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ABSTRACT

Generating graph-structured data is crucial in applications such as molecular gen-
eration, knowledge graphs, and network analysis. However, their discrete, un-
ordered nature makes them difficult for traditional generative models, leading to
the rise of discrete diffusion and flow matching models. In this work, we in-
troduce GraphBSI, a novel one-shot graph generative model based on Bayesian
Sample Inference (BSI). Instead of evolving samples directly, GraphBSI itera-
tively refines a belief over graphs in the continuous space of distribution param-
eters, naturally handling discrete structures. Further, we state BSI as a stochastic
differential equation (SDE) and derive a noise-controlled family of SDEs that pre-
serves the marginal distributions via an approximation of the score function. Our
theoretical analysis further reveals the connection to Bayesian Flow Networks and
Diffusion models. Finally, in our empirical evaluation, we demonstrate state-of-
the-art performance on molecular and synthetic graph generation, outperforming
existing one-shot graph generative models on the standard benchmarks Moses and
GuacaMol.

1 INTRODUCTION

Graph structures appear in various domains ranging from molecular chemistry to transportation and
social networks. Generating realistic graphs enables simulation of real-world scenarios, augmenting
incomplete datasets, and discovering new materials and drugs (Guo & Zhao, 2022; Zhu et al., 2022).
However, their unique and complex structure poses challenges to traditional generative models that
are designed for continuous data such as images. This has resulted in a diverse landscape of graph
generative models, featuring autoregressive models (You et al., 2018) and one-shot models (Kipf &
Welling, 2016), including a range of diffusion-based models (Ho et al., 2020).

Recently, Bayesian Flow Networks (BFNs) (Graves et al., 2025) have emerged as a novel class of
models that operate on the parameters of a distribution over samples rather than on the samples them-
selves. This approach is particularly appealing for discrete data, as the parameters of a probability
distribution evolve smoothly even when the underlying samples remain discrete. Graph generative
models based on BFNs have shown competitive performance in molecule generation (Song et al.,
2025). However, operating in parameter space and being motivated through information theory adds
a layer of complexity to the BFN framework that hinders its accessibility.

Bayesian Sample Inference (BSI) (Lienen et al., 2025) offers a simplified interpretation and gener-
alizes continuous BFNs by viewing generation as a sequence of Bayesian updates that iteratively
refine a belief over the unknown sample. The model is trained by optimizing its corresponding
ELBO.

This work introduces GraphBSI, extending BSI to discrete graphs. Instead of operating on discrete
states, GraphBSI evolves on the probability simplex of node and edge categories. We derive BSI
for categorical data and show how to generate variably-sized graphs with it. Next, we formulate
categorical BSI as an SDE and, via the Fokker–Planck equation, derive a noise-controlled family
of SDEs that preserves marginals while interpolating between a deterministic probability-flow ODE
and a highly stochastic sampler. Empirically, we demonstrate that GraphBSI achieves state-of-the-
art results on the GuacaMol (Brown et al., 2019) and Moses (Polykovskiy et al., 2020) benchmarks
for molecule generation. In extensive ablation studies, we show that noise control is a crucial factor
for optimizing performance. An overview of our method is shown in Fig. 1.
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t = 0.00 t = 0.25 t = 0.50 t = 0.75 t = 1.00

p(x | zt) = softmax(zt), with dzt = β′(t)fθ(zt, t)dt+
√
β′(t)dWt

Figure 1: Illustration of GraphBSI’s generative process. Nodes and edges are modeled as indepen-
dent categorical variables. One edge-type is used to represent the non-existence of an edge. The
latent variable zt represents a distribution over graphs rather than a graph itself. The neural network
fθ smoothly steers this distribution from a random initial distribution z0 to a distribution concen-
trated on valid graphs z1, which is modeled as a Stochastic Differential Equation (SDE).

Our main contributions can be summarized as follows:

• We derive BSI for categorical data, including graphs. The result generalizes the Bayesian
Flow Network (BFN) framework with a simplified interpretation while avoiding limit ap-
proximations in the Bayesian update.

• We formulate categorical BSI as an SDE. Through the Fokker-Planck equation, we derive
a generalized SDE with a noise-controlling parameter and identical marginals, allowing us
to interpolate between a deterministic probability flow ODE and a sampling scheme that
overrides all previous predictions with the most recent one.

• We demonstrate that GraphBSI achieves SOTA results across most metrics in the Moses
and GuacaMol molecule generation benchmarks with as few as 50 function evaluations,
and further gains substantial improvements with 500 function evaluations.

2 THE BAYESIAN SAMPLE INFERENCE FRAMEWORK FOR GRAPHS

Bayesian Sample Inference (BSI) (Lienen et al., 2025) is a novel generative modeling framework
simplifying and generalizing Bayesian Flow Networks (BFNs) (Graves et al., 2025). While BSI
was originally presented for continuous data, we develop a theoretical framework extending BSI
to categorical data analogously. We start by introducing the required background knowledge. All
proofs are shown in App. C.

Background. Bayesian Sample Inference (BSI) (Lienen et al., 2025) generates samples by iter-
atively refining an initial belief p(x) about the sample x to be generated through noisy measure-
ments y of x. The initial belief p(x | z0) follows a broad isotropic Gaussian with parameters
z0 = (µ0, σ0). The belief is then refined by a sequence of noisy measurements y0, . . . ,yk−1 that
follow Gaussians centered around x. After receiving the measurement yi, the information contained
in it is integrated into our next belief zi+1 through a Bayesian update. Once the belief of x is suffi-
ciently sharp, we return a sample from it. We train a neural network fθ to predict the train sample
x from the information collected about it in the belief zi for each timestep i ∈ 0, . . . , k − 1. The
trained neural network allows us to generate new samples during inference by creating the noisy
measurements through an approximation x̂i = fθ(zi, i) of the sample x in each timestep i.

Extension to categorical data. Now, we will focus on the case that our data lies on the simplex,
i.e., we have a categorical belief for x over c possible categories, i.e., x ∈ ∆n

c−1 ⊂ [0, 1]n×c. If we
have access to noisy measurements yi ∼ N (x,Σ2 = α−1

i I) of the sample x, we can infer x from
the measurements using Bayes’ theorem in a similar fashion to the continuous case. We start with
an initial belief p(x | z0) ∼ Cat(softmax(z0)), where z0 ∈ Rn×c are the logits of a categorical
distribution with n independent components. Then, we can update the belief parameters z after
observing yi using Bayes’ theorem.
Theorem 1. Given a prior belief p(x | z) = Cat(x | softmax(z)), after observing y ∼ N (y | µ =
x,Σ2 = α−1I) at precision α, the posterior belief is p(x | z,y, α) = Cat(x | softmax(zpost))

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with
zpost = z+ αy. (1)

Now, we can iterate over multiple noisy measurements and update our belief until p(x | y1, . . . ,yk)
identifies x with high probability. Through Theorem 1, we encode the information contained in
all these measurements in our updated belief parameters zk as p(x | y1, . . . ,yk) = p(x | zk) ∼
Cat(softmax(zk)) with zk = z0 +

∑
i αiyi.

We process each observation yi sequentially, inducing a notion of time. We measure yi at time
ti = ∆t · i ∈ [0, 1] with ∆t = 1/(k + 1), and the subsequent Bayesian update takes us to ti+1.
To control the total amount of information added to the belief p(x | zt) up to time t, we define
a monotonically increasing precision schedule β : [0, 1] → R+. The measurement yi contains the
information added in the time interval [ti, ti+1], and therefore we choose αi = β(ti+1)− β(ti).

Generative model construction. We build a generative model for categorical data given the above
procedure, similarly as done for BSI with continuous data (Lienen et al., 2025). We begin with a logit
z0 defining the initial belief of the sample x that we will generate in the end, with z0 ∼ N (µ0, β0)
sampled from a simple prior distribution. As x is unknown a priori, we cannot measure it, so
instead we estimate it from the information we have gathered so far encoded in our latest belief. Let
fθ : Rn×c × [0, 1] 7→ ∆n

c−1 be a neural network with parameters θ estimating the unknown sample
x behind our observations given our current belief zt and time t. We estimate x as x̂i = fθ(zi, t),
followed by a noisy measurement yi ∼ N (x̂i,Σ

2 = α−1
i ) centered around x̂i with precision αi.

Then, we update our belief with yi via Theorem 1. Now, we repeatedly predict x̂i, measure yi, and
update the belief parameters zi+1 ← zi+αiyi until our belief is sufficiently sharp at t = 1. Finally,
we return a sample from Cat(x | softmax(z1)). See Alg. 1 for a formal description.

Evidence Lower Bound. To train our neural network, we interpret CatBSI as a hierarchical la-
tent variable model to derive an evidence lower bound (ELBO) of the sample likelihood (Kingma
& Welling, 2022), providing a natural training target. As latent variables, we choose the beliefs
z0, . . . , zk. Their distribution in Alg. 1 factorizes, allowing us to write

p(x) = E
p(z0)

∏k
i=1 p(zi|zi−1,θ)

[p(x | zk)] . (2)

As encoding distribution q(z0, z1, . . . , zk | x), we choose the distribution induced under Alg. 1 with
a fixed reconstruction fθ(z, t) = x. Thanks to the simple form of Theorem 1, it is straightforward
to compute the marginal q(zi | x):

zi = z0 +

i−1∑
j=0

αjyj ∼ N (µ0 + β(ti)x,Σ
2 = β0 + β(ti)) (3)

Equipped with this, we can derive the following ELBO:
Theorem 2. For categorical BSI, the log-likelihood of x under Alg. 1 is lower bounded by

log p(x) ≥ E
zk∼q(z|x,tk)

[p(x | zk)]−
k

2
E

i∼U(0,k−1)
zi∼q(z|x,ti)

[(β(ti+1)− β(ti))||fθ(zi, ti)− x||22], (4)

where q(z | x, t) = N (z | µ0 + β(t)x, β0 + β(t)I) and p(x | zk) = Cat(x | softmax(zk)).

The first term does not depend on θ and therefore cannot be optimized; we only need to minimize
the second term. For k → ∞, we have that k(β(ti+1) − β(ti)) → β′(ti) since ∆t = ti+1 − ti =
1/(k + 1) ≈ 1/k, and ti ∼ U(0, 1). Maximizing the ELBO for k → ∞ over the dataset above is
therefore equivalent to minimizing

L ≡ E
x∼p(x)
t∼U(0,1)
z∼q(z|x,t)

[β′(t)/2 · ||fθ(z, t)− x||22] (5)

The loss above immediately yields the training procedure Alg. 2. This matches the continuous-time
categorical BFN loss up to a constant when β0 → 0, i.e., the prior is a Dirac delta at t = 0.
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t = 0.00 t = 0.33 t = 0.67 t = 1.00

p(x | zt) γ = 0.0 (ODE) γ = 0.1 γ = 1.0 (Vanilla) γ = 2.0

Figure 2: Trajectories of the SDE Theorem 4 for different values of γ with three classes and fixed
reconstruction fθ(zt, t) = ê2. At γ = 0, the sampler resembles a probability flow ODE as in flow
matching. Increasing γ leads to noisier trajectories. At γ = 1, the original SDE in Theorem 3 is
recovered, and increasing the noise further makes the trajectories even more volatile. The density
function of the marginal distribution p(x | zt) (shown in the background) is identical for all γ.

Adaptation for graphs. We represent graphs with N nodes as tuples (X,A), where X ∈
∆N

cX−1 ⊂ [0, 1]N×cX are the one-hot encoded categories of each node and A ∈ ∆N×N
cA−1 ⊂

[0, 1]N×N×cA the one-hot encoded categories of each edge, with the first category denoting the
absence of an edge. We treat each node and edge as an independent component of the categorical
belief, allowing us to apply the categorical BSI framework to graphs. Note that dependence between
edges is introduced via our network f . We choose a permutation invariant reconstruction network
fθ, resulting in a permutation invariant generative model when the noise is isotropic.

To enable a varying number of nodes in the graph, we first sample a number of nodes N from the
marginal node count distribution, and subsequently generate the node and edge values. In practice,
this is achieved by masking out inactive nodes and edges for train graphs with fewer nodes.

Algorithm 1 Sampling with Categorical BSI

Require: reconstructor fθ, discretization k,
precision schedule β : [0, 1]→ R+

z0 ∼ N (µ0, β0I)
for i = 0, . . . , k − 1 do

x̂i ← fθ(zi, ti)
αi ← β(ti+1)− β(ti)
yi ∼ N (µ = x̂i,Σ

2 = α−1
i · I)

zi+1 ← zi + αiyi

end for
x ∼ Cat(softmax(zk))
return x

Algorithm 2 Training Categorical BSI

while not converged do
x ∼ p(x)
z0 ∼ N (µ0, β0I)
t ∼ U(0, 1)
α = β(t)− β(0)
y ∼ N (µ = x,Σ2 = 1/α · I)
z = z0 + α · y
x̂ = fθ(z, t)
L = β′(t)/2 · ∥x̂− x∥22
θ = θ − η∇θL

end while

3 CATEGORICAL BSI AS STOCHASTIC DIFFERENTIAL EQUATION

In this section, we analyze the update equation in Theorem 1 and take the infinite-step limit, ob-
taining an SDE. We then introduce a parameter that controls the stochasticity and yields a family of
SDEs with identical marginals.

SDE Dynamics. First, we notice that as the number of steps k increases, i.e., ∆t := 1/(k+1)→ 0,
the updates in Theorem 1 converge to the following SDE.
Theorem 3. As ∆t→ 0, the update equation in Theorem 1 converges to the following SDE:

dzt = β′(t)fθ(zt, t)dt+
√

β′(t)dWt (6)

where dWt is a Wiener process and z0 ∼ N (µ0, β0 · I).

Note that while the distribution of z0 is not required to be normal for Theorem 3 itself, it is necessary
for the following steps. Phrasing the evolution of the latent variable zt as an SDE enables the use of

4
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more advanced sampling schemes and allows us to derive a generalized SDE family. The original
discrete update in Theorem 1 is recovered by applying an Euler-Maruyama discretization of Eq. (6).

Generalized SDE. We now generalize Eq. (6) to a family that preserves the marginal probability
paths pt(zt) while controlling stochasticity via the parameter γ, similar to Karras et al. (2022):
Theorem 4. The SDE in Theorem 3 is generalized by the following family of SDEs with equal
marginal densities pt(zt):

dzt = β′(t)fθ(zt, t)dt+
γ − 1

2
β′(t)∇zt log pt(zt)dt+

√
γβ′(t)dWt (7)

where dWt is a Wiener process and z0 ∼ N (µ0, β0 · I).

Setting γ = 0 yields a deterministic probability flow ODE, equivalent to Xue et al. (2024). Unlike
BFNs, however, CatBSI samples the prior belief p(z | t = 0) rather than choosing a fixed prior,
naturally avoiding the discontinuity around t = 0. Further, choosing γ = 1 recovers the original
SDE in Theorem 3, and larger γ produces more stochastic trajectories. We visualize in Fig. 2 how
varying γ affects the dynamics for three classes. Although the marginal distributions are equal for
all γ in theory, the empirical performance varies as ∇zt

log pt(zt) is not available in closed form.
Higher stochasticity allows the model to correct errors made in previous sampling steps but requires
a finer discretization (see Sec. 4.3). In the limit γ → ∞, the sampler effectively overwrites the
current state completely in every step (see App. B.3). To turn Eq. (7) into a practical sampling
algorithm, we approximate the score function∇zt log pt(zt), as described in the following.
Theorem 5. The BSI loss Eq. (5) also is a score matching loss with the score model sθ(z, t) param-
eterized as

sθ(z, t) ≡
µ0 + β(t)fθ(z, t)− z

β(t) + β0

!
≈ ∇z log pt(z) (8)

Discretization and integration. As the SDE is not solvable in closed form, we resort to numerical
sampling. While a simple Euler-Maruyama (EM) approach performs well on sufficiently fine time
grids, we find that integrating a locally linearized SDE within each step can improve sample quality
for low numbers of neural function evaluations (see Sec. 4.3). More specifically, we freeze the
reconstructor x̂ = fθ(zt, t) over the time interval [t, t + ∆t], representing an Ornstein-Uhlenbeck
process. This allows us to solve the SDE analytically within this interval.
Theorem 6. Fixing the prediction x̂ = fθ(zt, t) and the values β = β(t+∆t/2), β′ = β′(t+∆t/2)
in Eq. (7) in a time interval [t, t + ∆t] yields an Ornstein-Uhlenbeck (OU) process with the exact
marginal

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, 1), (9)

where κ = (γ−1)β′

2(β0+β) , m = µ0 + (β + β′/κ)x̂.

Note that the OU discretization converges towards the EM scheme for ∆t → 0 (see App. B.1).
Employing the discretization schemes yields Algs. 3 and 4.

Algorithm 3 Euler-Maruyama Sampling

Require: reconstructor fθ, discretization ∆t,
precision schedule β : [0, 1]→ R+, γ ≥ 0
z ∼ N (µ0, β0I)
for t = 0,∆t, 2∆t, . . . , 1−∆t do

x̂← fθ(z, t)

sθ ← µ0+β(t)x̂−z
β(t)+β0

µ← β′(t)(x̂+ γ−1
2 sθ)

σ ←
√
γβ′(t)

z← z+ µ∆t+ σ
√
∆t · N (0, I)

end for
return Quantize(fθ(z, t = 1))

Algorithm 4 Ornstein-Uhlenbeck Sampling

Require: reconstructor fθ, discretization ∆t,
precision schedule β : [0, 1]→ R+, γ > 1
z ∼ N (µ0, β0I)
for t = ∆t/2,∆t+∆t/2, . . . , 1−∆t/2 do

x̂← fθ(z, t)

κ← (γ−1)β′(t)
2(β0+β(t))

m← µ0 + (β(t) + β′(t)/κ)x̂

σ2 ← γβ′(t)
2κ (1− e−2κ∆t)

z← m+(z−m)e−κ∆t+
√
σ2 ·N (0, I)

end for
return Quantize(fθ(z, t = 1))
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We also allow a nonuniform time grid. Following Karras et al. (2022), we introduce a parameter ρ
that controls the distribution of function evaluations over the time grid:

ti =

(
i

k

)ρ

, i = 0, 1, . . . , k. (10)

Here, ρ = 1 recovers a uniform grid; larger ρ concentrates steps near the beginning (t ≈ 0), whereas
smaller ρ concentrates them near the end (t ≈ 1).

4 EXPERIMENTS

In this section, we present our empirical results. We benchmark our model against state-of-the-art
baselines from the diffusion and flow-matching literature on unconditional molecular and synthetic
graph generation. The GuacaMol and Moses benchmarks for molecular generation (Brown et al.,
2019; Polykovskiy et al., 2020) serve as our primary evaluation datasets. Additionally, we conduct
ablation studies to analyze the impact of various components and hyperparameters on the model’s
performance. Further, we report results on the synthetic planar, tree, and stochastic block model
graph generation tasks (Bergmeister et al., 2024; Martinkus et al., 2022).

4.1 EXPERIMENTAL SETUP

Datasets. To test performance on real-world graphs, we train GraphBSI on the Moses
(Polykovskiy et al., 2020) and GuacaMol (Brown et al., 2019) datasets for molecular generation.
Further, we include results for the planar, tree, and stochastic block model (Martinkus et al., 2022;
Bergmeister et al., 2024) synthetic graph generation datasets. Find a summary in Tab. 6.

Evaluation metrics. We follow the standard evaluation practices as established by Polykovskiy
et al. (2020); Brown et al. (2019); Preuer et al. (2018) for molecule generation and Martinkus et al.
(2022); Bergmeister et al. (2024) for synthetic graph generation. Find a detailed description in
Tabs. 7 and 8.

Practical considerations. The reconstruction network fθ is parameterized using the same graph
transformer architecture as Qin et al. (2025); Vignac et al. (2023), with the node- and edge logits
and class probabilities, entropy, random walk features, and sinusoidal embeddings (Vaswani et al.,
2017) of the timestep t with frequencies proposed by Lienen et al. (2024) as features. Empirically,
we find that an exponential precision schedule with a final precision that allows for a near-perfect re-
construction maximizes performance (see Tab. 5). For both latent node- and edge classes, we choose
a normal prior with the marginal distribution over the dataset and a small variance of 1.0. Finally,
we apply a preconditioning scheme where the neural network predicts the difference between the
belief and the true sample, setting fθ(z, t) = softmax(z + f̃θ(z, t)).

Evaluation After training to convergence, we evaluate the benchmark metrics for both discretiza-
tion schemes Algs. 3 and 4. For both molecule generation benchmarks, we report results with a
compute budget of 50 and 500 discretization steps. In each of the four configurations (2 discretiza-
tion schemes, 2 numbers of steps), we optimize the noise level γ and report the best result. Find
the final configurations in Tab. 5. For the synthetic graph generation benchmarks, we report results
with the best-performing noise level and the Ornstein-Uhlenbeck discretization with 1000 function
evaluations.

4.2 RESULTS

Molecule Generation. As illustrated in Tab. 1, GraphBSI is competitive with 50 steps with both
discretization schemes for both molecule benchmarks, achieving state-of-the-art results on the ma-
jority of the metrics. Notably, GraphBSI outperforms DeFoG with both discretization schemes on
all metrics except novelty on Moses. On most metrics, the OU discretization performs better than
the EM scheme. At the full 500 steps, GraphBSI with the OU discretization outperforms all existing
models on all metrics except novelty with Moses, saturating validity and consistently exceeding the
state-of-the-art. The EM scheme performs slightly worse than OU on most metrics, but remarkably
pushes the state-of-the art on the FCD metric from 1.07 to 0.26 on Moses.
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Table 1: Results on the GuacaMol and Moses benchmarks for molecular generation with 50 and 500
sampling steps and the Euler-Maruyama (EM) and Ornstein-Uhlenbeck (OU) discretization.

GuacaMol MosesModel Steps Val. ↑ V.U. ↑ V.U.N. ↑ KL ↑ FCD ↑ Val. ↑ Uniq. ↑ Nov. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Train set 100.0 100.0 0.0 99.9 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1
DiGress 500 85.2 85.2 85.1 92.9 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo 500 86.6 86.6 86.5 92.6 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh 500 98.9 98.9 97.6 96.7 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG 50 91.7 91.7 91.2 92.3 57.9 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG 500 99.0 99.0 97.9 97.7 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4
GraphBFN 500 - - - - - 98.5 99.8 89.0 98.3 1.07 0.59 10.0
GraphBSI (EM) 50 97.5 97.5 97.2 90.7 65.6 99.4 100.0 96.2 97.3 0.50 0.53 86.2
GraphBSI (OU) 50 99.2 99.2 98.7 93.7 71.3 99.7 100.0 94.3 98.5 0.60 0.55 88.0
GraphBSI (EM) 500 98.8 98.8 98.3 94.6 82.6 99.8 100.0 92.3 99.1 0.26 0.57 86.8
GraphBSI (OU) 500 99.6 99.6 98.2 98.4 80.3 99.9 100.0 90.3 99.3 0.41 0.59 88.2
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Figure 3: Normalized metrics (zero mean, unit variance) vs. noise level γ for different numbers of
function evaluations (FE) and discretization schemes. Our custom Ornstein-Uhlenbeck discretiza-
tion scheme is denoted as OU, while the standard Euler-Maruyama scheme is written as Euler. Some
values for the Euler scheme are missing since the sampler becomes unstable if γ ·∆t becomes too
large (see App. B.2).

Synthetic Benchmarks. As shown in Tab. 2, GraphBSI achieves competitive results on the syn-
thetic graph generation benchmarks. Our model saturates validity on the planar- and tree graph
generation tasks, and achieves adequate validity on the stochastic block model graphs. The mean
ratio as a measure of distribution similarity is competitive on all three datasets, even though the
metric should be taken with a grain of salt due to the small dataset size of only 128 graphs, resulting
in high uncertainty in the evaluation.

Table 2: Results on the synthetic graph generation benchmarks. Like DeFoG, we generate 40 graphs
five times and report the mean and standard deviation over the runs.

Planar Tree SBMModel Steps V.U. ↑ Ratio ↓ V.U. ↑ Ratio ↓ V.U. ↑ Ratio ↓
Train set 100.0 1.0 100.0 1.0 85.9 1.0
HSpectre 256 95.0 2.1 100.0 4.0 75.0 10.5
DiGress 1000 77.5 5.1 90.0 1.6 60.0 1.7
DeFoG 50 95.0 ± 3.2 3.2 ± 1.1 73.5 ± 9.0 2.5 ± 1.0 86.5 ± 5.3 2.2 ± 0.3
DeFoG 1000 99.5 ± 1.0 1.6 ± 1.0 96.5 ± 2.6 1.6 ± 0.4 90.0 ± 5.1 4.9 ± 1.3
GraphBSI (EM) 1000 100.0 ± 0.0 3.8 ± 1.0 96.5 ± 3.7 1.3 ± 0.4 50.5 ± 4.6 11.3 ± 1.4
GraphBSI (OU) 1000 100.0 ± 0.0 3.2 ± 0.6 100.0 ± 0.0 1.8 ± 0.5 77.5 ± 2.7 4.6 ± 1.1

4.3 ABLATION STUDIES

Noise level. To test the effect of the compute budget, noise level, and discretization scheme
on performance, we conduct a grid search over the number of function evaluations (NFEs) in
{25, 50, 100, 200, 500}, noise levels γ in {0.0, 5.0, 20.0, 100.0, 250.0, 1000.0}, and both discretiza-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.5 1.0 1.5 2.0

ρ

−15

−10

−5

0

5

10

15

C
ha

ng
e

vs
ρ

=
1

in
%

50 Steps

0.5 1.0 1.5 2.0

ρ

500 Steps

SNN (↑)
FCD (↓)
Scaf (↑)

OU
Euler

Figure 4: Performance change for changes in the non-uniform timestepping parameter ρ in ti =
(i/k)ρ for i = 0, 1, . . . , k compared to the uniform case ρ = 1. ρ < 1 results in a finer discretization
at later timesteps, while ρ > 1 corresponds to finer discretization at earlier steps.

tion schemes on the Moses dataset. As shown in Fig. 3, performance in both discretization schemes
is closely related at low noise levels, which is to be expected since both discretize the same SDE.
Higher compute budgets lead to better performance on all metrics except novelty. However, the
Euler-Maruyama scheme becomes unstable at higher noise levels, leading to a significant drop in
performance (see App. B.2). In contrast, the Ornstein-Uhlenbeck scheme remains stable, and both
the SNN score and scaffold similarity benefit from higher noise levels. The FCD metric, however,
is optimal at a medium noise level between 20 and 100. With a few exceptions, the Ornstein-
Uhlenbeck scheme matches or outperforms the Euler-Maruyama scheme at all compute budgets and
noise levels. Novelty suffers from increased noise levels and compute budgets, which is consistent
with the model generating samples closer to the training data distribution. Notably, all metrics per-
form poorly at a noise level of 0.0, which corresponds to the probability flow ODE (equivalent to
Xue et al. (2024)).

Non-uniform timesteps. To test whether a fine discretization is more important at some timesteps
compared to others, we analyze the effect of non-uniform timestepping, putting a finer discretization
at either earlier or later timesteps. As shown in Fig. 4, SNN and Scaffold similarity remain mostly
unaffected by the choice of ρ; only the FCD varies significantly. A finer discretization at later
timesteps (ρ < 1) improves the FCD at 50 function evaluations in both discretization schemes and
at 500 evaluations in the Ornstein-Uhlenbeck scheme.

5 RELATED WORK

Graph generation presents three main challenges compared to image and text generation: (1) graphs
are discrete structures, unlike images, which are continuous; (2) graphs have a variable shape, with
both the number and arrangement of nodes and edges changing across samples, unlike the fixed
dimensions of images; and (3) nodes in graphs lack a natural order, in contrast to text, where tokens
follow a well-defined sequence. Various approaches have been proposed to tackle these challenges.

Autoregressive models have proven successful in text generation by sequentially predicting the
next token based on previous ones Brown et al. (2020). Applied to graphs, these models generate
nodes and edges one by one, maintaining the graph structure as they proceed. This approach has
been used for tasks such as molecule and social-network generation You et al. (2018); Liao et al.
(2020). However, autoregressive models violate permutation invariance by relying on a specific
node ordering.

One-shot models address the ordering challenge by generating the entire graph in a single step,
without relying on a specific node ordering. Examples include Variational Autoencoders Kipf &
Welling (2016), GANs Cao & Kipf (2022), normalizing flows Liu et al. (2019), and discrete flow
matching Gat et al. (2024); Qin et al. (2025).

Diffusion models have emerged as a powerful class of one-shot generative models for continuous
data such as images Sohl-Dickstein et al. (2015); Ho et al. (2020). Their core idea is to learn a gen-
erative process that gradually transforms noise into clean data by reversing a diffusion process with
a neural network. Noise is typically applied independently to each pixel in images or to each node

8
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in graphs, naturally resulting in a permutation-invariant model when combined with a Graph Neural
Network (GNN) Niu et al. (2020). A variable number of nodes can be handled by conditioning the
diffusion process on the node count, e.g., by first sampling a node mask and then applying diffusion
to the masked graph Niu et al. (2020); Qin et al. (2025). To improve scalability, hybrid methods
that reverse a coarsening process and generate local structures with a diffusion model have also been
proposed Bergmeister et al. (2024).

Discrete diffusion addresses the discreteness of graphs. The most straightforward approach relaxes
discrete data to a continuous space, applies diffusion, and quantizes the generated outputs back to
the discrete space in a final step Niu et al. (2020); Jo et al. (2022; 2024). Alternatively, one can use
discrete diffusion in which the state is perturbed via a Markovian transition matrix in discrete time
steps (often including an absorbing state) Austin et al. (2023); this has been applied to graphs Vignac
et al. (2023); Haefeli et al. (2023). A related recent approach uses a continuous-time Markov chain
for the discrete diffusion process (see Campbell et al. (2022)), which allows more flexible sampling
on graphs Siraudin et al. (2024); Xu et al. (2024).

Bayesian Flow Networks (Graves et al., 2025) propose a conceptually distinct approach to dis-
crete generative models: diffusion is applied to the parameters of a distribution over samples rather
than to the samples themselves. BFNs can be interpreted as an SDE, enabling more efficient sam-
pling algorithms Xue et al. (2024). This provides a solid theoretical foundation for diffusion on
discrete data while retaining the benefits of smooth parameter changes, and it achieves competitive
performance on protein and graph generation Atkinson et al. (2025); Song et al. (2025); Tao & Abe
(2025). The flexible design of BFNs also permits joint generation of continuous and discrete quan-
tities, for example the 3D positions, atom types, and charges in molecular generation Song et al.
(2024). Bayesian Sample Inference Lienen et al. (2025) extends BFNs by adding a prior over the
distribution parameters and offers a simplified interpretation for the continuous-data case.

6 CONCLUSION

In this work, we introduce GraphBSI, a novel generative model for graphs based on Bayesian Sam-
ple Inference with state-of-the-art performance in large molecule generation benchmarks. Similar to
Bayesian Flow Networks, GraphBSI iteratively refines a belief over the graph structure, modeled as
a categorical distribution over adjacency matrices, through Bayesian updates. We show that in the
limit of infinitesimal time steps, GraphBSI converges to a Stochastic Differential Equation (SDE).
Further, we employ the Fokker-Planck equation to derive a generalized SDE with a tunable noise pa-
rameter, allowing us to interpolate between a deterministic probability flow ODE, the original SDE,
and a substantially more volatile sampler. We demonstrate that GraphBSI achieves state-of-the-art
performance on the GuacaMol and Moses benchmarks for large molecule generation, outperform-
ing existing models on nearly all metrics. Finally, in our ablations we empirically show that noise
control critically influences performance.

Limitations and Future Work. GraphBSI, in its current implementation, suffers from the
quadratic scaling of compute and memory requirements in the number of nodes that comes with
the application of a graph transformer. Exploring a more memory-efficient graph neural network ar-
chitecture to generate larger graphs would be a promising avenue for future research. Further, while
GraphBSI allows for variable-sized graphs, the number of nodes is sampled beforehand instead of
jointly generated with the graph features. Allowing for nodes to appear or disappear while gener-
ating the graph, similar to jump diffusion (Campbell et al., 2023), might result in a more flexible
generative process.

Reproducibility statement. Our code for training, inference benchmarks, and ablations will be
made available in a comment to the reviewers. This also includes checkpoints for all datasets,
enabling reproducibility of our results with limited compute resources. Upon acceptance, it will be
made publicly available. To further improve reproducibility, we list all hyperparameters in Tab. 5.

Use of LLMs. We used Large Language Models to polish writing (grammar, style, and readabil-
ity). All technical content, including research ideas, experiments, and analysis, was conceived and
written entirely by the authors. The authors carefully reviewed and verified all language model
suggestions before inclusion.
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A RELATIONSHIP BETWEEN CATEGORICAL BSI AND CATEGORICAL BFNS

There is a close equivalence between Categorical Bayesian Sample Inference (BSI) and Categorical
Bayesian Flow Networks (BFNs). In fact, Categorical BFNs can be seen as a special case of Cate-
gorical BSI with a specific choice of prior distribution and noise schedule. To illustrate this, we will
show the relationship between the components of both frameworks.

Input Distribution Both BFNs and categorical BSI parameterize the distribution over the data x
using a categorical distribution. The logits are denoted as z in BSI and as θ in BFNs. In BSI,
the parameters z are the logits of a categorical distribution, i.e., p(x|z) ∼ Cat(softmax(z)). In
BFNs, the parameters θ are the probabilities of each category, i.e., p(x|θ) ∼ Cat(θ). The two
parameterizations are equivalent since θ = softmax(z) and z = log(θ) (up to an additive constant).

Output Distribution The output distribution in BFNs is an intermediate distribution that is not
needed in BSI.

Prior Distribution While Categorical BSI includes a normal prior distribution over the logits of
the categorical distribution (p(z|t = 0) ∼ N (µ0, β0I)), Categorical BFNs fix the parameters to
θ0 = 1/K. Therefore, categorical BFNs can be seen as a special case of categorical BSI with
µ0 = 0 and β0 = 0.

Sender Distribution The sender distribution in categorical BFNs is an intermediate distribution that
is not required in categorical BSI.

Receiver Distribution The sender distribution in categorical BFNs is given as

pR(y|x, α) ∼
∑
k

softmax(Ψ(θ))kN (α(Kêk − 1), αKI)

It corresponds to the noisy measurement distribution in categorical BSI, p(y|x, α) ∼ N (x̂, 1/αI).
Note that for α→ 0, it holds that:

pR(y|x, α) ∼ N (α(Ksoftmax(Ψ(θ))− 1), αKI)

The sender distribution for α → 0 is an affine transformation of the noisy observation function for
BSI: If we set y ∼ p(y|x, α) = N (x̂, 1/αI) and compute y′ = α(Ky − 1), then y′ ∼ ps(y

′|x, α),
where softmax(Ψ(θ)) corresponds to the sample reconstruction x̂. Thus, the two distributions are
equivalent up to an affine transformation of the variable and therefore contain the same information.
However, in the formulation of categorical BSI, we can directly see that y is a noisy observation of x
and we do not require computing the distribution as a limit of a multinomial distribution as in BFNs.

Bayesian Update Function The Bayesian update function in categorical BFNs (Graves et al., 2025,
Eq. 171) is the equivalent of Theorem 1 in categorical BSI. The update is simplified for BSI since
the belief parameters are in logit space instead of probability space. Furthermore, the scaling of the
receiver distribution leads to an extra factor of α in categorical BSI.

Bayesian Update Distribution This is an intermediate that is not required in categorical BSI.

Accuracy Schedule The accuracy schedule can be chosen freely in categorical BSI. In categorical
BFNs, the accuracy schedule is fixed to β(t) = t2β(1).

Bayesian Flow Distribution The Bayesian flow distribution in categorical BFNs corresponds to
Eq. (3) in categorical BSI. The two distributions are equivalent up to an affine transformation of the
variable, as explained above.

Continuous Time Loss The continuous time loss in categorical BFNs (Graves et al., 2025, Eq. 205)
corresponds to Eq. (5) in categorical BSI. Both are the L2 loss between the reconstruction and the
one-hot encoded data.

SDE formulation Both BSI and BFN sampling can be formulated as SDEs. Here, Theorem 3
corresponds to (Xue et al., 2024, Eq. 24). To do so, the authors also operate on the logits of the
categorical distribution instead of the probabilities.
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Score function approximation The score function approximation for categorical BFNs (Xue et al.,
2024, Eq. 28) corresponds to Theorem 5 for β0 = 0 up to a constant. Note that a value of β0 > 0
avoids the division by zero in the score function approximation at t = 0.

B ANALYSIS OF SDE-BASED SAMPLING ALGORITHMS

In this section, we analyze the behavior of the SDE-based sampling methods Algs. 3 and 4.

B.1 EQUIVALENCE OF THE TWO SAMPLING ALGORITHMS FOR INFINITE STEPS

It is worth noting that for ∆t → 0, the Ornstein-Uhlenbeck discretization and the Euler-Maruyama
discretization of Eq. (7) converge to the same update step:

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, 1) (11)

→ m+ (zt −m)(1− κ∆t) +

√
γβ′

2κ
(1− (1− 2κ∆t)) · N (0, 1) (12)

= zt + κ(m− zt)∆t+
√

γβ′∆t · N (0, 1) (13)

= zt + κ(µ0 + (β + β′/κ)x̂− zt)∆t+
√
γβ′∆t · N (0, 1) (14)

= zt + β′x̂∆t+
γ − 1

2
β′µ0 + βx̂− zt

β + β0
∆t+

√
γβ′∆t · N (0, 1) (15)

= zt + β′fθ(zt, t)∆t+
γ − 1

2
β′∇zt log pt(zt)∆t+

√
γβ′∆t · N (0, 1) (16)

B.2 STABILITY OF EULER-MARUYAMA SAMPLING

Let us explicitly write out the update step of the Euler-Maruyama discretization of Eq. (7):

zt+∆t ∼ zt + β′x̂∆t+
γ − 1

2
β′µ0 + βx̂− zt

β + β0
∆t+

√
γβ′∆t · N (0, 1) (17)

= (1− (γ − 1)β′

2(β + β0)
∆t)zt + β′x̂∆t+

(γ − 1)β′(µ0 + βx̂)

2(β + β0)
∆t+

√
γβ′∆t · N (0, 1) (18)

As a rule of thumb, the coefficient in front of zt should not be negative, i.e., the previous step should
not be over-corrected. This yields the condition

1− (γ − 1)β′

2(β + β0)
∆t ≥ 0 (19)

⇐⇒ ∆t · (γ − 1) ≤ 2(β + β0)

β′ (20)

For our precision schedule on moses (βstart = 3.0, βend = 12.0, β0 = 1.0), we find that

min
t∈[0,1]

2(β(t) + β0)

β′(t)
≈ 0.48 (21)

The resulting maximum stable noise level γ for different numbers of sampling steps in Tab. 3 predicts
the observed behavior in Fig. 3 surprisingly well.

B.3 BEHAVIOR OF ORNSTEIN-UHLENBECK SAMPLING WITH INFINITE NOISE

Taking the limit γ →∞ in Alg. 4 yields an interesting sampling algorithm (see Alg. 5). In this limit,
the update step becomes independent of the previous step zt, replacing all previous information with
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Table 3: Maximum stable γ for different numbers of sampling steps with the Euler-Maruyama
discretization, following Eq. (21).

Number of Timesteps ∆t Maximum Stable γ

25 0.040000 12.938480
50 0.020000 24.876960

100 0.010000 48.753920
200 0.005000 96.507840
500 0.002000 239.769601

the current prediction x̂. Empirically, we find that fixing the prior value after the initial sampling
step, as shown in Alg. 6, works better in practice (see Tab. 4). This algorithm matches the Flowback
algorithm from Song et al. (2025). We find that with a budget of 50 sampling steps, this algorithm
performs surprisingly well on molecule generation. However, a higher compute budget drastically
reduces performance. We hypothesize that this is because an excessive amount of stochasticity is
introduced. Song et al. (2025) address this by adaptively alternating between vanilla BFN steps and
Flowback steps, effectively mixing Alg. 1 with Alg. 5.

Algorithm 5 Sampling with γ →∞
Require: reconstructor fθ, discretization ∆t,

precision schedule β : [0, 1]→ R+

z0 ∼ N (µ0, β0I)
z ← z0
for t = 0 . . . 1 in steps of ∆t do

x̂← fθ(z, t)
α← β0 + β(t+∆t/2)
y ∼ N (µ = x̂,Σ2 = 1/α · I)
▷ Go from prior to t in single step
z ← µ0 + α · y

end for
return Quantize(fθ(z, 1))

Algorithm 6 Fixed-prior sampling with γ →∞
Require: reconstructor fθ, discretization ∆t,

precision schedule β : [0, 1]→ R+

z0 ∼ N (µ0, β0I)
z ← z0
for t = 0 . . . 1 in steps of ∆t do

x̂← fθ(z, t)
α← β(t+∆t/2)
y ∼ N (µ = x̂,Σ2 = 1/α · I)
▷ Go from prior to t in single step
z ← z0 + α · y

end for
return Quantize(fθ(z, 1))

Table 4: Results on the GuacaMol and Moses benchmarks for molecular generation with 50 and 500
sampling steps and the Euler- (EM) and Ornstein-Uhlenbeck (OU) discretization, and with Alg. 5
(γ →∞) and Alg. 6 (γ →∞, FP)

GuacaMol MosesModel Steps Val. ↑ V.U. ↑ V.U.N. ↑ KL ↑ FCD ↑ Val. ↑ Uniq. ↑ Nov. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Train set 100.0 100.0 0.0 99.9 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1
DiGress 500 85.2 85.2 85.1 92.9 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo 500 86.6 86.6 86.5 92.6 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh 500 98.9 98.9 97.6 96.7 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG 50 91.7 91.7 91.2 92.3 57.9 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG 500 99.0 99.0 97.9 97.7 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4
GraphBFN 500 - - - - - 98.5 99.8 89.0 98.3 1.07 0.59 10.0
GraphBSI (EM) 50 97.5 97.5 97.2 90.7 65.6 99.4 100.0 96.2 97.3 0.50 0.53 86.2
GraphBSI (OU) 50 99.2 99.2 98.7 93.7 71.3 99.7 100.0 94.3 98.5 0.60 0.55 88.0
GraphBSI (EM) 500 98.8 98.8 98.3 94.6 82.6 99.8 100.0 92.3 99.1 0.26 0.57 86.8
GraphBSI (OU) 500 99.6 99.6 98.2 98.4 80.3 99.9 100.0 90.3 99.3 0.41 0.59 88.2
GraphBSI (𝛾 → ∞) 50 99.6 99.6 98.3 95.1 61.4 99.9 99.9 89.8 99.2 0.98 0.59 88.7
GraphBSI (𝛾 → ∞,FP) 50 99.6 99.6 98.3 97.4 75.1 99.9 99.9 90.1 99.1 0.78 0.59 81.6

C PROOFS

Theorem 1. Given a prior belief p(x | z) = C(x | softmax(z)), after observing y ∼ N (y | µ =
x,Σ2 = 1/αI) at precision α, the posterior belief is p(x | z, y, α) = C(x | softmax(zpost)) with

zpost = z + α · y (22)
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Proof. We need to compute the Bayesian update of the belief parameters. Each dimension can be
considered independently since the noise is isotropic. Let us start with a single-variable prior belief
C(softmax(z)) with z ∈ Rc, and a noisy observation y|x, α ∼ N (µ = x,Σ2 = 1/α · I) of the true
sample x ∈ ∆c−1 at precision α. Let us now consider any class l ∈ 1, . . . , c. We write êl for the
one-hot encoding of class l. Since we are only interested in the ratio of the posterior probabilities,
we can ignore any factors that do not depend on l and normalize at the end. We have:

p(x = êl|z) = softmax(z)l ∝ exp(zl) (23)

p(y|x = êl, α) = N (y|µ = êl,Σ
2 = 1/α · I) (24)

p(x = êl|z, y, α) =∝ p(y|x = êl, α) · p(x = êl|z) (25)

= N (y|µ = êl,Σ
2 = 1/α · I) · softmax(z)l (26)

∝ exp

(
−||y − êl||2

2 · 1/α

)
· exp(zl) (27)

= exp

(
−||y||

2 − 2· < y, êl > +||êl||2

2 · 1/α
+ zl

)
(28)

∝ exp (α · yl + zl) (29)

Let us now normalize the results to obtain the posterior probabilities:

p(x = êl|z, y, α) =
exp (α · yl + zl)∑c

l′=1 exp (α · yl′ + zl′)
= softmax(z + α · y)l (30)

Putting everything together, we find that the posterior belief is p(x | z, y, α) = C(x |
softmax(zpost)) with

zpost = z + α · y (31)

Theorem 2. For categorical BSI, the log-likelihood of x under Alg. 1 is lower-bounded by

log p(x) ≥ E
zk∼q(z|x,tk)

[p(x | zk)]−
k

2
E

i∼U(0,k−1)
zi∼q(z|x,ti)

[(β(ti+1)− β(ti))||fθ(zi, ti)− x||22], (32)

where q(z | x, t) = N (z | µ0 + β(t)x, β0 + β(t)I).

Proof. For any distribution p(x) and any latent variable z, i.e. any choice of prior p(z), encoding
distribution p(z|x), and likelihood p(x|z), we have the variational lower bound

log p(x) ≥ E
z∼p(z|x)

[log p(x|z)]−KL(p(z|x)∥p(z)) (33)

on log p(x) Kipf & Welling (2016). We choose the beliefs z0, . . . , zk as latent variables at the
discretized time steps t0, . . . , tk. We choose the encoding distribution to be the distribution of the
beliefs under Alg. 1 with the reconstruction network fθ replaced by the true sample x:

p(z0, . . . , zk|x) = N (z0|µ0, β0I)

k−1∏
i=0

p(zi+1|zi, x, ti) (34)

The transition distribution p(zi+1|zi, x, ti) can be computed from Theorem 1:

zi+1 = zi + αi · yi ∼ zi + αi · N (y|µ = x, 1/αiI) = N (zi+1|zi + αi · x, αiI) (35)

The distribution of p(z) following Alg. 1 factorizes similarly:

p(z0, . . . , zk) = N (z0|µ0, β0I)

k−1∏
i=0

p(zi+1|zi, ti, θ) (36)

with the transition distribution

p(zi+1|zi, ti, θ) = N (zi+1|zi + αi · fθ(zi, ti), αiI) (37)
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Let us now compute the KL divergence:

KL(p(z0, . . . , zk|x)∥p(z0, . . . , zk)) (38)

= E
z0,...,zk∼

p(z0,...,zk|x)

[
log

p(z0, . . . , zk|x)
p(z0, . . . , zk)

]
(39)

= E
z0,...,zk∼

p(z0,...,zk|x)

[
log
N (z0|µ0, β0I)

∏k−1
i=0 p(zi+1|zi, x, ti)

N (z0|µ0, β0I)
∏k−1

i=0 p(zi+1|zi, ti, θ)

]
(40)

= E
z0,...,zk∼

p(z0,...,zk|x)

[
k−1∑
i=0

log
p(zi+1|zi, x, ti)
p(zi+1|zi, ti, θ)

]
(41)

=

k−1∑
i=0

E
zi∼p(zi|x)

[KL(p(zi+1|zi, x, ti)∥p(zi+1|zi, ti, θ))] (42)

=

k−1∑
i=0

E
zi∼p(zi|x)

[KL(N (zi+1|zi + αi · x, αiI)∥N (zi+1|zi + αi · fθ(zi, ti), αiI))] (43)

=

k−1∑
i=0

E
zi∼p(zi|x)

[
1

2αi
||zi + αi · x− (zi + αi · fθ(zi, ti))||22

]
(44)

=

k−1∑
i=0

E
zi∼p(zi|x)

[αi

2
||x− fθ(zi, ti)||22

]
(45)

=

k−1∑
i=0

E
zi∼p(zi|x)

[
(β(ti+1)− β(ti))/2||x− fθ(zi, ti)||22

]
(46)

= E
i∼U(0,k−1)
zi∼p(zi|x)

[
k/2(β(ti+1)− β(ti))||x− fθ(zi, ti)||22

]
(47)

Since p(x|z0, . . . , zk) = p(x|zk) = C(x|softmax(zk)), we can plug in Eq. (3) to obtain the final
result:

log p(x) ≥ E
zk∼q(z|x,tk)

[p(x | zk)]−
k

2
E

i∼U(0,k−1)
zi∼q(z|x,ti)

[(β(ti+1)− β(ti))||fθ(zi, ti)− x||22], (48)

where q(z | x, t) = N (z | µ0 + β(t)x, β0 + β(t)I).

Theorem 3. As ∆t→ 0, the update equation in Theorem 1 converges to the following SDE:

dzt = β′(t)fθ(zt, t)dt+
√

β′(t)dWt (49)

where dWt is a Wiener process and z0 ∼ N (µ0, β0 · I).

Proof. Take the update equation Theorem 1 with an infinitesimal time step ∆t→ 0, it holds that

α = (β(t+∆t)− β(t))→ β′(t)∆t (50)
Therefore, we have:

zt+∆t = zt + αy (51)

∼ zt + αN (x̂,Σ2 = 1/αI) (52)

= zt +N (αx̂,Σ2 = αI) (53)

→ zt + β′(t)x̂+
√
β′(t)

√
∆t · N (0, 1) (54)

We identify this as the Euler-Maruyama discretization of the SDE above.
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Theorem 4. The SDE in Theorem 3 is generalized by the following family of SDEs with equal
marginal densities pt(zt):

dzt = β′(t)fθ(zt, t)dt+
γ − 1

2
β′(t)∇zt log pt(zt)dt+

√
γβ′(t)dWt (55)

where dWt is a Wiener process and z0 ∼ p(z | t = 0).

Proof. We need to show that the evolution of the probability density pt(zt) of Eq. (6) matches that
of Eq. (7). The evolution is characterized by the Fokker-Blank equation:
∂pt(zt)

∂t
=

∑
j

−∇zj

(
β′(t)fθ(zt, t) +

γ − 1

2
β′(t)∇zt log pt(zt)

)
pt(zt) +

1

2
γβ′(t)∇2

zjpt(zt)

=
∑
j

−∇zj (β
′(t)fθ(zt, t)pt(zt))−

γ − 1

2
β′(t)∇zj

(
pt(zt)∇zj log pt(zt)

)
+

1

2
γβ′(t)∇2

zjpt(zt)

=
∑
j

−∇zj (β
′(t)fθ(zt, t)pt(zt))−

γ − 1

2
β′(t)∇2

zjpt(zt) +
1

2
γβ′(t)∇2

zjpt(zt)

=
∑
j

−∇zj (β
′(t)fθ(zt, t)pt(zt)) +

1

2
β′(t)∇2

zjpt(zt)

Which equals the Fokker-Plank equation of the SDE in Eq. (6).

Theorem 5. The BSI loss Eq. (5) also is a score matching loss with the score model sθ(z, t) param-
eterized as

sθ(z, t) ≡
µ0 + β(t)fθ(z, t)− z

β(t) + β0

!
≈ ∇z log pt(z) (56)

Proof. Score matching Song et al. (2021) is a generative model that learns to approximate the score
function ∇z log pt(z) of a distribution pt(z) by minimizing the score matching loss:

Lscore ≡ Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)
[
∥sθ(z, t)−∇z log pt(z|x)∥22

]
] (57)

where λ : [0, 1] 7→ R+ is a positive weighting function. The distribution pt(z|x) is the distribution
of the latent variable at time t given the true sample x. For categorical BSI, we have from Eq. (3):

pt(z|x) = N (z|µ0 + β(t)x, (β0 + β(t))I) (58)

The score function of an isotropic Gaussian can be computed in closed form:

∇z logN (z|µ, σ2I) = ∇z

(
−||z − µ||2

2σ2

)
= −z − µ

σ2
(59)

(60)
Plugging in the parameters of pt(z|x), we find:

∇z log pt(z|x) = −
z − (µ0 + β(t)x)

β0 + β(t)
=

µ0 + β(t)x− z

β0 + β(t)
(61)

With the proposed score model parameterization sθ(z, t), we find:

Lscore = Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)
[
∥sθ(z, t)−∇z log pt(z|x)∥22

]
] (62)

= Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)

[∥∥∥∥µ0 + β(t)fθ(z, t)− z

β(t) + β0
− µ0 + β(t)x− z

β0 + β(t)

∥∥∥∥2
2

]
] (63)

= Et∼U(0,1)[λ(t)Ep(x)Ept(z|x)

[∥∥∥∥β(t)(fθ(z, t)− x)

β(t) + β0

∥∥∥∥2
2

]
] (64)

= Et∼U(0,1)[λ(t)
β(t)2

(β(t) + β0)2
Ep(x)Ept(z|x)

[
∥(fθ(z, t)− x)∥22

]
] (65)

(66)

Choosing the weighting λ(t) = β′(t) (β(t)+β0)
2

β(t)2 , we find that the score matching loss equals the BSI
loss in Eq. (5).
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QM9 (without H) QM9 (with H)Model Steps Val. ↑ Uniq. ↑ FCD ↓ Val. ↑ Uniq. ↑ FCD ↓
Train set 100.0 100.0 0.05 100.0 100.0 0.05
DiGress 500 99.0 96.2 - 95.4 ± 1.1 97.6 ± 0.4 -
DisCo 500 99.3 ± 0.6 - - - - -
Cometh 500 99.6 ± 0.1 96.8 ± 0.2 0.25 ± 0.01 - - -
DeFoG 50 98.9 ± 0.1 96.2 ± 0.2 0.26 ± 0.00 - - -
DeFoG 500 99.3 ± 0.0 96.3 ± 0.3 0.12 ± 0.00 98.0 ± 0.0 96.7 ± 0.0 0.05 ± 0.00
Ours 50 99.9 93.7 0.30 - - -
Ours 500 99.9 96.2 0.09 99.8 96.6 0.08

Figure 5: Results on the QM9 dataset.

Theorem 6. Fixing the prediction x̂ = fθ(zt, t) and the values β = β(t+∆t/2), β′ = β′(t+∆t/2)
in Eq. (7) in a time interval [t, t+∆t] yields an Ornstein-Uhlenbeck process with the exact marginal

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, 1), (67)

where κ = (γ−1)β′

2(β0+β) , m = µ0 + (β + β′/κ)x̂.

Proof. The SDE in Eq. (7) with fixed parameters β, β′, x̂ is given as

dzt = β′x̂dt+
γ − 1

2
β′∇zt log pt(zt)dt+

√
γβ′dWt (68)

where dWt is a Wiener process and zt ∼ p(z | t). Let us insert Theorem 5 to obtain

dzt = β′x̂dt+
γ − 1

2
β′µ0 + βfθ(zt, t)− zt

β + β0
dt+

√
γβ′dWt (69)

=
(γ − 1)β′

2(β0 + β)
(µ0 + (β +

2(β0 + β)

(γ − 1)
)x̂− zt)dt+

√
γβ′dWt (70)

Setting κ = (γ−1)β′

2(β0+β) and m = µ0 + (β + β′/κ)x̂, we find

dzt = κ(m− zt)dt+
√
γβ′dWt (71)

which is an Ornstein-Uhlenbeck process. The exact marginal distribution of an Ornstein-Uhlenbeck
process is given as Uhlenbeck & Ornstein (1930):

zt+∆t ∼ m+ (zt −m)e−κ∆t +

√
γβ′

2κ
(1− e−2κ∆t) · N (0, 1) (72)

D ADDITIONAL RESULTS

Fig. 5 shows our method is competitive on the QM9 dataset with removed hydrogen atoms, achieving
state-of-the-art results on validity and FCD. We explicitly model charges on the nodes, enabling high
validity scores.
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Table 5: Hyperparameters used for the results in Tabs. 1 and 2. The precision schedule is parame-
terized as β(t) = βstart · (exp(t · log(βend/βstart))− 1).

Belief Parameters Sampler 10% steps Sampler 100% steps)
Dataset

𝛽start 𝛽end 𝛽(0) 𝛾 (OU) 𝛾 (Euler) 𝛾 (OU) 𝛾 (Euler)

GuacaMol 20.0 10.0 250.0 200.0
12.0

Moses 10.0 20.0 90.0 120.0
Planar

200.0
SBM

3.0 1.0
20.0 - 200.0

Tree 100.0

Table 6: Datasets with training samples and maximum number of nodes.

Dataset Train samples Max. Nodes
GuacaMol (Brown et al., 2019) 1.3M 88
Moses (Polykovskiy et al., 2020) 1.6M 30
Planar (Martinkus et al., 2022) 128 64
SBM (Martinkus et al., 2022) 128 187
Tree (Bergmeister et al., 2024) 128 64

Table 7: Molecular metrics

Metric Short Description

Validity Val. The fraction of generated molecules that are
chemically valid according to RDKit.

Uniqueness Uniq. The number of unique molecules generated (counting
permutations as the same molecule) divided by the
total number of generated molecules when
generating 10,000 molecules.

Novelty Nov. The fraction of generated molecules that are not
present in the training set.

Valid & Unique V.U. The fraction of generated molecules that are both
valid and unique.

Valid, Unique & Novel V.U.N. The fraction of generated molecules that are valid,
unique, and novel.

KL Divergence KL. The normalized KL-Diveregence between the
distributions of various physicochemical descriptors
between the generated set and the training set.

Fréchet ChemNet Distance (Moses) FCD Distance between the distributions of learned
features of the generated molecules and those of the
validation set, as computed by a pretrained ChemNet
model.

Fréchet ChemNet Distance (GuacaMol) FCD Same as for Moses, but normalized with the
transform 𝑥 → exp(−0.2𝑥)

Similarity to Nearest Neighbor SNN The average Tanimoto similarity between each
generated molecule and its nearest neighbor in the
test set

Scaffold Similarity Scaf. Cosine similarity between the frequencies of scaffold
substructures in the generated set and the test set
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Table 8: Synthetic graph metrics metrics

Metric Short Description

Valid & Unique V.U. The fraction of generated graphs that are both valid and unique among 40
generated graphs. For the planar and tree datasets, we check if the generated
graphs are planar/tree graphs. The SBM dataset does not have a
straightforward validity criterion, therefore a test with Bayesian inference is
used with a likelihood threshold.

Average Ratio Ratio For each of several metrics, ratio is defined as the Maximum Mean
Discrepancy (MMD) between the generated and training set divided by the
MMD between the training set and the test set. The average ratio is the ratio
metric averaged over all metrics. The metrics are degree, clustering
coefficient, orbit counts, spectral-, and wavelet metrics.
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