

DISCRETE BAYESIAN SAMPLE INFERENCE FOR GRAPH GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Generating graph-structured data is crucial in applications such as molecular gen-
 012 eration, knowledge graphs, and network analysis. However, their discrete, un-
 013 ordered nature makes them difficult for traditional generative models, leading to
 014 the rise of discrete diffusion and flow matching models. In this work, we in-
 015 troduce *GraphBSI*, a novel one-shot graph generative model based on Bayesian
 016 Sample Inference (BSI). Instead of evolving samples directly, GraphBSI iter-
 017 atively refines a *belief* over graphs in the continuous space of distribution par-
 018 ameters, naturally handling discrete structures. Further, we state BSI as a stochastic
 019 differential equation (SDE) and derive a noise-controlled family of SDEs that pre-
 020 serves the marginal distributions via an approximation of the score function. Our
 021 theoretical analysis further reveals the connection to Bayesian Flow Networks and
 022 Diffusion models. Finally, in our empirical evaluation, we demonstrate state-of-
 023 the-art performance on molecular and synthetic graph generation, outperforming
 024 existing one-shot graph generative models on the standard benchmarks Moses and
 025 GuacaMol.

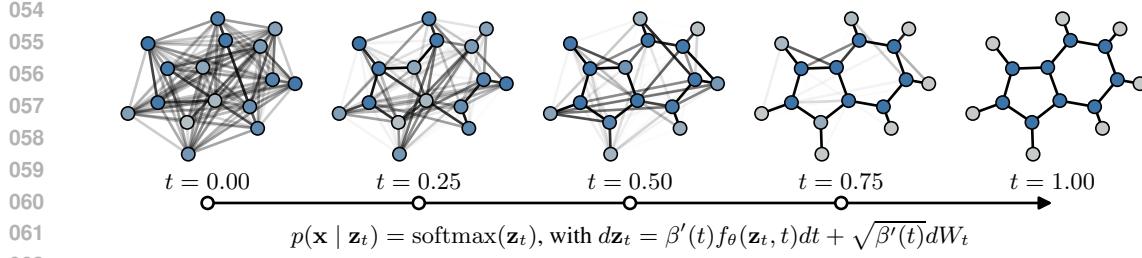
1 INTRODUCTION

028 Graph structures appear in various domains ranging from molecular chemistry to transportation and
 029 social networks. Generating realistic graphs enables simulation of real-world scenarios, augmenting
 030 incomplete datasets, and discovering new materials and drugs (Guo & Zhao, 2022; Zhu et al., 2022).
 031 However, their unique and complex structure poses challenges to traditional generative models that
 032 are designed for continuous data such as images. This has resulted in a diverse landscape of graph
 033 generative models, featuring autoregressive models (You et al., 2018) and one-shot models (Kipf &
 034 Welling, 2016), including a range of diffusion-based models (Ho et al., 2020).

035 Recently, Bayesian Flow Networks (BFNs) (Graves et al., 2025) have emerged as a novel class of
 036 models that operate on the parameters of a distribution over samples rather than on the samples them-
 037 selves. This approach is particularly appealing for discrete data, as the parameters of a probability
 038 distribution evolve smoothly even when the underlying samples remain discrete. Graph generative
 039 models based on BFNs have shown competitive performance in molecule generation (Song et al.,
 040 2025). However, operating in parameter space and being motivated through information theory adds
 041 a layer of complexity to the BFN framework that hinders its accessibility.

042 *Bayesian Sample Inference* (BSI) (Lienen et al., 2025) offers a simplified interpretation and gener-
 043 alizes continuous BFNs by viewing generation as a sequence of Bayesian updates that iteratively
 044 refine a belief over the unknown sample. The model is trained by optimizing its corresponding
 045 ELBO.

046 This work introduces **GraphBSI**, extending BSI to discrete graphs. Instead of operating on discrete
 047 states, GraphBSI evolves on the probability simplex of node and edge categories. We derive BSI
 048 for categorical data and show how to generate variably-sized graphs with it. Next, we formulate
 049 categorical BSI as an SDE and, via the Fokker–Planck equation, derive a noise-controlled family
 050 of SDEs that preserves marginals while interpolating between a deterministic probability-flow ODE
 051 and a highly stochastic sampler. Empirically, we demonstrate that GraphBSI achieves state-of-the-
 052 art results on the GuacaMol (Brown et al., 2019) and Moses (Polykovskiy et al., 2020) benchmarks
 053 for molecule generation. In extensive ablation studies, we show that noise control is a crucial factor
 for optimizing performance. An overview of our method is shown in Fig. 1.



Our **main contributions** can be summarized as follows:

- We derive BSI for categorical data, enabling, among others, the generation of graphs and sequences. The result generalizes the Bayesian Flow Network (BFN) framework with a simplified interpretation while avoiding limit approximations in the Bayesian update.
- We formulate categorical BSI as an SDE. Through the Fokker-Planck equation, we derive a generalized SDE with a noise-controlling parameter and identical marginals, allowing us to interpolate between a deterministic probability flow ODE and a sampling scheme that overrides all previous predictions with the most recent one.
- We demonstrate that GraphBSI achieves SOTA results across most metrics in the Moses and GuacaMol molecule generation benchmarks with as few as 50 function evaluations, and further gains substantial improvements with 500 function evaluations.

2 THE BAYESIAN SAMPLE INFERENCE FRAMEWORK FOR GRAPHS

Bayesian Sample Inference (BSI) (Lienen et al., 2025) is a novel generative modeling framework simplifying and generalizing Bayesian Flow Networks (BFNs) (Graves et al., 2025). While BSI was originally presented for continuous data, we develop a theoretical framework extending BSI to categorical data analogously. We start by introducing the required background knowledge. All proofs are shown in App. D.

Background. Bayesian Sample Inference (BSI) (Lienen et al., 2025) generates samples by iteratively refining an initial belief $p(\mathbf{x})$ about the sample \mathbf{x} to be generated through noisy measurements \mathbf{y} of \mathbf{x} . The initial belief $p(\mathbf{x} | \mathbf{z}_0)$ follows a broad isotropic Gaussian with parameters $\mathbf{z}_0 = (\mu_0, \sigma_0)$. The belief is then refined by a sequence of noisy measurements $\mathbf{y}_0, \dots, \mathbf{y}_{k-1}$ that follow Gaussians centered around \mathbf{x} . After receiving the measurement \mathbf{y}_i , the information contained in it is integrated into our next belief \mathbf{z}_{i+1} through a Bayesian update. Once the belief of \mathbf{x} is sufficiently sharp, we return a sample from it. We train a neural network f_θ to predict the train sample \mathbf{x} from the information collected about it in the belief \mathbf{z}_i for each timestep $i \in 0, \dots, k-1$. The trained neural network allows us to generate new samples during inference by creating the noisy measurements through an approximation $\hat{\mathbf{x}}_i = f_\theta(\mathbf{z}_i, i)$ of the sample \mathbf{x} in each timestep i .

Extension to categorical data. Now, we will focus on the case that our data lies on the simplex, i.e., we have a categorical belief for \mathbf{x} over c possible categories, i.e., $\mathbf{x} \in \Delta_{c-1}^n \subset [0, 1]^{n \times c}$. If we have access to noisy measurements $\mathbf{y}_i \sim \mathcal{N}(\mathbf{x}, \Sigma^2 = \alpha_i^{-1} I)$ of the sample \mathbf{x} , we can infer \mathbf{x} from the measurements using Bayes' theorem in a similar fashion to the continuous case. We start with an initial belief $p(\mathbf{x} | \mathbf{z}_0) \sim \text{Cat}(\text{softmax}(\mathbf{z}_0))$, where $\mathbf{z}_0 \in \mathbb{R}^{n \times c}$ are the logits of a categorical distribution with n independent components. Then, we can update the belief parameters \mathbf{z} after observing \mathbf{y}_i using Bayes' theorem.

Theorem 1. *Given a prior belief $p(\mathbf{x} | \mathbf{z}) = \text{Cat}(\mathbf{x} | \text{softmax}(\mathbf{z}))$, after observing $\mathbf{y} \sim \mathcal{N}(\mathbf{y} | \mu = \mathbf{x}, \Sigma^2 = \alpha^{-1} \mathbf{I})$ at precision α , the posterior belief is $p(\mathbf{x} | \mathbf{z}, \mathbf{y}, \alpha) = \text{Cat}(\mathbf{x} | \text{softmax}(\mathbf{z}_{\text{post}}))$*

108 with

$$\mathbf{z}_{\text{post}} = \mathbf{z} + \alpha \mathbf{y}. \quad (1)$$

111 Now, we can iterate over multiple noisy measurements and update our belief until $p(\mathbf{x} | \mathbf{y}_1, \dots, \mathbf{y}_k)$
 112 identifies \mathbf{x} with high probability. Through Theorem 1, we encode the information contained in
 113 all these measurements in our updated belief parameters \mathbf{z}_k as $p(\mathbf{x} | \mathbf{y}_1, \dots, \mathbf{y}_k) = p(\mathbf{x} | \mathbf{z}_k) \sim$
 114 $\text{Cat}(\text{softmax}(\mathbf{z}_k))$ with $\mathbf{z}_k = \mathbf{z}_0 + \sum_i \alpha_i \mathbf{y}_i$.

115 We process each observation \mathbf{y}_i sequentially, inducing a notion of time. We measure \mathbf{y}_i at time
 116 $t_i = \Delta t \cdot i \in [0, 1]$ with $\Delta t = 1/(k+1)$, and the subsequent Bayesian update takes us to t_{i+1} .
 117 To control the total amount of information added to the belief $p(\mathbf{x} | \mathbf{z}_t)$ up to time t , we define
 118 a monotonically increasing *precision schedule* $\beta: [0, 1] \rightarrow \mathbb{R}^+$. The measurement \mathbf{y}_i contains the
 119 information added in the time interval $[t_i, t_{i+1}]$, and therefore we choose $\alpha_i = \beta(t_{i+1}) - \beta(t_i)$.
 120 Note that the update of the logits in Theorem 1 is fundamentally different than that of continuous
 121 BSI. Here, the belief components accumulate in each update, whereas in the continuous case, the
 122 update is interpolated with its previous state.

123 **Generative model construction.** We build a generative model for categorical data given the above
 124 procedure, similarly as done for BSI with continuous data (Lienen et al., 2025). We begin with a logit
 125 \mathbf{z}_0 defining the initial belief of the sample \mathbf{x} that we will generate in the end, with $\mathbf{z}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\beta}_0)$
 126 sampled from a simple prior distribution. As \mathbf{x} is unknown a priori, we cannot measure it, so
 127 instead we estimate it from the information we have gathered so far encoded in our latest belief. Let
 128 $f_\theta: \mathbb{R}^{n \times c} \times [0, 1] \mapsto \Delta_{c-1}^n$ be a neural network with parameters θ estimating the unknown sample
 129 \mathbf{x} behind our observations given our current belief \mathbf{z}_t and time t . We estimate \mathbf{x} as $\hat{\mathbf{x}}_i = f_\theta(\mathbf{z}_i, t)$,
 130 followed by a noisy measurement $\mathbf{y}_i \sim \mathcal{N}(\hat{\mathbf{x}}_i, \Sigma^2 = \alpha_i^{-1})$ centered around $\hat{\mathbf{x}}_i$ with precision α_i .
 131 Then, we update our belief with \mathbf{y}_i via Theorem 1. Now, we repeatedly predict $\hat{\mathbf{x}}_i$, measure \mathbf{y}_i , and
 132 update the belief parameters $\mathbf{z}_{i+1} \leftarrow \mathbf{z}_i + \alpha_i \mathbf{y}_i$ until our belief is sufficiently sharp at $t = 1$. Finally,
 133 we return a sample from $\text{Cat}(\mathbf{x} | \text{softmax}(\mathbf{z}_1))$. See Alg. 1 for a formal description.

134 **Evidence Lower Bound.** To train our neural network, we interpret CatBSI as a hierarchical la-
 135 tent variable model to derive an evidence lower bound (ELBO) of the sample likelihood (Kingma
 136 & Welling, 2013), providing a natural training target. As latent variables, we choose the beliefs
 137 $\mathbf{z}_0, \dots, \mathbf{z}_k$. Their distribution in Alg. 1 factorizes, allowing us to write

$$p(\mathbf{x}) = \mathbb{E}_{p(\mathbf{z}_0) \prod_{i=1}^k p(\mathbf{z}_i | \mathbf{z}_{i-1}, \theta)} [p(\mathbf{x} | \mathbf{z}_k)]. \quad (2)$$

141 As encoding distribution $q(\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_k | \mathbf{x})$, we choose the distribution induced under Alg. 1 with
 142 a fixed reconstruction $f_\theta(\mathbf{z}, t) = \mathbf{x}$. Thanks to the simple form of Theorem 1, it is straightforward
 143 to compute the marginal $q(\mathbf{z}_i | \mathbf{x})$:

$$\mathbf{z}_i = \mathbf{z}_0 + \sum_{j=0}^{i-1} \alpha_j \mathbf{y}_j \sim \mathcal{N}(\boldsymbol{\mu}_0 + \beta(t_i) \mathbf{x}, \Sigma^2 = \boldsymbol{\beta}_0 + \beta(t_i)) \quad (3)$$

148 Equipped with this, we can derive the following ELBO:

149 **Theorem 2.** For categorical BSI, the log-likelihood of \mathbf{x} under Alg. 1 is lower bounded by

$$\log p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z}_k \sim q(\mathbf{z} | \mathbf{x}, t_k)} [\log p(\mathbf{x} | \mathbf{z}_k)] - \frac{k}{2} \mathbb{E}_{\substack{i \sim \mathcal{U}(0, k-1) \\ \mathbf{z}_i \sim q(\mathbf{z} | \mathbf{x}, t_i)}} [(\beta(t_{i+1}) - \beta(t_i)) \|f_\theta(\mathbf{z}_i, t_i) - \mathbf{x}\|_2^2], \quad (4)$$

153 where $q(\mathbf{z} | \mathbf{x}, t) = \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}_0 + \beta(t) \mathbf{x}, \boldsymbol{\beta}_0 + \beta(t) I)$ and $p(\mathbf{x} | \mathbf{z}_k) = \text{Cat}(\mathbf{x} | \text{softmax}(\mathbf{z}_k))$.

155 The first term does not depend on θ and therefore cannot be optimized; we only need to minimize
 156 the second term. For $k \rightarrow \infty$, we have that $k(\beta(t_{i+1}) - \beta(t_i)) \rightarrow \beta'(t_i)$ since $\Delta t = t_{i+1} - t_i =$
 157 $1/(k+1) \approx 1/k$, and $t_i \sim \mathcal{U}(0, 1)$. Maximizing the ELBO for $k \rightarrow \infty$ over the dataset above is
 158 therefore equivalent to minimizing

$$\mathcal{L} \equiv \mathbb{E}_{\substack{\mathbf{x} \sim p(\mathbf{x}) \\ t \sim \mathcal{U}(0, 1) \\ \mathbf{z} \sim q(\mathbf{z} | \mathbf{x}, t)}} [\beta'(t)/2 \cdot \|f_\theta(\mathbf{z}, t) - \mathbf{x}\|_2^2] \quad (5)$$

162 **Algorithm 1** Sampling with Categorical BSI
163
164 **Require:** reconstructor f_θ , discretization k ,
165 precision schedule $\beta : [0, 1] \rightarrow \mathbb{R}^+$
166 $\mathbf{z}_0 \sim \mathcal{N}(\mu_0, \beta_0 I)$
167 **for** $i = 0, \dots, k - 1$ **do**
168 $\hat{\mathbf{x}}_i \leftarrow f_\theta(\mathbf{z}_i, t_i)$
169 $\alpha_i \leftarrow \beta(t_{i+1}) - \beta(t_i)$
170 $\mathbf{y}_i \sim \mathcal{N}(\mu = \hat{\mathbf{x}}_i, \Sigma^2 = \alpha_i^{-1} \cdot I)$
171 $\mathbf{z}_{i+1} \leftarrow \mathbf{z}_i + \alpha_i \mathbf{y}_i$
172 **end for**
173 $x \sim \text{Cat}(\text{softmax}(\mathbf{z}_k))$
174 **return** x
175

176 **Algorithm 2** Training Categorical BSI
177
178 **while** not converged **do**
179 $\mathbf{x} \sim p(\mathbf{x})$
180 $\mathbf{z}_0 \sim \mathcal{N}(\mu_0, \beta_0 I)$
181 $t \sim \mathcal{U}(0, 1)$
182 $\alpha = \beta(t) - \beta(0)$
183 $\mathbf{y} \sim \mathcal{N}(\mu = \mathbf{x}, \Sigma^2 = 1/\alpha \cdot I)$
184 $\mathbf{z} = \mathbf{z}_0 + \alpha \cdot \mathbf{y}$
185 $\hat{\mathbf{x}} = f_\theta(\mathbf{z}, t)$
186 $\mathcal{L} = \beta'(t)/2 \cdot \|\hat{\mathbf{x}} - \mathbf{x}\|^2$
187 $\theta = \theta - \eta \nabla_\theta \mathcal{L}$
188 **end while**
189
190

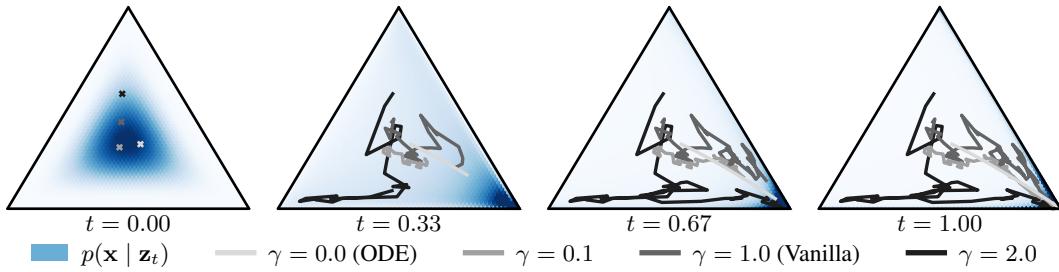
191 The loss above immediately yields the training procedure Alg. 2. This matches the continuous-time
192 categorical BFN loss up to a constant when $\beta_0 \rightarrow 0$, i.e., the prior is a Dirac delta at $t = 0$.
193

194 **Adaptation for graphs.** We represent graphs with N nodes as tuples (X, A) , where $X \in \Delta_{c_X-1}^N \subset [0, 1]^{N \times c_X}$ are the one-hot encoded categories of each node and $A \in \Delta_{c_A-1}^{N \times N} \subset [0, 1]^{N \times N \times c_A}$ the one-hot encoded categories of each edge, with the first category denoting the absence of an edge. We treat each node and edge as an independent component of the categorical belief, allowing us to apply the categorical BSI framework to graphs. Note that dependence between edges is introduced via our network f . We choose a permutation invariant reconstruction network f_θ , resulting in a permutation invariant generative model when the noise is isotropic.
195

196 To enable a varying number of nodes in the graph, we first sample a number of nodes N from the
197 marginal node count distribution, and subsequently generate the node and edge values. In practice,
198 this is achieved by masking out inactive nodes and edges for train graphs with fewer nodes.
199

200 **Adaptation for sequences** As a general discrete generative model, Categorical BSI is applicable
201 for sequence generation, too. Here, a sequence S of length l with a vocabulary size v is represented
202 in the one-hot-encoded format $S \in \Delta_v^l \subset [0, 1]^{l \times v}$. We include an exemplary implementation
203 trained on DNA sequences in App. B.
204

3 CATEGORICAL BSI AS A STOCHASTIC DIFFERENTIAL EQUATION



205 Figure 2: Trajectories of the SDE Theorem 4 for different values of γ with three classes and fixed
206 reconstruction $f_\theta(\mathbf{z}_t, t) = \hat{\mathbf{e}}_2$. At $\gamma = 0$, the sampler resembles a probability flow ODE as in flow
207 matching. Increasing γ leads to noisier trajectories. At $\gamma = 1$, the original SDE in Theorem 3 is
208 recovered, and increasing the noise further makes the trajectories even more volatile. The density
209 function of the marginal distribution $p(\mathbf{x} | \mathbf{z}_t)$ (shown in the background) is identical for all γ .
210

211 In this section, we analyze the update equation in Theorem 1 and take the infinite-step limit, ob-
212 taining an SDE. We then introduce a parameter that controls the stochasticity and yields a family of
213 SDEs with identical marginals.
214

216 **SDE Dynamics.** First, we notice that as the number of steps k increases, i.e., $\Delta t := 1/(k+1) \rightarrow 0$,
 217 the updates in Theorem 1 converge to the following SDE.

218 **Theorem 3.** As $\Delta t \rightarrow 0$, the update equation in Theorem 1 converges to the following SDE:
 219

$$220 \quad d\mathbf{z}_t = \beta'(t)f_\theta(\mathbf{z}_t, t)dt + \sqrt{\beta'(t)}dW_t \quad (6)$$

221 where dW_t is a Wiener process and $\mathbf{z}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \beta_0 \cdot I)$.
 222

223 Note that while the distribution of \mathbf{z}_0 is not required to be normal for Theorem 3 itself, it is necessary
 224 for the following steps. Phrasing the evolution of the latent variable \mathbf{z}_t as an SDE enables the use of
 225 more advanced sampling schemes and allows us to derive a generalized SDE family. The original
 226 discrete update in Theorem 1 is recovered by applying an Euler-Maruyama discretization of Eq. (6).
 227

228 **Generalized SDE.** We now generalize Eq. (6) to a family that preserves the marginal probability
 229 paths $p_t(\mathbf{z}_t)$ while controlling stochasticity via the parameter γ , similar to [Karras et al. \(2022\)](#):

230 **Theorem 4.** The SDE in Theorem 3 is generalized by the following family of SDEs with equal
 231 marginal densities $p_t(\mathbf{z}_t)$:

$$232 \quad d\mathbf{z}_t = \beta'(t)f_\theta(\mathbf{z}_t, t)dt + \frac{\gamma-1}{2}\beta'(t)\nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t)dt + \sqrt{\gamma\beta'(t)}dW_t \quad (7)$$

235 where dW_t is a Wiener process and $\mathbf{z}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \beta_0 \cdot I)$.
 236

237 Setting $\gamma = 0$ yields a deterministic probability flow ODE, equivalent to [Xue et al. \(2024\)](#). Unlike
 238 BFNs, however, CatBSI samples the prior belief $p(\mathbf{z} \mid t = 0)$ rather than choosing a fixed prior,
 239 naturally avoiding the discontinuity around $t = 0$. Further, choosing $\gamma = 1$ recovers the original
 240 SDE in Theorem 3, and larger γ produces more stochastic trajectories. [We visualize in Figs. 2 and 6](#)
 241 [how varying \$\gamma\$ affects the dynamics for toy examples](#). Although the marginal distributions are equal
 242 for all γ in theory, the empirical performance varies as $\nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t)$ is not available in closed
 243 form. Higher stochasticity allows the model to correct errors made in previous sampling steps but
 244 requires a finer discretization (see Sec. 4.3). In the limit $\gamma \rightarrow \infty$, the sampler effectively overwrites
 245 the current state completely in every step (see App. C.3). To turn Eq. (7) into a practical sampling
 246 algorithm, we approximate the score function $\nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t)$, as described in the following.

247 **Theorem 5.** The BSI loss Eq. (5) also is a score matching loss with the score model $s_\theta(\mathbf{z}, t)$ param-
 248 eterized as

$$248 \quad s_\theta(\mathbf{z}, t) \equiv \frac{\boldsymbol{\mu}_0 + \beta(t)f_\theta(\mathbf{z}, t) - \mathbf{z}}{\beta(t) + \beta_0} \approx \nabla_{\mathbf{z}} \log p_t(\mathbf{z}) \quad (8)$$

250 **Discretization and integration.** As the SDE is not solvable in closed form, we resort to numerical
 251 sampling. While a simple Euler-Maruyama (EM) approach performs well on sufficiently fine time
 252 grids, we find that integrating a locally linearized SDE within each step can improve sample quality
 253 for low numbers of neural function evaluations (see Sec. 4.3). More specifically, we freeze the
 254 reconstructor $\hat{\mathbf{x}} = f_\theta(\mathbf{z}_t, t)$ over the time interval $[t, t + \Delta t]$, representing an Ornstein-Uhlenbeck
 255 process. This allows us to solve the SDE analytically within this interval.

256 **Theorem 6.** Fixing the prediction $\hat{\mathbf{x}} = f_\theta(\mathbf{z}_t, t)$ and the values $\beta = \beta(t + \Delta t/2)$, $\beta' = \beta'(t + \Delta t/2)$
 257 in Eq. (7) in a time interval $[t, t + \Delta t]$ yields an Ornstein-Uhlenbeck (OU) process with the exact
 258 marginal

$$261 \quad \mathbf{z}_{t+\Delta t} \sim m + (\mathbf{z}_t - m)e^{-\kappa\Delta t} + \sqrt{\frac{\gamma\beta'}{2\kappa}(1 - e^{-2\kappa\Delta t})} \cdot \mathcal{N}(0, I), \quad (9)$$

263 where $\kappa = \frac{(\gamma-1)\beta'}{2(\beta_0 + \beta)}$, $m = \boldsymbol{\mu}_0 + (\beta + \beta'/\kappa)\hat{\mathbf{x}}$.
 264

265 Note that the OU discretization converges towards the EM scheme for $\Delta t \rightarrow 0$ (see App. C.1).
 266

267 **Quantizing instead of sampling.** If the belief precision at $t = 1$ is sufficiently sharp, the final
 268 sampling step in Alg. 1 is de facto deterministic. However, this presents an opportunity to improve
 269 sampling efficiency: In the last few steps, simply sampling from the belief would yield too noisy
 270 samples, but the belief contains enough information so that the reconstructor can make a perfect

270 **Algorithm 3** Euler-Maruyama Sampling

271 **Require:** reconstructor f_θ , discretization Δt ,

272 precision schedule $\beta : [0, 1] \rightarrow \mathbb{R}^+, \gamma \geq 0$

273 $\mathbf{z} \sim \mathcal{N}(\mu_0, \beta_0 I)$

274 **for** $t = 0, \Delta t, 2\Delta t, \dots, 1 - \Delta t$ **do**

275 $\hat{\mathbf{x}} \leftarrow f_\theta(\mathbf{z}, t)$

276 $\mathbf{s}_\theta \leftarrow \frac{\mu_0 + \beta(t)\hat{\mathbf{x}} - \mathbf{z}}{\beta(t) + \beta_0}$

277 $\boldsymbol{\mu} \leftarrow \beta'(t)(\hat{\mathbf{x}} + \frac{\gamma - 1}{2}\mathbf{s}_\theta)$

278 $\sigma \leftarrow \sqrt{\gamma\beta'(t)}$

279 $\mathbf{z} \leftarrow \mathbf{z} + \boldsymbol{\mu}\Delta t + \sigma\sqrt{\Delta t} \cdot \mathcal{N}(0, I)$

280 **end for**

281 **return** Quantize($f_\theta(\mathbf{z}, t = 1)$)

282

283

284

285 **Algorithm 4** Ornstein-Uhlenbeck Sampling

286 **Require:** reconstructor f_θ , discretization Δt ,

287 precision schedule $\beta : [0, 1] \rightarrow \mathbb{R}^+, \gamma > 1$

288 $\mathbf{z} \sim \mathcal{N}(\mu_0, \beta_0 I)$

289 **for** $t = \Delta t/2, \Delta t + \Delta t/2, \dots, 1 - \Delta t/2$ **do**

290 $\hat{\mathbf{x}} \leftarrow f_\theta(\mathbf{z}, t)$

291 $\kappa \leftarrow \frac{(\gamma - 1)\beta'(t)}{2(\beta_0 + \beta(t))}$

292 $m \leftarrow \mu_0 + (\beta(t) + \beta'(t)/\kappa)\hat{\mathbf{x}}$

293 $\sigma^2 \leftarrow \frac{\gamma\beta'(t)}{2\kappa}(1 - e^{-2\kappa\Delta t})$

294 $\mathbf{z} \leftarrow m + (\mathbf{z} - m)e^{-\kappa\Delta t} + \sqrt{\sigma^2} \cdot \mathcal{N}(0, I)$

295 **end for**

296 **return** Quantize($f_\theta(\mathbf{z}, t = 1)$)

297

298 reconstruction of it (see Fig. 5). Therefore, we can instead stop at a lower final precision and return

299 reconstruction projected on the sample space through a quantization. Employing the discretization

300 schemes yields Algs. 3 and 4.

301 We also allow a nonuniform time grid. Following Karras et al. (2022), we introduce a parameter ρ

302 that controls the distribution of function evaluations over the time grid:

$$t_i = \left(\frac{i}{k} \right)^\rho, \quad i = 0, 1, \dots, k. \quad (10)$$

303 Here, $\rho = 1$ recovers a uniform grid; larger ρ concentrates steps near the beginning ($t \approx 0$), whereas

304 smaller ρ concentrates them near the end ($t \approx 1$).

4 EXPERIMENTS

305

306 In this section, we present our empirical results. We benchmark our model against state-of-the-art

307 baselines from the diffusion and flow-matching literature on unconditional molecular and synthetic

308 graph generation. The GuacaMol and Moses benchmarks for molecular generation (Brown et al.,

309 2019; Polykovskiy et al., 2020) serve as our primary evaluation datasets. Additionally, we conduct

310 ablation studies to analyze the impact of various components and hyperparameters on the model’s

311 performance. Further, we report results on the synthetic planar, tree, and stochastic block model

312 graph generation tasks (Bergmeister et al., 2024; Martinkus et al., 2022).

313

4.1 EXPERIMENTAL SETUP

314

315 **Datasets.** To test performance on real-world graphs, we train GraphBSI on the Moses

316 (Polykovskiy et al., 2020) and GuacaMol (Brown et al., 2019) datasets for molecular generation.

317 We extract graphs out of the dataset smiles with RDKit RDKit (2025) and construct the node fea-

318 tures X and adjacency matrix A in the format described in Sec. 2, where atom- and bond types

319 correspond to node- and edge categories, respectively. Further, we include results for the planar,

320 tree, and stochastic block model (Martinkus et al., 2022; Bergmeister et al., 2024) synthetic graph

321 generation datasets. Find a summary in Tab. 8.

322

323 **Evaluation metrics.** We follow the standard evaluation practices as established by Polykovskiy

324 et al. (2020); Brown et al. (2019); Preuer et al. (2018) for molecule generation and Martinkus et al.

325 (2022); Bergmeister et al. (2024) for synthetic graph generation. Find a detailed description in

326 Tabs. 9 and 10.

327

328 **Practical considerations.** The reconstruction network f_θ is parameterized using the same graph

329 transformer architecture as Qin et al. (2025); Vignac et al. (2023), with the node- and edge logits

330 and class probabilities, entropy, random walk features, and sinusoidal embeddings (Vaswani et al.,

331 2017) of the timestep t with frequencies proposed by Lienen et al. (2024) as features. Empirically,

332 we find that an exponential precision schedule with a final precision that allows for a near-perfect

reconstruction maximizes performance (see Tab. 7 and Figs. 5 and 7). For both latent node- and edge classes, we choose a normal prior with the marginal distribution over the dataset and a small variance of 1.0. Finally, we apply a preconditioning scheme where the neural network predicts the difference between the belief and the true sample, setting $f_\theta(z, t) = \text{softmax}(z + \tilde{f}_\theta(z, t))$.

Evaluation After training to convergence, we evaluate the benchmark metrics for both discretization schemes Algs. 3 and 4. For both molecule generation benchmarks, we report results with a compute budget of 50 and 500 discretization steps. In each of the four configurations (2 discretization schemes, 2 numbers of steps), we optimize the noise level γ and report the best result. Find the final configurations in Tab. 7. For the synthetic graph generation benchmarks, we report results with the best-performing noise level and the Ornstein-Uhlenbeck discretization with 1000 function evaluations.

4.2 RESULTS

Molecule Generation. As illustrated in Tab. 1, GraphBSI is competitive with 50 steps with both discretization schemes for both molecule benchmarks, achieving state-of-the-art results on the majority of the metrics. Notably, GraphBSI outperforms DeFoG with both discretization schemes on all metrics except novelty on Moses. On most metrics, the OU discretization performs better than the EM scheme. At the full 500 steps, GraphBSI with the OU discretization outperforms all existing models on all metrics on GuacaMol, saturating validity and consistently exceeding the state-of-the-art. The EM scheme performs slightly worse than OU on most metrics, but remarkably surpasses the state-of-the-art on the FCD metric, reducing it from 1.07 to 0.72 on Moses. Find an extended comparison in Tab. 5.

Table 1: Results on the GuacaMol and Moses benchmarks for molecular generation with 50 and 500 sampling steps and the Euler-Maruyama (EM) and Ornstein-Uhlenbeck (OU) discretization.

Model	Steps	GuacaMol					Moses						
		Val. \uparrow	V.U. \uparrow	V.U.N. \uparrow	KL \uparrow	FCD \uparrow	Val. \uparrow	Uniq. \uparrow	Nov. \uparrow	Filters \uparrow	FCD \downarrow	SNN \uparrow	Scaf \uparrow
Train Set		100.0	100.0	0.0	99.9	92.8	100.0	100.0	0.0	100.0	0.01	0.64	99.1
DeFoG	50	91.7	91.7	91.2	<u>92.3</u>	57.9	83.9	<u>99.9</u>	96.9	96.5	1.87	<u>0.50</u>	23.5
GraphBSI (EM)	50	<u>97.5</u>	<u>97.5</u>	<u>97.2</u>	90.7	<u>65.6</u>	<u>99.3</u>	100.0	<u>96.5</u>	<u>96.9</u>	1.06	<u>0.50</u>	<u>15.2</u>
GraphBSI (OU)	50	99.2	99.2	98.7	93.7	71.3	99.7	100.0	94.6	98.2	<u>1.19</u>	0.52	15.1
DiGress	500	85.2	85.2	85.1	92.9	68.0	85.7	100.0	<u>95.0</u>	97.1	1.19	0.52	14.8
DisCo	500	86.6	86.6	86.5	92.6	59.7	88.3	100.0	97.7	95.6	1.44	0.50	<u>15.1</u>
Cometh	500	98.9	98.9	97.6	96.7	72.7	90.5	<u>99.9</u>	92.6	<u>99.1</u>	1.27	0.54	16.0
DeFoG	500	<u>99.0</u>	<u>99.0</u>	97.9	<u>97.7</u>	73.8	92.8	<u>99.9</u>	92.1	98.9	1.95	<u>0.55</u>	14.4
GraphBFN	500	-	-	-	-	-	98.5	99.8	89.0	98.3	1.07	0.59	10.0
GraphBSI (EM)	500	98.8	98.8	98.3	94.6	82.6	<u>99.8</u>	100.0	92.5	<u>99.1</u>	0.72	0.54	14.3
GraphBSI (OU)	500	99.6	99.6	<u>98.2</u>	98.4	<u>80.3</u>	99.9	100.0	90.7	99.2	<u>0.90</u>	<u>0.55</u>	12.7

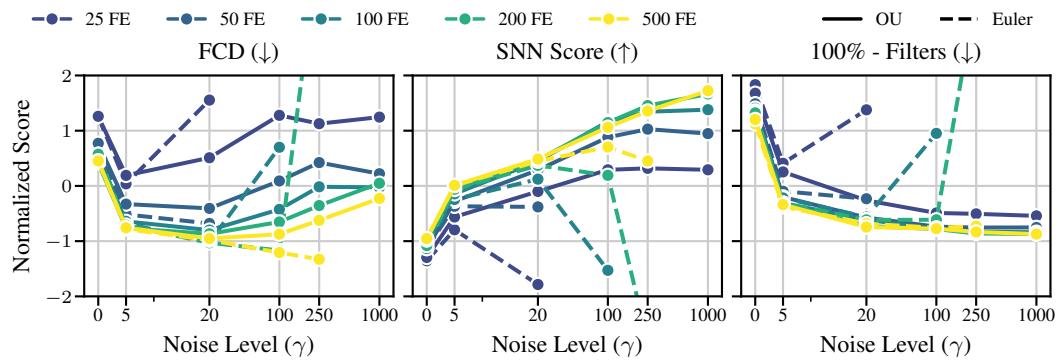
Synthetic Benchmarks. As shown in Tab. 2, GraphBSI achieves competitive results on the synthetic graph generation benchmarks. Our model saturates validity on the planar- and tree graph generation tasks, and achieves adequate validity on the stochastic block model graphs. The mean ratio as a measure of distribution similarity is competitive on all three datasets, even though the metric should be taken with a grain of salt due to the small dataset size of only 128 graphs, resulting in high uncertainty in the evaluation.

4.3 ABLATION STUDIES

Noise level. To test the effect of the compute budget, noise level, and discretization scheme on performance, we conduct a grid search over the number of function evaluations (NFEs) in $\{25, 50, 100, 200, 500\}$, noise levels γ in $\{0.0, 5.0, 20.0, 100.0, 250.0, 1000.0\}$, and both discretization schemes on the Moses dataset. As shown in Fig. 3, performance in both discretization schemes is closely related at low noise levels, which is to be expected since both discretize the same SDE. Higher compute budgets lead to better performance. However, the Euler-Maruyama scheme becomes unstable at higher noise levels, leading to a significant drop in performance (see App. C.2). In contrast, the Ornstein-Uhlenbeck scheme remains stable, and both the SNN score and Filters metric benefit from higher noise levels. The FCD metric is optimal at a medium noise level between

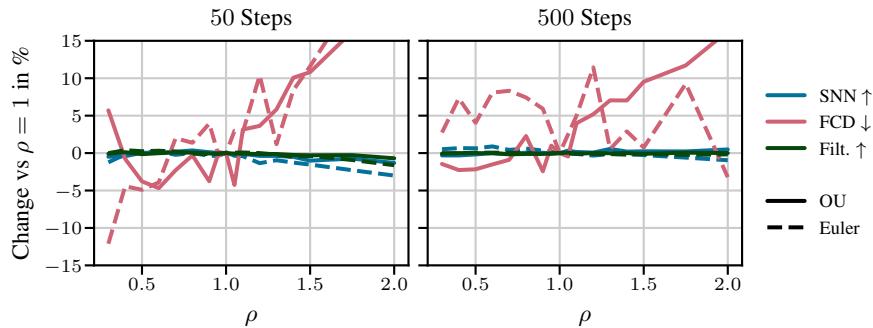
378 Table 2: Results on the synthetic graph generation benchmarks. Like DeFoG, we generate 40 graphs
 379 five times and report the mean and standard deviation over the runs.

Model	Steps	Planar		Tree		SBM	
		V.U. \uparrow	Ratio \downarrow	V.U. \uparrow	Ratio \downarrow	V.U. \uparrow	Ratio \downarrow
Train Set		100.0	1.0	100.0	1.0	85.9	1.0
DeFoG	50	95.0 \pm 3.2	3.2 \pm 1.1	73.5 \pm 9.0	2.5 \pm 1.0	86.5 \pm 5.3	2.2 \pm 0.3
GraphBSI (EM)	50	7.5 \pm 1.0	47.5 \pm 4.3	89.0 \pm 7.0	2.1 \pm 0.8	61.5 \pm 5.8	4.2 \pm 1.4
GraphBSI (OU)	50	38.5 \pm 8.6	18.0 \pm 3.2	96.0 \pm 1.2	2.5 \pm 0.9	53.0 \pm 7.5	51.4 \pm 4.0
HSpectre	256	95.0	2.1	100.0	4.0	75.0	10.5
DiGress	1000	77.5	5.1	90.0	1.6	60.0	1.7
DeFoG	1000	99.5 \pm 1.0	1.6 \pm 1.0	96.5 \pm 2.6	1.6 \pm 0.4	90.0 \pm 5.1	4.9 \pm 1.3
GraphBFN	1000	96.7	-	-	-	87.5	-
GraphBSI (EM) 1000		100.0 \pm 0.0	3.8 \pm 1.0	96.5 \pm 3.7	1.3 \pm 0.4	50.5 \pm 4.6	11.3 \pm 1.4
GraphBSI (OU) 1000		100.0 \pm 0.0	3.2 \pm 0.6	100.0 \pm 0.0	1.8 \pm 0.5	77.5 \pm 2.7	4.6 \pm 1.1



403 Figure 3: Normalized metrics (zero mean, unit variance) vs. noise level γ for different numbers of
 404 function evaluations (FE) and discretization schemes. Our custom Ornstein-Uhlenbeck discretiza-
 405 tion scheme is denoted as OU, while the standard Euler-Maruyama scheme is written as Euler. Some
 406 values for the Euler scheme are missing since the sampler becomes unstable if $\gamma \cdot \Delta t$ becomes too
 407 large (see App. C.2).

408
 409
 410 20 and 100. With a few exceptions, the Ornstein-Uhlenbeck scheme matches or outperforms the
 411 Euler-Maruyama scheme at all compute budgets and noise levels. Novelty suffers from increased
 412 noise levels and compute budgets, which is consistent with the model generating samples closer
 413 to the training data distribution. Notably, all metrics perform poorly at a noise level of 0.0, which
 414 corresponds to the probability flow ODE (equivalent to Xue et al. (2024)). Fig. 8 illustrates that
 415 **optimizing the noise level is a key driver in the performance gains of our model.**



427 Figure 4: Performance change for changes in the non-uniform timestepping parameter ρ in $t_i =$
 428 $(i/k)^\rho$ for $i = 0, 1, \dots, k$ compared to the uniform case $\rho = 1$. $\rho < 1$ results in a finer discretization
 429 at later timesteps, while $\rho > 1$ corresponds to finer discretization at earlier steps.

430
 431 **Non-uniform timesteps.** To test whether a fine discretization is more important at some timesteps
 432 compared to others, we analyze the effect of non-uniform timestepping, putting a finer discretization

432 at either earlier or later timesteps. As shown in Fig. 4, SNN and Moses Filters remain mostly
 433 unaffected by the choice of ρ ; only the FCD displays a clear trend. A finer discretization at later
 434 timesteps ($\rho < 1$) improves the FCD at 50 function evaluations in both discretization schemes and
 435 at 500 evaluations in the Ornstein-Uhlenbeck scheme.
 436

437 **Precision schedule.** We find that while an exponential precision schedule yields the best results,
 438 the difference compared to a simple linear schedule is negligible (see Tab. 5). One parameter that
 439 significantly affects performance is the final precision $\beta(t = 1)$. As illustrated in Fig. 7, an excess-
 440 ively large final precision wastes sampler iterations in the final steps, and a too small final precision
 441 results in noisy samples. Ideally, the reconstructor is just able to predict the train samples flaw-
 442 lessly at $\beta(t = 1)$. Finally, we isolate the effect of sampling the belief at $t = 0$ instead of taking
 443 a fixed value, as with BFNs, by training a new model with a smaller initial variance of $\beta_0 = 0.05$,
 444 compared to the standard $\beta_0 = 1.0$. Tab. 5 shows that for both values of β_0 , the OU sampler outper-
 445 forms the Flowback (Song et al., 2025) sampler on most metrics. Surprisingly, the performance of
 446 the Flowback sampler drops significantly when β_0 is increased, while a higher value of β_0 improves
 447 performance for the OU sampler.
 448

449 We conclude that two key factors are crucial for the performance gains of GraphBSI: First, the noise
 450 control, and second, a final precision that is just high enough for a perfect reconstruction. The exact
 451 precision schedule and non-uniform time-stepping show only a marginal contribution.
 452

5 RELATED WORK

454 Graph generation presents three main challenges compared to image and text generation: (1) graphs
 455 are discrete structures, unlike images, which are continuous; (2) graphs have a variable shape, with
 456 both the number and arrangement of nodes and edges changing across samples, unlike the fixed
 457 dimensions of images; and (3) nodes in graphs lack a natural order, in contrast to text, where tokens
 458 follow a well-defined sequence. Various approaches have been proposed to tackle these challenges.
 459

460 **Autoregressive models** have proven successful in text generation by sequentially predicting the
 461 next token based on previous ones (Brown et al., 2020). Applied to graphs, these models generate
 462 nodes and edges one by one, maintaining the graph structure as they proceed. This approach has
 463 been used for tasks such as molecule and social-network generation (You et al., 2018; Liao et al.,
 464 2020). However, autoregressive models violate permutation invariance by relying on a specific node
 465 ordering.

466 **One-shot models** address the ordering challenge by generating the entire graph in a single step,
 467 without relying on a specific node ordering. Examples include Variational Autoencoders (Kingma
 468 & Welling, 2013), GANs (Cao & Kipf, 2022), normalizing flows (Liu et al., 2019), and discrete flow
 469 matching (Gat et al., 2024; Qin et al., 2025).

470 **Diffusion models** have emerged as a powerful class of one-shot generative models for continuous
 471 data such as images (Sohl-Dickstein et al., 2015; Ho et al., 2020). Their core idea is to learn a gen-
 472 erative process that gradually transforms noise into clean data by reversing a diffusion process with
 473 a neural network. Noise is typically applied independently to each pixel in images or to each node
 474 in graphs, naturally resulting in a permutation-invariant model when combined with a Graph Neural
 475 Network (GNN) (Niu et al., 2020). A variable number of nodes can be handled by conditioning the
 476 diffusion process on the node count, e.g., by first sampling a node mask and then applying diffusion
 477 to the masked graph (Niu et al., 2020; Qin et al., 2025). To improve scalability, hybrid methods that
 478 reverse a coarsening process and generate local structures with a diffusion model have also been
 479 proposed (Bergmeister et al., 2024).

480 **Discrete diffusion** addresses the discreteness of graphs. The most straightforward approach relaxes
 481 discrete data to a continuous space, applies diffusion, and quantizes the generated outputs back to
 482 the discrete space in a final step (Niu et al., 2020; Jo et al., 2022; 2024). Alternatively, one can
 483 use discrete diffusion in which the state is perturbed via a Markovian transition matrix in discrete
 484 time steps (often including an absorbing state) (Austin et al., 2023); this has been applied to graphs
 485 (Vignac et al., 2023; Haefeli et al., 2023). A related recent approach uses a continuous-time Markov
 486 chain for the discrete diffusion process (see (Campbell et al., 2022)), which allows more flexible
 487 sampling on graphs (Sirauidin et al., 2024; Xu et al., 2024).

486 **Bayesian Flow Networks** [Graves et al. \(2025\)](#) propose a conceptually distinct approach to discrete
 487 generative models: diffusion is applied to the *parameters of a distribution over samples* rather than
 488 to the samples themselves. BFNs can be interpreted as an SDE, enabling more efficient sampling
 489 algorithms ([Xue et al., 2024](#)). This provides a solid theoretical foundation for diffusion on discrete
 490 data while retaining the benefits of smooth parameter changes, and it achieves competitive perfor-
 491 mance on protein and graph generation ([Atkinson et al., 2025](#); [Song et al., 2025](#); [Tao & Abe, 2025](#)).
 492 The flexible design of BFNs also permits joint generation of continuous and discrete quantities, for
 493 example the 3D positions, atom types, and charges in molecular generation ([Song et al., 2024](#)).

494 **Bayesian Sample Inference** [Lienen et al. \(2025\)](#) extends BFNs by adding a prior over the distribu-
 495 tion parameters and offers a simplified interpretation for the continuous-data case. [Kolloviev et al.](#)
 496 ([2025](#)) used the BSI framework to derive their generative model for hierarchies. However, they
 497 do not generalize the framework, i.e., do not derive SDE-based sampling algorithms, and do not
 498 optimize an ELBO as they specifically focus on hierarchy generation.

500 6 CONCLUSION

501 In this work, we introduce **GraphBSI**, a novel generative model for graphs based on Bayesian Sam-
 502 ple Inference with state-of-the-art performance in large molecule generation benchmarks. Similar to
 503 Bayesian Flow Networks, GraphBSI iteratively refines a belief over the graph structure, modeled as
 504 a categorical distribution over adjacency matrices, through Bayesian updates. We show that in the
 505 limit of infinitesimal time steps, GraphBSI converges to a Stochastic Differential Equation (SDE).
 506 Further, we employ the Fokker-Planck equation to derive a generalized SDE with a tunable noise pa-
 507 rameter, allowing us to interpolate between a deterministic probability flow ODE, the original SDE,
 508 and a substantially more volatile sampler. We demonstrate that GraphBSI achieves state-of-the-art
 509 performance on the GuacaMol and Moses benchmarks for large molecule generation, outperform-
 510 ing existing models on nearly all metrics. Finally, in our ablations we empirically show that noise
 511 control critically influences performance.

512 **Limitations and Future Work.** GraphBSI, in its current implementation, suffers from the
 513 quadratic scaling of compute and memory requirements in the number of nodes that comes with
 514 the application of a graph transformer. Exploring a more memory-efficient graph neural network ar-
 515 chitecture to generate larger graphs would be a promising avenue for future research. Further, while
 516 GraphBSI allows for variable-sized graphs, the number of nodes is sampled beforehand instead of
 517 jointly generated with the graph features. Allowing for nodes to appear or disappear while gener-
 518 ating the graph, similar to jump diffusion ([Campbell et al., 2023](#)), might result in a more flexible
 519 generative process.

520 REFERENCES

521 Timothy Atkinson, Thomas D. Barrett, Scott Cameron, Bora Guloglu, Matthew Greenig, Char-
 522 lie B. Tan, Louis Robinson, Alex Graves, Liviu Copoiu, and Alexandre Laterre. Protein se-
 523 quence modelling with bayesian flow networks. *Nature Communications*, 16(1):3197, 2025.
 524 ISSN 2041-1723. doi: 10.1038/s41467-025-58250-2. URL <https://doi.org/10.1038/s41467-025-58250-2>.

525 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
 526 denoising diffusion models in discrete state-spaces, 2023. URL <https://arxiv.org/abs/2107.03006>.

527 Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
 528 and scalable graph generation through iterative local expansion, 2024. URL <https://arxiv.org/abs/2312.11529>.

529 Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Bench-
 530 marking models for de novo molecular design. *Journal of Chemical Information and Model-
 531 ing*, 59(3):1096–1108, March 2019. ISSN 1549-960X. doi: 10.1021/acs.jcim.8b00839. URL
 532 <http://dx.doi.org/10.1021/acs.jcim.8b00839>.

540 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, ... Ilya Sutskever, et al. Language
 541 models are few-shot learners. In *NeurIPS*, 2020.

542

543 Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
 544 Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
<https://arxiv.org/abs/2205.14987>.

545

546 Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Tom Rainforth, and
 547 Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models, 2023. URL
<https://arxiv.org/abs/2305.16261>.

548

549 Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs,
 550 2022. URL <https://arxiv.org/abs/1805.11973>.

551

552 Oscar Davis, Samuel Kessler, Mircea Petrache, İsmail İlkan Ceylan, Michael Bronstein, and
 553 Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data, 2024. URL
<https://arxiv.org/abs/2405.14664>.

554

555 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
 556 and Yaron Lipman. Discrete flow matching, 2024. URL <https://arxiv.org/abs/2407.15595>.

557

558 Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow
 559 networks, 2025. URL <https://arxiv.org/abs/2308.07037>.

560

561 Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation,
 562 2022. URL <https://arxiv.org/abs/2007.06686>.

563

564 Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffu-
 565 sion models for graphs benefit from discrete state spaces, 2023. URL <https://arxiv.org/abs/2210.01549>.

566

567 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
<https://arxiv.org/abs/2006.11239>.

568

569 J. Janssens, S. Aibar, I. I. Taskiran, J. N. Ismail, A. E. Gomez, G. Aughey, K. I. Spanier,
 570 F. V. De Rop, C. B. González-Blas, M. Dionne, K. Grimes, X. J. Quan, D. Papasokrati,
 571 G. Hulselmans, S. Makhzami, M. De Waegeneer, V. Christiaens, T. Southall, and S. Aerts.
 572 Decoding gene regulation in the fly brain. *Nature*, 601(7894):630–636, January 2022. doi:
 573 10.1038/s41586-021-04262-z.

574

575 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
 576 system of stochastic differential equations, 2022. URL <https://arxiv.org/abs/2202.02514>.

577

578 Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture, 2024.
 579 URL <https://arxiv.org/abs/2302.03596>.

580

581 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 582 based generative models, 2022. URL <https://arxiv.org/abs/2206.00364>.

583

584 Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL <https://arxiv.org/abs/1312.6114>.

585

586 Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016. URL <https://arxiv.org/abs/1611.07308>.

587

588 Marcel Kollovieh, Nils Fleischmann, Filippo Guerranti, Bertrand Charpentier, and Stephan
 589 Günemann. Treegen: A bayesian generative model for hierarchies. In *The Thirty-ninth Annual
 590 Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=d2EouMhAAq>.

591

592 Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
 593 Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient graph generation with graph recurrent
 594 attention networks, 2020. URL <https://arxiv.org/abs/1910.00760>.

594 Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günnemann. From zero to turbulence:
 595 Generative modeling for 3d flow simulation. In *ICLR*, 2024.

596

597 Marten Lienen, Marcel Kolloviev, and Stephan Günnemann. Generative modeling with bayesian
 598 sample inference, 2025. URL <https://arxiv.org/abs/2502.07580>.

599 Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows,
 600 2019. URL <https://arxiv.org/abs/1905.13177>.

601

602 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
 603 conditioning helps to overcome the expressivity limits of one-shot graph generators, 2022. URL
 604 <https://arxiv.org/abs/2204.01613>.

605 Kevin P Murphy. *Machine learning: a probabilistic perspective*. 2012.

606

607 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
 608 mutation invariant graph generation via score-based generative modeling, 2020. URL <https://arxiv.org/abs/2003.00638>.

609

610 Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
 611 Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
 612 Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alan Aspuru-
 613 Guzik, and Alex Zhavoronkov. Molecular Sets (MOSES): A Benchmarking Platform for Molec-
 614 ular Generation Models. *Frontiers in Pharmacology*, 2020.

615

616 Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer.
 617 Fréchet chemnet distance: A metric for generative models for molecules in drug discovery. *Jour-
 618 nal of Chemical Information and Modeling*, 58(9):1736–1741, 2018. doi: 10.1021/acs.jcim.
 619 8b00234. URL <https://doi.org/10.1021/acs.jcim.8b00234>. PMID: 30118593.

620

621 Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
 622 for graph generation, 2025. URL <https://arxiv.org/abs/2410.04263>.

623

624 RDKit. RDKit: Open-source cheminformatics. <https://www.rdkit.org>, 2025. Accessed:
 625 2025-11-23.

626

627 Antoine Siraudin, Fragkiskos D. Malliaros, and Christopher Morris. Cometh: A continuous-
 628 time discrete-state graph diffusion model, 2024. URL <https://arxiv.org/abs/2406.06449>.

629

630 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
 631 vised learning using nonequilibrium thermodynamics, 2015. URL <https://arxiv.org/abs/1503.03585>.

632

633 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 preprint arXiv:2010.02502*, 2020.

634

635 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 636 Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
<https://arxiv.org/abs/2011.13456>.

637

638 Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma. Unified
 639 generative modeling of 3d molecules with bayesian flow networks. In *The Twelfth International
 640 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=NSVtmmzeRB>.

641

642 Yuxuan Song, Juntong Shi, Jingjing Gong, Minkai Xu, Stefano Ermon, Hao Zhou, and Wei-Ying
 643 Ma. Smooth interpolation for improved discrete graph generative models. In *Forty-second Inter-
 644 national Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=OYUG5SCg6k>.

645

646 Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
 647 Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design, 2024. URL
<https://arxiv.org/abs/2402.05841>.

648 Nianze Tao and Minori Abe. Bayesian flow network framework for chemistry tasks. *Journal of*
649 *Chemical Information and Modeling*, 65(3):1178–1187, 2025. doi: 10.1021/acs.jcim.4c01792.
650

651 George Eugene Uhlenbeck and Leonard Salomon Ornstein. On the theory of the brownian motion.
652 *Physical Review*, 36(5):823–841, 1930.

653 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
654 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
655 *tion processing systems*, 30, 2017.

656

657 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
658 Frossard. Digress: Discrete denoising diffusion for graph generation, 2023. URL <https://arxiv.org/abs/2209.14734>.

659

660 Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
661 Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gener-
662 ation, 2024. URL <https://arxiv.org/abs/2405.11416>.

663

664 Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, Jun Zhou, and Chongxuan Li. Unify-
665 ing bayesian flow networks and diffusion models through stochastic differential equations, 2024.
666 URL <https://arxiv.org/abs/2404.15766>.

667

668 Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating
669 realistic graphs with deep auto-regressive models, 2018. URL <https://arxiv.org/abs/1802.08773>.

670

671 Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
672 on deep graph generation: Methods and applications, 2022. URL <https://arxiv.org/abs/2203.06714>.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A RELATIONSHIP TO BFNs AND DIFFUSION MODELS

704 A.1 RELATIONSHIP TO BFNs

706 There is a close equivalence between Categorical Bayesian Sample Inference (BSI) and Categorical
 707 Bayesian Flow Networks (BFNs). In fact, Categorical BFNs can be seen as a special case of Cate-
 708 gorical BSI with a specific choice of prior distribution and noise schedule. The dynamics of BFNs
 709 are recovered when choosing the sampler in Eq. (7) with $\gamma = 1$ and $\beta_0 = 0$ to parametrize \mathbf{z}_0 , i.e.,
 710 making the prior logits deterministic. Note that we require $\beta_0 > 0$ to avoid numerical issues when
 711 approximating the score function. This generalized SDE allows BSI to vary stochasticity. Intu-
 712 itively, increasing stochasticity allows the model to overwrite errors from previous predictions (see
 713 App. C.3 for a discussion on the extreme case), and empirically, increasing stochasticity proves cru-
 714 cial for performance Fig. 3. To illustrate this, we will show the relationship between the components
 715 of both frameworks.

716 **Input Distribution** Both BFNs and categorical BSI parameterize the distribution over the data \mathbf{x}
 717 using a categorical distribution. The logits are denoted as \mathbf{z} in BSI and as θ in BFNs. In BSI,
 718 the parameters \mathbf{z} are the logits of a categorical distribution, i.e., $p(\mathbf{x} | \mathbf{z}) \sim \text{Cat}(\text{softmax}(\mathbf{z}))$. In
 719 BFNs, the parameters θ are the probabilities of each category, i.e., $p(\mathbf{x} | \theta) \sim \text{Cat}(\theta)$. The two
 720 parameterizations are equivalent since $\theta = \text{softmax}(\mathbf{z})$ and $\mathbf{z} = \log(\theta)$ (up to an additive constant).

721 **Output Distribution** The output distribution in BFNs is an intermediate distribution that is not
 722 needed in BSI.

723 **Prior Distribution** While Categorical BSI includes a normal prior distribution over the logits of
 724 the categorical distribution ($p(\mathbf{z} | t = 0) \sim \mathcal{N}(\boldsymbol{\mu}_0, \beta_0 I)$), Categorical BFNs fix the parameters
 725 to $\theta_0 = 1/K$. Therefore, categorical BFNs can be seen as a special case of categorical BSI with
 726 $\boldsymbol{\mu}_0 = 0$ and $\beta_0 = 0$.

727 **Sender Distribution** The sender distribution in categorical BFNs is an intermediate distribution that
 728 is not required in categorical BSI.

729 **Receiver Distribution** The sender distribution in categorical BFNs is given as

$$731 \quad p_R(\mathbf{y} | \mathbf{x}, \alpha) \sim \sum_k \text{softmax}(\Psi(\theta))_k \mathcal{N}(\alpha(K\hat{e}_k - 1), \alpha K I)$$

734 It corresponds to the noisy measurement distribution in categorical BSI, $p(\mathbf{y} | \mathbf{x}, \alpha) \sim \mathcal{N}(\hat{\mathbf{x}}, 1/\alpha I)$.
 735 Note that for $\alpha \rightarrow 0$, it holds that:

$$737 \quad p_R(\mathbf{y} | \mathbf{x}, \alpha) \sim \mathcal{N}(\alpha(K \text{softmax}(\Psi(\theta)) - 1), \alpha K I)$$

739 The sender distribution for $\alpha \rightarrow 0$ is an affine transformation of the noisy observation function for
 740 BSI: If we set $\mathbf{y} \sim p(\mathbf{y} | \mathbf{x}, \alpha) = \mathcal{N}(\hat{\mathbf{x}}, 1/\alpha I)$ and compute $y' = \alpha(K\mathbf{y} - 1)$, then $y' \sim p_s(y' |$
 741 $\mathbf{x}, \alpha)$, where $\text{softmax}(\Psi(\theta))$ corresponds to the sample reconstruction $\hat{\mathbf{x}}$. Thus, in the small- α -limit,
 742 the two distributions have same-order approximation and therefore contain the same information.
 743 However, in the formulation of categorical BSI, we can directly see that \mathbf{y} is a noisy observation
 744 of \mathbf{x} and we do not require computing the distribution as a limit of a multinomial distribution as in
 745 BFNs.

746 **Bayesian Update Function** The Bayesian update function in categorical BFNs (Graves et al., 2025,
 747 Eq. 171) is the equivalent of Theorem 1 in categorical BSI. The update is simplified for BSI since
 748 the belief parameters are in logit space instead of probability space. Furthermore, the scaling of the
 749 receiver distribution leads to an extra factor of α in categorical BSI.

750 **Bayesian Update Distribution** This is an intermediate that is not required in categorical BSI.

751 **Accuracy Schedule** The accuracy schedule can be chosen freely in categorical BSI. In categorical
 752 BFNs, the accuracy schedule is chosen as $\beta(t) = t^2 \beta(1)$.

754 **Bayesian Flow Distribution** The Bayesian flow distribution in categorical BFNs corresponds to
 755 Eq. (3) in categorical BSI. The two distributions are equivalent up to an affine transformation of the
 variable, as explained above.

756 **Continuous Time Loss** The continuous time loss in categorical BFNs (Graves et al., 2025, Eq. 205)
 757 corresponds to Eq. (5) in categorical BSI. Both are the L2 loss between the reconstruction and the
 758 one-hot encoded data.

759 **SDE formulation** Both BSI and BFN sampling can be formulated as SDEs. Here, Theorem 3
 760 corresponds to (Xue et al., 2024, Eq. 24). To do so, the authors also operate on the logits of the
 761 categorical distribution instead of the probabilities.

763 **Score function approximation** The score function approximation for categorical BFNs (Xue et al.,
 764 2024, Eq. 28) corresponds to Theorem 5 for $\beta_0 = 0$ up to a constant. Note that a value of $\beta_0 > 0$
 765 avoids the division by zero in the score function approximation at $t = 0$.

768 A.2 RELATIONSHIP TO DIFFUSION MODELS.

770 The logits \mathbf{z} evolve in a way that closely resembles a diffusion process in logit space. From Theo-
 771 rem 1 we have our denoising dynamics

$$772 p(\mathbf{z}_{t+1} \mid \mathbf{z}_t, \mathbf{x}) = \mathcal{N}(\mathbf{z}_t + \alpha_t \mathbf{x}, \alpha_t \mathbf{I}). \quad (11)$$

773 Moreover, the marginal of \mathbf{z}_t is given by

$$775 p(\mathbf{z}_t \mid \mathbf{x}) = \mathcal{N}(\mu_0 + \beta(t) \mathbf{x}, (\beta_0 + \beta(t)) \mathbf{I}) \quad (12)$$

776 (see Eq. (3)). We define the corresponding “noising” process as the reverse-time conditional $p(\mathbf{z}_t \mid$
 777 $\mathbf{z}_{t+1}, \mathbf{x})$. Using the standard Gaussian conditioning formula (Murphy, 2012, Eq. 4.125), we obtain

$$779 p(\mathbf{z}_t \mid \mathbf{z}_{t+1}, \mathbf{x}) = \mathcal{N}\left(\frac{(\beta_0 + \beta(t))\mathbf{z}_{t+1} + \alpha_t \mu_0 - \alpha_t \beta_0 \mathbf{x}}{\beta_0 + \beta(t) + \alpha_t}, \frac{\alpha_t(\beta_0 + \beta(t))}{\beta_0 + \beta(t) + \alpha_t} \mathbf{I}\right). \quad (13)$$

781 Thus, the reverse transition is Gaussian, analogous to the posterior $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$ in standard
 782 diffusion models. While this is not a typical diffusion process in the sense that the derived forward
 783 dynamics over \mathbf{z}_t are generally non-Markovian, related non-Markovian formulations have been pro-
 784 posed before (Song et al., 2020). Interestingly, a Markovian process is recovered when setting
 785 $\beta_0 = 0$, which coincides with the original BFN parameterization (Graves et al., 2025).

786 A.3 RELATIONSHIP TO FLOW MATCHING MODELS

788 At noise level $\gamma = 0$, Categorical BSI is closely related to Flow Matching. The sampling SDE
 789 Eq. (7) becomes an ODE where the right-hand side can be interpreted as an approximation of the
 790 flow field to follow. However, we do not train to directly predict the flow field, but to reconstruct
 791 the clean sample. Similar to Dirichlet Flow Matching (DFM), Stark et al. (2024), Categorical BSI
 792 operates on a distribution over the simplex. However, while Categorical BSI uses the logits of a
 793 categorical distribution as a latent variable, DFM employs a mixture of Dirichlet distributions.

795 B BSI FOR SEQUENCE GENERATION

797 Categorical BSI can generate general categorical data - it is not restricted to graphs. In this sec-
 798 tion, we demonstrate this capability empirically by training a categorical BSI model to generate
 799 sequences. We represent sequences with length l and a vocabulary v in the one-hot encoded format
 800 as $S \in \Delta_v^l \subset [0, 1]^{l \times v}$. We call the resulting model SeqBSI.

801 Employing the same reconstruction model as Stark et al., 2024; Davis et al., 2024, a Convolu-
 802 tional Neural Network. We train on the toy dataset from Davis et al. (2024) with $l = 4$ and
 803 $v \in \{5, 10, 20, 40, 60, 80, 100, 120, 140, 160\}$ as well as a dataset of enhancer DNA sequences from
 804 fly brain cells Janssens et al. (2022) with $l = 500$ and $v = 4$ nucleotide bases. Following Stark et al.
 805 (2024), we report the KL divergence for the toy task and the Fréchet Biological Distance (FBD) as a
 806 measure of distribution similarity. As demonstrated in Tab. 3, SeqBSI slightly outperforms Dirichlet
 807 Flow Matching (Stark et al., 2024) in the flybrain task. The comparison with Fisher Flow Match-
 808 ing on this metric is difficult, as their evaluation shows vastly different results for Dirichlet flow
 809 matching than the results reported in their own paper. On the toy dataset task, SeqBSI outperforms
 Dirichlet Flow Matching and is competitive with Fisher Flow Matching (see Fig. 9).

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

Table 3: Results on the enhancer DNA sequence dataset

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Model	Steps	flybrain FBD ↓
Random Sequence		876.0
Language Model	500	25.2
Linear FM	100	15.0
Dirichlet FM	100	15.2
SeqBSI (OU)	100	12.3

864 C ANALYSIS OF SDE-BASED SAMPLING ALGORITHMS
865866 In this section, we analyze the behavior of the SDE-based sampling methods Algs. 3 and 4.
867868 C.1 EQUIVALENCE OF THE TWO SAMPLING ALGORITHMS FOR INFINITE STEPS
869870 It is worth noting that for $\Delta t \rightarrow 0$, the Ornstein-Uhlenbeck discretization and the Euler-Maruyama
871 discretization of Eq. (7) converge to the same update step:
872

873
874
$$\mathbf{z}_{t+\Delta t} \sim m + (\mathbf{z}_t - m)e^{-\kappa\Delta t} + \sqrt{\frac{\gamma\beta'}{2\kappa}(1 - e^{-2\kappa\Delta t})} \cdot \mathcal{N}(0, 1) \quad (14)$$

875

876
877
$$\rightarrow m + (\mathbf{z}_t - m)(1 - \kappa\Delta t) + \sqrt{\frac{\gamma\beta'}{2\kappa}(1 - (1 - 2\kappa\Delta t))} \cdot \mathcal{N}(0, 1) \quad (15)$$

878

879
$$= \mathbf{z}_t + \kappa(m - \mathbf{z}_t)\Delta t + \sqrt{\gamma\beta'\Delta t} \cdot \mathcal{N}(0, 1) \quad (16)$$

880
$$= \mathbf{z}_t + \kappa(\boldsymbol{\mu}_0 + (\beta + \beta'/\kappa)\hat{\mathbf{x}} - \mathbf{z}_t)\Delta t + \sqrt{\gamma\beta'\Delta t} \cdot \mathcal{N}(0, 1) \quad (17)$$

881
$$= \mathbf{z}_t + \beta'\hat{\mathbf{x}}\Delta t + \frac{\gamma - 1}{2}\beta'\frac{\boldsymbol{\mu}_0 + \beta\hat{\mathbf{x}} - \mathbf{z}_t}{\beta + \beta_0}\Delta t + \sqrt{\gamma\beta'\Delta t} \cdot \mathcal{N}(0, 1) \quad (18)$$

882
$$= \mathbf{z}_t + \beta'f_\theta(\mathbf{z}_t, t)\Delta t + \frac{\gamma - 1}{2}\beta'\nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t)\Delta t + \sqrt{\gamma\beta'\Delta t} \cdot \mathcal{N}(0, 1) \quad (19)$$

883
884

886 C.2 STABILITY OF EULER-MARUYAMA SAMPLING
887888 Let us explicitly write out the update step of the Euler-Maruyama discretization of Eq. (7):
889

890
891
$$\mathbf{z}_{t+\Delta t} \sim \mathbf{z}_t + \beta'\hat{\mathbf{x}}\Delta t + \frac{\gamma - 1}{2}\beta'\frac{\boldsymbol{\mu}_0 + \beta\hat{\mathbf{x}} - \mathbf{z}_t}{\beta + \beta_0}\Delta t + \sqrt{\gamma\beta'\Delta t} \cdot \mathcal{N}(0, 1) \quad (20)$$

892

893
894
$$= \left(1 - \frac{(\gamma - 1)\beta'}{2(\beta + \beta_0)}\Delta t\right)\mathbf{z}_t + \beta'\hat{\mathbf{x}}\Delta t + \frac{(\gamma - 1)\beta'(\boldsymbol{\mu}_0 + \beta\hat{\mathbf{x}})}{2(\beta + \beta_0)}\Delta t + \sqrt{\gamma\beta'\Delta t} \cdot \mathcal{N}(0, 1) \quad (21)$$

895

896 As a rule of thumb, the coefficient in front of \mathbf{z}_t should not be negative, i.e., the previous step should
897 not be over-corrected. This yields the condition
898

899
900
$$1 - \frac{(\gamma - 1)\beta'}{2(\beta + \beta_0)}\Delta t \geq 0 \quad (22)$$

901

902
903
$$\iff \Delta t \cdot (\gamma - 1) \leq \frac{2(\beta + \beta_0)}{\beta'} \quad (23)$$

904 For our precision schedule on moses ($\beta_{\text{start}} = 3.0, \beta_{\text{end}} = 12.0, \beta_0 = 1.0$), we find that
905

906
907
$$\min_{t \in [0, 1]} \frac{2(\beta(t) + \beta_0)}{\beta'(t)} \approx 0.48 \quad (24)$$

908

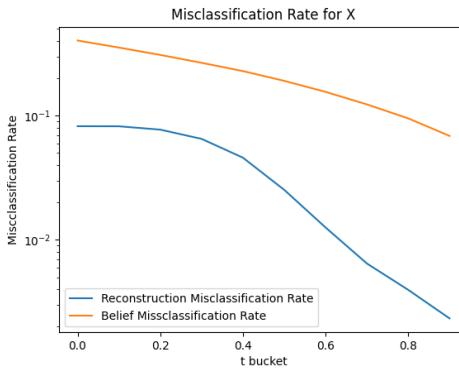
909 The resulting maximum stable noise level γ for different numbers of sampling steps in Tab. 4 predicts
910 the observed behavior in Fig. 3 surprisingly well.
911

C.3 BEHAVIOR OF ORNSTEIN-UHLENBECK SAMPLING WITH INFINITE NOISE

913 Taking the limit $\gamma \rightarrow \infty$ in Alg. 4 yields an interesting sampling algorithm (see Alg. 5). In this limit,
914 the update step becomes independent of the previous step \mathbf{z}_t , replacing all previous information with
915 the current prediction $\hat{\mathbf{x}}$. Empirically, we find that fixing the prior value after the initial sampling
916 step, as shown in Alg. 6, works better in practice (see Tab. 5). This algorithm matches the Flowback
917 algorithm from Song et al. (2025). We find that with a budget of 50 sampling steps, this algorithm
918 performs surprisingly well on molecule generation. However, a higher compute budget drastically

918
919
920
921 Table 4: Maximum stable γ for different numbers of sampling steps with the Euler-Maruyama
922 discretization, following Eq. (24).

921	Number of Timesteps	Δt	Maximum Stable γ
922	25	0.040000	12.938480
923	50	0.020000	24.876960
924	100	0.010000	48.753920
925	200	0.005000	96.507840
926	500	0.002000	239.769601



941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 5: Empirical misclassification rate of a trained reconstructor on the moses dataset under the encoding distribution. Compared to simply sampling from the belief, returning a reconstruction is far more likely to yield the correct train sample. Therefore, returning a quantization of the reconstruction instead of sampling from the belief is significantly more efficient for molecule generation. However, deriving the ELBO under quantization is intractable to optimize. Therefore, we have the sampling-formulation to derive a tractable ELBO and the quantized-formulation to optimize efficiency after training.

reduces performance. We hypothesize that this is because an excessive amount of stochasticity is introduced. [Song et al. \(2025\)](#) address this by adaptively alternating between vanilla BFN steps and Flowback steps, effectively mixing Alg. 1 with Alg. 5.

Algorithm 5 Sampling with $\gamma \rightarrow \infty$

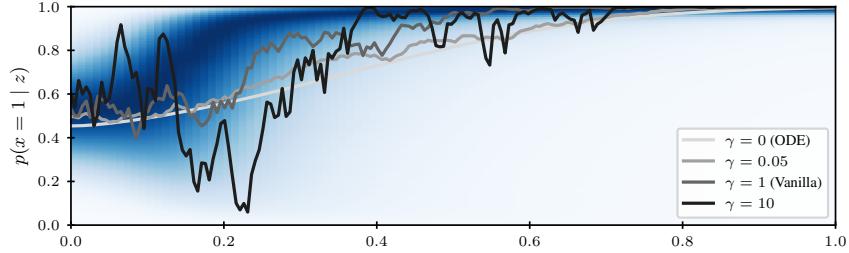
Require: reconstructor f_θ , discretization Δt , precision schedule $\beta : [0, 1] \rightarrow \mathbb{R}^+$
 $\mathbf{z}_0 \sim \mathcal{N}(\mu_0, \beta_0 I)$
 $\mathbf{z} \leftarrow \mathbf{z}_0$
for $t = 0 \dots 1$ in steps of Δt **do**
 $\hat{\mathbf{x}} \leftarrow f_\theta(\mathbf{z}, t)$
 $\alpha \leftarrow \beta_0 + \beta(t + \Delta t/2)$
 $\mathbf{y} \sim \mathcal{N}(\mu = \hat{\mathbf{x}}, \Sigma^2 = 1/\alpha \cdot I)$
 ▷ Go from prior to t in single step
 $\mathbf{z} \leftarrow \mu_0 + \alpha \cdot \mathbf{y}$
end for
return Quantize($f_\theta(\mathbf{z}, 1)$)

Algorithm 6 Fixed-prior sampling with $\gamma \rightarrow \infty$

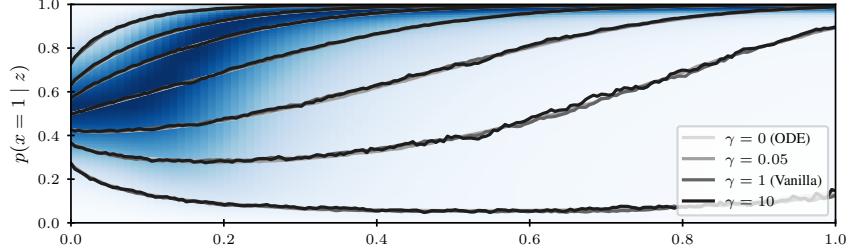
Require: reconstructor f_θ , discretization Δt , precision schedule $\beta : [0, 1] \rightarrow \mathbb{R}^+$
 $\mathbf{z}_0 \sim \mathcal{N}(\mu_0, \beta_0 I)$
 $\mathbf{z} \leftarrow \mathbf{z}_0$
for $t = 0 \dots 1$ in steps of Δt **do**
 $\hat{\mathbf{x}} \leftarrow f_\theta(\mathbf{z}, t)$
 $\alpha \leftarrow \beta(t + \Delta t/2)$
 $\mathbf{y} \sim \mathcal{N}(\mu = \hat{\mathbf{x}}, \Sigma^2 = 1/\alpha \cdot I)$
 ▷ Go from prior to t in single step
 $\mathbf{z} \leftarrow \mathbf{z}_0 + \alpha \cdot \mathbf{y}$
end for
return Quantize($f_\theta(\mathbf{z}, 1)$)

972
 973 **Table 5: Results on the GuacaMol and Moses benchmarks for molecular generation with the Euler-**
 974 **(EM) and Ornstein-Uhlenbeck (OU) discretization, and with Alg. 5 ($\gamma \rightarrow \infty$) and Alg. 6 ($\gamma \rightarrow \infty$,**
 975 **FP), as well as results for a linear scheduler (lin) with the same final precision as the exponential**
 976 **scheduler. Additionally, we include results obtained with the FlowBack (FB) sampler Song et al.**
 977 **(2025) using a smaller value of β_0 , as well as the OU sampler with the same checkpoint. The EM**
 978 **sampler becomes unstable at $\beta_0 = 0.05$.**

979 Model	980 Steps	981 GuacaMol					982 Moses						
		983 Val. \uparrow	984 V.U. \uparrow	985 V.U.N. \uparrow	986 KL \uparrow	987 FCD \uparrow	988 Val. \uparrow	989 Uniq. \uparrow	990 Nov. \uparrow	991 Filters \uparrow	992 FCD \downarrow	993 SNN \uparrow	994 Scaf \uparrow
Train Set		100.0	100.0	0.0	99.9	92.8	100.0	100.0	0.0	100.0	0.01	0.64	99.1
GraphBSI (EM)	10	86.6	86.6	86.5	85.5	27.6	90.9	100.0	99.2	85.4	3.74	0.43	13.7
GraphBSI (OU)	10	91.9	91.9	91.8	84.5	24.2	94.4	100.0	98.9	89.0	3.88	0.45	14.5
GraphBSI (EM)	20	97.5	97.5	97.3	87.5	40.7	97.5	100.0	97.9	93.6	1.83	0.47	15.7
GraphBSI (OU)	20	97.1	97.1	96.8	89.3	49.7	98.2	100.0	97.8	94.5	1.92	0.48	14.4
DeFoG	50	91.7	91.7	91.2	92.3	57.9	83.9	99.9	96.9	96.5	1.87	0.50	23.5
GraphBSI (EM)	50	97.5	97.5	97.2	90.7	65.6	99.3	100.0	96.5	96.9	1.06	0.50	15.2
GraphBSI (OU)	50	99.2	99.2	98.7	93.7	71.3	99.7	100.0	94.6	98.2	1.19	0.52	15.1
GraphBSI ($\gamma \rightarrow \infty$)	50	99.6	99.6	98.3	95.1	61.4	99.9	99.9	89.9	99.2	1.58	0.56	11.7
GraphBSI ($\gamma \rightarrow \infty$,FP)	50	99.6	99.6	98.3	97.4	75.1	99.9	99.9	89.7	99.1	1.06	0.56	13.1
GraphBSI (FB)	50	-	-	-	-	-	99.6	100.0	95.9	97.5	1.15	0.51	15.0
DiGress (CADD)	500	-	-	-	-	-	92.2	82.3	74.2	76.2	37.19	0.24	0.0
DiGress	500	85.2	85.2	85.1	92.9	68.0	85.7	100.0	95.0	97.1	1.19	0.52	14.8
DisCo	500	86.6	86.6	86.5	92.6	59.7	88.3	100.0	97.7	95.6	1.44	0.50	15.1
Cometh	500	98.9	98.9	97.6	96.7	72.7	90.5	99.9	92.6	99.1	1.27	0.54	16.0
DeFoG	500	99.0	99.0	97.9	97.7	73.8	92.8	99.9	92.1	98.9	1.95	0.55	14.4
GraphBFN	500	-	-	-	-	-	98.5	99.8	89.0	98.3	1.07	0.59	10.0
GraphBSI (EM)	500	98.8	98.8	98.3	94.6	82.6	99.8	100.0	92.5	99.1	0.72	0.54	14.3
GraphBSI (OU)	500	99.6	99.6	98.2	98.4	80.3	99.9	100.0	90.7	99.2	0.90	0.55	12.7
GraphBSI (EM,lin)	500	-	-	-	-	-	99.8	100.0	91.9	99.1	0.85	0.54	12.3
GraphBSI (OU,lin)	500	-	-	-	-	-	99.9	99.9	90.6	99.2	0.98	0.55	14.2
GraphBSI (FB, $\beta_0 = 1$)	500	-	-	-	-	-	100.0	99.6	80.7	99.6	2.84	0.59	8.7
GraphBSI (FB, $\beta_0 = 0.05$)	500	-	-	-	-	-	100.0	99.9	85.9	99.4	1.32	0.57	11.7
GraphBSI (OU, $\beta_0 = 0.05$)	500	-	-	-	-	-	99.9	100.0	90.4	99.4	1.00	0.55	12.4



(a) Exemplary trajectories



(b) Quantiles (1%, 10%, 50%, 75%, 90%, 99%) over 10000 trajectories

1021 **Figure 6: Illustration of the trajectories of the categorical sampler with two categories with a fixed**
 1022 **reconstruction $f(\mathbf{z}, t) = \hat{e}_1$ for different noise levels γ . While higher values of γ result in more**
 1023 **volatile trajectories (see Fig. 6a), the marginal distribution is preserved if the score function is known**
 1024 **exactly (see Fig. 6b). Since we approximate the score function in practice, the noise level is a crucial**
 1025 **hyperparameter to fin-tune during inference.**

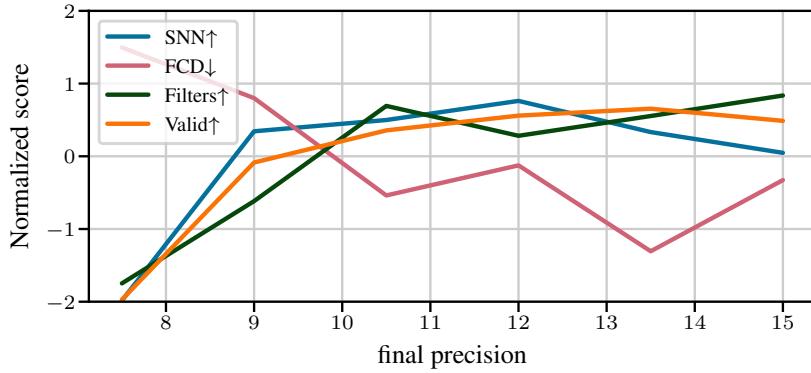


Figure 7: Key metrics on the Moses benchmark with a linear scheduler, ending at different final precision. The model was trained with a final precision of 15, and to generate this plot, sampling was stopped early instead of training a new model for each precision value. While too small final precision values yield noisy samples, too large final precision values waste sampling steps.

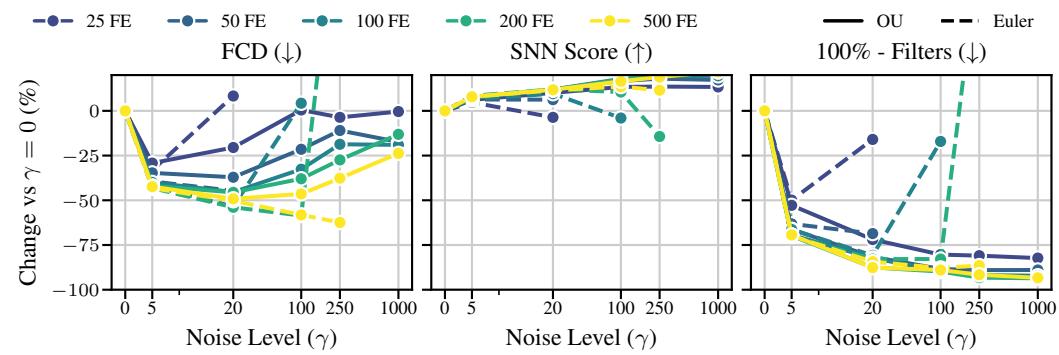


Figure 8: Change in metrics relative to $\gamma = 0$ vs. noise level γ for different numbers of function evaluations (FE) and discretization schemes. Our custom Ornstein-Uhlenbeck discretization scheme is denoted as OU, while the standard Euler-Maruyama scheme is written as Euler. Some values for the Euler scheme are missing since the sampler becomes unstable if $\gamma \cdot \Delta t$ becomes too large (see App. C.2).

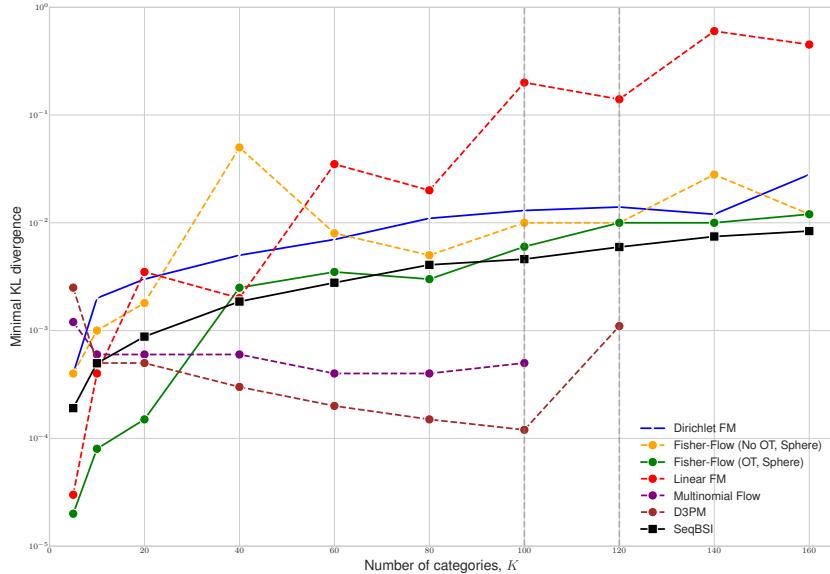


Figure 9: KL divergence on the toy sequences benchmark by (Davis et al., 2024), reporting the lowest KL divergence for each vocabulary size over five random seeds. The model is trained on 100,000 samples with a sequence of length four and varying vocabulary size. Find the details of the dataset generation in the original paper.

1134 **D PROOFS**
 1135

1136 **Theorem 1.** *Given a prior belief $p(\mathbf{x} | \mathbf{z}) = \text{Cat}(\mathbf{x} | \text{softmax}(\mathbf{z}))$, after observing $\mathbf{y} \sim \mathcal{N}(\mathbf{y} | \mu =$
 1137 $\mathbf{x}, \Sigma^2 = 1/\alpha I)$ at precision α , the posterior belief is $p(\mathbf{x} | \mathbf{z}, \mathbf{y}, \alpha) = \text{Cat}(\mathbf{x} | \text{softmax}(\mathbf{z}_{\text{post}}))$
 1138 with*

$$\mathbf{z}_{\text{post}} = \mathbf{z} + \alpha \cdot \mathbf{y} \quad (25)$$

1141 *Proof.* We need to compute the Bayesian update of the belief parameters. Each dimension can be
 1142 considered independently since the noise is isotropic. Let us start with a single-variable prior belief
 1143 $\text{Cat}(\text{softmax}(\mathbf{z}))$ with $\mathbf{z} \in \mathbb{R}^c$, and a noisy observation $\mathbf{y} | \mathbf{x}, \alpha \sim \mathcal{N}(\mu = \mathbf{x}, \Sigma^2 = 1/\alpha \cdot I)$ of the
 1144 true sample $\mathbf{x} \in \Delta^{c-1}$ at precision α . Let us now consider any class $l \in 1, \dots, c$. We write \hat{e}_l for the
 1145 one-hot encoding of class l . Since we are only interested in the ratio of the posterior probabilities,
 1146 we can ignore any factors that do not depend on l and normalize at the end. We have:

$$p(\mathbf{x} = \hat{e}_l | \mathbf{z}) = \text{softmax}(\mathbf{z})_l \propto \exp(\mathbf{z}_l) \quad (26)$$

$$p(\mathbf{y} | \mathbf{x} = \hat{e}_l, \alpha) = \mathcal{N}(\mathbf{y} | \mu = \hat{e}_l, \Sigma^2 = 1/\alpha \cdot I) \quad (27)$$

$$p(\mathbf{x} = \hat{e}_l | \mathbf{z}, \mathbf{y}, \alpha) = \propto p(\mathbf{y} | \mathbf{x} = \hat{e}_l, \alpha) \cdot p(\mathbf{x} = \hat{e}_l | \mathbf{z}) \quad (28)$$

$$= \mathcal{N}(\mathbf{y} | \mu = \hat{e}_l, \Sigma^2 = 1/\alpha \cdot I) \cdot \text{softmax}(\mathbf{z})_l \quad (29)$$

$$\propto \exp\left(-\frac{\|\mathbf{y} - \hat{e}_l\|^2}{2 \cdot 1/\alpha}\right) \cdot \exp(\mathbf{z}_l) \quad (30)$$

$$= \exp\left(-\frac{\|\mathbf{y}\|^2 - 2 \cdot \langle \mathbf{y}, \hat{e}_l \rangle + \|\hat{e}_l\|^2}{2 \cdot 1/\alpha} + \mathbf{z}_l\right) \quad (31)$$

$$\propto \exp(\alpha \cdot \mathbf{y}_l + \mathbf{z}_l) \quad (32)$$

1159 Let us now normalize the results to obtain the posterior probabilities:
 1160

$$p(\mathbf{x} = \hat{e}_l | \mathbf{z}, \mathbf{y}, \alpha) = \frac{\exp(\alpha \cdot \mathbf{y}_l + \mathbf{z}_l)}{\sum_{l'=1}^c \exp(\alpha \cdot \mathbf{y}_{l'} + \mathbf{z}_{l'})} = \text{softmax}(\mathbf{z} + \alpha \cdot \mathbf{y})_l \quad (33)$$

1163 Putting everything together, we find that the posterior belief is $p(\mathbf{x} | \mathbf{z}, \mathbf{y}, \alpha) = \text{Cat}(\mathbf{x} |$
 1164 $\text{softmax}(\mathbf{z}_{\text{post}}))$ with

$$\mathbf{z}_{\text{post}} = \mathbf{z} + \alpha \cdot \mathbf{y} \quad (34)$$

□

1168 **Theorem 2.** *For categorical BSI, the log-likelihood of \mathbf{x} under Alg. 1 is lower-bounded by*

$$\log p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z}_k \sim q(\mathbf{z} | \mathbf{x}, t_k)} [\log p(\mathbf{x} | \mathbf{z}_k)] - \frac{k}{2} \mathbb{E}_{\substack{i \sim \mathcal{U}(0, k-1) \\ \mathbf{z}_i \sim q(\mathbf{z} | \mathbf{x}, t_i)}} [(\beta(t_{i+1}) - \beta(t_i)) \|f_\theta(\mathbf{z}_i, t_i) - \mathbf{x}\|_2^2], \quad (35)$$

1173 where $q(\mathbf{z} | \mathbf{x}, t) = \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}_0 + \beta(t)\mathbf{x}, \beta_0 + \beta(t)I)$.

1174 *Proof.* For any distribution $p(\mathbf{x})$ and any latent variable \mathbf{z} , i.e. any choice of prior $p(\mathbf{z})$, encoding
 1175 distribution $p(\mathbf{z} | \mathbf{x})$, and likelihood $p(\mathbf{x} | \mathbf{z})$, we have the variational lower bound

$$\log p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z} | \mathbf{x})} [\log p(\mathbf{x} | \mathbf{z})] - \text{KL}(p(\mathbf{z} | \mathbf{x}) \| p(\mathbf{z})) \quad (36)$$

1179 on $\log p(\mathbf{x})$ Kingma & Welling (2013). We choose the beliefs $\mathbf{z}_0, \dots, \mathbf{z}_k$ as latent variables at the
 1180 discretized time steps t_0, \dots, t_k . We choose the encoding distribution to be the distribution of the
 1181 beliefs under Alg. 1 with the reconstruction network f_θ replaced by the true sample \mathbf{x} :

$$p(\mathbf{z}_0, \dots, \mathbf{z}_k | \mathbf{x}) = \mathcal{N}(\mathbf{z}_0 | \boldsymbol{\mu}_0, \beta_0 I) \prod_{i=0}^{k-1} p(\mathbf{z}_{i+1} | \mathbf{z}_i, \mathbf{x}, t_i) \quad (37)$$

1186 The transition distribution $p(\mathbf{z}_{i+1} | \mathbf{z}_i, \mathbf{x}, t_i)$ can be computed from Theorem 1:
 1187

$$\mathbf{z}_{i+1} = \mathbf{z}_i + \alpha_i \cdot \mathbf{y}_i \sim \mathbf{z}_i + \alpha_i \cdot \mathcal{N}(\mathbf{y} | \mu = \mathbf{x}, 1/\alpha_i I) = \mathcal{N}(\mathbf{z}_{i+1} | \mathbf{z}_i + \alpha_i \cdot \mathbf{x}, \alpha_i I) \quad (38)$$

1188 The distribution of $p(\mathbf{z})$ following Alg. 1 factorizes similarly:
1189

$$1190 \quad p(\mathbf{z}_0, \dots, \mathbf{z}_k) = \mathcal{N}(\mathbf{z}_0 \mid \boldsymbol{\mu}_0, \beta_0 I) \prod_{i=0}^{k-1} p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, t_i, \theta) \quad (39)$$

1193 with the transition distribution

$$1194 \quad p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, t_i, \theta) = \mathcal{N}(\mathbf{z}_{i+1} \mid \mathbf{z}_i + \alpha_i \cdot f_\theta(\mathbf{z}_i, t_i), \alpha_i I) \quad (40)$$

1196 Let us now compute the KL divergence:

$$1197 \quad \text{KL}(p(\mathbf{z}_0, \dots, \mathbf{z}_k \mid \mathbf{x}) \| p(\mathbf{z}_0, \dots, \mathbf{z}_k)) \quad (41)$$

$$1199 \quad = \mathbb{E}_{\substack{\mathbf{z}_0, \dots, \mathbf{z}_k \sim \\ p(\mathbf{z}_0, \dots, \mathbf{z}_k \mid \mathbf{x})}} \left[\log \frac{p(\mathbf{z}_0, \dots, \mathbf{z}_k \mid \mathbf{x})}{p(\mathbf{z}_0, \dots, \mathbf{z}_k)} \right] \quad (42)$$

$$1202 \quad = \mathbb{E}_{\substack{\mathbf{z}_0, \dots, \mathbf{z}_k \sim \\ p(\mathbf{z}_0, \dots, \mathbf{z}_k \mid \mathbf{x})}} \left[\log \frac{\mathcal{N}(\mathbf{z}_0 \mid \boldsymbol{\mu}_0, \beta_0 I) \prod_{i=0}^{k-1} p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, \mathbf{x}, t_i)}{\mathcal{N}(\mathbf{z}_0 \mid \boldsymbol{\mu}_0, \beta_0 I) \prod_{i=0}^{k-1} p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, t_i, \theta)} \right] \quad (43)$$

$$1205 \quad = \mathbb{E}_{\substack{\mathbf{z}_0, \dots, \mathbf{z}_k \sim \\ p(\mathbf{z}_0, \dots, \mathbf{z}_k \mid \mathbf{x})}} \left[\sum_{i=0}^{k-1} \log \frac{p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, \mathbf{x}, t_i)}{p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, t_i, \theta)} \right] \quad (44)$$

$$1209 \quad = \sum_{i=0}^{k-1} \mathbb{E}_{\mathbf{z}_i \sim p(\mathbf{z}_i \mid \mathbf{x})} [\text{KL}(p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, \mathbf{x}, t_i) \| p(\mathbf{z}_{i+1} \mid \mathbf{z}_i, t_i, \theta))] \quad (45)$$

$$1212 \quad = \sum_{i=0}^{k-1} \mathbb{E}_{\mathbf{z}_i \sim p(\mathbf{z}_i \mid \mathbf{x})} [\text{KL}(\mathcal{N}(\mathbf{z}_{i+1} \mid \mathbf{z}_i + \alpha_i \cdot \mathbf{x}, \alpha_i I) \| \mathcal{N}(\mathbf{z}_{i+1} \mid \mathbf{z}_i + \alpha_i \cdot f_\theta(\mathbf{z}_i, t_i), \alpha_i I))] \quad (46)$$

$$1215 \quad = \sum_{i=0}^{k-1} \mathbb{E}_{\mathbf{z}_i \sim p(\mathbf{z}_i \mid \mathbf{x})} \left[\frac{1}{2\alpha_i} \|\mathbf{z}_i + \alpha_i \cdot \mathbf{x} - (\mathbf{z}_i + \alpha_i \cdot f_\theta(\mathbf{z}_i, t_i))\|_2^2 \right] \quad (47)$$

$$1218 \quad = \sum_{i=0}^{k-1} \mathbb{E}_{\mathbf{z}_i \sim p(\mathbf{z}_i \mid \mathbf{x})} \left[\frac{\alpha_i}{2} \|\mathbf{x} - f_\theta(\mathbf{z}_i, t_i)\|_2^2 \right] \quad (48)$$

$$1221 \quad = \sum_{i=0}^{k-1} \mathbb{E}_{\mathbf{z}_i \sim p(\mathbf{z}_i \mid \mathbf{x})} [(\beta(t_{i+1}) - \beta(t_i))/2 \|\mathbf{x} - f_\theta(\mathbf{z}_i, t_i)\|_2^2] \quad (49)$$

$$1224 \quad = \mathbb{E}_{\substack{i \sim \mathcal{U}(0, k-1) \\ \mathbf{z}_i \sim p(\mathbf{z}_i \mid \mathbf{x})}} \left[\frac{k}{2} (\beta(t_{i+1}) - \beta(t_i)) \|\mathbf{x} - f_\theta(\mathbf{z}_i, t_i)\|_2^2 \right] \quad (50)$$

1226 Since $p(\mathbf{x} \mid \mathbf{z}_0, \dots, \mathbf{z}_k) = p(\mathbf{x} \mid \mathbf{z}_k) = \text{Cat}(\mathbf{x} \mid \text{softmax}(\mathbf{z}_k))$, we can plug in Eq. (3) to obtain the
1227 final result:

$$1229 \quad \log p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z}_k \sim q(\mathbf{z} \mid \mathbf{x}, t_k)} [\log p(\mathbf{x} \mid \mathbf{z}_k)] - \frac{k}{2} \mathbb{E}_{\substack{i \sim \mathcal{U}(0, k-1) \\ \mathbf{z}_i \sim q(\mathbf{z} \mid \mathbf{x}, t_i)}} [(\beta(t_{i+1}) - \beta(t_i)) \|f_\theta(\mathbf{z}_i, t_i) - \mathbf{x}\|_2^2], \quad (51)$$

1232 where $q(\mathbf{z} \mid \mathbf{x}, t) = \mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}_0 + \beta(t)\mathbf{x}, \beta_0 + \beta(t)I)$. \square

1234 **Theorem 3.** As $\Delta t \rightarrow 0$, the update equation in Theorem 1 converges to the following SDE:

$$1236 \quad d\mathbf{z}_t = \beta'(t) f_\theta(\mathbf{z}_t, t) dt + \sqrt{\beta'(t)} dW_t \quad (52)$$

1237 where dW_t is a Wiener process and $\mathbf{z}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \beta_0 \cdot I)$.

1239 *Proof.* Take the update equation Theorem 1 with an infinitesimal time step $\Delta t \rightarrow 0$, it holds that

$$1241 \quad \alpha = (\beta(t + \Delta t) - \beta(t)) \rightarrow \beta'(t) \Delta t \quad (53)$$

1242 Therefore, we have:
 1243

$$\mathbf{z}_{t+\Delta t} = \mathbf{z}_t + \alpha \mathbf{y} \quad (54)$$

$$\sim \mathbf{z}_t + \alpha \mathcal{N}(\hat{\mathbf{x}}, \Sigma^2 = 1/\alpha I) \quad (55)$$

$$= \mathbf{z}_t + \mathcal{N}(\alpha \hat{\mathbf{x}}, \Sigma^2 = \alpha I) \quad (56)$$

$$\rightarrow \mathbf{z}_t + \beta'(t) \hat{\mathbf{x}} \Delta t + \sqrt{\beta'(t)} \sqrt{\Delta t} \cdot \mathcal{N}(0, \mathbf{I}) \quad (57)$$

1249 We identify this as the Euler-Maruyama discretization of the SDE above. \square
 1250

1251 **Theorem 4.** *The SDE in Theorem 3 is generalized by the following family of SDEs with equal
 1252 marginal densities $p_t(\mathbf{z}_t)$:*

$$1254 d\mathbf{z}_t = \beta'(t) f_\theta(\mathbf{z}_t, t) dt + \frac{\gamma - 1}{2} \beta'(t) \nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t) dt + \sqrt{\gamma \beta'(t)} dW_t \quad (58)$$

1256 where dW_t is a Wiener process and $\mathbf{z}_0 \sim p(\mathbf{z} \mid t = 0)$.
 1257

1258 *Proof.* We need to show that the evolution of the probability density $p_t(\mathbf{z}_t)$ of Eq. (6) matches that
 1259 of Eq. (7). The evolution is characterized by the Fokker-Planck equation:

$$\begin{aligned} 1261 \frac{\partial p_t(\mathbf{z}_t)}{\partial t} &= \sum_j -\nabla_{\mathbf{z}_j} \left(\beta'(t) f_\theta(\mathbf{z}_t, t) + \frac{\gamma - 1}{2} \beta'(t) \nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t) \right) p_t(\mathbf{z}_t) + \frac{1}{2} \gamma \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1262 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) - \frac{\gamma - 1}{2} \beta'(t) \nabla_{\mathbf{z}_j} (p_t(\mathbf{z}_t) \nabla_{\mathbf{z}_j} \log p_t(\mathbf{z}_t)) + \frac{1}{2} \gamma \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1263 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) - \frac{\gamma - 1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) + \frac{1}{2} \gamma \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1264 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1265 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1266 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1267 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1268 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1269 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \\ 1270 &= \sum_j -\nabla_{\mathbf{z}_j} (\beta'(t) f_\theta(\mathbf{z}_t, t) p_t(\mathbf{z}_t)) + \frac{1}{2} \beta'(t) \nabla_{\mathbf{z}_j}^2 p_t(\mathbf{z}_t) \end{aligned}$$

1271 Which equals the Fokker-Planck equation of the SDE in Eq. (6). \square
 1272

1273 **Theorem 5.** *The BSI loss Eq. (5) also is a score matching loss with the score model $s_\theta(\mathbf{z}, t)$ parameterized as*

$$1276 s_\theta(\mathbf{z}, t) \equiv \frac{\mu_0 + \beta(t) f_\theta(\mathbf{z}, t) - \mathbf{z}}{\beta(t) + \beta_0} \stackrel{!}{\approx} \nabla_{\mathbf{z}} \log p_t(\mathbf{z}) \quad (59)$$

1278 *Proof.* Score matching [Song et al. \(2021\)](#) is a generative model that learns to approximate the score
 1279 function $\nabla_{\mathbf{z}} \log p_t(\mathbf{z})$ of a distribution $p_t(\mathbf{z})$ by minimizing the score matching loss:
 1280

$$1281 \mathcal{L}_{\text{score}} \equiv \mathbb{E}_{t \sim \mathcal{U}(0,1)} [\lambda(t) \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{p_t(\mathbf{z} \mid \mathbf{x})} [\|s_\theta(\mathbf{z}, t) - \nabla_{\mathbf{z}} \log p_t(\mathbf{z} \mid \mathbf{x})\|_2^2]] \quad (60)$$

1282 where $\lambda : [0, 1] \mapsto \mathbb{R}^+$ is a positive weighting function. The distribution $p_t(\mathbf{z} \mid \mathbf{x})$ is the distribution
 1283 of the latent variable at time t given the true sample \mathbf{x} . For categorical BSI, we have from Eq. (3):
 1284

$$1285 p_t(\mathbf{z} \mid \mathbf{x}) = \mathcal{N}(\mathbf{z} \mid \mu_0 + \beta(t)\mathbf{x}, (\beta_0 + \beta(t))I) \quad (61)$$

1287 The score function of an isotropic Gaussian can be computed in closed form:
 1288

$$1289 \nabla_{\mathbf{z}} \log \mathcal{N}(\mathbf{z} \mid \mu, \sigma^2 I) = \nabla_{\mathbf{z}} \left(-\frac{\|\mathbf{z} - \mu\|^2}{2\sigma^2} \right) = -\frac{\mathbf{z} - \mu}{\sigma^2} \quad (62)$$

$$(63)$$

1293 Plugging in the parameters of $p_t(\mathbf{z} \mid \mathbf{x})$, we find:

$$1294 \nabla_{\mathbf{z}} \log p_t(\mathbf{z} \mid \mathbf{x}) = -\frac{\mathbf{z} - (\mu_0 + \beta(t)\mathbf{x})}{\beta_0 + \beta(t)} = \frac{\mu_0 + \beta(t)\mathbf{x} - \mathbf{z}}{\beta_0 + \beta(t)} \quad (64)$$

1296 With the proposed score model parameterization $s_\theta(\mathbf{z}, t)$, we find:
 1297

$$1298 \mathcal{L}_{\text{score}} = \mathbb{E}_{t \sim \mathcal{U}(0,1)} [\lambda(t) \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})} [\|s_\theta(\mathbf{z}, t) - \nabla_{\mathbf{z}} \log p_t(\mathbf{z} | \mathbf{x})\|_2^2]] \quad (65)$$

$$1299 = \mathbb{E}_{t \sim \mathcal{U}(0,1)} [\lambda(t) \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})} \left[\left\| \frac{\boldsymbol{\mu}_0 + \beta(t) f_\theta(\mathbf{z}, t) - \mathbf{z}}{\beta(t) + \beta_0} - \frac{\boldsymbol{\mu}_0 + \beta(t) \mathbf{x} - \mathbf{z}}{\beta_0 + \beta(t)} \right\|_2^2 \right]] \quad (66)$$

$$1300 = \mathbb{E}_{t \sim \mathcal{U}(0,1)} [\lambda(t) \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})} \left[\left\| \frac{\beta(t)(f_\theta(\mathbf{z}, t) - \mathbf{x})}{\beta(t) + \beta_0} \right\|_2^2 \right]] \quad (67)$$

$$1301 = \mathbb{E}_{t \sim \mathcal{U}(0,1)} [\lambda(t) \frac{\beta(t)^2}{(\beta(t) + \beta_0)^2} \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})} [\|f_\theta(\mathbf{z}, t) - \mathbf{x}\|_2^2]] \quad (68)$$

$$1302 \quad (69)$$

1303 Choosing the weighting
 1304

$$1305 \lambda(t) = \beta'(t) \frac{(\beta(t) + \beta_0)^2}{2\beta(t)^2}, \quad (70)$$

1306 we find that the score matching loss equals the BSI loss in Eq. (5). Therefore, the BSI loss in Eq. (5)
 1307 is a score-matching loss with the weighting App. D and the score function $s_\theta(\mathbf{z}, t)$ parameterized as
 1308 in Eq. (59). \square

1309 **Theorem 6.** Fixing the prediction $\hat{\mathbf{x}} = f_\theta(\mathbf{z}_t, t)$ and the values $\beta = \beta(t + \Delta t/2)$, $\beta' = \beta'(t + \Delta t/2)$
 1310 in Eq. (7) in a time interval $[t, t + \Delta t]$ yields an Ornstein-Uhlenbeck process with the exact marginal
 1311

$$1312 \mathbf{z}_{t+\Delta t} \sim m + (\mathbf{z}_t - m) e^{-\kappa \Delta t} + \sqrt{\frac{\gamma \beta'}{2\kappa} (1 - e^{-2\kappa \Delta t})} \cdot \mathcal{N}(0, I), \quad (71)$$

1313 where $\kappa = \frac{(\gamma-1)\beta'}{2(\beta_0 + \beta)}$, $m = \boldsymbol{\mu}_0 + (\beta + \beta'/\kappa) \hat{\mathbf{x}}$.
 1314

1315 *Proof.* The SDE in Eq. (7) with fixed parameters $\beta, \beta', \hat{\mathbf{x}}$ is given as
 1316

$$1317 d\mathbf{z}_t = \beta' \hat{\mathbf{x}} dt + \frac{\gamma-1}{2} \beta' \nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t) dt + \sqrt{\gamma \beta'} dW_t \quad (72)$$

1318 where dW_t is a Wiener process and $\mathbf{z}_t \sim p(\mathbf{z} | t)$. Let us insert Theorem 5 to obtain
 1319

$$1320 d\mathbf{z}_t = \beta' \hat{\mathbf{x}} dt + \frac{\gamma-1}{2} \beta' \frac{\boldsymbol{\mu}_0 + \beta f_\theta(\mathbf{z}_t, t) - \mathbf{z}_t}{\beta + \beta_0} dt + \sqrt{\gamma \beta'} dW_t \quad (73)$$

$$1321 = \frac{(\gamma-1)\beta'}{2(\beta_0 + \beta)} \left(\boldsymbol{\mu}_0 + \left(\beta + \frac{2(\beta_0 + \beta)}{\gamma-1} \right) \hat{\mathbf{x}} - \mathbf{z}_t \right) dt + \sqrt{\gamma \beta'} dW_t \quad (74)$$

1322 Setting $\kappa = \frac{(\gamma-1)\beta'}{2(\beta_0 + \beta)}$ and $m = \boldsymbol{\mu}_0 + (\beta + \beta'/\kappa) \hat{\mathbf{x}}$, we find
 1323

$$1324 d\mathbf{z}_t = \kappa(m - \mathbf{z}_t) dt + \sqrt{\gamma \beta'} dW_t \quad (75)$$

1325 which is an Ornstein-Uhlenbeck process. The exact marginal distribution of an Ornstein-Uhlenbeck
 1326 process is given as Uhlenbeck & Ornstein (1930):
 1327

$$1328 \mathbf{z}_{t+\Delta t} \sim m + (\mathbf{z}_t - m) e^{-\kappa \Delta t} + \sqrt{\frac{\gamma \beta'}{2\kappa} (1 - e^{-2\kappa \Delta t})} \cdot \mathcal{N}(0, I) \quad (76)$$

1329 \square

1330 E ADDITIONAL RESULTS

1331 Tab. 6 shows our method is competitive on the QM9 dataset with removed hydrogen atoms, achieving
 1332 state-of-the-art results on validity and FCD. We explicitly model charges on the nodes, enabling
 1333 high validity scores.
 1334

Table 6: Results on the QM9 dataset.

Model	Steps	QM9 (without H)			QM9 (with H)		
		Val. \uparrow	Uniq. \uparrow	FCD \downarrow	Val. \uparrow	Uniq. \uparrow	FCD \downarrow
Train Set		99.3	100.0	0.05	99.3	100.0	0.05
DiGress	500	99.0	96.2	-	95.4 \pm 1.1	97.6 \pm 0.4	-
DiGress (CADD)	500	96.3	83.4	5.25	-	-	-
DisCo	500	99.3 \pm 0.6	-	-	-	-	-
Fisher FM	500	95.3	-	-	-	-	-
Cometh	500	<u>99.6 \pm 0.1</u>	96.8 \pm 0.2	0.25 \pm 0.01	-	-	-
DeFoG	50	98.9 \pm 0.1	96.2 \pm 0.2	0.26 \pm 0.00	-	-	-
DeFoG	500	99.3 \pm 0.0	<u>96.3 \pm 0.3</u>	<u>0.12 \pm 0.00</u>	98.0 \pm 0.0	96.7 \pm 0.0	0.05 \pm 0.00
Ours	50	99.9	93.7	0.30	-	-	-
Ours	500	99.9	96.2	0.09	99.8	96.6	<u>0.08</u>

Table 7: Hyperparameters used for the results in Tabs. 1 and 2. The precision schedule is parameterized as $\beta(t) = \beta_{\text{start}} \cdot (\exp(t \cdot \log(\beta_{\text{end}}/\beta_{\text{start}})) - 1)$.

Dataset	Belief Parameters			Sampler 10% steps		Sampler 100% steps	
	β_{start}	β_{end}	$\beta^{(0)}$	γ (OU)	γ (Euler)	γ (OU)	γ (Euler)
GuacaMol		12.0		20.0	10.0	200.0	200.0
				10.0	20.0	90.0	120.0
	3.0	1.0	20.0			200.0	200.0
							100.0
	Tree						

Table 8: Datasets with training samples and maximum number of nodes. For Moses, we use the `test_scaffolds` split for benchmarking, which is the standard test split.

Dataset	Train samples	Max. Nodes
GuacaMol (Brown et al., 2019)	1.3M	88
Moses (Polykovskiy et al., 2020)	1.6M	30
Planar (Martinkus et al., 2022)	128	64
SBM (Martinkus et al., 2022)	128	187
Tree (Bergmeister et al., 2024)	128	64

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

Table 9: Molecular metrics

Metric	Short	Description
Validity	Val.	The fraction of generated molecules that are chemically valid according to RDKit.
Uniqueness	Uniq.	The number of unique molecules generated (counting permutations as the same molecule) divided by the total number of generated molecules when generating 10,000 molecules.
Novelty	Nov.	The fraction of generated molecules that are not present in the training set.
Valid & Unique	V.U.	The fraction of generated molecules that are both valid and unique.
Valid, Unique & Novel	V.U.N.	The fraction of generated molecules that are valid, unique, and novel.
KL Divergence	KL.	The normalized KL-Divergence between the distributions of various physicochemical descriptors between the generated set and the training set.
Fréchet ChemNet Distance (Moses)	FCD	Distance between the distributions of learned features of the generated molecules and those of the validation set, as computed by a pretrained ChemNet model.
Fréchet ChemNet Distance (GuacaMol)	FCD	Same as for Moses, but normalized with the transform $x \rightarrow \exp(-0.2x)$
Similarity to Nearest Neighbor	SNN	The average Tanimoto similarity between each generated molecule and its nearest neighbor in the test set
Scaffold Similarity	Scaf.	Cosine similarity between the frequencies of scaffold substructures in the generated set and the test set

Table 10: Synthetic graph metrics metrics

Metric	Short	Description
Valid & Unique	V.U.	The fraction of generated graphs that are both valid and unique among 40 generated graphs. For the planar and tree datasets, we check if the generated graphs are planar/tree graphs. The SBM dataset does not have a straightforward validity criterion, therefore a test with Bayesian inference is used with a likelihood threshold.
Average Ratio	Ratio	For each of several metrics, <i>ratio</i> is defined as the Maximum Mean Discrepancy (MMD) between the generated and training set divided by the MMD between the training set and the test set. The average ratio is the ratio metric averaged over all metrics. The metrics are degree, clustering coefficient, orbit counts, spectral-, and wavelet metrics.

1456

1457