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Invariant Graph Learning for Treatment Effect Estimation from
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ABSTRACT
Treatment effect estimation from networked observational data en-

counters notable challenges, primarily hidden confounders arising

from network structure, or spillover effects that influence unit’s out-

comes based on neighboring treatment assignments. Existing graph

neural network (GNN)-based methods have endeavored to address

these challenges, utilizing the GNN’s message-passing mechanism

to capture hidden confounders or model spillover effects. However,

they mainly focus on transductive treatment effect learning on a sin-

gle networked data, limiting their efficacy in inductive settings for

real-world applications where networked data often originates from

multiple environments influenced by potentially varying time or

geographical regions. In light of this, we introduce the principle of

invariance to the task of treatment effect estimation on networked

data, culminating in our Invariant Graph Learning (IGL) framework.

Specifically, it first generates multiple networked data to simulate

diverse environments from a given observational data. Then it

further encourages the model to learn environment-invariant rep-

resentations for confounders and spillover effects. Such a design

enables the model to extrapolate beyond a single observed envi-

ronment, thereby improving the performance of treatment effect

estimation in potential new environments. Upon extensive exper-

iments on two real-world datasets, our IGL model demonstrates

superior performance compared to state-of-the-art methods.

KEYWORDS
Networked Data, Spillover Effect, Invariant Learning

1 INTRODUCTION
Investigating treatment effects from networked observational data

has garnered extensive attention in recent years, due to its potential

applications across a wide range of fields including social networks

[36, 37], online advertising [44], and financial transactions [4, 14].

While randomized controlled trials (RCTs) remain the gold standard

for deriving treatment effects from networked observational data

[15, 57], they are often prohibitively expensive, time-consuming,

and fraught with ethical complications. Consequently, there is a

growing necessity to explore methods for learning treatment effects

from networked observational data.
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Estimating treatment effects from networked observational data

poses unique challenges compared to traditional independent data

due to the following two primary reasons:

● Presence of interconnected units.The interconnected units of-
ten lead to two main issues, i.e., hidden confounders and spillover
effects. Firstly, networked structures frequently contain hid-

den confounders [11, 16–18]. When estimating treatment ef-

fects from networked observational data, it’s crucial to consider

these biases. A plethora of treatment effect estimation efforts

[2, 21, 27, 41, 50, 54, 55] relies on the strong ignorability as-

sumption, which asserts that all confounders are measurable and

present within the observed covariates. However, networked

data’s inherent homogeneity [35] often causes similar units to

be interconnected. Consequently, this can introduce hidden con-

founders that are not apparent within a unit’s observable co-

variates, making the strong ignorability assumption frequently

unfeasible. Secondly, the spillover effect is also termed interfer-

ence [6, 23, 28] or peer effect [24]. It will cause the traditional

Stable Unit Treatment Value Assumption (SUTVA) [40] to be

invalid. Within networked data, interconnected units imply that

a unit’s outcome can be swayed by its treatment and by the

treatment status of its neighbors. For example, an individual’s

likelihood of contracting COVID-19 can be heavily influenced

by the vaccination status of their immediate contacts.

● Limitations with observational networked data. In many

practical situations, researchers can access only a limited amount

of observational networked data. Moreover, the networked data

intended for prediction might differ from the observed set due to

reasons like unknown geographic locations or varied collection

times. An illustrative example would be gauging an individual’s

risk of contracting COVID-19 across diverse regions or nations

[19, 58]. Consequently, it becomes challenging to learn from

observational data and predict treatment effects on unknown

or unobserved networked data. This paradigm is commonly re-

ferred to as inductive learning [20] or the “out-of-sample” pre-

diction task [41]. Hence, transferring estimators from observed

networked data to new data becomes a daunting task, primarily

because of the structural variances in different networked data.

To derive treatment effects from networked data, current stud-

ies primarily focus on two main aspects: discerning hidden con-

founders and architecting models to capture spillover effects. A

popular strategy, as highlighted by [18], is to harness the message-

passing mechanism of graph neural network (GNN) models [20,

25, 48, 53]. Such mechanisms are tailored to encapsulate concealed

information within the network structure. More recent endeavors

[33] have expanded their focus to tackle unique challenges, encom-

passing optimization dilemmas [16] or structural disparities [11]

inherent in networked data. For modeling spillover effects, recent

studies [24, 33, 34] have integrated the treatment status of neighbor-

ing nodes as prior information. Together with individual covariates,
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Figure 1: Performance of treatment effect estimation based on GNN architecture [25, 33] under two metrics (⌋︂𝜖𝑃𝐸𝐻𝐸 and 𝜖𝐴𝑇𝐸 ).
(a) Comparison of statistical graph structure properties of different graph data in the Twitch-explicit dataset, including DE, ES,
FR, PTBR, RU, and TW domains. (b) “In domain” refers to learning and evaluation on the same graph data, and “Out domain”
refers to learning on DE graph data and evaluation on other graph data.

this information serves as input for the GNNmodels. It will account

for the impact of neighbor treatment assignments on each outcome.

Yet, while these techniques have demonstrated efficacy in certain

contexts, their applicability tends to be restricted to single-domain

graph data. For example, primary applications have been in trans-

ductive learning, either within an undivided graph [11, 16, 18, 33]

or by segmenting a single graph into discrete subgraphs [24] for

distinct learning and evaluation. Notably, when learning and evalu-

ation data come from an identical domain, they inherently possess

comparable network topologies and follow the same structural

distribution. However, a practical challenge emerges when the

evaluation data originates from a disparate domain, potentially

leading to structural distribution shifts. As illustrated in Figure 1,

networked data from different domains exhibit obvious structural

distribution shifts. Although estimators demonstrate commend-

able performance in learning treatment effects within the given

domain, their efficacy tends to diminish in inductive predictions

across diverse unseen domains.

A close examination of prevailing methods reveals key limita-

tions. They heavily rely on GNNs to encode network structure

information, targeting the capture of confounders, or assimilating

neighboring treatments through the message-passing mechanism

to learn spillover effects. However, by indiscriminately fitting the

observed outcomes in the given networked data, these methods

become overly reliant on specific structural information. Conse-

quently, when faced with a structural distribution shift inherent

to data from diverse domains, their adaptability falters, leading

to a pronounced decline in performance. A logical remedy would

involve enabling the model to discern invariant confounders and

spillover effects across varied environments. It can ensure the trans-

ferability of the treatment effect estimation to alternate domains.

In this paper, we argue that the focus of learning treatment

effects should pivot toward capturing these invariant characteris-

tics. To this end, we introduce the Invariant Graph Learning (IGL)

framework. Its design intent is to cultivate models that can adeptly

estimate treatment effects from networked observational data while

preserving cross-domain generalizability. At its core, we employ

multiple environment generators, crafting a diverse set of envi-

ronments from observational networked data. Our objective for

confounder learning is to foster a model that discerns invariant

confounder representations across these diverse environments. In

terms of spillover effect, we encourage the model to consistently

estimate the spillover effect across environments. By ensuring such

environmental adaptability, we position our model to seamlessly

transition to unseen networked data environments, even when

faced with diverse structural distributions. Our key contributions

can be summarized as follows:

● We underscore the critical importance of identifying invariant

confounders and spillover effects for the task of treatment effect

estimation on networked data. It can help the estimators achieve

better inductive learning and generalize to diverse domains.

● We propose the Invariant Graph Learning (IGL) framework, tai-

lored to estimate treatment effects from networked observational

data. By promoting the capture of invariant confounders and

spillover effects, IGL enhances the model’s capability to general-

ize across multiple networked data in new domains.

● We validate the effectiveness of our method on two real-world

networked data. Detailed comparisons and in-depth analysis also

further confirm the superiority of our approach.

2 PRELIMINARIES
In this section, we start with an introduction of the technical prelim-

inaries and then formally present the problem statement of learning

individual treatment effects from networked (graph) data.

2.1 Notations and Definitions
Firstly, we describe the notations used in this paper. We define 𝐺 =

(𝑉 , 𝐸) as a graph with node set 𝑉 and edge set 𝐸. Let 𝑋 = {𝑥𝑣 ⋃︀𝑣 ∈

𝑉 } ∈ R⋃︀𝑉 ⋃︀×𝑑 denote the node feature matrix, where 𝑑 is the feature

dimension. We use adjacency matrix 𝐴 ∈ {0, 1}
⋃︀𝑉 ⋃︀×⋃︀𝑉 ⋃︀

to describe

the graph structure, where 𝐴(︀𝑢, 𝑣⌋︀ = 1 if edge (𝑢, 𝑣) ∈ 𝐸, otherwise

𝐴(︀𝑢, 𝑣⌋︀ = 0. For a node 𝑣 ∈ 𝑉 , let 𝒩𝑣 = {𝑢⋃︀dis(𝑣,𝑢) ≤ 𝐿} denote

the 𝐿-hop neighbors, where dis(𝑣,𝑢) is the shortest path distance

between node 𝑣 and 𝑢. The nodes in 𝒩𝑣 and their connections

form the ego-graph 𝐺𝑣 of node 𝑣 , which is represented as a local

node feature matrix 𝑋𝑣 = {𝑥𝑢 ⋃︀𝑢 ∈ 𝒩𝑣} and local adjacency matrix

𝐴𝑣 ∈ {0, 1}
⋃︀𝒩𝑣 ⋃︀×⋃︀𝒩𝑣 ⋃︀

. We denote random variables in bold (e.g.,
G) and their corresponding instances in italic font (e.g., 𝐺). We

summarize the detailed notations used in this paper in Table 1.

Notice that ego-graphs are not independent samples, but they can
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Table 1: Summary of notations and descriptions.

Notation Description

𝐺,G graph instance/random variable.

𝑉 , 𝐸 the set of nodes/edges.

𝐴,𝑋 the adjacency matrix/node feature matrix.

𝒩𝑣 the set of 𝐿-hop neighbors of node 𝑣 .

𝐺𝑣,G𝑣 the ego-graph instance/random variable.

𝐴𝑣, 𝑋𝑣 local adjacency matrix/node feature matrix.

𝑥𝑣, x𝑣 feature/random variable of feature of node 𝑣 .

𝑇, 𝑡𝑣 treatment assignment of all nodes/the node 𝑣

𝑇𝑣 treatment assignment of all nodes in𝒩𝑣 .

T,T𝑣, t𝑣 the random variables of treatment assignment.

𝑌,𝑦𝑣 observed outcome of all nodes/node 𝑣 .

Y, y𝑣 the random variables of observed outcomes.

𝑦
1

𝑣,𝑦
0

𝑣 the potential outcomes of the node 𝑣 .

y1𝑣, y
0

𝑣 the random variables of potential outcomes.

(⋅)−𝑣 elements for all nodes in𝒩𝑣 except the node 𝑣 .

𝑓𝑝𝑜 the potential outcome function.

𝜏𝑣, 𝛿𝑣 the ITE/spillover effect of node 𝑣 .

𝑒,ℰ environment/the support of environments.

𝜙𝑐 , 𝜙𝑠 representation generation functions.

Ψ, Φ GNN encoder and MLP network.

be seen as a Markov blanket [22, 51], so that the distribution can

be decomposed as 𝑃(G) = ∏𝑣∈𝑉 𝑃(G𝑣).
In the context of treatment effect estimation, the observational

data on the graph𝐺 can be denoted as {𝐺,𝑇 ,𝑌}, where𝑇 = {𝑡𝑣}𝑣∈𝑉
and 𝑌 = {𝑦𝑣}𝑣∈𝑉 represent treatment assignments and observed

outcomes, respectively. We focus on the cases where the treatment

variable takes binary values 𝑡 ∈ {0, 1}. Without loss of generality,

𝑡𝑣 = 1 (𝑡𝑣 = 0) means that the node 𝑣 is under treatment (control).

We also let the outcome variable be a scalar and take values on

real numbers as 𝑦 ∈ R. For ego-graph 𝐺𝑣 , we define its treatment

as 𝑇𝑣 = {𝑡𝑣}𝑣∈𝒩𝑣 . And we define 𝐺−𝑣 and 𝑇−𝑣 as ego-subgraph

and treatment set that include all other nodes and corresponding

treatments in 𝐺𝑣 and 𝑇𝑣 except the central node 𝑣 .

Then we introduce the background knowledge of learning indi-

vidual treatment effects. To define individual treatment effect (ITE),

we start with the definition of potential outcomes on graph data,

which is widely adopted in the causal inference literature.

Definition 2.1 (Potential Outcome on Graph). Given the
graph 𝐺 , for a node 𝑣 and its treatment 𝑡𝑣 , the potential outcome of 𝑣
under treatment 𝑡𝑣 , denoted by 𝑦𝑡𝑣𝑣 , is defined as the value of 𝑦 would
have taken if the treatment of instance 𝑣 had been set to 𝑡𝑣 . The po-
tential outcome of node 𝑣 can be instantiated via generation function:
𝑦
𝑡𝑣
𝑣 = 𝑓𝑝𝑜(𝑥𝑣, 𝑡𝑣,𝐺−𝑣,𝑇−𝑣), where 𝑓𝑝𝑜 can be regarded as a function
to generate potential outcome, which takes each unit’s treatment as-
signment, node features, the information (treatment assignments and
node features) of its neighbors on the graph.

As shown in the above definition, the individual’s outcome is

not only affected by its own feature 𝑥𝑣 and treatment 𝑡𝑣 , but also by

neighbor information, i.e.,𝐺−𝑣,𝑇−𝑣 . Hence, the SUTVA assumption

is not valid. Below we provide the formal definition of individual

treatment effect on graph data.

Definition 2.2 (Individual Treatment Effect on Graph).

Given graph𝐺 = (𝑉 , 𝐸), for each node 𝑣 ∈ 𝑉 , the individual treatment
effect (ITE) is defined by the difference between the potential outcomes
corresponding to 𝑡𝑣 = 1 and 𝑡𝑣 = 0:

𝜏(G𝑣,T𝑣) = E(︀y1𝑣 − y
0

𝑣 ⋃︀x𝑣 = 𝑥𝑣,G−𝑣 = 𝐺−𝑣,T−𝑣 = 𝑇−𝑣⌋︀

= E(︀𝑓𝑝𝑜(x𝑣, t𝑣 = 1,G−𝑣,T−𝑣) − 𝑓𝑝𝑜(x𝑣, t𝑣 = 0,G−𝑣,T−𝑣)⌋︀.

In this paper, we follow [18, 34], defining ITE as the conditional

average treatment effect (CATE). For a given node 𝑣 , ITE is required

to keep its own feature and all the states of the surrounding neigh-

bors unchanged to measure the effects of different treatments. For

notation simplicity, we define ITE as 𝜏𝑣 = 𝜏(G𝑣,T𝑣). Since the treat-
ments of neighboring nodes also affect ITE, this effect is generally

called spillover effect 𝛿𝑣 in existing literature. Below we give the

definition of spillover effect on graph data.

Definition 2.3 (Spillover Effect on Graph). The spillover
effect of node 𝑣 under its treatment 𝑡𝑣 and its neighbor’s treatment
assignment 𝑇−𝑣 is defined as:

𝛿𝑣 = E(︀𝑓𝑝𝑜(x𝑣, t𝑣,G−𝑣,T−𝑣) − 𝑓𝑝𝑜(x𝑣, t𝑣,G−𝑣, 0)⌋︀.

We can observe that the spillover effect is comparing the ob-

served treatments with no treatment from neighbor nodes while

keeping all other states unchanged. In this paper, we aim to estimate

ITE in the presence of spillover effects in graph data.

2.2 Problem Formulation
To estimate the treatment effect on graph𝐺 , a prevailing approach is

to discern the confounders embedded within the network structure.

Beyond a node’s intrinsic features, a pivotal challenge arises when

factoring in the networked structure to uncover these hidden con-

founders. Several studies [11, 16–18] leverage the message-passing

capabilities of GNNs to assimilate the structural intricacies of net-

worked data. By harmonizing both node attributes and structural

data, these methodologies adeptly unveil the hidden confounders.

Furthermore, to encapsulate the spillover effect, certain strategies

[24, 33, 34] integrate the treatment status of neighboring nodes

as the prior knowledge and processed via GNNs. The subsequent

model parameters are then refined to align with the observed out-

comes derived from the networked data. Yet, a significant portion

of these methods operate within the graph data in a single domain.

Despite their efficacy, real-world applications often necessitate pre-

dicting treatment effects on novel networks devoid of observed

outcomes. This task is commonly termed as out-of-sample estima-

tion or inductive learning. Now we provide a detailed definition of

inductive learning tailored for multi-graph data scenarios.

Definition 2.4 (Inductive Treatment Effect Learning across

Graphs). Given two graphs 𝐺 and 𝐺 ′, assume they follow the same
treatment and outcome generation mechanism. A potential outcome
estimator ˆ𝑓𝑝𝑜 can be learned from𝐺 with its observational treatments
𝑇 and outcomes 𝑌 . Inductive treatment effect learning requires that
for the new graph data𝐺 ′ with its treatments 𝑇 ′, the estimator ˆ𝑓𝑝𝑜

can also correctly predict the potential outcome 𝑌 ′.

Let ℰ represent the support of environments. We posit that the

entire graph is formulated via 𝐺 ∼ 𝑝(G⋃︀e), where e signifies a la-
tent environmental variable influencing data distribution. Graph

3
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data derived from varied environments might result in distinct dis-

tributions of node features or overall graph structures. If graphs

𝐺 and 𝐺
′
are sampled from an identical environment, denoted as

𝐺,𝐺
′
∼ 𝑝(G⋃︀e = 𝑒), 𝑒 ∈ ℰ (implying minimal distribution shifts in

node features or graph structures), then the estimator
ˆ𝑓𝑝𝑜 transi-

tioned to the new graph𝐺
′
should yield commendable performance.

However, this situation is not always true in practice. New graph

data might stem from disparate environments due to variables like

undisclosed geographic locations or variances in collection periods.

A practical illustration could be assessing an individual’s suscepti-

bility to COVID-19 across distinct regions, countries, or timelines

[19, 58]. Moreover, complications arising from hidden confounders

and the spillover effect might exacerbate the performance down-

turn of estimators predominantly built on GNNs. As depicted in

Figure 1, there’s an anticipated divergence in structural attributes

(e.g., edge density or node degree) between training and evaluation

graphs. This divergence often leads to suboptimal performance.

Such challenges underscore the intricacies of inductive potential

outcome predictions spanning multiple graphs.

2.3 Theoretical Analysis
While the graph data intended for prediction might originate from

diverse environments, the principles of invariant learning [3, 8,

38] offer a pathway to achieve cross-environment generalization.

Guided by the existing literature on invariant learning, we put forth

the following assumption.

Assumption 2.1 (Invariant Potential Outcome Generation).

Given ego-graph G𝑣 and treatment T𝑣 , there exist invariant repre-
sentation generators 𝜙𝑐 and 𝜙𝑠 . They can generate representations:
c𝑣 = 𝜙𝑐(G𝑣) and s𝑣 = 𝜙𝑠(G−𝑣,T−𝑣). And they satisfy the following
properties: i) Suffciency condition: y𝑣 = ˆ𝑓𝑝𝑜(t𝑣, c𝑣, s𝑣) + 𝜖 , where 𝜖
signifies an independent noise. ii) Invariance condition: ∀𝑒, 𝑒′ ∈ ℰ ,
𝑝𝑒(y𝑣 ⋃︀t𝑣, c𝑣, s𝑣) = 𝑝𝑒′(y𝑣 ⋃︀t𝑣, c𝑣, s𝑣).

Assumption 2.1 posits the existence of representations in the

potential outcome generation process that maintain an invariant

relationship with potential outcomes across different environments.

Specifically, there exists an environment-invariant representation

c𝑣 in G𝑣 , and an invariant spillover effect representation s𝑣 in

G𝑣 and T𝑣 . The sufficiency conditions suggest that t𝑣 , c𝑣 , and s𝑣
are adept at faithfully representing the original observational data.

Moreover, y𝑣 can be formulated based on these through the outcome

estimation function
ˆ𝑓𝑝𝑜 . As for the invariance condition, it asserts

that t𝑣 , c𝑣 , and s𝑣 retain a cross-environmental consistency in their

relationship with the outcome y𝑣 . This enduring relationship un-

derpins the solvability of the problem as delineated in Definition

2.4. Subsequently, we adapt the widely acknowledged unconfound-

edness assumption [40] on ego-graph to align with our settings,

leading to our second assumption.

Assumption 2.2 (Unconfoundedness on ego-graph). For any
node 𝑣 , given the ego-graph G𝑣 , the potential outcomes are indepen-
dent with the treatment assignments, i.e., y1𝑣, y

0

𝑣 ⊥⊥ t𝑣,T−𝑣 ⋃︀G𝑣 .

Now we give a brief proof of the identification of potential

outcome in Definition 2.4. Given graph 𝐺 ∼ 𝑝(G⋃︀e = 𝑒) and

𝐺
′
∼ 𝑝(G⋃︀e = 𝑒′), we define their treatments and outcomes as

{𝑇,𝑌} and {𝑇
′
, 𝑌
′
}, respectively. Based on the above assumptions,

across-environment identification of the expectation of potential

outcomes y1𝑣 and y0𝑣 can be proved. Here we take y1𝑣 as an example.

E(︀y1𝑣 ⋃︀t𝑣 = 1, x𝑣 = 𝑥
′

𝑣,G−𝑣 = 𝐺
′

−𝑣,T−𝑣 = 𝑇
′

−𝑣⌋︀ (1)

= E(︀𝑓𝑝𝑜(t𝑣 = 1, x𝑣 = 𝑥 ′𝑣,G−𝑣 = 𝐺
′

−𝑣,T−𝑣 = 𝑇
′

−𝑣)⌋︀ (2)

= E(︀ ˆ𝑓𝑝𝑜(t𝑣 = 1, c𝑣 = 𝜙𝑐(𝐺 ′𝑣), s𝑣 = 𝜙𝑠(𝐺
′

−𝑣,𝑇
′

−𝑣)⌋︀ (3)

= E(︀ ˆ𝑓𝑝𝑜(t𝑣 = 1, c𝑣 = 𝜙𝑐(𝐺𝑣), s𝑣 = 𝜙𝑠(𝐺−𝑣,𝑇−𝑣)⌋︀ (4)

= E(︀ ˆ𝑓𝑝𝑜(t𝑣 = 1, c𝑣 = 𝜙𝑐(𝐺𝑣), s𝑣 = 𝜙𝑠(𝐺−𝑣,𝑇−𝑣)⋃︀c𝑣 = 𝜙𝑐(𝐺𝑣)⌋︀ (5)

= E(︀ ˆ𝑓𝑝𝑜(t𝑣 = 1, c𝑣 = 𝜙𝑐(𝐺𝑣), s𝑣 = 𝜙𝑠(𝐺−𝑣,𝑇−𝑣)⋃︀t𝑣 = 1, (6)

c𝑣 = 𝜙𝑐(𝐺𝑣), s𝑣 = 𝜙𝑠(𝐺−𝑣,𝑇−𝑣)⌋︀

= E(︀y𝑣 ⋃︀t𝑣 = 1, c𝑣 = 𝜙𝑐(𝐺𝑣), s𝑣 = 𝜙𝑠(𝐺−𝑣,𝑇−𝑣)⌋︀. (7)

Here, the equation (2) is based on the definition of potential outcome

in this setting; equations (3) and (4) are inferred from Assumption

2.1; equation (5) is a straightforward derivation; equation (6) is

based on Assumption 2.2; and equation (7) is based on the widely

used consistency assumption [40]. Based on the above proof for

the identification of potential outcomes, the identification of ITE

can be straightforwardly derived.

3 METHODOLOGY
In this section, we introduce Invariant Graph Learning (IGL) to

solve the problem of inductive potential outcome learning across

graphs. The overview of IGL is depicted in Figure 2, which consists

of four components, including environment generator, invariant

confounder and spillover effect learning, and outcome predictor.

3.1 Environment Generator
For a given graph data𝐺 = (𝐴,𝑋), we first need to simulate diverse

environments. We define the environment generators as {𝑔𝜃𝑘 }
𝐾
𝑘=1

with parameters {𝜃1, ..., 𝜃𝐾}. Specifically, the environment genera-

tion process is defined as𝐺
𝑘
= 𝑔𝜃𝑘 (𝐺) = (𝐴

𝑘
, 𝑋
𝑘
). For the node fea-

tures 𝑋 and graph structures 𝐴, we model the environment change

as an additive function that injects perturbations, i.e., 𝑋𝑘 = 𝑋 +Δ𝑘𝑋
and 𝐴

𝑘
= 𝐴 ⊕ Δ𝑘𝐴 , where ⊕ means the element-wise exclusive OR

operation and Δ𝑘𝐴 ∈ {0, 1}
⋃︀𝑉 ⋃︀×⋃︀𝑉 ⋃︀

is a binary matrix. We treat Δ𝑘𝑋
as trainable parameters in 𝜃𝑘 . To generate Δ𝐴 , each edge will be

associated with a random variable 𝑝𝑒 ∼ Bernoulli(𝜔𝑒 ), where the

edge exists if 𝑝𝑒 = 1 and is dropped otherwise. We parameterize the

Bernoulli weight 𝜔𝑒 by leveraging a GNN encoder Ψ and a MLP

network Φ:

{ℎ1, ..., ℎ⋃︀𝑉 ⋃︀} = Ψ(𝐺), 𝜔𝑒 = Φ((︀ℎ𝑣, ℎ𝑢⌋︀), (8)

where {ℎ𝑣}𝑣∈𝑉 denotes the node representations. To train the

model in an end-to-end fashion, we relax the discrete 𝑝𝑒 to be a con-

tinuous variable in (︀0, 1⌋︀ and utilize the Gumbel-Max reparametriza-

tion trick. Specifically, 𝑝𝑒 = Sigmoid((log𝛿 − log(1 − 𝛿) +𝜔𝑒)⇑𝜏),

where 𝛿 ∼Uniform(0,1). As the temperature hyper-parameter 𝜏 → 0,

𝑝𝑒 gets close to the being binary. Hence, we can generate 𝐾 viewed

graphs {𝐺
1
, ...,𝐺

𝐾
} to simulate 𝐾 different environments.

3.2 Learning Invariant Confounder
For the given graph 𝐺 , we first encode the node features 𝑋 and

graph structures 𝐴 into node representations via a GNN encoder,

4
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Figure 2: The overview of the proposed Invariant Graph Learning (IGL) for Treatment Effect Estimation.

i.e., 𝐻 = Ψ𝑐(𝐴,𝑋), which is expected to capture all potential con-

founders. Given the generated graphs from 𝐾 environments, we

can obtain 𝐾 groups of node representations, i.e., {𝐻1
, ..., 𝐻

𝐾
}. Ac-

cording to Assumption 2.1, to learn invariant confounders, we need

to extract those “environment-invariant” representations from the

captured confounders. Hence, we adopt the idea of contrastive learn-

ing [9, 56] to ensure that the learned confounder representation is

invariant across environments. We define positive pairs as the same

instance across different environments and negative pairs as other

different instances. Specifically, given an anchor instance ℎ𝑣 ∈ 𝐻
𝑘
,

we randomly sample an environment index 𝑘
′
and choose the same

instance in this environment ℎ
′

𝑣 ∈ 𝐻
𝑘
′

as a positive instance, and

we randomly sample another 𝑀 instance ℎ̃𝑢 with 𝑣 ≠ 𝑢 from any

environment as a negative sample. We can define the following

invariant contrastive learning objective as:

ℒ
𝑘
𝑐𝑜𝑛 =

1

⋃︀𝑉 ⋃︀
∑
𝑣∈𝑉

−log
exp(sim(ℎ𝑣, ℎ

′

𝑣)⇑𝜏𝑐)

∑
𝑀
𝑢=1,𝑢≠𝑣 exp(sim(ℎ𝑣, ℎ̃𝑢)⇑𝜏𝑐)

, (9)

where sim(ℎ𝑣, ℎ𝑢) = ℎ
⊺

𝑣ℎ𝑢⇑∏︁ℎ𝑣∏︁∏︁ℎ𝑢∏︁ is the similarity function and

𝜏𝑐 is the temperature coefficient.

3.3 Learning Invariant Spillover Effect
We now introduce the modeling process for spillover effects. Ac-

cording to Assumption 2.1, we need to design additional modules

to learn spillover effects that are invariant across environments. For

the given confounders, treatments, and graph structure, we prop-

agate the treatment assignment and confounder representations

with the GNN module. Specifically, we define 𝑆
𝑘
= {ℎ𝑣 ⊙ 𝑡𝑣}𝑣∈𝑉 ,

where ⊙ is the broadcasted element-wise product. Then we adopt a

GNN encoder Ψ𝑠 to generate the representations of spillover effects:

𝑍
𝑘
= Ψ𝑠(𝐴

𝑘
, 𝑆
𝑘
). Similarly, to encourage the learned representa-

tions of spillover effects to be invariant across 𝐾 environments, we

also employ the invariant contrastive learning objective:

ℒ
𝑘
𝑠𝑝 =

1

⋃︀𝑉 ⋃︀
∑
𝑣∈𝑉

−log
exp(sim(𝑧𝑣, 𝑧

′

𝑣)⇑𝜏𝑠)

∑
𝑀
𝑢=1,𝑣≠𝑢 exp(sim(𝑧𝑣, 𝑧̃𝑢)⇑𝜏𝑠)

. (10)

The estimation of treatment effect may be biased due to possible

distribution discrepancy between treatment and control groups.

Therefore, we use the strategy of representation balancing to add a

regularization term on representation learning for confounder and

spillover effect. In our implementation, we follow [41] and employ

Wasserstein-1 distance to achieve representation balancing.

3.4 Optimization Objective
To predict the outcome for node 𝑣 , we take the representations ℎ

𝑘
𝑣 ,

𝑧
𝑘
𝑣 , and the treatment 𝑡𝑣 as input to the outcome prediction function

𝑓𝑜𝑢𝑡 :

𝑓𝑜𝑢𝑡 (ℎ
𝑘
𝑣 , 𝑧

𝑘
𝑣 , 𝑡𝑣) =

)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

𝑓1((︀ℎ
𝑘
𝑣 ⋃︀⋃︀𝑧

𝑘
𝑣 ⌋︀) if 𝑡𝑣 = 1

𝑓0((︀ℎ
𝑘
𝑣 ⋃︀⋃︀𝑧

𝑘
𝑣 ⌋︀) if 𝑡𝑣 = 0

, (11)

where 𝑓0 and 𝑓1 are learnable functions and we implement them

with MLPs. Hence, we can obtain the estimated outcome 𝑦
𝑘
𝑣 for

node 𝑣 under the environment 𝑘 . Then we define the following

outcome learning objective:

ℒ
𝑘
𝑜𝑢𝑡 =

1

⋃︀𝑉 ⋃︀
∑
𝑣∈𝑉

(𝑦𝑣 −𝑦
𝑘
𝑣 )

2

+ 𝛾ℒ
𝑘
𝑏 + 𝛼(ℒ

𝑘
𝑐𝑜𝑛 + ℒ

𝑘
𝑠𝑝), (12)

where the first item is the Mean Squared Error (MSE) loss; ℒ
𝑘
𝑏 is

the representation balancing loss; the last item is the contrastive

learning loss for invariant constraint; 𝛾 and 𝛼 are two hyperparam-

eters. To achieve invariant learning across diverse environments,

we encourage the model to optimize the mean and variance over

𝐾 environments. Furthermore, the environment generators should

also explore challenging environments to enhance the generaliza-

tion of the model to unseen environments. Hence, we define the

min-max optimization objective:

min

Θ

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1

𝐾

𝐾

∑
𝑘=1

ℒ
𝑘
𝑜𝑢𝑡 + 𝛽 ⋅ Var({ℒ

𝑘
𝑐𝑜𝑛 + ℒ

𝑘
𝑠𝑝 ∶ 1 ≤ 𝑘 ≤ 𝐾})

[︀⌉︀⌉︀
⌈︀
⌉︀⌉︀⌊︀

,

𝑠 .𝑡 . 𝜃
∗

1
, ..., 𝜃

∗

𝐾 = arg max

𝜃1,...,𝜃𝐾
Var({ℒ

𝑘
𝑐𝑜𝑛 + ℒ

𝑘
𝑠𝑝 ∶ 1 ≤ 𝑘 ≤ 𝐾}),

(13)

where Θ represents the parameters of modules Ψ𝑐 ,Ψ𝑠 , 𝑓𝑜𝑢𝑡 , Var(⋅)
represents the variance for a series of losses, and 𝛽 represents the

balancing coefficient. We refer to the above training framework as

5
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Algorithm 1: IGL for Treatment Effect Estimation

Input: Observational networked data 𝐺 = (𝐴,𝑋), treatment 𝑇

and outcome 𝑌 ; Initialized paratemters Θ including networks

of Ψ𝑐 , Ψ𝑠 , 𝑓𝑜𝑢𝑡 ; Initialized paratemters 𝜃 = {𝜃𝑘}
𝐾
𝑘=1 of

generators {𝑔𝜃𝑘 }
𝐾
𝑘=1; Learning rates 𝜂1 and 𝜂2.

Output: The trained parameters.

1: while not converge or maximum epochs not reached do
2: for 𝑖 = 1, ..., 𝑁 do
3: Obtain augmented graphs {𝐺

𝑘
← 𝑔𝜃𝑘 (𝐺)}

𝐾
𝑘=1;

4: Compute the loss for confounder {ℒ
𝑘
𝑐𝑜𝑛}

𝐾
𝑘=1;

5: Compute the loss for spillover effect {ℒ
𝑘
𝑠𝑝}

𝐾
𝑘=1;

6: Compute 𝐽1(𝜃) ← Var({ℒ
𝑘
𝑐𝑜𝑛 + ℒ

𝑘
𝑠𝑝 ∶ 1 ≤ 𝑘 ≤ 𝐾});

7: Update 𝜃𝑘 ← 𝜃𝑘 + 𝜂1∇𝜃𝑘 𝐽1(𝜃), 𝑘 = 1, ..., 𝐾 ;

8: if 𝑖 == 𝑁 then
9: Compute 𝐽2(Θ) ←

1

𝐾 ∑
𝐾
𝑘=1ℒ

𝑘
𝑜𝑢𝑡 + 𝛽 𝐽1(𝜃);

10: Θ← Θ − 𝜂2∇Θ 𝐽2(Θ);
11: end if
12: end for
13: end while

Invariant Graph Learning (IGL). We provide the detailed training

process in Algorithm 1.

4 EXPERIMENTS
In this section, we verify the superiority of the proposed frame-

work through experiments. Specifically, our purpose is to verify the

following aspects: (1) Performance comparison of our method with

existing methods. (2) Effects of environment generator and invari-

ant learning modules on performance. (3) Sensitivity of different

hyperparameters to the final performance.

4.1 Dataset and Simulation
4.1.1 Dataset Details. We adopt two real-world social network

datasets Twitch-explicit and Facebook-100 from [29]. In both datasets,

a node is a user and an edge denotes their relationship. Additional

details about each dataset are provided as follows.

● Twitch-Explicit [39] includes seven networked data where

nodes represent Twitch users and edges represent their mutual

friendships. Each networked data is collected from a particular

region, including DE, ENGB, ES, FR, PTBR, RU, and TW. Due to

regional differences, these networks have obvious differences

in graph structure, as shown in Figure 1(a). We choose DE for

training, ENGB for validation, and ES, FR, and PTBR for testing.

● Facebook-100 [46] includes 100 Facebook friendship network

snapshots from the year 2005, and each network contains nodes

as Facebook users from a specific American university. We

adopt eight networks in our experiments: John Hopkins, Caltech,

Amherst, Cornell, Yale, Penn, Brown, and Texas. We use Penn,

Brown, and Texas for testing, Cornell and Yale for validation,

and use three remaining graphs for training. These graphs have

significantly diverse sizes, densities, and degree distributions.

In both datasets, the raw node features are high-dimensional and

very sparse, following studies [17, 24, 31], we use LDA [7] to reduce

the node feature dimension to 50.

4.1.2 Treatment and Potential Outcome Simulations. Since
the counterfactual outcomes are hard to obtain, we follow the stan-

dard practice in the existing literature [24, 33] to manually generate

treatments and outcomes. Given the node feature 𝑥𝑣 , the treat-

ment 𝑡𝑣 for node 𝑣 is generated as 𝑡𝑣 ∼ Bernoulli(Sigmoid(𝑥𝑣𝑤𝑣)),

where 𝑤𝑣 ∈ R
𝑑
is a vector that each element follows a Gaussian

distribution. Given the ego-graph 𝐺𝑣 and its treatment assignment

𝑇𝑣 , the potential outcome of node 𝑣 is generated by

𝑦𝑣 = 𝑔0(𝑥𝑣) + 𝜆𝑡𝑔𝑡 (𝑥𝑣, 𝑡𝑣) + 𝜆𝑠𝑔𝑠(𝐺−𝑣,𝑇−𝑣) + 𝜖𝑣, (14)

where 𝜆𝑡 and 𝜆𝑠 are strengths to ITE and spillover effect. We define

𝑔0(𝑥𝑣) =𝑤0𝑥𝑣 (𝑤0 ∼ 𝒩(0, 𝐼),𝑤0 ∈ R
𝑑
) as the outcome of instance

𝑣 when 𝑡𝑣 = 0 and without network interference. 𝑔𝑡 (⋅) and 𝑔𝑠(⋅)

summarize the ITE and spillover effect, respectively. 𝜖𝑣 ∼ 𝒩(0, 1)

denotes the Gaussian noise. And we specify 𝑔𝑡 (⋅) and 𝑔𝑠(⋅) as

𝑔𝑡 (𝑥𝑣, 𝑡𝑣) = 𝑡𝑖 ⋅ (𝑤𝑡𝑥𝑣 + 𝜖), (15)

𝑔𝑠(𝐺−𝑣,𝑇−𝑣) = 𝜎(
1

⋃︀𝒩−𝑣 ⋃︀
∑

𝑢∈𝒩−𝑣

𝑡𝑢 ⋅ 𝑔𝑡 (𝑥𝑢 , 𝑡𝑢)). (16)

4.2 Experiment Settings
4.2.1 Metrics. We adopt two metrics: Rooted Precision in Esti-

mation of Heterogeneous Effect

⌋︂
𝜖𝑃𝐸𝐻𝐸 and Mean Absolute Error

𝜖𝐴𝑇𝐸 . These metrics can be defined as follows:

⌋︂
𝜖𝑃𝐸𝐻𝐸 =

⟨
⧸︂
⧸︂⟩

1

⋃︀𝑉 ⋃︀
∑
𝑣∈𝑉

(𝜏𝑣 − 𝜏𝑣)2, 𝜖𝐴𝑇𝐸 = ⋁︀
1

⋃︀𝑉 ⋃︀
∑
𝑣∈𝑉

(𝜏𝑣 − 𝜏𝑣)⋁︀ , (17)

where 𝜏𝑣 is the estimation and 𝜏𝑣 is ground-truth. Lower is better

for both metrics.

4.2.2 Baselines. To investigate the superiority of the proposed

IGL, we compare it with the following three categories of baselines.

● Traditionalmethods. These methods are classic algorithms for

ITE estimation and do not consider the structural information

of the graph data, including linear regression (LR), Treatment-

agnostic Representation Networks (TARNet), and Counterfac-

tual Regression (CFR) [41].

● Considering the graph structures. Netdeconf [18] uses GCN
[25] as the backbone model to capture hidden confounders, but

does not consider the spillover effect on the graph.

● Considering the spillover effect on graphs. GNN-HSIC [34],

GCN-HSIC [34], NetEst [24] and HyperSCI [33] perform ITE

estimation on the graph and also consider the spillover effect.

For HyperSCI, we replaced their hypergraph modules with GNN

layers, which can be applied to ordinary graphs.

4.2.3 Implementation details. The configuration details of our

model are as follows. For the environment generator, confounder,

and spillover effect learning modules, we use the GCN [25] or

GAT [48] layer as the encoder. For the representation dimension

of the confounder and spillover effect, we set it to 64. Our other

hyperparameter settings are: 𝐾 = 3, 𝜂1, 𝜂2 = 1𝑒 − 4, 𝑁 = 1, 𝛼 = 1, 𝛽 =

1,𝛾 = 0.5. For all experimental results, we perform 10 random runs

and report the mean and standard derivations.
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Table 2: Performance comparison of ITE esitmation on Twitch-Explicit and Facebook-100 datasets.

Twitch-Explicit Fackbook-100

ES FR PTBR Penn Brown Texas

Method

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

LR 34.13±0.97 11.10±0.87 34.16±0.67 5.65±0.57 20.20±0.47 4.69±0.36 27.78±0.36 13.55±0.52 34.12±0.60 12.81±1.09 24.67±0.55 2.66±0.46

TARNet 32.25±2.92 8.73±2.83 30.75±1.83 3.84±2.30 19.96±1.10 3.63±1.26 26.13±0.79 14.73±0.56 30.45±1.21 14.57±0.83 21.38±0.93 2.96±0.74

CFR
MMD

25.35±1.00 10.70±0.83 23.89±0.65 5.70±0.73 16.91±0.51 4.58±0.54 26.78±0.48 16.51±0.41 28.94±0.67 17.03±0.60 20.10±0.61 3.69±0.54

CFR
Wass

37.26±5.94 10.46±6.63 49.70±9.04 12.37±7.83 23.33±4.05 6.57±3.88 25.14±1.81 13.62±2.64 33.93±5.36 14.31±6.11 25.12±2.38 2.94±2.36

Netdeconf 47.37±10.14 24.10±6.89 56.82±9.11 9.98±2.07 41.27±20.78 7.81±2.11 28.58±2.72 15.09±4.28 41.00±8.32 17.38±8.37 28.39±2.62 4.01±2.96

GNN-HSIC 34.00±3.87 8.98±5.09 36.31±4.58 6.23±3.88 21.63±2.39 5.46±3.96 32.93±3.32 11.77±4.86 50.44±7.14 16.41±8.30 35.97±4.56 6.20±3.38

GCN-HSIC 37.21±3.49 8.60±5.75 37.75±3.55 4.70±2.77 20.43±0.70 3.43±1.42 31.45±3.16 11.87±3.64 49.21±9.39 16.43±9.97 33.51±4.25 4.79±2.78

NetEst 32.94±5.87 14.39±6.95 29.93±4.26 7.32±6.66 19.53±1.23 4.75±4.01 29.66±3.16 11.12±2.28 36.87±2.60 13.11±2.25 26.34±3.44 4.15±1.89

HyperSCI 28.56±1.02 12.98±1.01 27.88±0.70 6.04±1.00 17.65±0.36 5.57±0.57 25.22±0.60 13.17±0.89 34.95±0.49 12.65±1.25 23.67±0.26 4.77±0.52

IGL
GCN

23.03±0.27 8.49±0.44 22.57±0.12 3.72±0.52 15.62±0.08 3.38±0.30 23.43±0.92 12.67±1.61 26.18±1.12 11.72±2.63 18.82±0.22 2.56±1.79
IGL

GAT
23.88±0.30 10.35±0.60 22.99±0.52 5.26±0.50 16.00±0.23 4.18±0.27 22.82±0.73 10.17±1.45 24.88±0.92 9.09±2.69 18.80±0.25 2.85±1.47

Table 3: Performance comparison of ITE estimation over
different values of 𝜆𝑠 on Twitch-Explicit dataset.

𝜆𝑠 = 1.0 𝜆𝑠 = 3.0 𝜆𝑠 = 5.0

Method

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

⌋︂
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

LR 29.49±0.70 7.14±0.60 30.31±0.88 7.25±0.79 32.65±0.97 7.30±0.72

TARNet 27.65±1.95 5.40±2.13 29.83±1.87 6.35±2.07 31.44±1.96 6.43±2.25

GNN-HSIC 30.64±3.61 6.89±4.31 33.87±3.63 6.99±3.31 36.43±2.62 7.82±3.23

NetEst 27.46±3.78 8.82±5.87 29.66±3.52 8.74±4.69 30.55±2.83 9.03±4.54

HyperSCI 24.69±0.69 8.19±0.86 26.44±1.26 8.97±1.35 27.97±1.24 9.12±1.40

IGL (ours) 20.41±0.16 5.20±0.42 21.30±0.43 5.30±0.59 22.44±0.57 5.75±0.87

4.3 Main Results
We begin by estimating the ITE and compare it with state-of-the-

art methods. IGL employs two distinct GNN architectures as back-

bone GNN encoders: the GCN [25] and the GAT [48]. The results

are presented in Table 2. These findings reveal that our proposed

framework consistently surpasses all baselines. Such results un-

derscore the effectiveness of IGL in handling graph data across

varied domains, particularly in identifying invariant confounders

and spillover effects across environments. Furthermore, an analysis

of the baseline results indicates that several GNN-based methods

do not necessarily outpace some of their traditional counterparts.

To illustrate, within the Twitch-Explicit dataset’s ES graph, both

Netdeconf and GCN-HSIC yield results that are markedly inferior

to those of TARNET and CFR
MMD

. Similarly, for the Facebook-

100 dataset’s Penn graph, several techniques that emphasize graph

structure, including GNN-HSIC, GCN-HISC, NetEst, and Netdeconf,

underperform when compared to CFR and TARNet. These results

suggest that excessive reliance on the training graph’s structure by

these methods can expose vulnerabilities when faced with varia-

tions in graph structures. In contrast, our approach demonstrates

a robust capability to counteract such distribution shifts in graph

structures, ensuring outstanding performance.

4.4 In-depth Analysis
To investigate the effects of structure distribution shifts on spillover

effect modeling, we adjust the hyperparameter 𝜆𝑠 to increase the

significance of the spillover effect on the generated outcomes. For

comparative analysis, we select both traditional estimators and

those that account for the spillover effect on the graph as baseline

IGL w/o ICL w/o ISL w/o IL20
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(a) Twitch-Explicit,
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(d) Facebook-100, 𝜖𝐴𝑇𝐸

Figure 3: Ablation studies of different components of our
proposed IGL framework.
methods. The experimental results are shown in Table 3. The results

reveal that as the spillover effect’s influence increases, there exists

a consistent decline in the performance of both traditional and

GNN-basedmethods. This uniformity in the performance downturn

suggests that alterations in graph structure significantly impact

the modeling of spillover effects. In comparison to the baselines,

our approach yields superior performance gains. These results

underscore our claim that distribution shifts in graph structure

will magnify the spillover effect’s impact on ITE estimation. Our

method overcomes this issue by mastering the invariance of the

spillover effect across varied graph structures.

4.5 Ablation Study
In the IGL framework, two pivotal components are present: invari-

ant confounder learning and invariant spillover effect modeling. To

ascertain the significance of these components on overall perfor-

mance, we conduct experiments omitting each module separately.

The results are depicted in Figure 3. Specifically, “w/o ICL” indicates

the removal of the invariant learning specific to confounders, while

“w/o ISL” refers to the absence of invariant learning for spillover

effects. “w/o IL” represents a scenario where all invariant learning

is eliminated; under this condition, 𝐾 environments are randomly

generated and the loss function’s mean and variance are directly
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Figure 4: ITE estimation performance (mean and standard error) of the proposed IGL framework under different hyperparame-
ters on Twitch-Explicit dataset.

minimized. It’s evident from our results that omitting any single

module leads to a substantial decrease in overall performance. This

underscores the vital role and efficacy of each component in our

proposed framework.

4.6 Sensitivity Analysis
To assess the sensitivity of IGL to hyperparameters, we evaluate

the performance under various configurations. In particular, we

set the number of environment generators with 𝐾 ∈ {2, 3, 4, 5}, set

weights for contrastive learning with 𝛼 ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, for

invariant learning with 𝛽 ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, and for represen-

tation balancing with 𝛾 ∈ {0.1, 0.5, 1.0, 1.5, 2.0}. From the results

in Figure 4, it is evident that using more than three environments

generally yields improved performance. Regarding the weights for

contrastive and invariant learning, there is minimal perceptible

variation in performance once the coefficient exceeds 1. Addition-

ally, the model’s final performance demonstrates robustness to

fluctuations in representation balancing weights.

5 RELATEDWORK
Treatment Effect Estimation on Graphs. While treatment ef-

fect estimation has achieved significant breakthroughs, the focus

on graphs [32] has drawn great attention in recent years. Units

on graphs or networked data are distinct from independent units

due to their inherent correlations, presenting unique challenges for

treatment effect estimation: i) Hidden confounders [41, 50]. The

homophily [35] of network structures in graphs can introduce new

confounders for causal effects beyond inherent unit features. ii)

Spillover Effects or Interference [5, 6, 23, 45, 47, 57]. A unit’s poten-

tial outcome is influenced not only by its own attributes but also by

treatment assignments to neighboring units, implying a violation

of the SUTVA assumption [40]. To address the challenge of hidden

confounders, Netdeconf [18] employs the message-passing capabil-

ity of the GCN [25] model; IGNITE [16] adopts the min-max game

to resolve optimization conflict issues; GIAL [11] utilizes informax

[49] to rectify imbalances in network structures; DNDC [31] is tai-

lored for intricate dynamic graph scenarios. To mitigate the impact

of spillover effects, [34] harnesses the message-passing mechanism

of the GNN [25, 48] model to account for neighboring interference;

NetEst [24] corrects the limitations of GNNs in ITE estimation

through adversarial learning; HyperSCI [33] considers more com-

plex hypergraph scenarios, which grapple with high-order interfer-

ence challenges. While these techniques showcase commendable

performance for singular graph data, they often overlook inductive

learning across multiple graphs in diverse environments, a scenario

we argue is prevalent in real-world applications [19, 58].

Invariant Learning on Graphs. Invariant learning [1, 3, 8, 12, 38]
aims to extract invariant relationships between observed data fea-

tures and ground-truth outcomes across various environments,

enhancing out-of-distribution (OOD) generalization ability. In the

graph domain, invariant learning [10, 13, 26, 30, 43, 51, 52] has also

emerged as a leading strategy for generalization. This pivot is rooted

in the underlying assumption of data generation: the presence of

stable features in graph data. These stable features, alternately

termed “rationales” [30, 52] or “invariant features” [10] in existing

literature, maintain an invariant relationship with ground-truth

labels irrespective of the distribution. To capture these features, DIR

[52] applies interventions on environmental features, while GREA

[30] employs environment removal and replacement augmenta-

tions. To differentiate between stable and environmental features,

both CAL [43] and DisC [13] variably adjust environmental fea-

ture representations, ensuring model predictions remain invariant

across the environmental changes. The success of these studies

demonstrates the power of invariant learning in handling distri-

bution shifts in graph structures. In treatment effect estimation,

invariant learning [42] also shows the potential ability to find ap-

propriate confounders. Drawing inspiration from these pioneering

efforts, our work ventures to learn invariant representations of con-

founders and spillover effects across diverse environments, thereby

enhancing inductive learning for treatment effect estimation.

6 CONCLUSION
In this paper, we have delved into the challenge of estimating treat-

ment effects on networked data across diverse environments, which

is a scenario frequently encountered in real-world applications.

Given the potential for graph data structures to evolve over time

or vary across geographical locations, existing efforts for uncov-

ering hidden confounders or modeling spillover effects may not

be robust against such a problem. To counteract this vulnerability,

we incorporate the invariance principle into treatment effect es-

timation, culminating in the development of the IGL framework.

Specifically, we simulate varied environments by generating a mul-

titude of new graphs. Then we prompt the model to derive invariant

representations of confounders and spillover effects across these en-

vironments. This strategy ensures that our model becomes resilient

to environmental shifts, paving the way for superior generalization

capabilities when faced with unseen environments. Our comprehen-

sive experiments shed light on the efficacy of the IGL framework,

with results and detailed analyses affirming its advantages.
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