional) partially observable state space, which was again used
as a basis for standard RL methods.

III. RECURRENT CONTROL NEURAL NETWORK

The Recurrent Control Neural Network (RCNN) [5] is a
Recurrent Neural Network (sec. II), which is able to identify
and to control the dynamics of an RL or optimal control prob-
lem within one integrated network. Its principal architecture
is based on an RNN, which is extended by an additional
control network and an output layer, which incorporates the
reward function. Overall its integrated structure follows the
idea of solving the complete optimal control problem within

one network, i.e., the system identification as described in
section II and the learning of the optimal policy, which has so
far be done by standard RL methods. This has the advantage
that in comparison to our RNN approach of section II we
have one single network architecture instead of applying
consecutively two different methods.

As the RCNN has to fulfill those two different tasks it is
trained in two successive steps. Note, that this distinguishes
our approach from other work on RL and Recurrent Neural
Networks, e.g. [14], where one usually tries a combined
learning of both tasks in one step. It has the advantage that,
like in our approach of section II, in the first step the network
only focuses on mapping the problem’s dynamics whereas
in the second step it concentrates on learning the optimal
policy based on the identified system. For both steps the
training is done offline on the basis of previous observations.
Its complete architecture is depicted in figure 2.

ps t−1 s t
s t+1

at

b
r t

F

E

b
r t+1

at+1

at+1
xt−1 xtt−1a

C

t+1xtx

B

A

D

pt−1 t
A

B

pt+1

C

t+2x

G

R
t+2

θ

D D

E

FG

Rt+1

θ θ

B

I I I

D
d d d dd

ta

C

Fig. 2. Learning the optimal policy by a Recurrent Control Neural Network
(RCNN). Dotted connections are just used in the first step whereas the
dashed parts, the control networks, are only applied in the second one. In
phase 1 matrices A, B, C, and D, coding the dynamics, are trained. In
phase 2 the optimal policy coded in matrices E and F is learned.

In the first step the RCNN is limited to the identification
and modeling of the system dynamics and is consequently
reduced to an RNN with dynamically consistent overshooting
(fig. 2, bold and dotted connections). Hence, analogue to
those RNN (eq. 4), the optimisation task of step one takes
on the following form:

sτ = tanh(Ipτ + Dad
τ + θ)

xτ+1 = Csτ

with pτ =

{

Asτ−1 + Bxd
τ ∀τ ≤ t

Asτ−1 + Bxτ ∀τ > t

∑

t

∑

τ

‖xτ − xd
τ‖

2 → min
A,B,C,D,θ

(5)

In addition to the standard RNN (eq. 4) a pre-state pτ

is inserted, which serves in the second step as an input
for the control network. Further, in contrast to the simpler
RNN approach (sec. II) we separate the observable data
into the environmental and the action variables, xd

τ and



ad
τ . This also requires the inclusion of an additional weight

matrix D. In doing so, we get a mapping of the underlying
Markov Decision Process on the input side [5]. Thereby it is
important to note, that in this step the actions of the observed
training data ad

τ are also given to the RCNN as present and
future inputs (τ ≥ t) because they directly influence the
system’s dynamics but cannot and should not be learned by
the network (fig. 2, dotted connections).

In the second step all connections coding the dynamics,
which have been learned in the first step, in particular
matrices A,B,C, and D and the bias θ, get fixed, i.e., their
weights are not changed during further training. In return the
integrated control network, which has the form of a three
layer (input, hidden, output) Neural Network is activated
(fig. 2, dashed connections). It uses the values of the pre-state
pτ , which combines the information of the previous state
sτ−1 and the environmental observables xd

τ , respectively its
own predictions xτ , as inputs. As an output it determines the
next action or control variables aτ . Putting this into equations
the control network has the form:

aτ = f(F tanh(Epτ + b)) ∀τ ≥ t (6)

where E and F are weight matrices of appropriate dimen-
sion, b is a bias and f an arbitrary activation function, which
can be used to scale or limit the network’s action space. The
hidden state (fig. 2) of the control network is denoted by rτ .

As we want to determine the optimal action aτ , the control
network (eq. 6) is applied in the present and overshooting
part of the RCNN (τ ≥ t), where in this step it does not
get anymore future actions as external inputs (fig. 2, dotted
connections). In the past unfolding (τ < t) the RCNN is, as
in step one, still provided with the actions ad

τ of the observed
training data. Furthermore in the past unfolding (τ < t) the
output-clusters are taken away, because they are only needed
for the identification of the system dynamics. In the present
and future part (τ ≥ t) of the network the error-function
(eq. 5) of the output clusters gets replaced by the reward
function. Architecturally this is realised by additional reward
clusters Rτ , which are connected to the output clusters by
a problem specific, on the reward function c(·) dependent,
and fixed matrix G as well as a possible activation function
h within the output clusters xτ (fig. 2). In other words the
RCNN maps the reward function c(·) of the underlying RL
problem by coding it in a neural architecture, which, as in the
case of the gas turbine control (sec. IV), often also requires
some additional, fixed connected, clusters.

The weights of the control network are only adapted ac-
cording to the backpropagated error from the reward clusters
Rτ (τ > t). This follows the idea that in the second step we
want to learn a policy, which maximises the reward given the
system dynamics modelled in step one (eq. 5). Note that, in
doing so the learning algorithm changes from a descriptive
to a normative error function.

Summarising, step two can be represented by the following
set of equations:

sτ =

{

tanh(Ipτ + Dad
τ + θ) ∀τ < t

tanh(Ipτ + Daτ + θ) ∀τ ≥ t

Rτ+1 = Gh(Csτ ), ∀τ ≥ t

with aτ = f(F tanh(Epτ + b)) ∀τ ≥ t

and pτ =

{

Asτ−1 + Bxd
τ ∀τ ≤ t

Asτ−1 + Bxτ ∀τ > t

∑

t

∑

τ≥t

c(Rτ ) → min
E,F,b

(7)

In both steps (eqs. 5 and 7) the RCNN is trained on the
identical set of training patterns T and with backpropagation
[11]. Concerning the second step this means in a metaphoric
sense that by backpropagating the error of the reward func-
tion c(·), the algorithm fulfills the task of transferring the
reward back to the agent.

The RCNN ideally combines the advantages of an RNN
for identifying the problem’s dynamics and a three layer
control Neural Network for learning the optimal policy.
In doing so, we can benefit from a high approximation
accuracy and therefore control complex dynamics in a very
data-efficient way. Besides, we can easily scale into high-
dimensions (sec. IV) or reconstruct a partially observable
environment [13]. Furthermore, out of the construction of
the RCNN, it can well handle continuous state and action
spaces.

IV. CONTROLLING A GAS TURBINE SIMULATION

The data, we worked on, was taken from a gas turbine as
it is used for electrical power generation. In total, approxi-
mately 1.3 million real data samples were available. The time
spans covered by those included several months and different
operating points of the turbine. The overall objective was
to optimise the turbine’s operation for stable combustion on
high load.

Out of the available data we developed a simulation model
of the real turbine, as experiments on the real turbine were
too expensive. This was done with the help of a dedicated
Neural Network architecture but, for an easier comprehension
and due to the lack of space, we abstain from a detailed
description. The simulation operates on 20 different param-
eters such as electrical load (power), exhaust temperature,
temperature and pressure behind the compressor, fuel frac-
tions, acceleration and pressure intensities in the combustion
chamber (RMS). Their dynamic ranges were taken from the
original data. Regarded actions were limited modifications of
pilot gas and inlet guide vane (IGV), which are two master
control parameters of such turbines. The time grid was set
to 5 seconds, i.e., the simulation model was used to predict
the state of the turbine 5 seconds ahead.

The simulation served as basis for testing our two Neural
RL approaches (sec. II and III). In order to guarantee the
quality of our experiments we first checked the accuracy of
our simulation by comparing the model’s one-step prediction



of all data points with the true behaviour of the gas turbine.
We further tested the influence of different control parameters
and verified their physical plausibility, to evaluate if a direct
interaction with the turbine is feasible. The experiments have
shown that the simulation well captures the important aspects
of the gas turbine’s dynamics as we achieved a relative
approximation error of less than 2.6%. Moreover the closed
loop iteration over longer time periods showed a stable
behaviour that keeps the parameters in a valid range.

Although we already made the problem more tractable by
working on a simulation, a direct control by discrete and
localised RL methods, such as Q-Learning or Temporal-
Difference-Learning on local basis functions, appeared to be
infeasible, as the state space was still of high dimension.
Further the state and action spaces were both continues.
Therefore, we applied our two new neural-based methods.
For both we allowed 100.000 observations for training and
tested the learned policy afterwards on the simulation. The
reward function used was composed out of a scaled differ-
ence between the parameters electrical load (power) as well
as the acceleration and pressure intensities in the combustion
chamber (RMS).

A. RNN Approach

We applied our RNN approach as described in section
II. Consequently we used an RNN to reduce the high-
dimensional state space of the turbine simulation to make
it applicable for standard table-based RL methods on a suffi-
ciently fine-gridded discretisation, for which convergence to
an optimal solution can be guaranteed.

The RNN was provided with the 20 dimensional state
space of the simulation as inputs and respectively targets
xd

τ . Even though the simulation operates on 20 variables, its
dynamics requires embedding in time and thus multiplies the
number of required dimensions. Still, the idea is to condense
this state description into a lower dimensional, but approxi-
mately Markovian state, on which table-based RL algorithms
can be used. We started with a 20 dimensional internal state
space sτ of the RNN and incrementally applied node pruning
[15] to it. In doing so we achieved a sufficiently acceptable
generalisation performance with an only four dimensional
state space, which served as a basis for Prioritized Sweeping
(PS) [3] with ε-greedy exploration to determine the optimal
policy.

B. RCNN

As a further improvement, we applied the RCNN (sec. III),
incorporating the two steps, dimension reduction and RL, in
one network. Analogue to the RNN approach (sec. IV-A),
the RCNN also used the 20 dimensional state space of the
simulation as inputs and targets, xd

τ . It further got the two
control parameters provided as actions ad

τ . These were also
the ones determined by the control network in the second
learning step (eq. 6). Here, the hyperbolic tangens was used
as output activation function f , which limits the actions to
(−1, 1). To further constrain the influence of the calculated
actions an additional cluster with fixed connections and

weight values smaller than one was added. The reward
function was (hard) coded into the neural architecture. Note,
that as a preprocessing the parameters were all scaled to the
interval [−1, 1] but were re-scaled for the reward calculation,
as this made the computations more accurate. The RCNN is
unfolded 8 steps into the past and 24 into the future. This
gives the network both, a memory length, which is sufficient
to identify the dynamics and an overshooting length, which
enables it to predict the consequences of its chosen actions.
The internal state dimension, dim(s), is set to 100 and the
hidden state of the control network, dim(r), to 20 neurons.
These dimensions are effectual to generate stable results
in terms of system identification and learning the optimal
policy.

C. Results
The results (fig. 3) clearly show that our neural RL

methods, RNN approach in combination with ε-greedy PS
(dashed line) and the RCNN (solid line), outperform the
reference controller (dotted-dashed line), whose behaviour
is reflected by the original turbine data, by far. They also
achieve higher rewards than a simple controller based on ε-
greedy PS on a well selected sub-space (dotted line), which
we used as an additional benchmark. This also demonstrates
the high value of a minimal state space identification by an
RNN. It turns out, that the RCNN reaches the highest reward,
which underlines the advantages of this integrated approach.

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (steps, each 5 s)

A
ve

ra
ge

 R
ew

ar
d

Fig. 3. Development of the reward for RCNN (solid), RNN with ε-
greedy PS (dashed), simple ε-greedy PS (dotted) and the reference controller
(dotted-dashed) in time.

Figure 4 illustrates the performance behaviour of the four
methods after reaching a stable operating point. Note, that
the values are normalised for confidentiality reasons. Figure
4(a) compares the respective mean setting of the control
parameters, pilot gas and IGV. It shows that the RCNN
(solid line) developed the most robust and stable policy as its
standard deviation is quite low. Figure 4(b) depicts the two
major performance indicators, power and RMS. It confirms
the good results of the RCNN (solid line) as it reaches the
highest power level with only a minor increase in RMS. For
a better presentation we plotted ”iso-reward” curves, which
indicate identical reward for different settings.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Inlet Guide Vane Position

N
or

m
al

is
ed

 P
ilo

t G
as

 In
te

ns
ity

(a) Control parameters pilot gas and IGV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.90.80.70.60.5Reward:

Normalised Power

N
or

m
al

is
ed

 R
M

S

(b) Performance indicators power and RMS

Fig. 4. Mean value and standard deviation for (a) the setting of the two control parameters and (b) the two major performance indicators for the RCNN
(solid), RNN with ε-greedy PS (dashed), simple ε-greedy PS (dotted) and the reference controller (dotted-dashed), after reaching a stable operation point.

V. CONCLUSION AND OUTLOOK

We presented a new Neural Reinforcement Learning ap-
proach to an optimal gas-turbine control and showed its ca-
pability to significantly improve the turbine’s stability and its
lifetime by guaranteeing the accustomed high performance.

We started with a short introduction into RNN, which
we used for a minimal state space identification of the
regarded high-dimensional problem. This made it tractable
for standard RL methods, which generally only work in
low dimensions. We proceeded by integrating the two step
RNN approach into one single so called Recurrent Control
Neural Network (RCNN), which is, due to its combination
of an RNN and a three layer Neural Network, well qualified
for solving high-dimensional optimal control problems with
continuous state and action spaces.

We finally applied our two methods to the simulation
of a gas turbine. The results were promising as with both
methods we outperformed standard controllers by far. It
became evident that the integrated structure of the RCNN
approach is more powerful then the two step RNN one. Nev-
ertheless the latter showed despite its simplicity a remarkable
performance.

Future work is directed towards the control of a real
gas turbine. Besides that an improvement of the RCNN
architecture, in particular a reduction or aggregation of the
several different matrices, and an extension of the method
to online-learning is projected. Here, we will also refer
to higher developed Neural Network architectures like Dy-
namical Consistent Neural Networks [2] and incorporate
several other neural methods, e.g. pruning, or monte carlo
techniques.

ACKNOWLEDGMENT

Our computations were performed on the Neural Network
modeling software SENN (Simulation Environment for Neu-
ral Networks), which is a product of Siemens AG.

REFERENCES

[1] H. G. Zimmermann and R. Neuneier, “Neural network architectures for
the modeling of dynamical systems,” in A Field Guide to Dynamical
Recurrent Networks, J. F. Kolen and S. Kremer, Eds. IEEE Press,
2001, pp. 311–350.

[2] H. G. Zimmermann, R. Grothmann, A. M. Schaefer, and C. Tietz,
“Identification and forecasting of large dynamical systems by dy-
namical consistent neural networks,” in New Directions in Statistical
Signal Processing: From Systems to Brain, S. Haykin, J. Principe,
T. Sejnowski, and J. McWhirter, Eds. MIT Press, 2006.

[3] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). Cambridge, MA:
MIT Press, 1998.

[4] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
University of Cambridge, 1989.

[5] A. M. Schaefer, S. Udluft, and H. G. Zimmermann, “A recurrent
control neural network for data efficient reinforcement learning,” in
Proceedings of the IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL-2007),
Honolulu, HI, 2007, in preparation.

[6] Q. Song, “An integrated robust/neural controller with gas turbine
applications,” in IEEE Conference on Control Applications, 1994.

[7] N. W. Chbat, “Estimating gas turbine internal cycle parameters using
a neural network,” International Gas Turbine and Aeroegine Congress
and Exhibition, 1996.

[8] I. T. Nabney and D. C. Cressy, “Neural network control of a gas
turbine,” Neural Computing and Applications, vol. 4, no. 4, 1996.

[9] S. Haykin, Neural Networks: A Comprehensive Foundation. New
York: Macmillan, 1994.

[10] A. M. Schaefer and H. G. Zimmermann, “Recurrent neural networks
are universal approximators,” in Proceedings of the International
Conference on Artificial Neural Networks (ICANN-06), Athens, 2006.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” in Parallel Distributed
Processing: Explorations in The Microstructure of Cognition, D. E.
Rumelhart and J. L. M. et al., Eds. Cambridge, MA: MIT Press,
1986, vol. 1, pp. 318–362.

[12] R. E. Bellman, Adaptive Control Processes: A Guided Tour. Princton,
NJ: Princeton University Press, 1961.

[13] A. M. Schaefer and S. Udluft, “Solving partially observable re-
inforcement learning problems with recurrent neural networks,” in
Reinforcement Learning in Non-Stationary Environments, ser. Work-
shop Proceedings of the European Conference on Machine Learning
(ECML-05), 2005.

[14] B. Bakker, “The state of mind: Reinforcement learning with recurrent
neural networks,” Ph.D. dissertation, Leiden University, 2004.

[15] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford:
Clarendon Press, 1995.


