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Abstract

Large language models are increasingly trained on corpora containing both natural lan-
guage and non-linguistic data like source code. Aside from aiding programming-related
tasks, anecdotal evidence suggests that including code in pretraining corpora may improve
performance on other, unrelated tasks, yet to date no work has been able to establish a
causal connection by controlling between language and code data. Here we do just this. We
pretrain language models on datasets which interleave natural language and code in two
different settings: competitive, in which the total volume of data seen during pretraining
is held constant; and additive, in which the volume of language data is held constant. We
study how the pretraining mixture affects performance on (a) compositionality, measured by
generalization accuracy on semantic parsing and syntactic transformation tasks, and more
broadly on (b) downstream non-code-related objectives, measured by performance on tasks
from the BigBench benchmark. We find that pretraining on higher proportions of code
improves performance on compositional tasks involving structured output (like semantic
parsing), and mathematics. Conversely, increase code mixture can harm performance on
other tasks, including on tasks that requires sensitivity to linguistic structure such as syntax
or morphology, and tasks measuring real-world knowledge.

1 Introduction

Large language models (LLMs) are increasingly used not only as natural-language assistants, but also for
programming. LLMs which are trained on corpora containing code in various programming languages are
used as programming assistants capable of generating code from natural-language descriptions (Chen et al.,
2021), translating code between programming languages (Lachaux et al., 2020), decompilation of machine
code into back into human-readable source code (Hosseini & Dolan-Gavitt, 2022), repairing vulnerabilities
in existing code (Pearce et al., 2022), and even acting as programming agents when paired with tools (Yang
et al., 2024a). These use cases have motivated adding code to pretraining corpora (see, inter alia, Gemini
Team et al. 2024; OpenAI et al. 2024; Anthropic AI 2024; Groeneveld et al. 2024).

Concomitant to the inclusion of code in pretraining corpora, the performance of LLMs on many tasks has
improved. Relevant for our purposes, many of the best-performing models include code in their pretraining
corpus (see, inter alia, Fu & Khot 2022; Ye & Durrett 2022; Ye et al. 2023; Zhang et al. 2023; Zhou et al.
2023; Kim et al. 2024; Ma et al. 2024; Yang et al. 2024b; Razeghi et al. 2024; Coda-Forno et al. 2024; Longpre
et al. 2024). That models trained in part on code perform well on several non-programming benchmarks
raises intriguing questions: Does pretraining on code confer an advantage on non-programming tasks? If so,
given a fixed compute budget, how much data should be allocated to code instead of natural-language data?

Establishing a causal relationship between code pretraining and downstream performance is difficult. Earlier
studies have tackled these questions by comparing off-the-shelf code and no-code models (see, inter alia, Kim
et al. 2024; Coda-Forno et al. 2024). Such observational studies are limited by the design choices of model
creators and the availability of information about hyperparameters and training data. Many of the models
typically surveyed are proprietary, and don’t disclose this information. While pairs of open-source models
differing only in their pretraining corpora do exist, such as Llama 2 & Code Llama (Touvron et al., 2023;
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Roziere et al., 2023) or Gemma & CodeGemma (Gemma Team et al., 2024; Google, 2024), they often come
with two important caveats: first, the code-variants of the models are derived by taking the non-code variants
and conducting additional pretraining on code data, meaning the comparisons cannot control for total data
volume; second, each pair treats the inclusion of code data as a binary variable, either present or absent,
frustrating attempts to explore how changes in the amount of code influence downstream behavior.

We address these issues directly. We construct datasets that mix natural-language and source-code data at
varying ratios, treating code inclusion as a continuous variable. We then pretrain language models of equal
size on these parameterized datasets in two different experimental setups: a competitive setting where we
keep the total volume of training data constant and vary the percentage allocated between code and natural
language; and an additive setting where we keep the volume of language data constant and add additional
amounts of code on top.

Previous work has found that augmenting training data with synthetic formal languages instantiating compo-
sitional patterns can improve compositional generalization (Papadimitriou & Jurafsky, 2023; Yao & Koller,
2024; Lindemann et al., 2024). Like formal languages, source code has a number of qualities which may
aid models on seemingly-unrelated tasks: it is highly structured, by virtue of its conformance to the syntax
of the programming language its written in; it is generally high-quality, owing to the use of linting and
bug-checking tools and programming methodologies employed by its authors; it has interpretable semantics
which is grounded by the functionality it describes; and, notably for compositionality, it contains instances
of identical arguments and functions (e.g., variable names and method signatures). Informed by these ob-
servations, we evaluate our trained models for compositional generalization by finetuning them on three
compositional generalization benchmarks (COGS, COGS-vf, and English Passivization). We also measure
their performance on a broad array of tasks from BigBench to see how well code helps or hurts performance
on unrelated domains.

We find that including code in a model’s pretraining corpus has noticeable impacts on its performance
on downstream tasks, in varying directions. Higher code mixtures improve performance in arithmetic and
compositionality in domains whose output has formal structure (like semantic parsing). Conversely, increased
exposure to code can harm language model performance on purely-linguistic tasks and tasks involving factual
knowledge. We conduct permutation tests to study the impact of pretraining on downstream tasks and show
that code pretraining increases the variance on task performance while raising the performance on the
upper-quartile of tasks.

2 Related Work

Earlier work has studied whether pretraining on code is beneficial for non-programming tasks. Observational
studies have looked at the impact of code on downstream performance post-hoc. Fu & Khot (2022) speculated
that code pretraining is at least partially responsible for the improvement in capabilities between the -001 and
-002 series of GPT-3(.5) models, specifically highlighting chain-of-thought reasoning, long-term dependency
sensitivity, and “complex reasoning” as likely resulting from code pretraining. Yang et al. (2024b) provides a
broad study of how code impacts language model capabilities, arguing that code improves complex reasoning
and structured data understanding. Mueller et al. (2024) shows that code pretraining improves generalization
on syntax-sensitive in-context learning tasks. By contrast, Coda-Forno et al. (2024), in an observational
study, conclude that code pretraining does not improve model performance on a benchmark of behavioral
tasks motivated by cognitive psychology. Kim et al. (2024) show that code pretraining improves models’
entity-tracking capabilities.

Several experimental studies on the impact of code pretraining have also been conducted. Ma et al. (2024)
attempt to verify the impact of code experimentally, comparing the 2.6B parameter CodePanGu2.6 model
trained on a mixture of natural-language and code data to Zeng et al. (2021)’s 2.6B and 13B parameter
PanGu models of the same architecture trained only on natural language data. They conclude that code
exposure, both during pretraining and instruction finetuning, is beneficial for performance on logical, legal,
analogical, and scientific reasoning, and for chain-of-thought capabilities, though their experimental design
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Figure 1: Code mixtures for the competitive and additive settings; for comparability between settings, we
set the 0% mixture in both settings to have 132B tokens of natural-language data (so Ntotal = 132B tokens
in the competitive setting, and Nlang = 132B tokens in the additive setting). Note that these sequences are
shuffled during training, so models see code and language data at the same time.

does not control for data volume (∼26.5B tokens for PanGu2.6/13 versus1 ∼42B tokens for CodePanGu2.6)
and does not quite control for model and training hyperparameters (models differ in the number of attention
heads and use slightly different optimizer settings, which are magnified by the large difference in the number
of training steps due to the difference in dataset size). Ma et al. (2024) also show exposing code to models
early on during training can be helpful for some tasks. Longpre et al. (2024) show experimentally that
removing code from a model’s pretraining corpus harms performance on question answering in a number
of different domains, though their experimental setup does not control for data volume and, consequently,
other training hyperparameters sensitive to this.

3 Dataset Construction

To study how the amount of code in a language model’s pretraining corpus impacts downstream performance,
we construct datasets which interleave natural language and code sequences. The ingredients for our datasets
are the English portion of the Colossal Cleaned Common Crawl (C4; Raffel et al. 2023) and cleaned code
from GitHub.

Each dataset, which we refer to as a ‘code mixture,’ is parameterized by a single value m ∈ [0, 1] representing
the percentage of code in the training data, under the assumption that the C4 dataset has been fully cleaned
of any code data. The mixture m relates the number of total tokens Ntotal in the dataset to the number of
code Ncode and language Nlang tokens via

Ncode = m ·Ntotal, Nlang = (1−m) ·Ntotal.

We construct families of training datasets in two different settings: competitive, in which the total amount of
data is held constant while m varies, reducing the number of language tokens as the number of code tokens
increases; and additive, in which the number of language tokens is held constant while the number of code
tokens increases proportional to m (see fig. 1).

Competitive: Here, Ntotal is held constant while m varies between 0 and 0.9. This means that models
trained on the 0% code mixture see Ntotal = Nlang language tokens and 0 code tokens, while those trained
on the 90% mixture see 0.1×Ntotal tokens of language data and 0.9×Ntotal tokens of code data.

1There is some ambiguity in the way Ma et al. (2024) describe their dataset: first, they cite that PanGu13 is trained on
1TB of data, but Zeng et al. (2021) report that it is trained on 100GB of data while their far larger 200B parameter model is
the one trained on 1TB of data; second, Ma et al. (2024) detail the individual data sources in GB but report the total dataset
size in terms of tokens. It is unclear from phrasing whether their sampling strategy yields a dataset of 100GB in total, or
contains 100GB of text data in addition to 50GB of code data, but in either case the Table 4 in Zeng et al. (2021) shows
that the 100GB natural-language dataset used for the PanGu comparison models contains only ∼26.5B tokens compared to
CodePanGu’s ∼42B tokens.
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This setting provides the clearest way to quantify the marginal utility of training on code instead of language,
since we control for the total volume of data seen and consequently the total compute cost. However, the
interpretability of results on mixtures with high values of m may be diminished since removing nearly all
natural-language training data from a model’s training corpus will lessen its ability to interpret and generate
language; this in turn may greatly reduce its utility, even on code-related tasks, since the model will have
far less ability to understand prompts or follow instructions. Additionally, the applicability of any results
here to established pretraining setups may be limited by the fact that it will always be better in an absolute
sense (and may be in a compute-optimal sense) to train a model on more data rather than less data (see,
for instance, the conclusions of Hoffmann et al. 2022). Given this incentive, artificially limiting the amount
of either code or language data provided to a model may not accurately reflect the considerations of model
developers who, if they want to improve the code performance of a model, will simply add additional code
data to the training corpus. To mitigate these issues, we also consider a second setting:

Additive: Here, Nlang is held constant while m varies between 0% and 50%. In order to keep Nlang fixed
while m varies, we increase the number of total tokens proportionally:

Ntotal = Nlang ×
1

1−m.

Since Ntotal increases unboundedly in m, we limit our study to consider additive mixtures of at most 50%
code, which have twice as many tokens as the 0% mixture, which is identical to the 0% competitive mixture.
This setting guarantees that all models have seen the same amount of natural language data, ameliorating
the concern that any degradation in performance may result from insufficient exposure to natural language,
but at the cost of failing to control for total data volume or compute. To further ensure that we can
adequately compare code and non-code models across, we construct language-only baseline datasets for each
code mixture. These datasets have the same number of total tokens, but with 100% of those tokens coming
from natural language.

4 Experimental Setup

4.1 Model Construction & Training

We use the datasets constructed in section 3 as pretraining corpora for causally-masked decoder-only trans-
former language models (Vaswani et al., 2017; Radford et al., 2019). We construct 12-layer decoder-only
models with roughly 374M parameters. Model hyperparameters were chosen following the methdology of
Wang et al. (2022) to approximate decoder-only versions of T5-large. We pretrain these models with a
base natural language data volume of 132B tokens. This means that all models in the competitive set-
ting were trained with Ntotal = 132B tokens, while the models in the additive setting were trained with
Nlang = 132B tokens, and hence Ntotal varying between 132B tokens and 264B tokens depending on the
mixture; we use a batch size of 128, meaning that models were trained for between 1M and 2M steps, de-
pending on the mixture and setting. For each combination of code mixture and setting, we pretrain models
from five different random seeds.

4.2 Evaluation

We measure performance on three compositional generalization benchmarks and, more generally, on Big-
Bench tasks. For each evaluation domain, we quantify the impact that code pretraining has on performance
by calculating lines of best fit between performance (e.g., generalization accuracy for the compositional
generalization benchmarks or multiple-choice grade for BigBench multiple choice tasks) and code mixture.

4.2.1 Compositional Generalization

Compositional generalization is a measure of how well a learner can generate and interpret novel, licit
combinations of primitive pieces which have been previously learned. Originally motivated to describe
human linguistic faculty—such as the ability of speakers to produce and understand an infinite number
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COGS x : A hedgehog ate the cake .
y : ∗cake(x4); hedgehog(x1) and eat.agent(x2, x1) and eat.theme(x2, x4)

COGS-vf x : A hedgehog ate the cake on the bed .
y : eat(agent = hedgehog, theme = ∗cake(nmod.on = ∗bed))

English Passivization x : our vultures admired her walrus above some zebra .
y : her walrus above some zebra was admired by our vultures .

Table 1: Examples of inputs (x) and targets (y) from each compositional generalization dataset.

of novel, grammatical sentences—compositionality is also a relevant property of many formal systems, like
mathematics or programming languages. We hypothesize that the presence of source code in pretraining
data may aid models in making this kind of generalization since source code often contains sequences in
which a finite set of primitives (e.g., variable and method identifiers) are broadly combined.

To evaluate whether increased code mixture enables compositional generalization, we finetune our pretrained
models on a suite of compositional generalization datasets: COGS (Kim & Linzen, 2020), a semantic parsing
task in which natural-language sentences are transformed into a formal semantic representation; COGS-vf
(Qiu et al., 2022), a variant of COGS which simplifies the output format; and English Passivization (Mueller
et al., 2022), a natural-language transduction task in which synthetically generated active-voice sentences
are transformed into passive variants. Each dataset contains training, validation, and generalization splits,
where the generalization split is constructed to test licit-but-unattested combinations of familiar primitives.
Table 1 shows examples of the input and output sequences for each of the datasets.

COGS and COGS-vf both divide their generalization split into two parts based on generalization type: either
lexical, in which a known primitive is used in a grammatical position it has not been seen in before (e.g.,
hedgehog in subject position, when it had only been seen during training as an object); or structural, in
which a known grammatical structure is used in a novel position (e.g., a prepositional phrase such as on the
mat modifying the subject, when in training such phrases only modified objects). Previous studies involving
COGS and COGS-vf have found the structural generalization examples in COGS to be much harder than
the lexical generalization examples. Reducing the complexity of the output form, as is done in COGS-vf,
makes the structural tasks somewhat easier, though not easy. Petty et al. (2024) found that models of a
comparable size could attain accuracies near 90% on the lexical generalization examples from COGS but
near 0% on the structural examples; on COGS-vf, models were able to attain accuracies greater than 95%
on lexical cases and 10% on structural cases.

For all compositional generalization datasets, we finetune models for 10K steps and report the mean full-
sequence accuracy (i.e., 1 if every autoregressively-generated token is correct, 0 otherwise) over all examples
in the generalization split for each random pretraining seed.

4.2.2 BigBench

We also evaluate models on BigBench (Srivastava et al., 2023), a benchmark of 204 diverse and challenging
tasks presented in a common format. We evaluate models in a zero-shot setting, where a question is given
in context (e.g., What is 697 times 205? from the 3-digit multiplication task) and the model must either
generate the correct label (e.g, (a).) from a provided list of responses (for multiple-choice tasks) or generate
the correct answer (for generative tasks). Since our focus is on the effect of code in pretraining on non-code
tasks, we exclude from consideration tasks which are explicitly designed to test the capabilities of models at
understanding or generating source code. Table 2 shows examples of the input and output sequences for the
BigBench tasks we discuss in detail.

5 Results

Code improves compositional generalization for structured outputs. When we finetune on COGS
and COGS-vf, where the output domain has a formal structure, we find that performance improves as the
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bb-arithmetic x : What is 68824 times 42716?
y : 9033448237, 3839424324, 18962582, 564059290599, banana, house, 2939885984

bb-common-morpheme x : What is the common morpheme among these words: pyre, empyrean, antipyretic,
pyrotechnics?
y : fire, hot, oxygen, medicine

bb-fantasy-reasoning x : Long ago you had sold your soul to the devil, but the postal service was so utterly
bad that they had lost the package where your soul was. Since the transaction was
completed before it, you have the benefits of the deal while the devil still has no control
over you. Does the devil have any control over your soul now?
y : Yes, No

bb-general-knowledge x : How many legs do horses have?
y : two, four, six, three, one, none

bb-implicatures x : Does Speaker 2’s answer mean yes or no? Speaker 1: ‘But aren’t you afraid?’
Speaker 2: ‘Ma’am, sharks never attack anybody.’
y : yes, no

Table 2: Examples of inputs (x) and answers (y) from selected multiple-choice BigBench tasks. Correct
answers are bolded.

proportion of code increases in both the competitive and additive settings (see fig. 2 and table 3). The effect
is most pronounced for the structural generalization examples from COGS-vf in the competitive and additive
settings (regression coefficients β̂ = 0.147 and β̂ = 0.165, respectively; this indicates that the best-fit line
predicts an accuracy increase of 14.7% as the proportion of code increases from 0% to 100%), though all
code-mixture models show a non-negative relationship between code mixture and generalization accuracy.
Code helped the least on the structural generalization examples from COGS, where absolute performance
remained near-zero. In the additive setting, we find that code-mixture models perform as well (on lexical
generalization examples) or better (on structural generalization examples) than the equivalent language-only
baseline models.
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Figure 2: Full-sequence accuracy on the generalization set increases with code mixture on COGS and
COGS-vf in both the competitive and additive settings. In the additive setting, code-mixture models outper-
form language-only baselines on the harder structural generalization cases. In all cases, validation accuracy
is 100%.

In order for models to generalize compositionally, two things must happen: first, models must correctly
generalize the distribution of arguments and predicates to match the true-but-unseen patterns of composition
(e.g., they must learn that syntactic objects become arguments to ‘theme’ for all primitives, even those only
previously seen as subjects); and they must produce well-formed outputs. Kim & Linzen (2020, §G.2) note
that Transformer models in particular often failed at producing syntactically well-formed logical expressions
for the generalization examples in COGS. Since code has similar syntactic requirements to those of COGS
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logical expression (e.g., well-balanced parentheses), the improvement we observe in generalization accuracy
may be due to improvements in the well-formedness of outputs, rather than due to better compositional
generalization. To test this hypothesis, we compute a very high-level measure of syntactic well-formedness
for model outputs—namely, whether or not the decoded logical forms have well-balanced parentheses—and
examine how well-formedness varies by code mixture.
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Figure 3: Pretraining code mixture has little impact on the well-formedness of generalization outputs in any
setting.

Figure 3 shows that exposure to code does not, in general, improve the well-formedness of generalization
outputs. Only on structural generalization examples from COGS-vf in the additive setting does the regression
coefficient β̂ = 0.049 exceed 0.01; for all other code-mixture models, increased code mixture has a near-zero
or negative impact on syntactic well-formedness (table 4). This means that the observed relationship between
higher code mixture and generalization accuracy is attributable to models learning better generalizations for
argument distribution rather than merely producing more well-formed outputs.

Code improves performance on arithmetic, up to a point. On multiple-choice multi-digit arithmetic
tasks from BigBench, increased code mixture has a generally positive impact on performance. In both
competitive and additive settings, higher code mixture results in greater multiple-choice accuracy, with the
impact growing more pronounced as the number of digits increases (see fig. 4 and table 6). In the competitive
setting, performance peaks at a code mixture between 40% and 50% and thereafter tends to decrease, though
the overall trend remains positive; this inverted-U shaped performance curve also grows more pronounced
as the number of digits increases.

Code distracts from linguistic- and world-knowledge. We also identify cases where increased expo-
sure to code harms performance by looking for tasks whose performance is negatively correlated with code
mixture. These tasks include ones which involve purely linguistic knowledge (such as the English Passiviza-
tion compositional generalization task as well as the Implicatures and Common Morpheme BigBench tasks)
as well as those which involve reasoning or world-knowledge (such as the General Knowledge and Fantasy
Reasoning BigBench tasks).

Figure 5 shows this negative trend on the English Passivization compositional generalization benchmark,
where performance (as measured by mean full-sequence accuracy on the generalization split) decreases as
code mixture increases in both the competitive and additive settings. Furthermore, in the additive setting
the language-only baseline models outperform the code-mixture models. See table 5 for exact regression
coefficients.

These negative trends show that increased exposure to code during pretraining does not uniformly improve
the ability of language models to generalize compositionally independent of the output domain; whereas
COGS and COGS-vf, whose output domain is formal logic expressions, benefit from increased code exposure,
generalization tasks which involve natural-language output domains appear to obviate any compositionality
benefit conferred to models through code exposure. This may make intuitive sense, as decreased exposure
to natural language data (in either an absolute or relative sense) may reduce any linguistically-relevant
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Figure 4: On multi-digit multiple choice arithmetic tasks, performance modestly increases with code mixture
in the additive setting, while it increases then decreases in competitive. In both settings, the effect is more
pronounced as the number of digits (rows) increases.
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Figure 5: On English Passivization, a compositional generalization benchmark where (unlike COGS) both
the inputs and outputs are in natural language, increased code mixture results in lower full-sequence general-
ization accuracy in both settings. In the additive setting, code-mixture models underperform language-only
baselines on the harder structural generalization cases.

inductive biases models need, in partial conflict with Mueller et al. (2024)’s finding that code pretraining
aids syntax-sensitive generalization for in-context learning tasks.

We also find instances of BigBench tasks where code mixture is negatively correlated with performance;
Figure 6 highlights four such tasks where increased exposure to code during pretraining harms performance
in both competitive and additive settings. See table 7 for exact regression coefficients.

5.1 The impact of code in aggregate

The results presented above highlight particular cases where code mixture has a noticeable impact on per-
formance, but how does code pretraining affect the remaining BigBench tasks? We want to know how code
pretraining impacts performance in aggregate for two reasons. First, we want to know if adding code helps
in general: is adding code helpful or harmful for most tasks? Second, since it’s likely that following any
type of intervention models will be better at some tasks and worse at others than before the intervention,
we want to confirm if the effects of code we observe are statistically significant or could have arisen due to
chance.

To answer this, we perform a permutation test on the slopes derived above from best-linear-fits of task
performance versus code mixture. We start by taking the underlying performance-by-mixture data and
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Figure 6: On a variety of BigBench tasks involving linguistic or factual knowledge, increased code mixture
reduces accuracy.
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Figure 7: Kernel Density Estimates for the slopes β of linear regressions between task performance and code
mixture on BigBench tasks.

shuffling the independent variable (code mixture) within each task and recompute slopes for the lines-of-
best-fit. Figure 7 shows the distribution of slopes for the observed (treatment) and counterfactual, permuted
(control) data for both settings and metrics. For multiple choice tasks in both settings and for generative
tasks in the competitive setting, the distribution of treatment slopes (i.e., those observed) is less concentrated
around 0 than the control distribution.

To quantify the difference between these distributions, we compute several different test statistics: the dif-
ference of means (∆µ) as a measure of whether training on code improves task performance on average; the
difference of variance (∆Var) as a measure of whether training on code increases the variance of task perfor-
mance; the difference of skew (∆Skew) as a measure of whether training on code moves the distribution of
task performance asymmetrically; and the differences in upper and lower quartiles (∆Upper/LowerQuartile)
as a measure of whether training on code increases the model’s performance on its best and worst-performing
tasks.

We then perform two-sided permutation tests against the null hypothesis that the treatment and control
distributions are drawn from the same underlying distribution by combining and randomly-repartitioning
the samples 10 K times and recomputing each test statistic. We do this test independently for each setting
(competitive and additive) and each BigBench question type: multiple choice (MCG) and generative (where
performance is measured by BLEU).
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Figure 8: Null distributions (blue histogram) and observed values (red vertical rules) for various test statistics
under a permutation test for slopes of performance by code mixture on Big Bench tasks with multiple choice
grades in the competitive setting.

Figure 8 shows the null distributions for each of the test statistics and the observed values for the multiple-
choice questions in the competitive setting, along with the significance scores (p-values) for each statistic.
We find a statistically significant difference of variance (p = 0.0002) and upper-quartiles (p = 0.006) at a
significance level of α = 0.05, indicating that increased code exposure in pretraining does have strong benefits
for some tasks, while it increases the variance in downstream task performance in general. Other statistics
measured were not significant at this significance level. Results are similar, in general, for other conditions.

6 Discussion

We find that including code in a model’s pretraining corpus influences its performance on downstream, non-
code tasks. Adding code improves performance on compositional generalization tasks whose output domain
is highly structured, akin to the syntactic constraints of source code. Exposure to code during pretraining
also improves performance on arithmetic tasks, an trend which grows more pronounced as the number of
digits of the numbers included in those arithmetic tasks increases. Conversely, we also find tasks where
increased exposure to code harms model performance, such as compositional generalization tasks involving
natural-language output or tasks involving linguistic or real-world knowledge. These trends appear in both
a competitive setting, where increases in code data result in reduction of language data, and in a additive
setting, where all models see a fixed amount of language data.

Despite the fact that code improves compositional generalization only in cases where the output domain is
‘code-like,’ we find that increased code exposure does not meaningfully improve the syntactic well-formedness
of outputs in these cases; rather, the benefit conferred by code is to allow models to better learn the correct
generalization for the distribution of arguments. We hypothesize that the deleterious impact of code on
tasks involving linguistic or real-world knowledge comes from a reduction in linguistically-relevant inductive
biases as models see less natural language data (either in an absolute sense in the competitive setting or a
relative sense in the additive setting).
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We conduct permutation tests on the distributions of per-task trend lines of performance-by-code-mixture
to quantify the impact that code has on performance. We find that, in aggregate, training on code tends to
improve performance on BigBench tasks at a statistically-significant level.

6.1 Limitations and Future Work

Scale We survey relatively small models (374M parameters), which limits our ability to establish how code
pretraining affects capabilities which require models at the multi-billion parameter scale, like instruction
following and advanced in-context learning. We also only consider pretraining corpora of between 132B and
264B tokens.

Data Sources We treat ‘code’ and ‘language’ as a monolithic and disjoint data sources, but in reality
source code contains linguistic data in the form of comments while natural language datasets may contain
code-like structures even after cleaning and curation. It is possible that effect sizes would be increased with
a more thorough separation of code and language data.

Task Limitations We study a small set of tasks and evaluation modalities (fine-tuning on compositional
generalization benchmarks and zero-shot performance on assorted BigBench tasks). Code pretraining may
have impacts on other tasks, and those impacts may differ between fine-tuning, zero-shot, and multi-shot
in-context learning.
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Dataset Gen. type Setting Baseline β̂ α̂ R2

COGS Lexical Competitive — 0.022 0.932 0.776
COGS Lexical Additive False 0.030 0.935 0.792
COGS Lexical Additive True 0.024 0.935 0.869
COGS Structural Competitive — 0.009 0.009 0.816
COGS Structural Additive False 0.007 0.010 0.960
COGS Structural Additive True 0.000 0.007 1.000
COGS-vf Lexical Competitive — 0.014 0.970 0.877
COGS-vf Lexical Additive False 0.025 0.971 0.816
COGS-vf Lexical Additive True 0.024 0.970 0.851
COGS-vf Structural Competitive — 0.147 0.186 0.413
COGS-vf Structural Additive False 0.165 0.162 0.692
COGS-vf Structural Additive True −0.048 0.170 0.961

Table 3: Coefficients of linear regressions ŷ = β̂x+ α̂ predicting generalization accuracy by code mixture on
COGS and COGS-vf.

Dataset Gen. type Setting Baseline β̂ α̂ R2

COGS Lexical Competitive — 0.006 0.993 0.883
COGS Lexical Additive False 0.004 0.995 0.988
COGS Lexical Additive True −0.005 0.996 0.969
COGS Structural Competitive — −0.012 0.982 0.980
COGS Structural Additive False −0.098 0.986 0.718
COGS Structural Additive True −0.067 0.976 0.860
COGS-vf Lexical Competitive — 0.000 1.000 0.999
COGS-vf Lexical Additive False 0.000 1.000 0.948
COGS-vf Lexical Additive True 0.024 1.000 0.847
COGS-vf Structural Competitive — −0.033 0.653 0.978
COGS-vf Structural Additive False 0.049 0.632 0.987
COGS-vf Structural Additive True −0.132 0.658 0.914

Table 4: Coefficients of linear regressions ŷ = β̂x + α̂ predicting generalization well-formedness by code
mixture on COGS and COGS-vf.

Dataset Setting Baseline β̂ α̂ R2

English Passivization Competitive — −0.416 0.894 0.718
English Passivization Additive False −0.263 0.775 0.966
English Passivization Additive True −0.193 0.913 0.973

Table 5: Coefficients of linear regressions ŷ = β̂x+ α̂ predicting generalization accuracy by code mixture on
English Passivization.
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Dataset # of Digits Setting β̂ α̂ R2

BB Arithmetic JSON 1 Competitive 0.062 0.381 0.906
BB Arithmetic JSON 1 Additive 0.172 0.373 0.780
BB Arithmetic JSON 2 Competitive 0.095 0.203 0.901
BB Arithmetic JSON 2 Additive 0.265 0.169 0.654
BB Arithmetic JSON 3 Competitive 0.124 0.204 0.891
BB Arithmetic JSON 3 Additive 0.330 0.171 0.706
BB Arithmetic JSON 4 Competitive 0.135 0.221 0.898
BB Arithmetic JSON 4 Additive 0.369 0.168 0.710
BB Arithmetic JSON 5 Competitive 0.121 0.248 0.925
BB Arithmetic JSON 5 Additive 0.397 0.190 0.706

Table 6: Coefficients of linear regressions ŷ = β̂x+ α̂ predicting generalization accuracy by code mixture on
BB Arithmetic JSON.

Dataset Setting β̂ α̂ R2

BB Common Morpheme JSON Competitive −0.093 0.364 0.804
BB Common Morpheme JSON Additive −0.049 0.349 0.968
BB Fantasy Reasoning JSON Competitive −0.047 0.552 0.946
BB Fantasy Reasoning JSON Additive −0.062 0.564 0.955
BB General Knowledge JSON Competitive −0.084 0.246 0.749
BB General Knowledge JSON Additive −0.097 0.240 0.759
BB Implicatures JSON Competitive −0.013 0.520 0.971
BB Implicatures JSON Additive 0.006 0.512 0.997

Table 7: Coefficients of linear regressions ŷ = β̂x+ α̂ predicting generalization accuracy by code mixture on
BB Common Morpheme, Fantasy Reasoning, General Knowledge, and Implicatures JSON.
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