
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCRETE BAYESIAN SAMPLE INFERENCE FOR
GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating graph-structured data is crucial in applications such as molecular gen-
eration, knowledge graphs, and network analysis. However, their discrete, un-
ordered nature makes them difficult for traditional generative models, leading to
the rise of discrete diffusion and flow matching models. In this work, we in-
troduce GraphBSI, a novel one-shot graph generative model based on Bayesian
Sample Inference (BSI). Instead of evolving samples directly, GraphBSI itera-
tively refines a belief over graphs in the continuous space of distribution param-
eters, naturally handling discrete structures. Further, we state BSI as a stochastic
differential equation (SDE) and derive a noise-controlled family of SDEs that pre-
serves the marginal distributions via an approximation of the score function. Our
theoretical analysis further reveals the connection to Bayesian Flow Networks and
Diffusion models. Finally, in our empirical evaluation, we demonstrate state-of-
the-art performance on molecular and synthetic graph generation, outperforming
existing one-shot graph generative models on the standard benchmarks Moses and
GuacaMol.

1 INTRODUCTION

Graph structures appear in various domains ranging from molecular chemistry to transportation and
social networks. Generating realistic graphs enables simulation of real-world scenarios, augmenting
incomplete datasets, and discovering new materials and drugs (Guo & Zhao, 2022; Zhu et al., 2022).
However, their unique and complex structure poses challenges to traditional generative models that
are designed for continuous data such as images. This has resulted in a diverse landscape of graph
generative models, featuring autoregressive models (You et al., 2018) and one-shot models (Kipf &
Welling, 2016), including a range of diffusion-based models (Ho et al., 2020).

Recently, Bayesian Flow Networks (BFNs) (Graves et al., 2025) have emerged as a novel class of
models that operate on the parameters of a distribution over samples rather than on the samples them-
selves. This approach is particularly appealing for discrete data, as the parameters of a probability
distribution evolve smoothly even when the underlying samples remain discrete. Graph generative
models based on BFNs have shown competitive performance in molecule generation (Song et al.,
2025). However, operating in parameter space and being motivated through information theory adds
a layer of complexity to the BFN framework that hinders its accessibility.

Bayesian Sample Inference (BSI) (Lienen et al., 2025) offers a simplified interpretation and gener-
alizes continuous BFNs by viewing generation as a sequence of Bayesian updates that iteratively
refine a belief over the unknown sample. The model is trained by optimizing its corresponding
ELBO.

This work introduces GraphBSI, extending BSI to discrete graphs. Instead of operating on discrete
states, GraphBSI evolves on the probability simplex of node and edge categories. We derive BSI
for categorical data and show how to generate variably-sized graphs with it. Next, we formulate
categorical BSI as an SDE and, via the Fokker–Planck equation, derive a noise-controlled family
of SDEs that preserves marginals while interpolating between a deterministic probability-flow ODE
and a highly stochastic sampler. Empirically, we demonstrate that GraphBSI achieves state-of-the-
art results on the GuacaMol (Brown et al., 2019) and Moses (Polykovskiy et al., 2020) benchmarks
for molecule generation. In extensive ablation studies, we show that noise control is a crucial factor
for optimizing performance. An overview of our method is shown in Fig. 1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

t = 0.00 t = 0.25 t = 0.50 t = 0.75 t = 1.00

p(x | zt) = softmax(zt), with dzt = β′(t)fθ(zt, t)dt+
√
β′(t)dWt

Figure 1: Illustration of GraphBSI’s generative process. Nodes and edges are modeled as indepen-
dent categorical variables. One edge-type is used to represent the non-existence of an edge. The
latent variable zt represents a distribution over graphs rather than a graph itself. The neural network
fθ smoothly steers this distribution from a random initial distribution z0 to a distribution concen-
trated on valid graphs z1, which is modeled as a Stochastic Differential Equation (SDE).

Our main contributions can be summarized as follows:

• We derive BSI for categorical data, enabling, among others, the generation of graphs and
sequences. The result generalizes the Bayesian Flow Network (BFN) framework with a
simplified interpretation while avoiding limit approximations in the Bayesian update.

• We formulate categorical BSI as an SDE. Through the Fokker-Planck equation, we derive
a generalized SDE with a noise-controlling parameter and identical marginals, allowing us
to interpolate between a deterministic probability flow ODE and a sampling scheme that
overrides all previous predictions with the most recent one.

• We demonstrate that GraphBSI achieves SOTA results across most metrics in the Moses
and GuacaMol molecule generation benchmarks with as few as 50 function evaluations,
and further gains substantial improvements with 500 function evaluations.

2 THE BAYESIAN SAMPLE INFERENCE FRAMEWORK FOR GRAPHS

Bayesian Sample Inference (BSI) (Lienen et al., 2025) is a novel generative modeling framework
simplifying and generalizing Bayesian Flow Networks (BFNs) (Graves et al., 2025). While BSI
was originally presented for continuous data, we develop a theoretical framework extending BSI
to categorical data analogously. We start by introducing the required background knowledge. All
proofs are shown in App. D.

Background. Bayesian Sample Inference (BSI) (Lienen et al., 2025) generates samples by iter-
atively refining an initial belief p(x) about the sample x to be generated through noisy measure-
ments y of x. The initial belief p(x | z0) follows a broad isotropic Gaussian with parameters
z0 = (µ0, σ0). The belief is then refined by a sequence of noisy measurements y0, . . . ,yk−1 that
follow Gaussians centered around x. After receiving the measurement yi, the information contained
in it is integrated into our next belief zi+1 through a Bayesian update. Once the belief of x is suffi-
ciently sharp, we return a sample from it. We train a neural network fθ to predict the train sample
x from the information collected about it in the belief zi for each timestep i ∈ 0, . . . , k − 1. The
trained neural network allows us to generate new samples during inference by creating the noisy
measurements through an approximation x̂i = fθ(zi, i) of the sample x in each timestep i.

Extension to categorical data. Now, we will focus on the case that our data lies on the simplex,
i.e., we have a categorical belief for x over c possible categories, i.e., x ∈ ∆n

c−1 ⊂ [0, 1]n×c. If we
have access to noisy measurements yi ∼ N (x,Σ2 = α−1

i I) of the sample x, we can infer x from
the measurements using Bayes’ theorem in a similar fashion to the continuous case. We start with
an initial belief p(x | z0) ∼ Cat(softmax(z0)), where z0 ∈ Rn×c are the logits of a categorical
distribution with n independent components. Then, we can update the belief parameters z after
observing yi using Bayes’ theorem.
Theorem 1. Given a prior belief p(x | z) = Cat(x | softmax(z)), after observing y ∼ N (y | µ =
x,Σ2 = α−1I) at precision α, the posterior belief is p(x | z,y, α) = Cat(x | softmax(zpost))

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with
zpost = z+ αy. (1)

Now, we can iterate over multiple noisy measurements and update our belief until p(x | y1, . . . ,yk)
identifies x with high probability. Through Theorem 1, we encode the information contained in
all these measurements in our updated belief parameters zk as p(x | y1, . . . ,yk) = p(x | zk) ∼
Cat(softmax(zk)) with zk = z0 +

∑
i αiyi.

We process each observation yi sequentially, inducing a notion of time. We measure yi at time
ti = ∆t · i ∈ [0, 1] with ∆t = 1/(k + 1), and the subsequent Bayesian update takes us to ti+1.
To control the total amount of information added to the belief p(x | zt) up to time t, we define
a monotonically increasing precision schedule β : [0, 1] → R+. The measurement yi contains the
information added in the time interval [ti, ti+1], and therefore we choose αi = β(ti+1) − β(ti).
Note that the update of the logits in Theorem 1 is fundamentally different than that of continuous
BSI. Here, the belief components accumulate in each update, whereas in the continuous case, the
update is interpolated with its previous state.

Generative model construction. We build a generative model for categorical data given the above
procedure, similarly as done for BSI with continuous data (Lienen et al., 2025). We begin with a logit
z0 defining the initial belief of the sample x that we will generate in the end, with z0 ∼ N (µ0, β0)
sampled from a simple prior distribution. As x is unknown a priori, we cannot measure it, so
instead we estimate it from the information we have gathered so far encoded in our latest belief. Let
fθ : Rn×c × [0, 1] 7→ ∆n

c−1 be a neural network with parameters θ estimating the unknown sample
x behind our observations given our current belief zt and time t. We estimate x as x̂i = fθ(zi, t),
followed by a noisy measurement yi ∼ N (x̂i,Σ

2 = α−1
i) centered around x̂i with precision αi.

Then, we update our belief with yi via Theorem 1. Now, we repeatedly predict x̂i, measure yi, and
update the belief parameters zi+1 ← zi+αiyi until our belief is sufficiently sharp at t = 1. Finally,
we return a sample from Cat(x | softmax(z1)). See Alg. 1 for a formal description.

Evidence Lower Bound. To train our neural network, we interpret CatBSI as a hierarchical la-
tent variable model to derive an evidence lower bound (ELBO) of the sample likelihood (Kingma
& Welling, 2013), providing a natural training target. As latent variables, we choose the beliefs
z0, . . . , zk. Their distribution in Alg. 1 factorizes, allowing us to write

p(x) = E
p(z0)

∏k
i=1 p(zi|zi−1,θ)

[p(x | zk)] . (2)

As encoding distribution q(z0, z1, . . . , zk | x), we choose the distribution induced under Alg. 1 with
a fixed reconstruction fθ(z, t) = x. Thanks to the simple form of Theorem 1, it is straightforward
to compute the marginal q(zi | x):

zi = z0 +

i−1∑
j=0

αjyj ∼ N (µ0 + β(ti)x,Σ
2 = β0 + β(ti)) (3)

Equipped with this, we can derive the following ELBO:
Theorem 2. For categorical BSI, the log-likelihood of x under Alg. 1 is lower bounded by

log p(x) ≥ E
zk∼q(z|x,tk)

[logp(x | zk)]−
k

2
E

i∼U(0,k−1)
zi∼q(z|x,ti)

[(β(ti+1)− β(ti))||fθ(zi, ti)− x||22], (4)

where q(z | x, t) = N (z | µ0 + β(t)x, β0 + β(t)I) and p(x | zk) = Cat(x | softmax(zk)).

The first term does not depend on θ and therefore cannot be optimized; we only need to minimize
the second term. For k → ∞, we have that k(β(ti+1) − β(ti)) → β′(ti) since ∆t = ti+1 − ti =
1/(k + 1) ≈ 1/k, and ti ∼ U(0, 1). Maximizing the ELBO for k → ∞ over the dataset above is
therefore equivalent to minimizing

L ≡ E
x∼p(x)
t∼U(0,1)
z∼q(z|x,t)

[β′(t)/2 · ||fθ(z, t)− x||22] (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Sampling with Categorical BSI

Require: reconstructor fθ, discretization k,
precision schedule β : [0, 1]→ R+

z0 ∼ N (µ0, β0I)
for i = 0, . . . , k − 1 do

x̂i ← fθ(zi, ti)
αi ← β(ti+1)− β(ti)
yi ∼ N (µ = x̂i,Σ

2 = α−1
i · I)

zi+1 ← zi + αiyi

end for
x ∼ Cat(softmax(zk))
return x

Algorithm 2 Training Categorical BSI

while not converged do
x ∼ p(x)
z0 ∼ N (µ0, β0I)
t ∼ U(0, 1)
α = β(t)− β(0)
y ∼ N (µ = x,Σ2 = 1/α · I)
z = z0 + α · y
x̂ = fθ(z, t)
L = β′(t)/2 · ∥x̂− x∥22
θ = θ − η∇θL

end while

The loss above immediately yields the training procedure Alg. 2. This matches the continuous-time
categorical BFN loss up to a constant when β0 → 0, i.e., the prior is a Dirac delta at t = 0.

Adaptation for graphs. We represent graphs with N nodes as tuples (X,A), where X ∈
∆N

cX−1 ⊂ [0, 1]N×cX are the one-hot encoded categories of each node and A ∈ ∆N×N
cA−1 ⊂

[0, 1]N×N×cA the one-hot encoded categories of each edge, with the first category denoting the
absence of an edge. We treat each node and edge as an independent component of the categorical
belief, allowing us to apply the categorical BSI framework to graphs. Note that dependence between
edges is introduced via our network f . We choose a permutation invariant reconstruction network
fθ, resulting in a permutation invariant generative model when the noise is isotropic.

To enable a varying number of nodes in the graph, we first sample a number of nodes N from the
marginal node count distribution, and subsequently generate the node and edge values. In practice,
this is achieved by masking out inactive nodes and edges for train graphs with fewer nodes.

Adaptation for sequences As a general discrete generative model, Categorical BSI is applicable
for sequence generation, too. Here, a sequence S of length l with a vocabulary size v is represented
in the one-hot-encoded format S ∈ ∆l

v ⊂ [0, 1]l×v . We include an exemplary implementation
trained on DNA sequences in App. B.

3 CATEGORICAL BSI AS A STOCHASTIC DIFFERENTIAL EQUATION

t = 0.00 t = 0.33 t = 0.67 t = 1.00

p(x | zt) γ = 0.0 (ODE) γ = 0.1 γ = 1.0 (Vanilla) γ = 2.0

Figure 2: Trajectories of the SDE Theorem 4 for different values of γ with three classes and fixed
reconstruction fθ(zt, t) = ê2. At γ = 0, the sampler resembles a probability flow ODE as in flow
matching. Increasing γ leads to noisier trajectories. At γ = 1, the original SDE in Theorem 3 is
recovered, and increasing the noise further makes the trajectories even more volatile. The density
function of the marginal distribution p(x | zt) (shown in the background) is identical for all γ.

In this section, we analyze the update equation in Theorem 1 and take the infinite-step limit, ob-
taining an SDE. We then introduce a parameter that controls the stochasticity and yields a family of
SDEs with identical marginals.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

SDE Dynamics. First, we notice that as the number of steps k increases, i.e., ∆t := 1/(k+1)→ 0,
the updates in Theorem 1 converge to the following SDE.
Theorem 3. As ∆t→ 0, the update equation in Theorem 1 converges to the following SDE:

dzt = β′(t)fθ(zt, t)dt+
√

β′(t)dWt (6)

where dWt is a Wiener process and z0 ∼ N (µ0, β0 · I).

Note that while the distribution of z0 is not required to be normal for Theorem 3 itself, it is necessary
for the following steps. Phrasing the evolution of the latent variable zt as an SDE enables the use of
more advanced sampling schemes and allows us to derive a generalized SDE family. The original
discrete update in Theorem 1 is recovered by applying an Euler-Maruyama discretization of Eq. (6).

Generalized SDE. We now generalize Eq. (6) to a family that preserves the marginal probability
paths pt(zt) while controlling stochasticity via the parameter γ, similar to Karras et al. (2022):
Theorem 4. The SDE in Theorem 3 is generalized by the following family of SDEs with equal
marginal densities pt(zt):

dzt = β′(t)fθ(zt, t)dt+
γ − 1

2
β′(t)∇zt

log pt(zt)dt+
√

γβ′(t)dWt (7)

where dWt is a Wiener process and z0 ∼ N (µ0, β0 · I).

Setting γ = 0 yields a deterministic probability flow ODE, equivalent to Xue et al. (2024). Unlike
BFNs, however, CatBSI samples the prior belief p(z | t = 0) rather than choosing a fixed prior,
naturally avoiding the discontinuity around t = 0. Further, choosing γ = 1 recovers the original
SDE in Theorem 3, and larger γ produces more stochastic trajectories. We visualize in Figs. 2 and 6
how varying γ affects the dynamics for toy examples. Although the marginal distributions are equal
for all γ in theory, the empirical performance varies as ∇zt

log pt(zt) is not available in closed
form. Higher stochasticity allows the model to correct errors made in previous sampling steps but
requires a finer discretization (see Sec. 4.3). In the limit γ →∞, the sampler effectively overwrites
the current state completely in every step (see App. C.3). To turn Eq. (7) into a practical sampling
algorithm, we approximate the score function∇zt log pt(zt), as described in the following.
Theorem 5. The BSI loss Eq. (5) also is a score matching loss with the score model sθ(z, t) param-
eterized as

sθ(z, t) ≡
µ0 + β(t)fθ(z, t)− z

β(t) + β0

!
≈ ∇z log pt(z) (8)

Discretization and integration. As the SDE is not solvable in closed form, we resort to numerical
sampling. While a simple Euler-Maruyama (EM) approach performs well on sufficiently fine time
grids, we find that integrating a locally linearized SDE within each step can improve sample quality
for low numbers of neural function evaluations (see Sec. 4.3). More specifically, we freeze the
reconstructor x̂ = fθ(zt, t) over the time interval [t, t + ∆t], representing an Ornstein-Uhlenbeck
process. This allows us to solve the SDE analytically within this interval.
Theorem 6. Fixing the prediction x̂ = fθ(zt, t) and the values β = β(t+∆t/2), β′ = β′(t+∆t/2)
in Eq. (7) in a time interval [t, t + ∆t] yields an Ornstein-Uhlenbeck (OU) process with the exact
marginal

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, I), (9)

where κ = (γ−1)β′

2(β0+β) , m = µ0 + (β + β′/κ)x̂.

Note that the OU discretization converges towards the EM scheme for ∆t→ 0 (see App. C.1).

Quantizing instead of sampling. If the belief precision at t = 1 is sufficiently sharp, the final
sampling step in Alg. 1 is de facto deterministic. However, this presents an opportunity to improve
sampling efficiency: In the last few steps, simply sampling from the belief would yield too noisy
samples, but the belief contains enough information so that the reconstructor can make a perfect

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 3 Euler-Maruyama Sampling

Require: reconstructor fθ, discretization ∆t,
precision schedule β : [0, 1]→ R+, γ ≥ 0
z ∼ N (µ0, β0I)
for t = 0,∆t, 2∆t, . . . , 1−∆t do

x̂← fθ(z, t)

sθ ← µ0+β(t)x̂−z
β(t)+β0

µ← β′(t)(x̂+ γ−1
2 sθ)

σ ←
√
γβ′(t)

z← z+ µ∆t+ σ
√
∆t · N (0, I)

end for
return Quantize(fθ(z, t = 1))

Algorithm 4 Ornstein-Uhlenbeck Sampling

Require: reconstructor fθ, discretization ∆t,
precision schedule β : [0, 1]→ R+, γ > 1
z ∼ N (µ0, β0I)
for t = ∆t/2,∆t+∆t/2, . . . , 1−∆t/2 do

x̂← fθ(z, t)

κ← (γ−1)β′(t)
2(β0+β(t))

m← µ0 + (β(t) + β′(t)/κ)x̂

σ2 ← γβ′(t)
2κ (1− e−2κ∆t)

z← m+(z−m)e−κ∆t+
√
σ2 ·N (0, I)

end for
return Quantize(fθ(z, t = 1))

reconstruction of it (see Fig. 5). Therefore, we can instead stop at a lower final precision and return
reconstruction projected on the sample space through a quantization. Employing the discretization
schemes yields Algs. 3 and 4.

We also allow a nonuniform time grid. Following Karras et al. (2022), we introduce a parameter ρ
that controls the distribution of function evaluations over the time grid:

ti =

(
i

k

)ρ

, i = 0, 1, . . . , k. (10)

Here, ρ = 1 recovers a uniform grid; larger ρ concentrates steps near the beginning (t ≈ 0), whereas
smaller ρ concentrates them near the end (t ≈ 1).

4 EXPERIMENTS

In this section, we present our empirical results. We benchmark our model against state-of-the-art
baselines from the diffusion and flow-matching literature on unconditional molecular and synthetic
graph generation. The GuacaMol and Moses benchmarks for molecular generation (Brown et al.,
2019; Polykovskiy et al., 2020) serve as our primary evaluation datasets. Additionally, we conduct
ablation studies to analyze the impact of various components and hyperparameters on the model’s
performance. Further, we report results on the synthetic planar, tree, and stochastic block model
graph generation tasks (Bergmeister et al., 2024; Martinkus et al., 2022).

4.1 EXPERIMENTAL SETUP

Datasets. To test performance on real-world graphs, we train GraphBSI on the Moses
(Polykovskiy et al., 2020) and GuacaMol (Brown et al., 2019) datasets for molecular generation.
We extract graphs out of the dataset smiles with RDKit RDKit (2025) and construct the node fea-
tures X and adjacency matrix A in the format described in Sec. 2, where atom- and bond types
correspond to node- and edge categories, respectively. Further, we include results for the planar,
tree, and stochastic block model (Martinkus et al., 2022; Bergmeister et al., 2024) synthetic graph
generation datasets. Find a summary in Tab. 8.

Evaluation metrics. We follow the standard evaluation practices as established by Polykovskiy
et al. (2020); Brown et al. (2019); Preuer et al. (2018) for molecule generation and Martinkus et al.
(2022); Bergmeister et al. (2024) for synthetic graph generation. Find a detailed description in
Tabs. 9 and 10.

Practical considerations. The reconstruction network fθ is parameterized using the same graph
transformer architecture as Qin et al. (2025); Vignac et al. (2023), with the node- and edge logits
and class probabilities, entropy, random walk features, and sinusoidal embeddings (Vaswani et al.,
2017) of the timestep t with frequencies proposed by Lienen et al. (2024) as features. Empirically,
we find that an exponential precision schedule with a final precision that allows for a near-perfect

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

reconstruction maximizes performance (see Tab. 7 and Figs. 5 and 7). For both latent node- and
edge classes, we choose a normal prior with the marginal distribution over the dataset and a small
variance of 1.0. Finally, we apply a preconditioning scheme where the neural network predicts the
difference between the belief and the true sample, setting fθ(z, t) = softmax(z + f̃θ(z, t)).

Evaluation After training to convergence, we evaluate the benchmark metrics for both discretiza-
tion schemes Algs. 3 and 4. For both molecule generation benchmarks, we report results with a
compute budget of 50 and 500 discretization steps. In each of the four configurations (2 discretiza-
tion schemes, 2 numbers of steps), we optimize the noise level γ and report the best result. Find
the final configurations in Tab. 7. For the synthetic graph generation benchmarks, we report results
with the best-performing noise level and the Ornstein-Uhlenbeck discretization with 1000 function
evaluations.

4.2 RESULTS

Molecule Generation. As illustrated in Tab. 1, GraphBSI is competitive with 50 steps with both
discretization schemes for both molecule benchmarks, achieving state-of-the-art results on the ma-
jority of the metrics. Notably, GraphBSI outperforms DeFoG with both discretization schemes on
all metrics except novelty on Moses. On most metrics, the OU discretization performs better than
the EM scheme. At the full 500 steps, GraphBSI with the OU discretization outperforms all existing
models on all metrics on GuacaMol, saturating validity and consistently exceeding the state-of-the-
art. The EM scheme performs slightly worse than OU on most metrics, but remarkably surpasses
the state-of-the-art on the FCD metric, reducing it from 1.07 to 0.72 on Moses. Find an extended
comparison in Tab. 5.

Table 1: Results on the GuacaMol and Moses benchmarks for molecular generation with 50 and 500
sampling steps and the Euler-Maruyama (EM) and Ornstein-Uhlenbeck (OU) discretization.

GuacaMol MosesModel Steps Val. ↑ V.U. ↑ V.U.N. ↑ KL ↑ FCD ↑ Val. ↑ Uniq. ↑ Nov. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Train Set 100.0 100.0 0.0 99.9 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1
DeFoG 50 91.7 91.7 91.2 92.3 57.9 83.9 99.9 96.9 96.5 1.87 0.50 23.5
GraphBSI (EM) 50 97.5 97.5 97.2 90.7 65.6 99.3 100.0 96.5 96.9 1.06 0.50 15.2
GraphBSI (OU) 50 99.2 99.2 98.7 93.7 71.3 99.7 100.0 94.6 98.2 1.19 0.52 15.1
DiGress 500 85.2 85.2 85.1 92.9 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo 500 86.6 86.6 86.5 92.6 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh 500 98.9 98.9 97.6 96.7 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG 500 99.0 99.0 97.9 97.7 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4
GraphBFN 500 - - - - - 98.5 99.8 89.0 98.3 1.07 0.59 10.0
GraphBSI (EM) 500 98.8 98.8 98.3 94.6 82.6 99.8 100.0 92.5 99.1 0.72 0.54 14.3
GraphBSI (OU) 500 99.6 99.6 98.2 98.4 80.3 99.9 100.0 90.7 99.2 0.90 0.55 12.7

Synthetic Benchmarks. As shown in Tab. 2, GraphBSI achieves competitive results on the syn-
thetic graph generation benchmarks. Our model saturates validity on the planar- and tree graph
generation tasks, and achieves adequate validity on the stochastic block model graphs. The mean
ratio as a measure of distribution similarity is competitive on all three datasets, even though the
metric should be taken with a grain of salt due to the small dataset size of only 128 graphs, resulting
in high uncertainty in the evaluation.

4.3 ABLATION STUDIES

Noise level. To test the effect of the compute budget, noise level, and discretization scheme
on performance, we conduct a grid search over the number of function evaluations (NFEs) in
{25, 50, 100, 200, 500}, noise levels γ in {0.0, 5.0, 20.0, 100.0, 250.0, 1000.0}, and both discretiza-
tion schemes on the Moses dataset. As shown in Fig. 3, performance in both discretization schemes
is closely related at low noise levels, which is to be expected since both discretize the same SDE.
Higher compute budgets lead to better performance. However, the Euler-Maruyama scheme be-
comes unstable at higher noise levels, leading to a significant drop in performance (see App. C.2).
In contrast, the Ornstein-Uhlenbeck scheme remains stable, and both the SNN score and Filters met-
ric benefit from higher noise levels. The FCD metric is optimal at a medium noise level between

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results on the synthetic graph generation benchmarks. Like DeFoG, we generate 40 graphs
five times and report the mean and standard deviation over the runs.

Planar Tree SBMModel Steps V.U. ↑ Ratio ↓ V.U. ↑ Ratio ↓ V.U. ↑ Ratio ↓
Train Set 100.0 1.0 100.0 1.0 85.9 1.0
DeFoG 50 95.0 ± 3.2 3.2 ± 1.1 73.5 ± 9.0 2.5 ± 1.0 86.5 ± 5.3 2.2 ± 0.3
GraphBSI (EM) 50 7.5 ± 1.0 47.5 ± 4.3 89.0 ± 7.0 2.1 ± 0.8 61.5 ± 5.8 4.2 ± 1.4
GraphBSI (OU) 50 38.5 ± 8.6 18.0 ± 3.2 96.0 ± 1.2 2.5 ± 0.9 53.0 ± 7.5 51.4 ± 4.0
HSpectre 256 95.0 2.1 100.0 4.0 75.0 10.5
DiGress 1000 77.5 5.1 90.0 1.6 60.0 1.7
DeFoG 1000 99.5 ± 1.0 1.6 ± 1.0 96.5 ± 2.6 1.6 ± 0.4 90.0 ± 5.1 4.9 ± 1.3
GraphBFN 1000 96.7 - - - 87.5 -
GraphBSI (EM) 1000 100.0 ± 0.0 3.8 ± 1.0 96.5 ± 3.7 1.3 ± 0.4 50.5 ± 4.6 11.3 ± 1.4
GraphBSI (OU) 1000 100.0 ± 0.0 3.2 ± 0.6 100.0 ± 0.0 1.8 ± 0.5 77.5 ± 2.7 4.6 ± 1.1

0 5 20 100 250 1000

Noise Level (γ)

−2

−1

0

1

2

N
or

m
al

iz
ed

Sc
or

e

FCD (↓)

0 5 20 100 250 1000

Noise Level (γ)

SNN Score (↑)

0 5 20 100 250 1000

Noise Level (γ)

100% - Filters (↓)
25 FE 50 FE 100 FE 200 FE 500 FE OU Euler

Figure 3: Normalized metrics (zero mean, unit variance) vs. noise level γ for different numbers of
function evaluations (FE) and discretization schemes. Our custom Ornstein-Uhlenbeck discretiza-
tion scheme is denoted as OU, while the standard Euler-Maruyama scheme is written as Euler. Some
values for the Euler scheme are missing since the sampler becomes unstable if γ ·∆t becomes too
large (see App. C.2).

20 and 100. With a few exceptions, the Ornstein-Uhlenbeck scheme matches or outperforms the
Euler-Maruyama scheme at all compute budgets and noise levels. Novelty suffers from increased
noise levels and compute budgets, which is consistent with the model generating samples closer
to the training data distribution. Notably, all metrics perform poorly at a noise level of 0.0, which
corresponds to the probability flow ODE (equivalent to Xue et al. (2024)). Fig. 8 illustrates that
optimizing the noise level is a key driver in the performance gains of our model.

0.5 1.0 1.5 2.0

ρ

−15

−10

−5

0

5

10

15

C
ha

ng
e

vs
ρ

=
1

in
%

50 Steps

0.5 1.0 1.5 2.0

ρ

500 Steps

SNN ↑
FCD ↓
Filt. ↑

OU
Euler

Figure 4: Performance change for changes in the non-uniform timestepping parameter ρ in ti =
(i/k)ρ for i = 0, 1, . . . , k compared to the uniform case ρ = 1. ρ < 1 results in a finer discretization
at later timesteps, while ρ > 1 corresponds to finer discretization at earlier steps.

Non-uniform timesteps. To test whether a fine discretization is more important at some timesteps
compared to others, we analyze the effect of non-uniform timestepping, putting a finer discretization

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

at either earlier or later timesteps. As shown in Fig. 4, SNN and Moses Filters remain mostly
unaffected by the choice of ρ; only the FCD displays a clear trend. A finer discretization at later
timesteps (ρ < 1) improves the FCD at 50 function evaluations in both discretization schemes and
at 500 evaluations in the Ornstein-Uhlenbeck scheme.

Precision schedule. We find that while an exponential precision schedule yields the best results,
the difference compared to a simple linear schedule is negligible (see Tab. 5). One parameter that
significantly affects performance is the final precision β(t = 1). As illustrated in Fig. 7, an exces-
sively large final precision wastes sampler iterations in the final steps, and a too small final precision
results in noisy samples. Ideally, the reconstructor is just able to predict the train samples flaw-
lessly at β(t = 1). Finally, we isolate the effect of sampling the belief at t = 0 instead of taking
a fixed value, as with BFNs, by training a new model with a smaller initial variance of β0 = 0.05,
compared to the standard β0 = 1.0. Tab. 5 shows that for both values of β0, the OU sampler outper-
forms the Flowback (Song et al., 2025) sampler on most metrics. Surprisingly, the performance of
the Flowback sampler drops significantly when β0 is increased, while a higher value of β0 improves
performance for the OU sampler.

We conclude that two key factors are crucial for the performance gains of GraphBSI: First, the noise
control, and second, a final precision that is just high enough for a perfect reconstruction. The exact
precision schedule and non-uniform time-stepping show only a marginal contribution.

5 RELATED WORK

Graph generation presents three main challenges compared to image and text generation: (1) graphs
are discrete structures, unlike images, which are continuous; (2) graphs have a variable shape, with
both the number and arrangement of nodes and edges changing across samples, unlike the fixed
dimensions of images; and (3) nodes in graphs lack a natural order, in contrast to text, where tokens
follow a well-defined sequence. Various approaches have been proposed to tackle these challenges.

Autoregressive models have proven successful in text generation by sequentially predicting the
next token based on previous ones (Brown et al., 2020). Applied to graphs, these models generate
nodes and edges one by one, maintaining the graph structure as they proceed. This approach has
been used for tasks such as molecule and social-network generation (You et al., 2018; Liao et al.,
2020). However, autoregressive models violate permutation invariance by relying on a specific node
ordering.

One-shot models address the ordering challenge by generating the entire graph in a single step,
without relying on a specific node ordering. Examples include Variational Autoencoders (Kingma
& Welling, 2013), GANs (Cao & Kipf, 2022), normalizing flows (Liu et al., 2019), and discrete flow
matching (Gat et al., 2024; Qin et al., 2025).

Diffusion models have emerged as a powerful class of one-shot generative models for continuous
data such as images (Sohl-Dickstein et al., 2015; Ho et al., 2020). Their core idea is to learn a gen-
erative process that gradually transforms noise into clean data by reversing a diffusion process with
a neural network. Noise is typically applied independently to each pixel in images or to each node
in graphs, naturally resulting in a permutation-invariant model when combined with a Graph Neural
Network (GNN) (Niu et al., 2020). A variable number of nodes can be handled by conditioning the
diffusion process on the node count, e.g., by first sampling a node mask and then applying diffusion
to the masked graph (Niu et al., 2020; Qin et al., 2025). To improve scalability, hybrid methods that
reverse a coarsening process and generate local structures with a diffusion model have also been
proposed (Bergmeister et al., 2024).

Discrete diffusion addresses the discreteness of graphs. The most straightforward approach relaxes
discrete data to a continuous space, applies diffusion, and quantizes the generated outputs back to
the discrete space in a final step (Niu et al., 2020; Jo et al., 2022; 2024). Alternatively, one can
use discrete diffusion in which the state is perturbed via a Markovian transition matrix in discrete
time steps (often including an absorbing state) (Austin et al., 2023); this has been applied to graphs
(Vignac et al., 2023; Haefeli et al., 2023). A related recent approach uses a continuous-time Markov
chain for the discrete diffusion process (see (Campbell et al., 2022)), which allows more flexible
sampling on graphs (Siraudin et al., 2024; Xu et al., 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Bayesian Flow Networks Graves et al. (2025) propose a conceptually distinct approach to discrete
generative models: diffusion is applied to the parameters of a distribution over samples rather than
to the samples themselves. BFNs can be interpreted as an SDE, enabling more efficient sampling
algorithms (Xue et al., 2024). This provides a solid theoretical foundation for diffusion on discrete
data while retaining the benefits of smooth parameter changes, and it achieves competitive perfor-
mance on protein and graph generation (Atkinson et al., 2025; Song et al., 2025; Tao & Abe, 2025).
The flexible design of BFNs also permits joint generation of continuous and discrete quantities, for
example the 3D positions, atom types, and charges in molecular generation (Song et al., 2024).

Bayesian Sample Inference Lienen et al. (2025) extends BFNs by adding a prior over the distribu-
tion parameters and offers a simplified interpretation for the continuous-data case. Kollovieh et al.
(2025) used the BSI framework to derive their generative model for hierarchies. However, they
do not generalize the framework, i.e., do not derive SDE-based sampling algorithms, and do not
optimize an ELBO as they specifically focus on hierarchy generation.

6 CONCLUSION

In this work, we introduce GraphBSI, a novel generative model for graphs based on Bayesian Sam-
ple Inference with state-of-the-art performance in large molecule generation benchmarks. Similar to
Bayesian Flow Networks, GraphBSI iteratively refines a belief over the graph structure, modeled as
a categorical distribution over adjacency matrices, through Bayesian updates. We show that in the
limit of infinitesimal time steps, GraphBSI converges to a Stochastic Differential Equation (SDE).
Further, we employ the Fokker-Planck equation to derive a generalized SDE with a tunable noise pa-
rameter, allowing us to interpolate between a deterministic probability flow ODE, the original SDE,
and a substantially more volatile sampler. We demonstrate that GraphBSI achieves state-of-the-art
performance on the GuacaMol and Moses benchmarks for large molecule generation, outperform-
ing existing models on nearly all metrics. Finally, in our ablations we empirically show that noise
control critically influences performance.

Limitations and Future Work. GraphBSI, in its current implementation, suffers from the
quadratic scaling of compute and memory requirements in the number of nodes that comes with
the application of a graph transformer. Exploring a more memory-efficient graph neural network ar-
chitecture to generate larger graphs would be a promising avenue for future research. Further, while
GraphBSI allows for variable-sized graphs, the number of nodes is sampled beforehand instead of
jointly generated with the graph features. Allowing for nodes to appear or disappear while gener-
ating the graph, similar to jump diffusion (Campbell et al., 2023), might result in a more flexible
generative process.

REFERENCES

Timothy Atkinson, Thomas D. Barrett, Scott Cameron, Bora Guloglu, Matthew Greenig, Char-
lie B. Tan, Louis Robinson, Alex Graves, Liviu Copoiu, and Alexandre Laterre. Protein se-
quence modelling with bayesian flow networks. Nature Communications, 16(1):3197, 2025.
ISSN 2041-1723. doi: 10.1038/s41467-025-58250-2. URL https://doi.org/10.1038/
s41467-025-58250-2.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2023. URL https://arxiv.org/abs/
2107.03006.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion, 2024. URL https://arxiv.
org/abs/2312.11529.

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Bench-
marking models for de novo molecular design. Journal of Chemical Information and Model-
ing, 59(3):1096–1108, March 2019. ISSN 1549-960X. doi: 10.1021/acs.jcim.8b00839. URL
http://dx.doi.org/10.1021/acs.jcim.8b00839.

10

https://doi.org/10.1038/s41467-025-58250-2
https://doi.org/10.1038/s41467-025-58250-2
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2312.11529
https://arxiv.org/abs/2312.11529
http://dx.doi.org/10.1021/acs.jcim.8b00839

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, . . . Ilya Sutskever, et al. Language
models are few-shot learners. In NeurIPS, 2020.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
https://arxiv.org/abs/2205.14987.

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Tom Rainforth, and
Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models, 2023. URL
https://arxiv.org/abs/2305.16261.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs,
2022. URL https://arxiv.org/abs/1805.11973.

Oscar Davis, Samuel Kessler, Mircea Petrache, İsmail İlkan Ceylan, Michael Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data, 2024. URL
https://arxiv.org/abs/2405.14664.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching, 2024. URL https://arxiv.org/abs/2407.
15595.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow
networks, 2025. URL https://arxiv.org/abs/2308.07037.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation,
2022. URL https://arxiv.org/abs/2007.06686.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffu-
sion models for graphs benefit from discrete state spaces, 2023. URL https://arxiv.org/
abs/2210.01549.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

J. Janssens, S. Aibar, I. I. Taskiran, J. N. Ismail, A. E. Gomez, G. Aughey, K. I. Spanier,
F. V. De Rop, C. B. González-Blas, M. Dionne, K. Grimes, X. J. Quan, D. Papasokrati,
G. Hulselmans, S. Makhzami, M. De Waegeneer, V. Christiaens, T. Southall, and S. Aerts.
Decoding gene regulation in the fly brain. Nature, 601(7894):630–636, January 2022. doi:
10.1038/s41586-021-04262-z.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations, 2022. URL https://arxiv.org/abs/2202.
02514.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture, 2024.
URL https://arxiv.org/abs/2302.03596.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022. URL https://arxiv.org/abs/2206.00364.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL https:
//arxiv.org/abs/1312.6114.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016. URL https:
//arxiv.org/abs/1611.07308.

Marcel Kollovieh, Nils Fleischmann, Filippo Guerranti, Bertrand Charpentier, and Stephan
Günnemann. Treegen: A bayesian generative model for hierarchies. In The Thirty-ninth Annual
Conference on Neural Information Processing Systems, 2025. URL https://openreview.
net/forum?id=d2EouMhAAq.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient graph generation with graph recurrent
attention networks, 2020. URL https://arxiv.org/abs/1910.00760.

11

https://arxiv.org/abs/2205.14987
https://arxiv.org/abs/2305.16261
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/2405.14664
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2308.07037
https://arxiv.org/abs/2007.06686
https://arxiv.org/abs/2210.01549
https://arxiv.org/abs/2210.01549
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2202.02514
https://arxiv.org/abs/2202.02514
https://arxiv.org/abs/2302.03596
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://openreview.net/forum?id=d2EouMhAAq
https://openreview.net/forum?id=d2EouMhAAq
https://arxiv.org/abs/1910.00760

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günnemann. From zero to turbu-
lence: Generative modeling for 3d flow simulation. In ICLR, 2024.

Marten Lienen, Marcel Kollovieh, and Stephan Günnemann. Generative modeling with bayesian
sample inference, 2025. URL https://arxiv.org/abs/2502.07580.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows,
2019. URL https://arxiv.org/abs/1905.13177.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators, 2022. URL
https://arxiv.org/abs/2204.01613.

Kevin P Murphy. Machine learning: a probabilistic perspective. 2012.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling, 2020. URL https:
//arxiv.org/abs/2003.00638.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alan Aspuru-
Guzik, and Alex Zhavoronkov. Molecular Sets (MOSES): A Benchmarking Platform for Molec-
ular Generation Models. Frontiers in Pharmacology, 2020.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer.
Fréchet chemnet distance: A metric for generative models for molecules in drug discovery. Jour-
nal of Chemical Information and Modeling, 58(9):1736–1741, 2018. doi: 10.1021/acs.jcim.
8b00234. URL https://doi.org/10.1021/acs.jcim.8b00234. PMID: 30118593.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation, 2025. URL https://arxiv.org/abs/2410.04263.

RDKit. RDKit: Open-source cheminformatics. https://www.rdkit.org, 2025. Accessed:
2025-11-23.

Antoine Siraudin, Fragkiskos D. Malliaros, and Christopher Morris. Cometh: A continuous-
time discrete-state graph diffusion model, 2024. URL https://arxiv.org/abs/2406.
06449.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/
abs/1503.03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
https://arxiv.org/abs/2011.13456.

Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma. Unified
generative modeling of 3d molecules with bayesian flow networks. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=NSVtmmzeRB.

Yuxuan Song, Juntong Shi, Jingjing Gong, Minkai Xu, Stefano Ermon, Hao Zhou, and Wei-Ying
Ma. Smooth interpolation for improved discrete graph generative models. In Forty-second In-
ternational Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=OYUG5SCg6k.

Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design, 2024. URL
https://arxiv.org/abs/2402.05841.

12

https://arxiv.org/abs/2502.07580
https://arxiv.org/abs/1905.13177
https://arxiv.org/abs/2204.01613
https://arxiv.org/abs/2003.00638
https://arxiv.org/abs/2003.00638
https://doi.org/10.1021/acs.jcim.8b00234
https://arxiv.org/abs/2410.04263
https://www.rdkit.org
https://arxiv.org/abs/2406.06449
https://arxiv.org/abs/2406.06449
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2011.13456
https://openreview.net/forum?id=NSVtmmzeRB
https://openreview.net/forum?id=NSVtmmzeRB
https://openreview.net/forum?id=OYUG5SCg6k
https://openreview.net/forum?id=OYUG5SCg6k
https://arxiv.org/abs/2402.05841

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nianze Tao and Minori Abe. Bayesian flow network framework for chemistry tasks. Journal of
Chemical Information and Modeling, 65(3):1178–1187, 2025. doi: 10.1021/acs.jcim.4c01792.

George Eugene Uhlenbeck and Leonard Salomon Ornstein. On the theory of the brownian motion.
Physical Review, 36(5):823–841, 1930.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation, 2023. URL https:
//arxiv.org/abs/2209.14734.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gener-
ation, 2024. URL https://arxiv.org/abs/2405.11416.

Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, Jun Zhou, and Chongxuan Li. Unify-
ing bayesian flow networks and diffusion models through stochastic differential equations, 2024.
URL https://arxiv.org/abs/2404.15766.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models, 2018. URL https://arxiv.org/abs/
1802.08773.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications, 2022. URL https://arxiv.org/
abs/2203.06714.

13

https://arxiv.org/abs/2209.14734
https://arxiv.org/abs/2209.14734
https://arxiv.org/abs/2405.11416
https://arxiv.org/abs/2404.15766
https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/2203.06714
https://arxiv.org/abs/2203.06714

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATIONSHIP TO BFNS AND DIFFUSION MODELS

A.1 RELATIONSHIP TO BFNS

There is a close equivalence between Categorical Bayesian Sample Inference (BSI) and Categorical
Bayesian Flow Networks (BFNs). In fact, Categorical BFNs can be seen as a special case of Cate-
gorical BSI with a specific choice of prior distribution and noise schedule. The dynamics of BFNs
are recovered when choosing the sampler in Eq. (7) with γ = 1 and β0 = 0 to parametrize z0, i.e.,
making the prior logits deterministic. Note that we require β0 > 0 to avoid numerical issues when
approximating the score function. This generalized SDE allows BSI to vary stochasticity. Intu-
itively, increasing stochasticity allows the model to overwrite errors from previous predictions (see
App. C.3 for a discussion on the extreme case), and empirically, increasing stochasticity proves cru-
cial for performance Fig. 3. To illustrate this, we will show the relationship between the components
of both frameworks.

Input Distribution Both BFNs and categorical BSI parameterize the distribution over the data x
using a categorical distribution. The logits are denoted as z in BSI and as θ in BFNs. In BSI,
the parameters z are the logits of a categorical distribution, i.e., p(x | z) ∼ Cat(softmax(z)). In
BFNs, the parameters θ are the probabilities of each category, i.e., p(x | θ) ∼ Cat(θ). The two
parameterizations are equivalent since θ = softmax(z) and z = log(θ) (up to an additive constant).

Output Distribution The output distribution in BFNs is an intermediate distribution that is not
needed in BSI.

Prior Distribution While Categorical BSI includes a normal prior distribution over the logits of
the categorical distribution (p(z | t = 0) ∼ N (µ0, β0I)), Categorical BFNs fix the parameters
to θ0 = 1/K. Therefore, categorical BFNs can be seen as a special case of categorical BSI with
µ0 = 0 and β0 = 0.

Sender Distribution The sender distribution in categorical BFNs is an intermediate distribution that
is not required in categorical BSI.

Receiver Distribution The sender distribution in categorical BFNs is given as

pR(y | x, α) ∼
∑
k

softmax(Ψ(θ))kN (α(Kêk − 1), αKI)

It corresponds to the noisy measurement distribution in categorical BSI, p(y | x, α) ∼ N (x̂, 1/αI).
Note that for α→ 0, it holds that:

pR(y | x, α) ∼ N (α(Ksoftmax(Ψ(θ))− 1), αKI)

The sender distribution for α → 0 is an affine transformation of the noisy observation function for
BSI: If we set y ∼ p(y | x, α) = N (x̂, 1/αI) and compute y′ = α(Ky − 1), then y′ ∼ ps(y

′ |
x, α), where softmax(Ψ(θ)) corresponds to the sample reconstruction x̂. Thus, in the small-α-limit,
the two distributions have same-order approximation and therefore contain the same information.
However, in the formulation of categorical BSI, we can directly see that y is a noisy observation
of x and we do not require computing the distribution as a limit of a multinomial distribution as in
BFNs.

Bayesian Update Function The Bayesian update function in categorical BFNs (Graves et al., 2025,
Eq. 171) is the equivalent of Theorem 1 in categorical BSI. The update is simplified for BSI since
the belief parameters are in logit space instead of probability space. Furthermore, the scaling of the
receiver distribution leads to an extra factor of α in categorical BSI.

Bayesian Update Distribution This is an intermediate that is not required in categorical BSI.

Accuracy Schedule The accuracy schedule can be chosen freely in categorical BSI. In categorical
BFNs, the accuracy schedule is chosen as β(t) = t2β(1).

Bayesian Flow Distribution The Bayesian flow distribution in categorical BFNs corresponds to
Eq. (3) in categorical BSI. The two distributions are equivalent up to an affine transformation of the
variable, as explained above.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Continuous Time Loss The continuous time loss in categorical BFNs (Graves et al., 2025, Eq. 205)
corresponds to Eq. (5) in categorical BSI. Both are the L2 loss between the reconstruction and the
one-hot encoded data.

SDE formulation Both BSI and BFN sampling can be formulated as SDEs. Here, Theorem 3
corresponds to (Xue et al., 2024, Eq. 24). To do so, the authors also operate on the logits of the
categorical distribution instead of the probabilities.

Score function approximation The score function approximation for categorical BFNs (Xue et al.,
2024, Eq. 28) corresponds to Theorem 5 for β0 = 0 up to a constant. Note that a value of β0 > 0
avoids the division by zero in the score function approximation at t = 0.

A.2 RELATIONSHIP TO DIFFUSION MODELS.

The logits z evolve in a way that closely resembles a diffusion process in logit space. From Theo-
rem 1 we have our denoising dynamics

p(zt+1 | zt,x) = N (zt + αtx, αtI). (11)

Moreover, the marginal of zt is given by

p(zt | x) = N
(
µ0 + β(t)x, (β0 + β(t))I

)
(12)

(see Eq. (3)). We define the corresponding “noising” process as the reverse-time conditional p(zt |
zt+1,x). Using the standard Gaussian conditioning formula (Murphy, 2012, Eq. 4.125), we obtain

p(zt | zt+1,x) = N
(
(β0 + β(t))zt+1 + αtµ0 − αtβ0x

β0 + β(t) + αt
,

αt(β0 + β(t))

β0 + β(t) + αt
I

)
. (13)

Thus, the reverse transition is Gaussian, analogous to the posterior q(xt−1 | xt,x0) in standard
diffusion models. While this is not a typical diffusion process in the sense that the derived forward
dynamics over zt are generally non-Markovian, related non-Markovian formulations have been pro-
posed before (Song et al., 2020). Interestingly, a Markovian process is recovered when setting
β0 = 0, which coincides with the original BFN parameterization (Graves et al., 2025).

A.3 RELATIONSHIP TO FLOW MATCHING MODELS

At noise level γ = 0, Categorical BSI is closely related to Flow Matching. The sampling SDE
Eq. (7) becomes an ODE where the right-hand side can be interpreted as an approximation of the
flow field to follow. However, we do not train to directly predict the flow field, but to reconstruct
the clean sample. Similar to Dirichlet Flow Matching (DFM), Stark et al. (2024), Categorical BSI
operates on a distribution over the simplex. However, while Categorical BSI uses the logits of a
categorical distribution as a latent variable, DFM employs a mixture of Dirichlet distributions.

B BSI FOR SEQUENCE GENERATION

Categorical BSI can generate general categorical data - it is not restricted to graphs. In this sec-
tion, we demonstrate this capability empirically by training a categorical BSI model to generate
sequences. We represent sequences with length l and a vocabulary v in the one-hot encoded format
as S ∈ ∆l

v ⊂ [0, 1]l×v . We call the resulting model SeqBSI.

Employing the same reconstruction model as Stark et al., 2024; Davis et al., 2024, a Convolu-
tional Neural Network. We train on the toy dataset from Davis et al. (2024) with l = 4 and
v ∈ {5, 10, 20, 40, 60, 80, 100, 120, 140, 160} as well as a dataset of enhancer DNA sequences from
fly brain cells Janssens et al. (2022) with l = 500 and v = 4 nucleotide bases. Following Stark et al.
(2024), we report the KL divergence for the toy task and the Fréchet Biological Distance (FBD) as a
measure of distribution similarity. As demonstrated in Tab. 3, SeqBSI slightly outperforms Dirichlet
Flow Matching (Stark et al., 2024) in the flybrain task. The comparison with Fisher Flow Match-
ing on this metric is difficult, as their evaluation shows vastly different results for Dirichlet flow
matching than the results reported in their own paper. On the toy dataset task, SeqBSI outperforms
Dirichlet Flow Matching and is competitive with Fisher Flow Matching (see Fig. 9).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Results on the enhancer DNA sequence dataset

flybrainModel Steps FBD ↓
Random Sequence 876.0
Language Model 500 25.2
Linear FM 100 15.0
Dirichlet FM 100 15.2
SeqBSI (OU) 100 12.3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ANALYSIS OF SDE-BASED SAMPLING ALGORITHMS

In this section, we analyze the behavior of the SDE-based sampling methods Algs. 3 and 4.

C.1 EQUIVALENCE OF THE TWO SAMPLING ALGORITHMS FOR INFINITE STEPS

It is worth noting that for ∆t → 0, the Ornstein-Uhlenbeck discretization and the Euler-Maruyama
discretization of Eq. (7) converge to the same update step:

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, 1) (14)

→ m+ (zt −m)(1− κ∆t) +

√
γβ′

2κ
(1− (1− 2κ∆t)) · N (0, 1) (15)

= zt + κ(m− zt)∆t+
√
γβ′∆t · N (0, 1) (16)

= zt + κ(µ0 + (β + β′/κ)x̂− zt)∆t+
√
γβ′∆t · N (0, 1) (17)

= zt + β′x̂∆t+
γ − 1

2
β′µ0 + βx̂− zt

β + β0
∆t+

√
γβ′∆t · N (0, 1) (18)

= zt + β′fθ(zt, t)∆t+
γ − 1

2
β′∇zt

log pt(zt)∆t+
√
γβ′∆t · N (0, 1) (19)

C.2 STABILITY OF EULER-MARUYAMA SAMPLING

Let us explicitly write out the update step of the Euler-Maruyama discretization of Eq. (7):

zt+∆t ∼ zt + β′x̂∆t+
γ − 1

2
β′µ0 + βx̂− zt

β + β0
∆t+

√
γβ′∆t · N (0, 1) (20)

=

(
1− (γ − 1)β′

2(β + β0)
∆t

)
zt + β′x̂∆t+

(γ − 1)β′(µ0 + βx̂)

2(β + β0)
∆t+

√
γβ′∆t · N (0, 1)

(21)

As a rule of thumb, the coefficient in front of zt should not be negative, i.e., the previous step should
not be over-corrected. This yields the condition

1− (γ − 1)β′

2(β + β0)
∆t ≥ 0 (22)

⇐⇒ ∆t · (γ − 1) ≤ 2(β + β0)

β′ (23)

For our precision schedule on moses (βstart = 3.0, βend = 12.0, β0 = 1.0), we find that

min
t∈[0,1]

2(β(t) + β0)

β′(t)
≈ 0.48 (24)

The resulting maximum stable noise level γ for different numbers of sampling steps in Tab. 4 predicts
the observed behavior in Fig. 3 surprisingly well.

C.3 BEHAVIOR OF ORNSTEIN-UHLENBECK SAMPLING WITH INFINITE NOISE

Taking the limit γ →∞ in Alg. 4 yields an interesting sampling algorithm (see Alg. 5). In this limit,
the update step becomes independent of the previous step zt, replacing all previous information with
the current prediction x̂. Empirically, we find that fixing the prior value after the initial sampling
step, as shown in Alg. 6, works better in practice (see Tab. 5). This algorithm matches the Flowback
algorithm from Song et al. (2025). We find that with a budget of 50 sampling steps, this algorithm
performs surprisingly well on molecule generation. However, a higher compute budget drastically

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Maximum stable γ for different numbers of sampling steps with the Euler-Maruyama
discretization, following Eq. (24).

Number of Timesteps ∆t Maximum Stable γ

25 0.040000 12.938480
50 0.020000 24.876960

100 0.010000 48.753920
200 0.005000 96.507840
500 0.002000 239.769601

Figure 5: Empirical misclassification rate of a trained reconstructor on the moses dataset under the
encoding distribution. Compared to simply sampling from the belief, returning a reconstruction is
far more likely to yield the correct train sample. Therefore, returning a quantization of the recon-
struction instead of sampling from the belief is significantly more efficient for molecule generation.
However, deriving the ELBO under quantization is intractable to optimize. Therefore, we have the
sampling-formulation to derive a tractable ELBO and the quantized-formulation to optimize effi-
ciency after training.

reduces performance. We hypothesize that this is because an excessive amount of stochasticity is
introduced. Song et al. (2025) address this by adaptively alternating between vanilla BFN steps and
Flowback steps, effectively mixing Alg. 1 with Alg. 5.

Algorithm 5 Sampling with γ →∞
Require: reconstructor fθ, discretization ∆t,

precision schedule β : [0, 1]→ R+

z0 ∼ N (µ0, β0I)
z← z0
for t = 0 . . . 1 in steps of ∆t do

x̂← fθ(z, t)
α← β0 + β(t+∆t/2)
y ∼ N (µ = x̂,Σ2 = 1/α · I)
▷ Go from prior to t in single step
z← µ0 + α · y

end for
return Quantize(fθ(z, 1))

Algorithm 6 Fixed-prior sampling with γ →∞
Require: reconstructor fθ, discretization ∆t,

precision schedule β : [0, 1]→ R+

z0 ∼ N (µ0, β0I)
z← z0
for t = 0 . . . 1 in steps of ∆t do

x̂← fθ(z, t)
α← β(t+∆t/2)
y ∼ N (µ = x̂,Σ2 = 1/α · I)
▷ Go from prior to t in single step
z← z0 + α · y

end for
return Quantize(fθ(z, 1))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Results on the GuacaMol and Moses benchmarks for molecular generation with the Euler-
(EM) and Ornstein-Uhlenbeck (OU) discretization, and with Alg. 5 (γ → ∞) and Alg. 6 (γ → ∞,
FP), as well as results for a linear scheduler (lin) with the same final precision as the exponential
scheduler. Additionally, we include results obtained with the FlowBack (FB) sampler Song et al.
(2025) using a smaller value of β0, as well as the OU sampler with the same checkpoint. The EM
sampler becomes unstable at β0 = 0.05.

GuacaMol MosesModel Steps Val. ↑ V.U. ↑ V.U.N. ↑ KL ↑ FCD ↑ Val. ↑ Uniq. ↑ Nov. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Train Set 100.0 100.0 0.0 99.9 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1
GraphBSI (EM) 10 86.6 86.6 86.5 85.5 27.6 90.9 100.0 99.2 85.4 3.74 0.43 13.7
GraphBSI (OU) 10 91.9 91.9 91.8 84.5 24.2 94.4 100.0 98.9 89.0 3.88 0.45 14.5
GraphBSI (EM) 20 97.5 97.5 97.3 87.5 40.7 97.5 100.0 97.9 93.6 1.83 0.47 15.7
GraphBSI (OU) 20 97.1 97.1 96.8 89.3 49.7 98.2 100.0 97.8 94.5 1.92 0.48 14.4
DeFoG 50 91.7 91.7 91.2 92.3 57.9 83.9 99.9 96.9 96.5 1.87 0.50 23.5
GraphBSI (EM) 50 97.5 97.5 97.2 90.7 65.6 99.3 100.0 96.5 96.9 1.06 0.50 15.2
GraphBSI (OU) 50 99.2 99.2 98.7 93.7 71.3 99.7 100.0 94.6 98.2 1.19 0.52 15.1
GraphBSI (𝛾 → ∞) 50 99.6 99.6 98.3 95.1 61.4 99.9 99.9 89.9 99.2 1.58 0.56 11.7
GraphBSI (𝛾 → ∞,FP) 50 99.6 99.6 98.3 97.4 75.1 99.9 99.9 89.7 99.1 1.06 0.56 13.1
GraphBSI (FB) 50 - - - - - 99.6 100.0 95.9 97.5 1.15 0.51 15.0
DiGress (CADD) 500 - - - - - 92.2 82.3 74.2 76.2 37.19 0.24 0.0
DiGress 500 85.2 85.2 85.1 92.9 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo 500 86.6 86.6 86.5 92.6 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh 500 98.9 98.9 97.6 96.7 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG 500 99.0 99.0 97.9 97.7 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4
GraphBFN 500 - - - - - 98.5 99.8 89.0 98.3 1.07 0.59 10.0
GraphBSI (EM) 500 98.8 98.8 98.3 94.6 82.6 99.8 100.0 92.5 99.1 0.72 0.54 14.3
GraphBSI (OU) 500 99.6 99.6 98.2 98.4 80.3 99.9 100.0 90.7 99.2 0.90 0.55 12.7
GraphBSI (EM,lin) 500 - - - - - 99.8 100.0 91.9 99.1 0.85 0.54 12.3
GraphBSI (OU,lin) 500 - - - - - 99.9 99.9 90.6 99.2 0.98 0.55 14.2
GraphBSI (FB,𝛽0 = 1) 500 - - - - - 100.0 99.6 80.7 99.6 2.84 0.59 8.7
GraphBSI (FB,𝛽0 = 0.05) 500 - - - - - 100.0 99.9 85.9 99.4 1.32 0.57 11.7
GraphBSI (OU,𝛽0 = 0.05) 500 - - - - - 99.9 100.0 90.4 99.4 1.00 0.55 12.4

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

p
(x

=
1
|z

)

γ = 0 (ODE)
γ = 0.05

γ = 1 (Vanilla)
γ = 10

(a) Exemplary trajectories

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

p
(x

=
1
|z

)

γ = 0 (ODE)
γ = 0.05

γ = 1 (Vanilla)
γ = 10

(b) Quantiles (1%, 10%, 50%, 75%, 90%, 99%) over 10000 trajectories

Figure 6: Illustration of the trajectories of the categorical sampler with two categories with a fixed
reconstruction f(z, t) = ê1 for different noise levels γ. While higher values of γ result in more
volatile trajectories (see Fig. 6a), the marginal distribution is preserved if the score function is known
exactly (see Fig. 6b). Since we approximate the score function in practice, the noise level is a crucial
hyperparameter to fin-tune during inference.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

8 9 10 11 12 13 14 15

final precision

−2

−1

0

1

2

N
or

m
al

iz
ed

sc
or

e

SNN↑
FCD↓
Filters↑
Valid↑

Figure 7: Key metrics on the Moses benchmark with a linear scheduler, ending at different final
precisions. The model was trained with a final precision of 15, and to generate this plot, sampling
was stopped early instead of training a new model for each precision value. While too small final
precision values yield noisy samples, too large final precision values waste sampling steps.

0 5 20 100 250 1000

Noise Level (γ)

−100

−75

−50

−25

0

C
ha

ng
e

vs
γ

=
0

(%
)

FCD (↓)

0 5 20 100 250 1000

Noise Level (γ)

SNN Score (↑)

0 5 20 100 250 1000

Noise Level (γ)

100% - Filters (↓)
25 FE 50 FE 100 FE 200 FE 500 FE OU Euler

Figure 8: Change in metrics relative to γ = 0 vs. noise level γ for different numbers of function
evaluations (FE) and discretization schemes. Our custom Ornstein-Uhlenbeck discretization scheme
is denoted as OU, while the standard Euler-Maruyama scheme is written as Euler. Some values for
the Euler scheme are missing since the sampler becomes unstable if γ ·∆t becomes too large (see
App. C.2).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160

Number of categories, K
10−5

10−4

10−3

10−2

10−1

100

M
in

im
al

K
L

di
ve

rg
en

ce

Dirichlet FM
Fisher-Flow (No OT, Sphere)
Fisher-Flow (OT, Sphere)
Linear FM
Multinomial Flow
D3PM
SeqBSI

Figure 9: KL divergence on the toy sequences benchmark by (Davis et al., 2024), reporting the
lowest KL divergence for each vocabulary size over five random seeds. The model is trained on
100, 000 samples with a sequence of length four and varying vocabulary size. Find the details of the
dataset generation in the original paper.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D PROOFS

Theorem 1. Given a prior belief p(x | z) = Cat(x | softmax(z)), after observing y ∼ N (y | µ =
x,Σ2 = 1/αI) at precision α, the posterior belief is p(x | z,y, α) = Cat(x | softmax(zpost))
with

zpost = z+ α · y (25)

Proof. We need to compute the Bayesian update of the belief parameters. Each dimension can be
considered independently since the noise is isotropic. Let us start with a single-variable prior belief
Cat(softmax(z)) with z ∈ Rc, and a noisy observation y | x, α ∼ N (µ = x,Σ2 = 1/α · I) of the
true sample x ∈ ∆c−1 at precision α. Let us now consider any class l ∈ 1, . . . , c. We write êl for the
one-hot encoding of class l. Since we are only interested in the ratio of the posterior probabilities,
we can ignore any factors that do not depend on l and normalize at the end. We have:

p(x = êl | z) = softmax(z)l ∝ exp(zl) (26)

p(y | x = êl, α) = N (y|µ = êl,Σ
2 = 1/α · I) (27)

p(x = êl | z,y, α) =∝ p(y | x = êl, α) · p(x = êl | z) (28)

= N (y | µ = êl,Σ
2 = 1/α · I) · softmax(z)l (29)

∝ exp

(
−||y − êl||2

2 · 1/α

)
· exp(zl) (30)

= exp

(
−||y||

2 − 2 · ⟨y, êl⟩+ ||êl||2

2 · 1/α
+ zl

)
(31)

∝ exp (α · yl + zl) (32)

Let us now normalize the results to obtain the posterior probabilities:

p(x = êl | z,y, α) =
exp (α · yl + zl)∑c

l′=1 exp (α · yl′ + zl′)
= softmax(z+ α · y)l (33)

Putting everything together, we find that the posterior belief is p(x | z,y, α) = Cat(x |
softmax(zpost)) with

zpost = z+ α · y (34)

Theorem 2. For categorical BSI, the log-likelihood of x under Alg. 1 is lower-bounded by

log p(x) ≥ E
zk∼q(z|x,tk)

[log p(x | zk)]−
k

2
E

i∼U(0,k−1)
zi∼q(z|x,ti)

[(β(ti+1)− β(ti))||fθ(zi, ti)− x||22], (35)

where q(z | x, t) = N (z | µ0 + β(t)x, β0 + β(t)I).

Proof. For any distribution p(x) and any latent variable z, i.e. any choice of prior p(z), encoding
distribution p(z | x), and likelihood p(x | z), we have the variational lower bound

log p(x) ≥ E
z∼p(z|x)

[log p(x | z)]−KL(p(z | x)∥p(z)) (36)

on log p(x) Kingma & Welling (2013). We choose the beliefs z0, . . . , zk as latent variables at the
discretized time steps t0, . . . , tk. We choose the encoding distribution to be the distribution of the
beliefs under Alg. 1 with the reconstruction network fθ replaced by the true sample x:

p(z0, . . . , zk | x) = N (z0 | µ0, β0I)

k−1∏
i=0

p(zi+1 | zi,x, ti) (37)

The transition distribution p(zi+1 | zi,x, ti) can be computed from Theorem 1:

zi+1 = zi + αi · yi ∼ zi + αi · N (y | µ = x, 1/αiI) = N (zi+1 | zi + αi · x, αiI) (38)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The distribution of p(z) following Alg. 1 factorizes similarly:

p(z0, . . . , zk) = N (z0 | µ0, β0I)

k−1∏
i=0

p(zi+1 | zi, ti, θ) (39)

with the transition distribution

p(zi+1 | zi, ti, θ) = N (zi+1 | zi + αi · fθ(zi, ti), αiI) (40)

Let us now compute the KL divergence:

KL(p(z0, . . . , zk | x)∥p(z0, . . . , zk)) (41)

= E
z0,...,zk∼

p(z0,...,zk|x)

[
log

p(z0, . . . , zk | x)
p(z0, . . . , zk)

]
(42)

= E
z0,...,zk∼

p(z0,...,zk|x)

[
log
N (z0 | µ0, β0I)

∏k−1
i=0 p(zi+1 | zi,x, ti)

N (z0 | µ0, β0I)
∏k−1

i=0 p(zi+1 | zi, ti, θ)

]
(43)

= E
z0,...,zk∼

p(z0,...,zk|x)

[
k−1∑
i=0

log
p(zi+1 | zi,x, ti)
p(zi+1 | zi, ti, θ)

]
(44)

=

k−1∑
i=0

E
zi∼p(zi|x)

[KL(p(zi+1 | zi,x, ti)∥p(zi+1 | zi, ti, θ))] (45)

=

k−1∑
i=0

E
zi∼p(zi|x)

[KL(N (zi+1 | zi + αi · x, αiI)∥N (zi+1 | zi + αi · fθ(zi, ti), αiI))] (46)

=

k−1∑
i=0

E
zi∼p(zi|x)

[
1

2αi
||zi + αi · x− (zi + αi · fθ(zi, ti))||22

]
(47)

=

k−1∑
i=0

E
zi∼p(zi|x)

[αi

2
||x− fθ(zi, ti)||22

]
(48)

=

k−1∑
i=0

E
zi∼p(zi|x)

[
(β(ti+1)− β(ti))/2||x− fθ(zi, ti)||22

]
(49)

= E
i∼U(0,k−1)
zi∼p(zi|x)

[
k

2
(β(ti+1)− β(ti))||x− fθ(zi, ti)||22

]
(50)

Since p(x | z0, . . . , zk) = p(x | zk) = Cat(x | softmax(zk)), we can plug in Eq. (3) to obtain the
final result:

log p(x) ≥ E
zk∼q(z|x,tk)

[log p(x | zk)]−
k

2
E

i∼U(0,k−1)
zi∼q(z|x,ti)

[(β(ti+1)− β(ti))||fθ(zi, ti)− x||22], (51)

where q(z | x, t) = N (z | µ0 + β(t)x, β0 + β(t)I).

Theorem 3. As ∆t→ 0, the update equation in Theorem 1 converges to the following SDE:

dzt = β′(t)fθ(zt, t)dt+
√

β′(t)dWt (52)

where dWt is a Wiener process and z0 ∼ N (µ0, β0 · I).

Proof. Take the update equation Theorem 1 with an infinitesimal time step ∆t→ 0, it holds that

α = (β(t+∆t)− β(t))→ β′(t)∆t (53)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Therefore, we have:

zt+∆t = zt + αy (54)

∼ zt + αN (x̂,Σ2 = 1/αI) (55)

= zt +N (αx̂,Σ2 = αI) (56)

→ zt + β′(t)x̂∆t+
√
β′(t)

√
∆t · N (0, I) (57)

We identify this as the Euler-Maruyama discretization of the SDE above.

Theorem 4. The SDE in Theorem 3 is generalized by the following family of SDEs with equal
marginal densities pt(zt):

dzt = β′(t)fθ(zt, t)dt+
γ − 1

2
β′(t)∇zt

log pt(zt)dt+
√

γβ′(t)dWt (58)

where dWt is a Wiener process and z0 ∼ p(z | t = 0).

Proof. We need to show that the evolution of the probability density pt(zt) of Eq. (6) matches that
of Eq. (7). The evolution is characterized by the Fokker-Planck equation:

∂pt(zt)

∂t
=

∑
j

−∇zj

(
β′(t)fθ(zt, t) +

γ − 1

2
β′(t)∇zt

log pt(zt)

)
pt(zt) +

1

2
γβ′(t)∇2

zj
pt(zt)

=
∑
j

−∇zj
(β′(t)fθ(zt, t)pt(zt))−

γ − 1

2
β′(t)∇zj

(
pt(zt)∇zj

log pt(zt)
)
+

1

2
γβ′(t)∇2

zj
pt(zt)

=
∑
j

−∇zj (β
′(t)fθ(zt, t)pt(zt))−

γ − 1

2
β′(t)∇2

zj
pt(zt) +

1

2
γβ′(t)∇2

zj
pt(zt)

=
∑
j

−∇zj (β
′(t)fθ(zt, t)pt(zt)) +

1

2
β′(t)∇2

zj
pt(zt)

Which equals the Fokker-Planck equation of the SDE in Eq. (6).

Theorem 5. The BSI loss Eq. (5) also is a score matching loss with the score model sθ(z, t) param-
eterized as

sθ(z, t) ≡
µ0 + β(t)fθ(z, t)− z

β(t) + β0

!
≈ ∇z log pt(z) (59)

Proof. Score matching Song et al. (2021) is a generative model that learns to approximate the score
function ∇z log pt(z) of a distribution pt(z) by minimizing the score matching loss:

Lscore ≡ Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)
[
∥sθ(z, t)−∇z log pt(z | x)∥22

]
] (60)

where λ : [0, 1] 7→ R+ is a positive weighting function. The distribution pt(z | x) is the distribution
of the latent variable at time t given the true sample x. For categorical BSI, we have from Eq. (3):

pt(z | x) = N (z | µ0 + β(t)x, (β0 + β(t))I) (61)

The score function of an isotropic Gaussian can be computed in closed form:

∇z logN (z | µ, σ2I) = ∇z

(
−||z− µ||2

2σ2

)
= −z− µ

σ2
(62)

(63)

Plugging in the parameters of pt(z | x), we find:

∇z log pt(z | x) = −
z− (µ0 + β(t)x)

β0 + β(t)
=

µ0 + β(t)x− z

β0 + β(t)
(64)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

With the proposed score model parameterization sθ(z, t), we find:

Lscore = Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)
[
∥sθ(z, t)−∇z log pt(z | x)∥22

]
] (65)

= Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)

[∥∥∥∥µ0 + β(t)fθ(z, t)− z

β(t) + β0
− µ0 + β(t)x− z

β0 + β(t)

∥∥∥∥2
2

]
] (66)

= Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)

[∥∥∥∥β(t)(fθ(z, t)− x)

β(t) + β0

∥∥∥∥2
2

]
] (67)

= Et∼U(0,1)[λ(t)
β(t)2

(β(t) + β0)2
Ep(x)Ept(z|x)

[
∥(fθ(z, t)− x)∥22

]
] (68)

(69)

Choosing the weighting

λ(t) = β′(t)
(β(t) + β0)

2

2β(t)2
, (70)

we find that the score matching loss equals the BSI loss in Eq. (5). Therefore, the BSI loss in Eq. (5)
is a score-matching loss with the weighting App. D and the score function sθ(z, t) parameterized as
in Eq. (59).

Theorem 6. Fixing the prediction x̂ = fθ(zt, t) and the values β = β(t+∆t/2), β′ = β′(t+∆t/2)
in Eq. (7) in a time interval [t, t+∆t] yields an Ornstein-Uhlenbeck process with the exact marginal

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, I), (71)

where κ = (γ−1)β′

2(β0+β) , m = µ0 + (β + β′/κ)x̂.

Proof. The SDE in Eq. (7) with fixed parameters β, β′, x̂ is given as

dzt = β′x̂dt+
γ − 1

2
β′∇zt

log pt(zt)dt+
√
γβ′dWt (72)

where dWt is a Wiener process and zt ∼ p(z | t). Let us insert Theorem 5 to obtain

dzt = β′x̂dt+
γ − 1

2
β′µ0 + βfθ(zt, t)− zt

β + β0
dt+

√
γβ′dWt (73)

=
(γ − 1)β′

2(β0 + β)

(
µ0 +

(
β +

2(β0 + β)

γ − 1

)
x̂− zt

)
dt+

√
γβ′dWt (74)

Setting κ = (γ−1)β′

2(β0+β) and m = µ0 + (β + β′/κ)x̂, we find

dzt = κ(m− zt)dt+
√
γβ′dWt (75)

which is an Ornstein-Uhlenbeck process. The exact marginal distribution of an Ornstein-Uhlenbeck
process is given as Uhlenbeck & Ornstein (1930):

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, I) (76)

E ADDITIONAL RESULTS

Tab. 6 shows our method is competitive on the QM9 dataset with removed hydrogen atoms, achiev-
ing state-of-the-art results on validity and FCD. We explicitly model charges on the nodes, enabling
high validity scores.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Results on the QM9 dataset.

QM9 (without H) QM9 (with H)Model Steps Val. ↑ Uniq. ↑ FCD ↓ Val. ↑ Uniq. ↑ FCD ↓
Train Set 99.3 100.0 0.05 99.3 100.0 0.05
DiGress 500 99.0 96.2 - 95.4 ± 1.1 97.6 ± 0.4 -
DiGress (CADD) 500 96.3 83.4 5.25 - - -
DisCo 500 99.3 ± 0.6 - - - - -
Fisher FM 500 95.3 - - - - -
Cometh 500 99.6 ± 0.1 96.8 ± 0.2 0.25 ± 0.01 - - -
DeFoG 50 98.9 ± 0.1 96.2 ± 0.2 0.26 ± 0.00 - - -
DeFoG 500 99.3 ± 0.0 96.3 ± 0.3 0.12 ± 0.00 98.0 ± 0.0 96.7 ± 0.0 0.05 ± 0.00
Ours 50 99.9 93.7 0.30 - - -
Ours 500 99.9 96.2 0.09 99.8 96.6 0.08

Table 7: Hyperparameters used for the results in Tabs. 1 and 2. The precision schedule is parame-
terized as β(t) = βstart · (exp(t · log(βend/βstart))− 1).

Belief Parameters Sampler 10% steps Sampler 100% steps)
Dataset

𝛽start 𝛽end 𝛽(0) 𝛾 (OU) 𝛾 (Euler) 𝛾 (OU) 𝛾 (Euler)

GuacaMol 20.0 10.0 200.0 200.0
12.0

Moses 10.0 20.0 90.0 120.0
Planar

200.0
SBM

3.0 1.0
20.0 - 200.0

Tree 100.0

Table 8: Datasets with training samples and maximum number of nodes. For Moses, we use the
test scaffolds split for benchmarking, which is the standard test split.

Dataset Train samples Max. Nodes
GuacaMol (Brown et al., 2019) 1.3M 88
Moses (Polykovskiy et al., 2020) 1.6M 30
Planar (Martinkus et al., 2022) 128 64
SBM (Martinkus et al., 2022) 128 187
Tree (Bergmeister et al., 2024) 128 64

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 9: Molecular metrics

Metric Short Description

Validity Val. The fraction of generated molecules that are
chemically valid according to RDKit.

Uniqueness Uniq. The number of unique molecules generated (counting
permutations as the same molecule) divided by the
total number of generated molecules when
generating 10,000 molecules.

Novelty Nov. The fraction of generated molecules that are not
present in the training set.

Valid & Unique V.U. The fraction of generated molecules that are both
valid and unique.

Valid, Unique & Novel V.U.N. The fraction of generated molecules that are valid,
unique, and novel.

KL Divergence KL. The normalized KL-Divergence between the
distributions of various physicochemical descriptors
between the generated set and the training set.

Fréchet ChemNet Distance (Moses) FCD Distance between the distributions of learned
features of the generated molecules and those of the
validation set, as computed by a pretrained ChemNet
model.

Fréchet ChemNet Distance (GuacaMol) FCD Same as for Moses, but normalized with the
transform 𝑥 → exp(−0.2𝑥)

Similarity to Nearest Neighbor SNN The average Tanimoto similarity between each
generated molecule and its nearest neighbor in the
test set

Scaffold Similarity Scaf. Cosine similarity between the frequencies of scaffold
substructures in the generated set and the test set

Table 10: Synthetic graph metrics metrics

Metric Short Description

Valid & Unique V.U. The fraction of generated graphs that are both valid and unique among 40
generated graphs. For the planar and tree datasets, we check if the generated
graphs are planar/tree graphs. The SBM dataset does not have a
straightforward validity criterion, therefore a test with Bayesian inference is
used with a likelihood threshold.

Average Ratio Ratio For each of several metrics, ratio is defined as the Maximum Mean
Discrepancy (MMD) between the generated and training set divided by the
MMD between the training set and the test set. The average ratio is the ratio
metric averaged over all metrics. The metrics are degree, clustering
coefficient, orbit counts, spectral-, and wavelet metrics.

27

	Introduction
	The Bayesian Sample Inference Framework for Graphs
	Categorical BSI as a Stochastic Differential Equation
	Experiments
	Experimental Setup
	Results
	Ablation Studies

	Related Work
	Conclusion
	Relationship to BFNs and Diffusion Models
	Relationship to BFNs
	Relationship to diffusion models.
	Relationship to Flow Matching Models

	BSI for sequence generation
	Analysis of SDE-based Sampling Algorithms
	Equivalence of the two Sampling Algorithms for Infinite Steps
	Stability of Euler-Maruyama Sampling
	Behavior of Ornstein-Uhlenbeck Sampling with Infinite Noise

	Proofs
	Additional Results

