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Abstract

Recent large language models (LLMs) are
promising for making decisions in grounded
environments. However, LLMs frequently fail
in complex decision-making tasks due to the
misalignment between the pre-trained knowl-
edge in LLMs and the actual rules in the
environment. Existing methods require ei-
ther costly gradient computation or lengthy
in-context demonstrations. In this paper, we
propose AutoPlan, an approach to guide LLM-
based agents to accomplish interactive decision-
making tasks. AutoPlan augments the LLM
prompt with a task-solving plan and optimizes
it through iterative experience collection and
reflection. Our experiments show that Auto-
Plan, though using no in-context demonstra-
tions, achieves success rates on par with the
baselines using human-written demonstrations
on ALFWorld and even outperforms them by
8% on HotpotQA. The code is available at
https://github.com/owaski/AutoPlan.

1 Introduction

The ability to make decisions lies at the core of hu-
man intelligence, enabling us to navigate through
a multitude of choices and select the best possi-
ble actions based on available information. Recent
large language models, trained with trillions of
tokens, have gained impressive reasoning ability
and now have the potential to act as autonomous
agents for decision-making tasks in grounded en-
vironments (Zhang et al., 2022; Chowdhery et al.,
2022; OpenAI, 2023; Touvron et al., 2023).

Decision-making tasks in grounded environ-
ments can be as simple as calculating mathematical
problems with an external calculator or as complex
as doing housework. Current LLM can easily use
an external calculator by decomposing the formula
into atomic function calls (Bubeck et al., 2023).
However, LLMs frequently fail in more complex
tasks in an environment with many objects and pre-
requisite dependencies. Considering the Heat task

ALFWorld LLMPrompt Observation

Task Description: 
You need to interact with a simulated 
household to solve a job by interleaving 
Think[], Action[] and Observation[]. You can 
do following actions:
1) go to receptacle
2) take object from receptacle
3) put object in/on receptacle
4) heat object with receptacle

Task Instance: put a hot bowl in sidetable

Task starts. You are in the middle of a room. 
Looking around you, you see a countertop 1, 
microwave 1, toaster 1, sidetable 1, and a 
sidetable 2.

Think[I should check sidetable for the bowl.]
Action[go to sidetable 1]
Observation[You see a bowl 1 on sidetable 1.]

Thought[I need to take the bowl.]

Action[take bowl 1 from sidetable 1.]
Observation[You pick up bowl 1.]

Thought[Then I should go to the toaster.]
Action[go to toaster 1]
Observation[You see nothing on toaster 1.]

Thought[I need to heat bowl 1 with toaster 1.]
Action[heat bowl 1 with toaster 1]
Observation[Action failed.]

Thought[I’ll check the microwave instead.]
Action[go to microwave 1]
Observation[The microwave 1 is open.]

Thought[I’ll use microwave to heat the bowl.]
Action[heat bowl 1 with microwave 1]
Observation: You heat bowl 1 with microwave 1.

Maximum number of actions reached. Task fails.

Figure 1: Problem illustration: Planning for decision-
making tasks. Given the description of an environment,
legit actions, and a task instance, the goal is to guide
an LLM to generate a sequence of thoughts and ac-
tions (highlighted in yellow) reacting to observations
provided by the environment (highlighted in blue) to
solve the task instance. An LLM may fail in complex
tasks due to the lack of prior knowledge.

in ALFWorld (Shridhar et al., 2021)), LLM agents
struggle to find the correct action sequence within
the maximum number of actions (Figure 1). The
primary reason behind such failures is the misalign-
ment between LLM’s pre-trained knowledge (e.g.,
generating fluent sentences) and the concrete rule
of the grounded environment (e.g., household item
functionality in ALFworld). In the ALFWorld en-
vironment, the agent can only heat an object with a
microwave instead of a toaster. However, the LLM
does not learn such knowledge during pretraining,
eventually failing the task.

Existing methods aligning LLMs to desired en-
vironments either employ reinforcement learning
(RL) and imitation learning (IL) methods (Ouyang
et al., 2022; Carta et al., 2023), or provide a
few demonstrations to conduct in-context learning
(ICL) (Yao et al., 2023). On the one hand, RL and
IL methods require computationally costly gradient
computation for existing LLMs. On the other hand,
the performance of ICL methods highly depends
on the selection of demonstrations.

In this work, we propose AutoPlan, a purely

https://github.com/owaski/AutoPlan


Task Description: …
Current Task Plan: 𝓧𝒊

Task Instance 1
Summary 1: …
Flaw 1: …
Revision 1: …

Task Instance 2
Summary 2: …
Flaw 2: …

Revision 2: …

⋮

Task Instance B
Summary B: …
Flaws of Actions B: …
Revision B: …

Updated Plan: 𝓧𝒊"𝟏

Summarize the interactions, identify the flawed 
actions, and revise the current task plan.

Summary: I found the bowl 1 on sidetable 1. I tried 
to heat it with the toaster 1 but failed. I finally 
heat it with microwave 1 but failed the task by 
exceeding the maximum allowed number of actions.
Flaw: As the observation said, I need to heat the 
bowl with microwave instead of toaster in this task.
Revision: change “toaster” in step 3-4 into 
“microwave”

Task Plan 𝒳!

Plan Update
1. Go to the location of 

target object
2. Take the object from the 

receptacle
3. Go to the microwave
4. Heat the target object with 

the microwave
5. Go to the target receptacle
6. Place the heated object 

in/on the target receptacle

Task Plan 𝒳!"#

Experience Collection LLMPrompt

Wrong

Correct

1. Go to the location of 
target object

2. Take the object from the 
receptacle

3. Go to the toaster
4. Heat the target object with 

the toaster
5. Go to the target receptacle
6. Place the heated object 

in/on the target receptacle

Reflection

Observation

Task Description: 
You need to interact with a simulated household to 
solve a job by interleaving Think[], Action[] and 
Observation[]. You can do following actions:
1) go to receptacle
2) take object from receptacle
3) put object in/on receptacle
4) heat object with receptacle

Task Instance: put a hot bowl in sidetable

Task Plan: 𝓧𝒊

Task starts. You are in the middle of a room. Looking 
around you, you see a countertop 1, microwave 1, 
toaster 1, sidetable 1, and a sidetable 2.

Think[I should check sidetable for the bowl.]
Action[go to sidetable 1]
Observation[On the countertop 1, you see a bowl 1.]

Thought[I need to take the bowl from the sidetable.]
Action[take bowl 1 from sidetable 1.]
Observation[You pick up bowl 1.]

Thought[Then I should go to the toaster.]
Action[go to toaster 1]
Observation[On the toaster 1, you see nothing.]

Thought[Now I need to heat the bowl with the toaster.]
Action[heat bowl 1 with toaster 1]
Observation[Action failed. Toaster cannot heat bowl.]

Thought[I need to check the microwave instead.]
Action[go to microwave 1]
Observation[The microwave 1 is open.]

Thought[I’ll try use microwave to heat the object.]
Action[heat bowl 1 with microwave 1]
Observation: You heat bowl 1 with microwave 1.
Maximum number of actions reached. Task fails.

Figure 2: One optimization iteration of AutoPlan on Heat task of ALFWorld. Given the current plan Xi (with wrong
steps highlighted in red), the LLM agent collects interaction experiences from a batch of task instances (prompts
and LLM outputs are highlighted in grey and yellow, respectively). Then, the agent reflects on the experiences
and outcomes through summarization, flaw identification , and plan revision. Finally, the agent aggregates the
current batch of task instances together with their reflections and updates the task plan to Xi+1 (with correct steps
highlighted in green).

prompt-based method, to guide an LLM to solve
such decision-making tasks without costly gradi-
ent computation or in-context demonstrations. In
high-level speaking, AutoPlan solves the task by
iteratively interacting with the given environment
conditioning on a task plan described in natural
language. Figure 2 illustrates how AutoPlan finds
an optimal plan to guide the LLM to heat an object
correctly and put it at the target location. Auto-
Plan starts with an empty plan and uses the LLM
agent to collect interaction experiences condition-
ing on an initial incorrect plan. Then AutoPlan
instructs the LLM agent to reflect on the collected
experiences and revise the task plan based on the
reflection. It further deploys the new task plan to
collect more experiences with the LLM agent.

The primary technical challenge of this approach
is to ensure stable and progressive plan optimiza-
tion since the plan expressed in natural language
can be highly slapdash and versatile. We propose
two techniques in AutoPlan: (1) experience batch-
ing and (2) SIR reflection. We batch multiple ex-
periences before updating the plan to help reduce
variance. We introduce an explicit SIR reflection
(Summarization, flaw Identification, plan Revision)
to elicit helpful information from the interaction ex-

perience. We evaluate AutoPlan and other methods
on two distinct benchmarks.

Our contributions are:
• We propose AutoPlan, a novel prompting method

to align LLMs with the need for grounded
decision-making tasks without computing gradi-
ents or using human-written demonstrations.

• Our experiments show that AutoPlan achieves
on-par success rates with baselines involv-
ing human-written demonstrations on ALF-
world (Shridhar et al., 2021) and even 8% higher
accuracy on HotpotQA (Yang et al., 2018).

• We verify that larger batch size leads to more
stable learning, and the explicit SIR reflection
ensures the plan update is practical and progres-
sive.

2 Related Works

Finetuned LLM Agent Reinforcement Learning
has been widely used to train LLMs to master in-
teractive tasks. ChatGPT (OpenAI, 2023) applies
Reinforcement with Human Feedback (RLHF) to
finetune a pre-trained LLM, enabling it to commu-
nicate interactively with humans. GLAM (Carta
et al., 2023) uses LLM as a policy and finetunes it
with online RL to improve its abilities to solve text-



Method In-Context Feedback Plan Need Test-Time
Demonstration Utilization Applicability Refinement

ReAct (Yao et al., 2023) Yes Action N/A No
Code as Policies (Liang et al., 2022) Yes Action N/A No
Reflexion (Shinn et al., 2023) Yes Action N/A Yes
Inner Monologue (Huang et al., 2023) Yes Action N/A Yes
RCI (Kim et al., 2023) Yes Action & Plan Opt Single task instance Yes
DEPS (Wang et al., 2023) Yes Action & Plan Opt Single task instance Yes
AdaPlanner (Sun et al., 2023) Yes Action & Plan Opt Single task instance Yes

AutoPlan No Action & Plan Opt All task instances No

Table 1: Comparison of various prompt-based methods that employ a LLM agent to solve decision-making tasks.
AutoPlan is the only method that optimizes a plan applicable to all task instances without any demonstration and
requires no test-time refinement of the decision-making process.

based decision-making tasks. Experiments demon-
strate that LLM policy significantly boosts sample
efficiency. Other than RL, Xiang et al. also fine-
tunes the LLM in a supervised manner with experi-
ences collected through Monte Carlo Tree Search
(MCTS). However, RL and supervised learning re-
quire calculating the gradients and updating the
model’s parameters, which is especially costly for
LLMs.

LLM with In-Context Learning As the size of
the model and corpus scales, LLM demonstrates
In-Context Learning (ICL) abilities, i.e., LLM di-
rectly learns from a few demonstrations of a task
given in the context. Brown et al. shows that a
pre-trained LLM performs strongly on traditional
NLP tasks, including question answering and cloze
tasks, with ICL. More recent works focus on the
design of demonstrations (Sorensen et al., 2022;
Lu et al., 2022). Sorensen et al. proposes to re-
trieve demonstrations with higher mutual infor-
mation between model input and output. Glob-
alE&LocalE (Lu et al., 2022) uses entropy statis-
tics to find the most performant permutation of
demonstrations. Nonetheless, the ICL LLM agent
is still sensitive to the provided demonstrations and
requires additional human effort.

Prompt-based LLM Agent Techniques have re-
cently been developed to adapt LLMs to solve
decision-making tasks through prompts. Table 1
illustrates the main difference between works along
this line. ReAct (Yao et al., 2023) explicitly reasons
over past interactions and determines the follow-
ing action based on previous thoughts, actions, and
observations. Reflexion (Shinn et al., 2023) built
on top of ReAct and refines the interaction by iter-
atively reflecting on its past failed trials of a task

instance. However, Reflexion conducts test-time
reflection and the reflection for one environment
does not transfer to others. RCI (Kim et al., 2023),
DEPS (Wang et al., 2023) and AdaPlanner (Sun
et al., 2023) start with an initial plan of the task
and refine the plan and the decision-making pro-
cess for each specific task instance. Our AutoPlan
instead optimizes a task-level plan and directly ap-
plies it to all task instances without further test-time
refinement, which could be more efficient during
inference.

3 AutoPlan

In this section, we describe AutoPlan in detail. We
first describe the general procedure of using LLM
to solve an interactive decision-making task. Then
we present AutoPlan that solves the task by a text-
based plan, obtained by an iterative three-stage pro-
cess: AutoPlan 1) collects interaction experiences
using the task plan at the current step, 2) reflects on
the collected experiences, and 3) updates the plan.

3.1 Problem Formulation

We aim to design an LLM-based agent to accom-
plish an interactive task described in natural lan-
guage. The agent is provided with a natural lan-
guage description of the task, possible actions, and
environmental observations. The task description
P includes a generic abstract description and a con-
crete task instance with an objective. Let M be the
LLM agent, A be the set of possible actions, and O
be the set of possible observations from the environ-
ment. One could augment the input with a custom
prompt X . At each step t, the agent M generates a
text action at ∈ A and receives a text observation
ot ∈ O from the environment. o0 denotes the ini-
tial observation, which could be empty. We define



Prompt Name Prompt Content

Thought-prompt Identify which step of plan you are at. Show your thought about the one next
action. Your thought should be faithful the plan step.

Summary-prompt Summarize the interaction history in steps.

Flaw-prompt Identify all flawed parts of the plan/action. Remember in this game, things are not
like real world. The system message in observation is always correct and the plan
plan/action may have flaws.

Rev-prompt Suggest revision to the current flawed part of the plan. Only the flawed part.

Upd-prompt Based on the above experiences of the game, rewrite the current game plan. Pay
attention to summary of successful jobs, and flawed actions and suggested revision
of all jobs. The plan should be generalizable to all job objectives. The actions in
the plan should also be in the form as in game description.

Table 2: Prompts that AutoPlan uses in ALFWorld environment.

a reward function R(o0:t) = 1 if the objective is
achieved based on the observations. The problem
of AutoPlan is to design an optimal prompt X to
maximize the expected rewards over all possible
task instances,

X ∗ = argmax
X

EP [R(o0:T )] , (1)

where T is the maximum number of interaction
steps allowed.

Ideally, the optimal X ∗ should be adequate for
all task instances of the same problem. Since the
space of a custom prompt is vast, we frame such
a prompt as a plan, which describes a sequence of
actions in natural languages. Figure 2 shows a heat-
ing task in ALFWorld (Shridhar et al., 2021) and
how the LLM agent solves this. Task description
includes the available actions and an instance-wise
objective (e.g., put a hot bowl in the sidetable). We
aim to find an optimal plan as the custom prompt.
After the task starts, the agent’s current and visible
locations constitute the first observation o0. Then,
the agent acts and observes the environment iter-
atively until it reaches the maximum number of
interaction steps T .

Following prior work ReAct (Yao et al., 2023),
we extend the original action space A to include
L, the space of thoughts expressed in language.
As shown in Figure 2, a "thought" action (in the
form of "Think[...]") does not elicit any environ-
mental feedback and solely manifests the reasoning
process of the LLM.

3.2 AutoPlan

AutoPlan treats a custom prompt X in the form
of a task-solving plan that includes a sequence
of abstract actions to execute in different scenar-
ios. Such a plan described in natural language
resembles the policy network in deep reinforce-
ment learning, but it is more explainable due to
its textual form. It is also more token-efficient
than in-context demonstrations. Furthermore, state-
of-the-art instruction-tuned LLMs demonstrate a
strong ability to follow a given plan.

As shown in Figure 2, we design a three-stage
process to optimize plan X iteratively: 1) experi-
ence collection with the current plan, 2) reflection
on the collected experiences, and 3) plan update
based on reflection.

3.2.1 Experience Collection
AutoPlan starts with an empty plan X0. At each
iteration i, a batch of B task instances is randomly
selected, denoted as P1, P2, · · · , PB . For each task
instance Pj , the LLM agent generates a sequence
of thoughts and actions in response to observations
from the environment.

Let Hj
t−1 = Pj⊕Xi⊕(o0, ã0, a0, o1, · · · , ot−1)

be the past interactions before step t. Since we
augment the action space with thoughts that do not
affect on the environment, at each step t, AutoPlan
first obtains the thought,

ãt ∼ M(Hj
t−1 ⊕ Thought-prompt) (2)

where Thought-prompt is provided in Table 2 to
make LLM agent act faithfully to the plan Xi. Then



we sample the next action given the thought ãt,

a′t ∼ M(Hj
t−1 ⊕ ãt ⊕ "Action:") (3)

at = F(a′t) (4)

Hj
t = Hj

t−1 ⊕ ãt ⊕ at ⊕ ot. (5)

where ot is the observation after action at and F
is a formalizer used to reformat the action to be
acceptable by the environment. Details of the for-
malizer can be found in Appendix A.1.

As shown in Figure 2, ãt, at and ot correspond
to "Think[...]", "Action[...]" and "Observation[...]"
in the experience of a task instance, where the LLM
agent successfully found the bowl on the sidetable
but failed to heat it with the toaster.

3.2.2 SIR Reflection
Given the experience Hj

T and the corresponding
reward R(o0:T ) (denoted as Rj), we instruct the
LLM agent to reflect on the interaction history
through a SIR reflection procedure: 1) Summa-
rize the interaction history, 2) Identify the flawed
steps of the plan, 3) Revise the flawed steps,

sj = M(Hj ⊕Rj ⊕ Summary-prompt) (6)

fj = M(Hj ⊕Rj ⊕ Flaw-prompt) (7)

rj = M(Hj ⊕Rj ⊕ Flaw-prompt

⊕ Rev-prompt) (8)

where Summary/Flaw/Rev-prompts are shown in
Table 2. The summarization, flaw, and revision
provide necessary and clear information for the
plan updater to modify the current plan.

As shown in Figure 2, the reflection summarizes
the key actions, successfully identifies the flaw part
of the plan, where Xi treats the toaster as the appro-
priate heating appliance, and suggests a revision to
use the microwave instead.

3.2.3 Plan Update
With the task descriptions P1, P2, · · · , PB , the
current task plan Xi, and the summarizations
s1, · · · , sB , identified flaws f1, · · · , fB and revi-
sions r1, · · · , rB , we utilize the LLM to revise Xi

and obtain an improved plan Xi+1,

Xi+1 = M(Xi ⊕ (P1, s1, f1, r1)⊕ · · ·
⊕(PB, sB, fB, rB)⊕ Upd-prompt)

(9)

where Upd-prompt (as shown in Table 2) asks the
LLM to generate an updated plan given the task
instances and reflections.

In the example of Figure 2, the plan updater
aggregates the task instances with their reflections
and rewrites the new plan to use the microwave to
heat the target objects instead.

After obtaining a revised plan Xi+1, we continue
the iterative process until we reach maximum opti-
mization iterations I . During inference, we follow
the same procedure as experience collection except
that now we use the final optimized plan XI .

To summarize, AutoPlan uses LLM to solve
a text-based interactive decision-making task
through a task plan described in natural language.
The plan is optimized iteratively through a three-
stage process. The final plan is then used during
inference time.

4 Experiment

We aim to answer the following questions:
1) Does AutoPlan improve upon baselines?
2) Is AutoPlan efficient during inference?
3) Does batching stabilize the optimization?
4) Does trio reflection ensure steady progression?

4.1 Data

ALFWorld is a text-based game enabling agents
to navigate and interact with a simulated household
to accomplish six types of tasks. Each task instance
comes with a high-level objective (e.g., put a hot
tomato on the desk), and the agent can achieve
the objective through low-level actions described
in text (e.g., heat tomato 1 with microwave 2, go
to desk 1). Since the environment feedback of
invalid actions provided in the original ALFWorld
is too primitive, we manually augment the feedback
(Table 6) to include possible causes of the invalidity.
Further details of ALFWorld can be found in the
Appendix B.1.

We randomly sample 24 task instances for each
type of task from the training games to opti-
mize the task-specific plan and, following prior
works (Shridhar et al., 2021; Yao et al., 2023),
use 134 unseen validation games1 to evaluate our
method. ALFWorld evaluates the success/failure
of a task instance by checking if the agent is in the
goal state (e.g. if the hot mug is already on the
desk).

HotpotQA is a multi-hop question answering
benchmark requiring reasoning over two or more

1Unseen games have the same task types but different
objects, receptacles and household layout.



Method Success Rate
Pick Light Clean Heat Cool Pick Two

Supervised method

BUTLER 46 22 39 74 100 24

Prompt methods w/ ground-truth demonstrations

AdaPlanner (1 Shot) † 100 100 97 96 100 47
ReAct (2 Shot) 100 100 100 91 96 76
Reflexion (2 Shot) 100 100 100 91 100 94

Prompt methods w/o ground-truth demonstrations

AdaPlanner (0 Shot) 0 0 0 0 0 0
ReAct (0 Shot) 92 94 87 35 71 59
Reflexion (0 Shot) 96 100 97 52 81 88
AutoPlan 100 100 97 96 90 82

(a) ALFWorld

Method Acc

Supervised Method

Chain-of-Skills 90

Prompt Methods

ReAct (0 Shot) 70
ReAct (6 Shot) 75
AutoPlan 83

(b) HotpotQA

Table 3: Accuracy and Success rate (%) of AutoPlan and baselines on HotpotQA and ALFWorld, respectively.
AutoPlan consistently outperforms the 0-shot baseline, achieves on-par success rates with baselines leveraging
ground-truth demonstrations on ALFWorld, and even beats the 2-shot ICL baseline on HotpotQA by 8%. † Results
of AdaPlanner are from the original paper since the author does not provide enough details for reproduction.

Wikipedia pages. As in (Yao et al., 2023), the LLM
agent is required to answer questions by interact-
ing with a Wikipedia API. The API supports three
types of actions: (1) search[entity]: returns the first
five sentences from the Wikipedia page of the en-
tity if it exists or suggests top-5 similar entities2.
(2) lookup[string]: returns the following sentence
containing string. (3) finish[answer]: finishes the
task with an answer.

We randomly sample 50 hard (question, answer,
supporting facts) triples from the official training
set to optimize the plan and sample 200 questions
from the official development set as the test set3.
The final answer is evaluated by three external hu-
man annotators rather than exact-match (EM) since
the answer provided by the agent and the gold an-
swer can differ drastically in form but share the
same meaning. We include the complete annota-
tion instruction in the Appendix B.2 and take the
majority vote of 3 annotators as the final evaluation
result. The agreement rate (all three annotators
agree with each other) is above 90% for all consid-
ered models.

2We notice that this API retrieves the latest information
instead of the Wikipedia dump (2017-10-01) used to build
HotpotQA dataset, so we modify it to return the historical
page of entities before 2017-10-01.

3200 is a trade-off between our budget and evaluation
uncertainty.

4.2 Method Configurations

We use GPT-4-0314 (OpenAI, 2023) as the LLM
across all experiments. The maximum number of
actions is 10 for HotpotQA and 35 for ALFWorld.
The default batch size of task instances is 4 for both
HotpotQA and ALFWorld. We use nucleus sam-
pling with p = 0.9 during optimization and greedy
decoding during evaluation. The full prompt tem-
plates of both environments can be found in the
Appendix A.2.

4.3 Baselines

We compare with the following baselines.
• ReAct (K Shot): The custom prompt X consists

of K demonstrations manually written by human.
We reuse the demonstrations provided in (Yao
et al., 2023). We have K = 6 for HotpotQA and
K = 2 for ALFWorld.

• Reflexion (K Shot): Built on top of ReAct, Re-
flexion conducts iterative test-time reflection for
each environment, using the interaction history
to revise the actions in the following iterations.
We set the number of iterations to be five and use
the same custom prompt as in ReAct.

• AdaPlanner (Sun et al., 2023) (K Shot): Ada-
Planner also proposes to optimize the plan with
LLM but using a code-style custom prompt,
which is more rigorous but also more restric-



tive than AutoPlan. Note that AdaPlanner still
requires human-written demonstrations to initial-
ize the plan.

• Supervised Baseline: For HotpotQA, we select
the best available supervised method Chain-of-
Skills (Ma et al., 2023) from the leaderboard of
fullwiki setting. For ALFWorld, we choose BUT-
LER (Shridhar et al., 2021), an imitation learning
agent trained with 105 human demonstrations for
each task type.

4.4 Main Results

Success Rates The success rate and accuracy
of AutoPlan and baselines in ALFWorld and Hot-
potQA are shown in Table 3 respectively. In ALF-
World, AutoPlan achieves on-par success rates with
ReAct (2 Shot), AdaPlanner (1 Shot), and Reflex-
ion (2 Shot) on all six types of tasks and outper-
forms zero-shot baselines by at most 44% on Heat
task. Notably, AutoPlan accomplishes the first four
tasks nearly perfectly with success rates approach-
ing 100% and success rates above 90% and 80%
for the latter two. In HotpotQA, AutoPlan answers
questions even 8% more accurately than ReAct (6
Shot) with human-written demonstrations of how
to use the search tool, thanks to the optimized plan.

Error Analysis Of 137 ALFWorld test instances,
AutoPlan fails seven due to the inability to locate
the target object. One failure stems from a lexical
misunderstanding where the LLM confuses a “cup”
with a “mug”. Another results from an atypical ob-
ject location, with the apple to be heated found in a
garbage can. The remaining five failures occur due
to the LLM’s erroneous prior assumptions about po-
tential object locations, even though the plan points
the model towards the most probable ones. Once
the agent locates the task instance’s target object(s),
it performs all subsequent actions correctly. We
observe similar failure patterns in cases of ReAct
(2 Shot). With neither the optimized plan nor in-
context demonstrations, ReAct (0 Shot) struggles to
find the correct action sequence to clean/cool/heat
the object even if it finds the target object(s).

In HotpotQA, AutoPlan achieves better logical
consistency than ReAct (0/6 Shot) thanks to the
step-by-step plan. ReAct (6 Shot) performs well
when only a few actions are needed but can diverge
to unreasonable thought and action processes when
the number of actions is considerable. One primary
reason is that the demonstrations used in ReAct
(6 Shot) involve no more than five actions, which
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Figure 3: The success rate of AutoPlan on task Heat of
ALFWorld optimized (a) with different batch sizes and
(b) with/without complete reflection process. We plot
the mean (marked line) and standard deviation (band) of
five independent runs. A larger batch size significantly
improves the success rate on average and reduces the
variance. The reflection process in AutoPlan ensures
the steady improvement over iterations.

again shows that the ICL method is sensitive to the
quality of demonstrations.

Training and Inference Cost We measure the
training and inference cost of AutoPlan and base-
lines per instance in Table 4. The cost is calculated
based on the official documentation4. AutoPlan
requires only marginal additional cost compared to
ReAct (0 Shot) while achieving the best result on
ALFWorld and HotpotQA.

4.5 Ablation Study

The plan optimization process of AutoPlan can
be precarious due to sampling-based decoding.
To tackle this, AutoPlan batches multiple task in-
stances together in one iteration to stabilize the op-
timization and applies an explicit 3-step reflection
to elicit helpful information from the interaction

4https://openai.com/pricing

https://openai.com/pricing


Method Training Inference

ReAct (2 Shot) N/A 3
Reflexion (2 Shot) N/A 17
AdaPlanner (1 Shot) N/A 2.1
AutoPlan 1.8 1.6

(a) ALFWorld

Method Training Inference

ReAct (0 Shot) N/A 0.15
ReAct (6 Shot) N/A 0.46
AutoPlan 0.26 0.23

(b) HotpotQA

Table 4: Average cost (unit: US Dollar) per question used by methods in ALFWorld and HotpotQA environments.
Cost is calculated based on the OpenAI pricing document.

Original Plan Experiences (bsz 2)

Instance 0:  Go to toaster 
1. Tried to heat egg 1 but 
failed.

New Plan 

Instance 1:  Go to toaster 
1. Tried to heat bread 1 but 
failed.

Instance 0

Instance 2:  Go to microwave 
1. Heat bowl 2 with the 
microwave successfully.

Instance 3:  Go to microwave 
2. Heat apple 1 with the 
microwave successfully.

Experiences (bsz 4)

Instance 1
1. Search for the object and 

receptacle needed for the job. 
2. If the object is found, take it 

from the receptacle.
3. If the object needs to be heated, 

go to the microwave.
4. Heat the object with the heating 

appliance.
5. Go to the target receptacle.
6. Place the heated object in/on the 

target receptacle.

1. Search for the object and 
receptacle needed for the job. 

2. If the object is found, take it 
from the receptacle.

3. If the object needs to be heated, 
go to the heating appliance such 
as toaster.

4. Heat the object with the heating 
appliance.

5. Go to the target receptacle.
6. Place the heated object in/on the 

target receptacle.

Original Plan
1. Search for the object and 

receptacle needed for the job. 
2. If the object is found, take it 

from the receptacle.
3. If the object needs to be heated, 

go to the heating appliance such 
as stoveburner.

4. Heat the object with the heating 
appliance.

5. Go to the target receptacle.
6. Place the heated object in/on the 

target receptacle.

Figure 4: An illustration of the impact of batch size on the plan update. The agent with batch size two only tried
the toaster to heat the object, but with batch size four, the agent also tried the microwave, the only allowed heating
appliance in this task—the larger the batch size, the more chance the agent can find the correct action sequence.

history. Here, we demonstrate the effectiveness
of batching and reflection on task Heat of ALF-
World as this is the task that AutoPlan achieves
the largest improvement against the baseline ReAct
(0 Shot) with no plan. We first run AutoPlan five
times with both batch sizes 2, 4, and 8, and then
run five times with and without the last two steps of
reflection (flaw identification and revision)5. Then,
we measure the mean and standard deviation of test
success rates of plans produced in the first three
iterations.

Larger batch size significantly stabilizes the op-
timization process. As shown in Figure 3a, a
larger batch size improves the average success rate
and reduces the standard deviation during optimiza-
tion. We also conducted a t-test comparing batch
size 2 and 8 results, and the p-value is no more
than 0.110 for all iterations (see Table 5). Carefully
examining the interaction histories, we find that
with a larger batch size, the agent is more likely to
hit the right action during the experience collection
stage. As illustrated in Figure 4, the agent with
batch size 2 only tried the toaster to heat the object,
but with batch size 4, the agent also tried the mi-
crowave, the only correct heating appliance for this
task.

5We keep the summary step of reflection since the plan
update is meaningless without the interaction summary.

Reflection ensures the optimization goes in the
right direction. As shown in Figure 3b, Auto-
Plan with the complete reflection obtains steady im-
provements after each iteration, while the success
rate of AutoPlan with only the interaction summary
bounces back and forth between 0% and 30%, even
below the success rate of ReAct (0 Shot). Again
we can visualize such a difference in Figure 5. The
agent went to the microwave and tried to heat the
object but failed because of the wrong action se-
quence (the correct action sequence can be found
in Table 8). AutoPlan with complete reflection ex-
plicitly identifies such flawed behavior from the
observation and proposes a revision, which is later
integrated into the new plan. However, AutoPlan
without flaw identification and revision does not
realize the valid reason for failure and leads to un-
desired plan updates.

5 Conclusion

We propose AutoPlan, a prompt-based method, to
enable LLM to solve interactive decision-making
tasks without gradient computation or in-context
demonstrations. AutoPlan conditions LLM on an
additional task plan described in natural language,
which is obtained through an iterative three-stage
process. Experiments show that AutoPlan achieves
better results than baselines and is also efficient dur-
ing inference. The ablation study further confirms
the effectiveness of batching and explicit reflection



Original Plan Summary Only New Plan New Plan Full Reflection

Summary: Found bread 1 on 
countertop 1. Take it and go to 
the microwave 1. Found an egg 
inside. Place the bread inside, 
close the microwave. But failed 
to heat the bread.

Summary

Flaws: Need to carry the bread 
to heat it with microwave in 
this game instead of putting it 
inside the microwave.

Revision: Directly heat the 
microwave without placing the 
object inside.

1. Search for the object and 
receptacle needed for the job. 

2. If the object is found, take it 
from the receptacle.

3. go to the microwave.
4. Heat the object with the heating 

appliance directly.
5. Go to the target receptacle.
6. Place the heated object in/on the 

target receptacle.

1. Search for the object and 
receptacle needed for the job. 

2. If the object is found, take it 
from the receptacle.

3. go to the microwave.
4. If the microwave is occupied by 

other objects, take them out.
5. Put the object inside. Heat the 

object with the heating appliance. 
Take it out.

6. Go to the target receptacle.
7. Place the heated object in/on the 

target receptacle.

1. Search for the object and 
receptacle needed for the job. 

2. If the object is found, take it 
from the receptacle.

3. go to the microwave.
4. Put the object inside. Heat the 

object with the heating appliance. 
Take it out.

5. Go to the target receptacle.
6. Place the heated object in/on the 

target receptacle.

Figure 5: An illustration of the impact of reflection on the plan update. With only a summary of interactions, the
plan updater needs to guess the cause of failure. Eventually it leads to the wrong thought that the objects inside
the microwave need to move before heating. With flaw identification and suggested revision, the plan updater
understands the flawed part of the plan and rewrites the plan to heat the object directly.

in stabilizing the plan optimization process.

Limitation

The improvements of AutoPlan mainly come from
two sources: 1) the correct action sequence sam-
pled during exploration; 2) the environment feed-
back when incorrect actions are sampled by the
LLM agent. As shown in Table 6, the feedback
directly tells the agent which aspect of the action
is invalid. Without such fine-grained feedback, the
agent needs to collect more experience, i.e., larger
batch size, to make sure the correct action sequence
is sampled with high probability.

Another limitation is that in order to make Au-
toPlan works without any demonstration, we rely
on GPT-4-0314 to generate action sequences, re-
flect on the interactions, and update the plan. We
tried to use GPT-3.5-turbo-0301, but find out 1) it
fails to follow the plan faithfully even explicitly
prompted to do so; 2) it generates too many halluci-
nated contents about the environment, which could
(possibly) be handled by better prompt design, but
that requires excessive human effort, contradicting
the goal of AutoPlan to reduce human effort as
much as possible. It is worth trying other state-of-
the-art LLMs such as Claude6 to see which one
also works.

Ethics Statement

While AutoPlan is capable of functioning solely
with task descriptions and observations, it is imper-
ative to exercise caution while using it in high-
stakes circumstances, given the inherent unpre-
dictability of LLMs. Furthermore, we earnestly
recommend that users carefully assess if the ob-
jectives could inadvertently cause harm to others
before putting AutoPlan into action.

6https://www.anthropic.com/index/introducing-claude
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A Detailed Implementation of AutoPlan

A.1 Formalizer
The formalizer is again a LLM call with specially
designed prompt as shown in Figure 6.

A.2 Full Prompt of AutoPlan
Full prompts of ALFWorld and HotpotQA are
shown in Figure 7 (experience collection and re-
flection) and Figure 8 (plan update).
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Iter 1 Iter 2 Iter 3

p-value (2 & 4) 0.44 0.35 0.013
p-value (2 & 8) 0.007 0.110 0.005

Table 5: P-values of t-test between results of batch size
2 & 4 and 2 & 8. Batch size 8 delivers significantly
higher success rates than batch size 2.

A.3 Feedback
The examples of augmented feedback of ALF-
World are shown in Table 6. We do not add ad-
ditional feedback for HotpotQA upon the original
one designed in ReAct (Yao et al., 2023).

B Additional Details in Experiments

B.1 Environments
The task types and templates of task objectives
of ALFWorld are listed in Table 7. The allowed
actions can be found in Figure 7. The correct action
sequences for each task can be found in Table 8.

B.2 Human Evaluation
We invite three external human annotators to con-
duct human evaluation on HotpotQA. Instructions
for human annotators are shown in Figure 9. We
take the majority votes from human annotators as
accuracy and also compute the agreement among
three annotators.

B.3 Significant Test
We conduct t-test between success rates of plans
generated by batch size 2, 4 and 8 at each iteration.
The p-values are shown in Table 5.



Valid action formats are as follows:
go to "recep"
take "object" from "recep"
put "object" in/on "recep"
open "recep"
close "recep"
use "recep"
clean "object" with "recep"
heat "object" with "recep"
cool "object" with "recep”

The "object" and "recep" should be replaced with real 
names and indices, e.g., "apple 1" and "desk 1".

Formalize the following action strictly into the 
above valid action formats. If there are multiple 
actions, formalize the first one.

Action to formalize: {raw_action}
Formalized action: {formalized_action}

(a) ALFWorld

Valid action formats are as follows:
search[entity]
lookup[keyword]
finish[answer]

Formalize the following action strictly into the 
above valid action formats. If there are multiple 
actions, formalize the first one.

Action to formalize: {raw_action}
Formalized action: {formalized_action}

(b) HotpotQA

Figure 6: The prompts of formalizer for (a) ALFWorld and (b) HotpotQA. With input raw action, the LLM generates
the formalized action.

Error Type Example Action Augmented Feedback

Missing Index take tomato from countertop 1 You miss the index of tomato, e.g., tomato 1.

Wrong Location take tomato 1 from countertop 1 You are not at countertop 1.

Invalid Receptacle take tomato 1 from countertop 1 countertop 1 is not a valid action in this household.

Closed Receptacle take tomato 1 from cabinet 1 cabinet 1 is closed.

Inventory Limit take tomato 1 from cabinet 1 You cannot hold more than one object.

Not In Inventory put tomato 1 in/on cabinet 1 You are not carrying tomato 1.

Not In Inventory put tomato 1 in/on cabinet 1 You are not carrying tomato 1.

Invalid Heating Appliance heat tomato 1 with toaster 1 toaster cannot be used for heating.

Table 6: Examples of fine-grained feedback with respect to various erroneous actions.

Task Type Templates

Pick
put a obj in recep.
put some obj on recep.

Light
look at obj under the desklamp.
examine the obj with the desklamp.

Clean
put a clean obj in recep.
clean some obj and put it in recep.

Heat
put a hot obj in recep.
heat some obj and put it in recep.

Cool
put a cool obj in recep.
cool some obj and put it in recep.

Pick Two
put two obj in recep.
find two obj and put them in recep.

Table 7: Six task types of ALFWorld and their objective templates.



Game Description:
You need to interact with a simulated household to solve a 
job. The simulated house has many objects and receptacles. 
Valid Actions on the objects and receptacles are as follows:
(1) go to recep
(2) take object from recep: take object from some receptacle 
and carry it with you
(3) put object in/on recep: put the object you are carrying 
in/on some receptacle
(4) open recep: open some closed receptacle
(5) close recep: close some open receptacle
(6) use recep: use some receptacle
(7) clean object with recep
(8) heat object with recep
(9) cool object with recep
You job is to heat some object and put it in/on some 
receptacle.

Game Objective: You need to put a hot potato in fridge.

Game Plan:
1. Go to the most likely location of the object
2. Open the receptacle if necessary
3. If the object is not found, continue searching other 

locations
4. If the object is found, take the object from the 

receptacle
5. Go to the toaster
6. Heat the object with the toaster
7. Go to the target receptacle
8. Put the object in/on the receptacle

Game Starts. You are in the middle of a room. Looking around 
you, you see a countertop 1, microwave 1, toaster 1, 
sidetable 1, and a sidetable 2.

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful to 
the plan step.
> I am currently at step 1. I should check sidetable for the 
bowl.

Action:
> go to sidetable 1
Observation: On the countertop 1, you see a bowl 1.
Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful to 
the plan step.
> I am currently as step 2. I need to take the bowl from the 
sidetable.

Action:
> take bowl 1 from sidetable 1.
Observation: You pick up bowl 1.

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful to 
the plan step.
> I am currently at step 3. I should go to the toaster.
Action:
> go to toaster 1
Observation: On the toaster 1, you see nothing.

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful to 
the plan step.
> I am currently at step 4. I need to heat the bowl with the 
toaster.

Action:
> heat bowl 1 with toaster 1
Observation: Action failed. Toaster cannot heat bowl.

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful to 
the plan step.
> It seems toaster is not working. I need to check the 
microwave instead.

Action:
> go to microwave 1
Observation: The microwave 1 is open. In it, you see nothing.

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful to 
the plan step.
> I’ll try using microwave to heat the object.
Action:
> heat bowl 1 with microwave 1
Observation: You heat bowl 1 with microwave 1.

Maximum number of actions reached. Task fails. 
Summarize the interaction history in steps.
> I found the bowl 1 on sidetable 1. I tried to heat it with 
the toaster 1 but failed. I finally heat it with microwave 
1 but failed the task by exceeding the maximum allowed 
number of actions.

Identify the flawed part of the plan/action. Remember in this 
game things are not like real world. The system message is 
always correct and the game plan/action may have flaws.
> As the observation said, I need to heat the bowl with 
microwave instead of toaster in this task.

Suggest revision to the current flawed part of the plan. Only 
the flawed part.
> change “toaster” in step 5-6 into “microwave”

ALFWorld: Experience Collection and Reflection

Task Description:
Solve a question answering task with interleaving Thought, 
Action, Observation steps. Thought can reason about the 
current situation, and Action can be of three types: 
(1) search[entity], which searches the exact entity on 
Wikipedia and returns the first paragraph if it exists. If 
not, it will return some similar entities to search.
(2) lookup[keyword], which returns the next sentence 
containing keyword in the current passage.
(3) finish[answer], which returns the answer and finishes 
the task. Call finish[] if the answer is not found.

Question: Maurice Hines and his brother were famous for 
what?

Task Plan:
1. Identify the main keywords of entities.
2. Search for the main entity of keyword on Wikipedia using
search[entity]. 
3. Look for the next sentence containing the keyword in the 
current Wikipedia page.
4. Repeat step 2 and 3 as necessary until the answer is 
found.
5. Finish the task with finish[answer].

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful 
to the plan step.
> I am currently at step 1. The entity is “Maurice Hines”. 
According to step 2, I need to search for the entity 
using search[entity].

Action:
> search[Maurice Hines]
Observation: Maurice Hines (born December 13, 1943) is an 
American actor, director, singer, and choreographer.[1]. He 
is the brother of dancer Gregory Hines. ... Hines began his 
career at the age of five, studying tap dance at the Henry 
LeTang Dance Studio in Manhattan.[3]. ... Shortly after, 
the brothers began touring as the opening act for such 
headliners as Lionel Hampton and Gypsy Rose Lee.

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful 
to the plan step.

> I am currently at step 3. I need to look for the keyword 
“tap dancer” as shown in the return of search query.

Action:
> lookup[tap dance]
Observation: (Result 1 / 1) Hines was born in 1943 in New 
York City, the son of Alma Iola (Lawless) and Maurice 
Robert Hines, a dancer, musician, and actor.[2] Hines began 
his career at the age of five, studying tap dance at the 
Henry LeTang Dance Studio in Manhattan.[3] ... Maurice made 
his Broadway debut in The Girl in Pink Tights in 1954.[4].

Identify which step of plan you are at. Show your thought 
about the one next action. Your thought should be faithful 
to the plan step.
> I am now at step 5 since the answer “tap dancing” is 
found.

Action:
> finish[Maurice Hines and his brother were famous for tap 
dancing.]

Task finished. The ground truth answer is "dancer Gregory 
Hines" and the correct entities to search are "Hot Feet" 
and "Maurice Hines". Summarize the interaction history 
concisely.
> I searched for "Maurice Hines" on Wikipedia and found 
information about him and his brother Gregory Hines. I 
then looked up the keyword "tap dance" and found that 
both Maurice and Gregory Hines were famous for tap 
dancing. The answer provided was that Maurice Hines and 
his brother Gregory Hines were famous for tap dancing.

Identify all flawed parts of the plan (not flawed action).
> Step 3 does not account for the possibility that the 
answer might already be present in the first paragraph 
returned by the search[] action. In such cases, the 
lookup[] action might not be necessary, and the assistant 
can directly proceed to step 5 to provide the answer.

Suggest revision to the current flawed part of the plan. 
Only the flawed part.
> Step 3. If the answer is not found in the first paragraph 
returned by search[entity], use lookup[keyword] to look 
for the next sentence containing the keyword in the 
current Wikipedia page opened by search[entity].

HotpotQA: Experience Collection and Reflection

Figure 7: Full prompts of experience collection and reflection of ALFWorld and HotpotQA. LLM outputs are
preceded with ’>’.



Game Description:
You need to interact with a simulated household to solve a job. The simulated house 
has many objects and receptacles. Valid Actions on the objects and receptacles are 
as follows:
(1) go to recep
(2) take object from recep: take object from some receptacle and carry it with you
(3) put object in/on recep: put the object you are carrying in/on some receptacle
(4) open recep: open some closed receptacle
(5) close recep: close some open receptacle
(6) use recep: use some receptacle
(7) clean object with recep
(8) heat object with recep
(9) cool object with recep
You job is to heat some object and put it in/on some receptacle.

Current Game Plan:
1. Go to the most likely location of the object
2. Open the receptacle if necessary
3. If the object is not found, continue searching other locations
4. If the object is found, take the object from the receptacle
5. Go to the toaster
6. Heat the object with the toaster
7. Go to the target receptacle
8. Put the object in/on the receptacle

Game Objective 1: You need to put a hot potato in fridge.
Summary 1: I found the bowl 1 on sidetable 1. I tried to heat it with the toaster 1 
but failed. I finally heat it with microwave 1 but failed the task by exceeding the 
maximum number of actions.
Flaws 1: As the observation said, I need to heat the bowl with microwave instead of 
toaster in this task.
Revision 1: change “toaster” in step 5-6 into “microwave”

Based on the above experiences of the game, rewrite the current game plan. Pay more 
attention to summary of successful jobs, and flawed actions and suggested revision 
of failed jobs. The plan should not be specific to one game objective but 
generalizable to all objectives. The actions in the plan should also be in the form 
as in game description. 

> New Game Plan:
1. Go to the most likely location of the object
2. Open the receptacle if necessary
3. If the object is not found, continue searching other locations
4. If the object is found, take the object from the receptacle
5. Go to the toaster
6. Heat the object with the toaster
7. Go to the target receptacle
8. Put the object in/on the receptacle

ALFWorld: Plan Update

Task Description:
Solve a question answering task with interleaving Thought, Action, Observation steps. 
Thought can reason about the current situation, and Action can be of three types: 
(1) search[entity], which searches the exact entity on Wikipedia and returns the 
first paragraph if it exists. If not, it will return some similar entities to search.
(2) lookup[keyword], which returns the next sentence containing keyword in the 
current passage.
(3) finish[answer], which returns the answer and finishes the task. Call finish[] if 
the answer is not found.

Current Task Plan:
1. Identify the main keywords of entities.
2. Search for the main entity of keyword on Wikipedia using search[entity]. 
3. Look for the next sentence containing the keyword in the current Wikipedia page.
4. Repeat step 2 and 3 as necessary until the answer is found.
5. Finish the task with finish[answer].

Question 1: Maurice Hines and his brother were famous for what? 
Summary 1: I searched for "Maurice Hines" on Wikipedia and found information about 
him and his brother Gregory Hines. I then looked up the keyword "tap dance" and found 
that both Maurice and Gregory Hines were famous for tap dancing. The answer provided 
was that Maurice Hines and his brother Gregory Hines were famous for tap dancing.
Flaws 1: Step 3 does not account for the possibility that the answer might already be 
present in the first paragraph returned by the search[] action. In such cases, the 
lookup[] action might not be necessary, and the assistant can directly proceed to 
step 5 to provide the answer.
Revision 1: Step 3. If the answer is not found in the first paragraph returned by 
search[entity], use lookup[keyword] to look for the next sentence containing the 
keyword in the current Wikipedia page opened by search[entity].

Based on the above experiences of the task, rewrite the current task plan. Pay more 
attention to summary of successful questions, and flawed actions and suggested 
revision of failed questions. The plan should not be specific to one question but 
generalizable to all questions. The actions in the plan should also be in the form as 
in task description. 

> New Task Plan:
1. Identify the main keywords of entities.
2. Search for the main entity of keyword on Wikipedia using search[entity]. 
3. If the answer is not found in the first paragraph returned by search[entity], Look 
for the next sentence containing the keyword in the current Wikipedia page.
4. Repeat step 2 and 3 as necessary until the answer is found.
5. Finish the task with finish[answer].

HotpotQA: Plan Update

Figure 8: Full prompts of plan update of ALFWorld and HotpotQA. LLM outputs are preceded with ’>’.

Task Type Correct Action Sequence

Pick go to the receptacle with target object; pick it up; go to the target receptacle; put it down.

Light go to the receptacle with target object; pick it up; go to the receptacle with a desklamp;
use the desklamp.

Clean go to the receptacle with target object; pick it up; go to a sinkbasin; clean the object with
the sinkbasin; go to the target receptacle; put it down.

Heat go to the receptacle with target object; pick it up; go to a microwave; heat the object with
the microwave; go to the target receptacle; put it down.

Cool go to the receptacle with target object; pick it up; go to a fridge; cool the object with the
fridge; go to the target receptacle; put it down.

Pick Two go to the receptacle with the first target object; pick it up; go to the target receptacle; put
it down; go to the receptacle with the second target object; pick it up; go to the target
receptacle; put it down.

Table 8: Correct action sequences for each type of task in ALFWorld.



Annotation Instructions
Objective
The primary objective is to evaluate the quality of predicted answers generated by an automated method against the ground-truth answers for a set of 200 data points from the 
HotpotQA dataset. Each data point consists of a question, its corresponding ground-truth answer, supporting facts, and a predicted answer.

Workflow
1. Review Data Point: Examine the components of the data point (question, ground-truth answer, supporting facts, and predicted answer).

2. Check Accuracy: Determine whether the predicted answer correctly addresses the question, considering the ground-truth answer and supporting facts.

3. Check Consistency: Verify if the predicted answer is consistent with the supporting facts.

4. Tagging: Use the annotation tool to tag the predicted answer as either 'Correct' or 'Incorrect', and add comments for clarification, if necessary.

Guidelines

Review Data Point
Thoroughly read all the components (question, ground-truth answer, supporting facts, and predicted answer) before making any evaluations.

Check Accuracy
The predicted answer should directly answer the question posed.

Compare the predicted answer to the ground-truth answer. If they match or are synonymous, the predicted answer is 'Correct'.

If the predicted answer is partially correct but missing vital information, mark it as 'Incorrect' and note what is missing in the comments.

Check Consistency
The predicted answer must align with the supporting facts provided. If the answer goes beyond or contradicts these facts, mark it as 'Incorrect'.

Inconsistencies can include incorrect names, dates, events, or any information that deviates from the supporting facts.

Tagging
Use the provided tagging system in the annotation tool to categorize the predicted answer as 'Correct' or 'Incorrect'.

If the predicted answer is incorrect, make use of the comment section to briefly clarify what specifically is incorrect about it (e.g., "The date is wrong," "The answer is 
incomplete," etc.)

Examples

Data Point Example
Question: Who delivered the 'I Have a Dream' speech?

Ground-Truth Answer: Martin Luther King Jr.

Supporting Facts: In 1963, Martin Luther King Jr. delivered his famous 'I Have a Dream' speech in Washington D.C.

Predicted Answer: Martin Luther King Jr.

Correct Annotation
Tagging: 'Correct'

 

Figure 9: Instruction for human annotators to conduct human evaluation on model predictions on HotpotQA.


