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ABSTRACT

Reinforcement learning (RL) has proven effective in strengthening the reasoning
capabilities of large language models (LLMs). A widely adopted method, Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), has shown strong em-
pirical results in training DeepSeek-R1 (Guo et al., 2025a). However, GRPO fails
to update the policy when all responses within a group are incorrect (i.e., all-
negative-sample groups). This limitation underscores a key gap between artificial
and human intelligence: unlike humans, who can learn from mistakes, GRPO
discards these signals. Our first contribution is to introduce a simple framework
that mitigates the all-negative-sample issue by incorporating response diversity
within groups using a step-wise judge model, which can be either directly trained
or adapted from existing LLMs. We prove that this diversification can accelerate
GRPO’s learning dynamics in a simplified setting. We also empirically validate
the proposed stepwise guided policy optimization (SGPO) method, demonstrating
consistent gains across model sizes (7B, 14B, 32B) in offline and online training
on 9 benchmarks, including base and distilled variants. Our results highlight two
advantages: (i) SGPO surpasses GRPO, especially in the early and mid-training
stages where all-negative-sample groups are prevalent; and (ii) SGPO does not re-
quire judge models to generate correct answers, differentiating it from knowledge
distillation methods.

1 INTRODUCTION

The rise of OpenAl-ol (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025a), and Kimi-1.5 (Team
et al., 2025) has highlighted the emergence of large Al reasoning models. Unlike instruction-tuned
models (Brown et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023; Achiam et al., 2023),
which produce quick responses by statistically inferring the next token, these new reasoning models
deliberately decompose complex prompts (e.g., mathematical problems) into intermediate steps and
work through chain-of-thought reasoning (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024;
Xiang et al., 2025). This slower yet more rigorous process yields greater accuracy and makes them
more human-like, enabling success on more complex and challenging tasks (Yang et al., 2018; Shi
et al., 2024; Jain et al., 2025). As the generative Al applications move beyond simple conversational
interfaces, these reasoning models are poised to become increasingly powerful and widely adopted,
positioning them as a key frontier in practice.

At the heart of this revolution lies post-training with outcome-based and verifiable rewards (Cobbe
et al., 2021; Uesato et al., 2022; Zelikman et al., 2022; Singh et al., 2023; Hosseini et al., 2024;
Lightman et al., 2024; Wang et al., 2024; Setlur et al., 2025; Zhang et al., 2025b), together with
reinforcement learning (RL) methods (Schulman et al., 2015; 2017; Li et al., 2024b; Ahmadian
et al., 2024; Shao et al., 2024; Xiong et al., 2025a), appreciated for their simplicity, intuitiveness,
and practicality. A leading approach is proximal policy optimization (PPO) (Schulman et al., 2017),
which relies on a critic (or value) model to estimate advantages. While essential in general RL tasks,
this critic is often unnecessary in large language models (LLMs) due to their deterministic transition
dynamics (Li et al., 2024b). This observation has inspired alternatives such as group relative policy
optimization (GRPO) (Shao et al., 2024) and its extensions (Yu et al., 2025b; Liu et al., 2025b; Chu
et al., 2025; Zhang et al., 2025a), which estimate advantages directly in a group-relative fashion.
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A major limitation of these methods arises when all sampled responses in a group are incorrect
(i.e., all-negative-sample groups), which eliminates the learning signal and halts policy updates. In
GRPO, given a prompt x, responses {y; }lel are drawn from the old policy 7,4 and assigned rewards
{r;}&,, where r; = 1if y; is correct and 0 otherwise. Advantages are obtained by normalizing
r; within the group. If r; = 0 for all ¢, the advantage vanishes, yielding no update. Such groups
are frequent in early and mid-stages of training, when reasoning ability is weak'. This shortcoming
highlights a gap between artificial and human intelligence: humans effectively learn from mistakes,
which act as essential signals during cognitive development (Chialvo & Bak, 1999). In mathematical
reasoning, all-negative-sample groups prompt a child to revise rules and strengthen reasoning ability.

Recent studies suggest that negative samples in RL-based large reasoning model training carry more
nuanced value than previously assumed (Xiong et al., 2025a). Instead of treating negative samples
uniformly, they advocate for principled mechanisms to distinguish negative samples. One prominent
direction is process reward models (PRMs) (Lightman et al., 2024; Wang et al., 2024; Luo et al.,
2024; Setlur et al., 2025; Zhang et al., 2025b), which estimate either the probability of final success
or its change after each reasoning step. However, their reliance on speculative value functions makes
them prone to reward hacking (Skalse et al., 2022).

The key insight is that many reasoning tasks possess a structure where step-level correctness can be
explicitly defined. This motivates the use of a step-wise judge model that evaluates trajectories by
labeling each step as correct (1) or incorrect (0). Such a model can be trained directly (Xiong et al.,
2025b) or adapted from existing LLMs (Zha et al., 2025; He et al., 2025)*. By grounding rewards in
step-level correctness rather than speculative value estimates, our method mitigates reward hacking
and yields clearer signals. Intuitively, this allows negative samples to be differentiated through their
trajectories: while early-stage reasoning trajectories are of low-quality, these remain informative —
much like partial credit in education, where intermediate steps still guide learning.

Our approach enables a holistic evaluation of multi-step reasoning by transforming negative samples
from binary outcome rewards into graded, step-level rewards. Consider a negative sample with
five reasoning steps (a1, ag, as, a4, as). If the first error occurs at as, then a; and ay are correct,
yielding a correctness proportion of % To improve reliability, we adopt a Grok4-Heavy -inspired
strategy where multiple independent judgments are obtained from the judge model, and the error
position is determined by the majority vote. We further introduce two scaling parameters 3 and ~y to
downweight noisy or unreliable signals (see Eq. (2)). Unlike PRMs, our approach avoids memory
overhead and does not require costly step-level human annotations, thereby accelerating training.

Contribution. We propose and analyze a simple and efficient framework that introduces response
diversity within all-negative-sample groups. It is both theoretically grounded in the simplified setting
and empirically effective on various models, distinguishing our approach from existing heuristics.
Our contributions can be summarized as follows:

1. We propose a Stepwise Guided Policy Optimization (SGPO) framework that leverages a
step-wise judge model that identifies the first incorrect step that causes the trajectory to
deviate from correctness. This makes evaluation computationally tractable and reliable. ¢
is important to emphasize that our contribution lies not in designing effective judge models,
but in introducing a framework that leverages step-wise judges to effectively distinguish
negative samples. We also prove that SGPO outperforms GRPO in a simplified setting.

2. We conduct the experiments demonstrating the effectiveness of our approach in improving
LLM reasoning. Evaluations are undertaken across various model sizes (7B, 14B, 32B) in
both offline and online settings with nine benchmarks, including base and distilled variants.
Our results reveal two key benefits: (i) SGPO delivers improvements beyond the reach of
GRPO, especially in the early and mid-stages of training where all-negative-sample groups
are common; (ii) SGPO does not rely on more powerful judge models generating correct
answers, allowing it to be distinguish from knowledge distillation methods.

'To reduce computational cost, training often uses small group sizes and short rollouts, further increasing
the likelihood of all-negative-sample groups.

2We do not have access to their judge models as it’s not publicly released, so we adapt our own from existing
LLMs.
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The additional overhead from all-negative-sample groups remains modest, since the correctness can
be efficiently verified against reference solutions, enabling rapid assessment of reasoning steps. As
the computational and financial costs of closed-source judge models (04-mini, Claude3. 7)rise,
SGPO accelerates learning dynamics, making the trade-off worthwhile. SGPO also outperforms
GRPO with less powerful and more affordable open-source judge models (DeepSeek-V3-0324,
Qwen3-235B-A22B, QwQ-32B), confirming that SGPO remains effective even without cutting-
edge LLMs and underscoring its practicality in lower-resource settings.

2  PRELIMINARIES AND TECHNICAL BACKGROUND

Modern LLMs are built based on the Transformer architecture (Vaswani et al., 2017) and generate
responses y = (a1,...,ax) to user prompts x, where each token a;, € V*, with V denoting the
vocabulary and V* the set of all possible token sequences. We view the LLM as a policy my(y|x)
parameterized by 6, assigning probabilities to responses y given x. The policy operates in an auto-
regressive way as follows:

mo(y|x) = olan | X,a1,...,an-1).

u::]m

For a prompt x with ground-truth response yZ, performance is evaluated using a regular-expression
match on the final answer: r(x,y) = 1 if y matches y} and r(x,y) = 0 otherwise (Hendrycks
etal., 2021). We consider the reasoning tasks defined over a dataset D = (x,y}), where each x is a
problem and y3 its ground-truth solution.

The policy gradient methods (Williams, 1992; Sutton & Barto, 1998) aim to maximize the objective
J(0) = Expy~ms(-|x)[7(X,y)] Where p is the prompt distribution and 7y is an LLM policy. Pa-
rameters are updated via 6 < 0 + nVyJ(0). In practice, trajectories are sampled from an old policy
which is different from 7y, motivating the use of importance sampling as follows:

J(0) = Fxmpiymmsyy (o) | 222 (x, )|

However, this estimator suffers from high variance when 7y deviates from 7y
clipped surrogate objectives are used as follows:

J(0) = Exnpy~moy, (%) {min {%r(x, y),clip {%, 1—¢1+ e} r(x, y)}] )

The group relative policy optimization (GRPO) and its variants (Yu et al., 2025b; Liu et al., 2025b;
Chu et al., 2025; Zhang et al., 2025a) adopt this framework but estimate gradients using groups of
samples. For each prompt x, GRPO samples responses y1i,...,yg from 7y, and maximizes the
objective function in the form of

G
_ 1 7o (yil%) . 7o (yilx) _ .
S Z [mln { 614 ( y1|x)A“ clip {7"90111(3'1"’() l-el+ 6} Al}} ’
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.- 1o stabilize training,
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where € € (0, 1) and the advantage A; is computed as

_ r(xyi)—mean({r(x,y1),.. 7 (X,y )})
Ai = std({r(x,y1),.- ,1( ya)}) < o

where r(x,y;) = 1 if y; matches the ground-truth answer and 0 otherwise.

Remark 2.1. When rewards are identical across all samples within a group, A; = 0 and no update
occurs. This is appropriate for all-positive groups but constitutes a critical limitation for all-negative
groups, where GRPO fails to exploit mistakes as learning signals.

3 MAIN RESULTS

We propose the Stepwise Guided Policy Optimization (SGPO) framework, which employs the step-
wise judge model to detect the first incorrect step that leads a trajectory away from correctness. In a
simplified setting, we prove that SGPO consistently accelerates GRPO’s learning dynamics.
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3.1 A STEP-WISE JUDGE MODEL

We propose a principled reward mechanism for negative samples, wherein the step-wise judge model
differentiates between structurally sound but partially incorrect reasoning and entirely erroneous
responses. This design is motivated by the intuition that an incorrect final answer does not invalidate
the entire reasoning process. For instance, a model may follow a logically coherent sequence of
steps yet make a minor error — such as an arithmetic slip — that leads to an incorrect conclusion.
Treating such cases the same as fundamentally flawed or incoherent reasoning does not make sense.
This refinement remains effective under constraints such as reduced output length, where a model
may be unable to complete the full solution but still demonstrates a valid reasoning trajectory.

Our step-wise judge model can be either trained directly or adapted from existing LLMs. It evaluates
responses sequentially, identifying the first substantive error — such as a computational slip or a
logical fallacy — that causes the trajectory to deviate from correctness. To formalize this, we define
the Reasoning Trajectory Score (RTS) for an incorrect response y, denoted as RTS(y) € [0,1]. The
judge model checks each step in order, pinpoints the first error, and treats all preceding steps as the
valid reasoning segment. RTS(y) is then computed as the ratio of the valid segment length to the
total trajectory length. For example, if y consists of five steps (a1, as, a3, as, as) and the first error
occurs at aq, then RTS(y) = %, indicating that three steps of reasoning are correct before erroneous.

In our experiment, we adapt the judge model from existing LLMs, either closed-source (04-mini,
Claude3.7) or open-source (DeepSeek-V3-0324, Qwen3-235B-A22B, QwQ-32B). To en-
hance reliability and further reduce variance in the reward signal, we employ the following protocol:
(i) alongside the candidate response, we provide a reference solution drawn from a supervised fine-
tuning dataset with correct answers and reasoning trajectories, anchoring the intended solution path
and enabling error localization; and (ii) we elicit step-wise evaluation rather than holistic evaluation.
The judge model justifies correctness or flags an error sentence by sentence, identifies the first clear
mistake, and then traces how this error propagates to the final incorrect conclusion.

Based on the reasoning trajectory score, we introduce a new outcome reward function:

TSGPO(Y) = { 1
1+exp(B(RTS(y)—7))’

where v > 0 and 5 > 0 are two parameters to decide scale threshold and scale intensity, respectively.
This design ensures that the model receives a more informative gradient signal during training,
thereby encouraging refinement of partially correct reasoning rather than indiscriminate penalization
of all incorrect outputs. This specification of r5gpo can be directly incorporated into the advantage
calculation in Eq. (1). As a consequence, we refer to SGPO as GRPO using Eq. (2).

1, if the final answer of y is correct, )
otherwise. 2)

Remark 3.1. Our approach differs from process reward models (PRMs) (e.g. Lightman et al., 2024).
For a prompt x and a prefix of reasoning steps (a1, . ..,a:), a PRM typically predicts either (i) a
prefix-level value V (x,a1.t) = P(final answer correct | X, ay.¢), or (ii) a step-level progress signal
such as Ay = V(x,a1.4) — V(X,a1.4—1). In practice, PRMs are trained by supervised ranking of
intermediate steps and are used to re-rank trajectories or shape training at the prefix level, acting
as approximate value (or Q-value) functions over prefixes. In contrast, SGPO introduces a different
way of producing and using feedback signals: (i) Policy-guided rollouts without search. All trajecto-
ries are sampled from the current policy, without PRM-guided exploration or trajectory alteration;
(ii) Post-hoc first-error identification. A step-wise judge inspects the entire trajectory, pinpoints
the earliest error relative to a reference solution, and converts this into a calibrated scalar reward
rsepo(y) via the reasoning trajectory score; (iii) Stable credit assignment in all-negative-sample
groups. By locating the first definitive mistake only after observing the full trace, SGPO eliminates
the look-ahead ambiguity and feedback loops inherent to PRM-guided search (Zhang et al., 2024a),
while avoiding the need for the judge to solve the problem or approximate a value function.

Remark 3.2. Our approach differs from knowledge distillation (e.g. Kang et al., 2023; Gu et al.,
2024). The student model trained via knowledge distillation inherits the judge model’s failure,
since it only imitates the judge model’s outputs. For instance, consider the AIME problem: “The
twelve letters {A, B,C,D,E,F,G,H,1I,J, K, L} are randomly grouped into six pairs. Each pair
is ordered alphabetically to form a two-letter word, and the six words are listed alphabetically, such
as AB,CD,EF,GH, 1J, K L. The probability that the last word listed contains G is " with m,n
coprime. Find m + n”. Neither the student model (DeepSeek—R1-Distill—-Qwen—7B) nor
the judge models (DeepSeek-V3-0324) can solve this problem within 16 rollouts. In contrast,
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SGPO leverages the judge model to identify mistakes in the student’s reasoning, providing learning
signals that go beyond imitation and enabling improvements unattainable by knowledge distillation.

3.2 ACCELERATING LEARNING DYNAMICS

We present a theoretical analysis to explain why SGPO outperforms GRPO. To this end, we consider
a simplified setting with a reasoning horizon of H = 2, where each step admits two possible actions
ap € 1,2 for h = 1, 2. This configuration follows prior works (Dayan, 1991; Li et al., 2024b), where
analogous examples were employed to validate theoretical insights. Without loss of generality, we
assume a unique ground-truth response yx = (2,2) for the prompt x. The algorithm iteratively
updates the policy parameter 6 using samples drawn from the current policy my. For clarity, we
restrict the sample space to (1,1),(2,1),(2,2), excluding (1,2) since a correct reasoning step is
unlikely to, and should not, follow an incorrect precursor.

To illustrate the effect of SPO, we analyze the learning dynamics of SGPO and GRPO in this simpli-
fied setting. Under GRPO, the rewards are assigned as ((2,2)) = 1 and r((2,1)) = r((1,1)) =0,
meaning that only selecting the “good” action 2 at both steps yields a positive reward. In contrast,
SGPO assigns 756p0((2,2)) = 1, rseeo((2,1)) = 3 and 7see0((1,1)) = 0. The difference is that
partial progress — choosing the “good” action 2 in the first step but failing at the second — receives
no credit in GRPO yet proportional credit in SGPO. Here, % is chosen for illustrative purposes to
convey the qualitative behavior of the reward mechanism, while the exact values used in experiments
are determined by Eq. (2).

In our analysis, we examine the population-level learning dynamics with G = 2, omitting clipping

and importance sampling. Let pé’;{,O and qég,o denote the probability of selecting the “good” action

in the first step at iteration k£ under GRPO, and that of selecting the “good” action in the second

step conditioned on a correct first step. Analogously, pé’é)Po and qgé)Po denote the corresponding

probabilities under SGPO. Our theoretical findings are summarized in the following theorem.
Theorem 3.3. Suppose that p(G(;)PO = q(G??)PO = p(s(;)o = qég)o = % and n = 1° for GRPO and SGPO.
Then, we have that (i) GRPO and SGPO achieve successful learning: p(GI;)PO, q(G’;LO, p(SIZ)PO, qggt,o —1

as k — +o0; (ii) SGPO outperforms GRPO in learning the “good” action in the first step: p(S}?PO >

p(GI;)PO for all k > 1; (iii) SGPO outperforms GRPO in learning the optimal policy: pgg,oqgélo >
o) k>1
Perroderro for a =z L

Proof Sketch. For (i), we first show the sequence

(pg]é)Po)kzl is strictly increasing and bounded in "
(0,1) (see Lemmas C.4(i) and C.4(ii)). Thus, it ossf
converge to some value ¢ € (0,1]. Take limit as osf
k — oo on both sides of the update rule, we obtain ossp

the only feasible solution ¢ = 1. Similarly, we show oaf
k k k . Z o)

qéG)PovpéR)PO7 Q((gR)po — las k — oo. For (ii), we a

use induction. For the base case, we use the update

rule and Lemma C.1(ii). Assume pgé)Po > pé’;éo =l

for some k£ > 1, we derive pé’é;fé) > pggé) us- ok
ing Lemmas C.1(i) and C.1(ii). For (iii), we show . ——SGPO).

pé’;)Po = qé’;)PO for all £ > 1 using induction. It suf- Iteration k

k k k
fices to show p éG)POqéG)PO > (p éR)PO)Q forall £ = 1. Figure 1: SGPO outperforms GRPO in learn-
We prove using induction again. For the base case, ine a “eood” action in the first ste
we use Lemma C.1(iv). It remains to show that g4 8 p-
Ps(se)poCIéG)Po > (Pc(;R)po)z implies pésgé)QéG;c} ) > (p(GR;”_é ))2- Note that Lemma C.4(iii) guarantees

pgé)Po > qélg)o forall £ > 1. Thus, Lemma C.2 implies that

Comparison of evolution of p

p(k+1)q(k+1) _ 1 > 1
SGPO 4SGPO k k k 2
A(péGP)O)B(péGP)U xqésp)o C < p5530q5§§o> ’

3We use the unit stepsize for simplicity. Our results are valid for any sufficiently small step size.




Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on offline RL training. For each model, we report the baseline perfor-
mance before RL training. We then report RL training results that uses only negative samples and
positive samples, respectively. Performance across validation and training dataset (I,IMO) is shown.

AMC23 AIME24 MATH500 Olympiads LIMO
avg@le avgllée pass@l pass@l pass@l
Qwen2.5-14B-Instruct
Baseline 58.59 14.58 80.40 41.78 31.70
Negative Samples only 61.88 15.21 80.40 42.37 30.11
Positive Samples only 61.72 14.58 79.80 42.07 38.68
Qwen2.5-32B-Instruct
Baseline 64.22 17.08 83.60 4593 34.64
Negative Samples only 69.53 20.42 83.00 46.37 36.47
Positive Samples only 66.87 18.75 83.60 47.41 41.86

where the functions A(-), B(-) and C(+) are defined in Lemma C.2. By using Lemma C.1(iii), we
complete the induction by applying our induction hypothesis. (]

Remark 3.4. Theorem 3.3 presents one of the first theoretical analyses of GRPO with multiple sam-
ples and multi-step reasoning in the context of LLM reasoning. The first part establishes that SGPO
converges to the optimal policy. The second and third parts demonstrate that SGPO both acceler-
ates the acquisition of partially correct reasoning steps and preserves partial reasoning ability even
when the final answer is incorrect. Importantly, the theorem provides a per-iteration comparison
of learning under different reward mechanisms — an aspect rarely examined in previous works. The
provable improvement in learning the optimal policy is also consistent with our numerical findings
as partly shown in Figure 1; see Appendix C.4 for further details.

4 EXPERIMENTS

We demonstrate the benefits of differentiating negative samples through experiments in both offline
and online settings. Offline RL is more computationally efficient, offering faster training, reduced
memory consumption, and improved stability. In contrast, online RL provides greater flexibility and
learning capacity, and has become the standard approach in large-scale reasoning models such as
DeepSeek-R1 (Guo et al., 2025a).

4.1 OFFLINE TRAINING

For baselines, we consider strong models without further fine-tuned on math-specific SFT datasets,
namely Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct. Prior work showed that a
small set of carefully curated prompts significantly enhance the reasoning capability. Accordingly,
we adopt the GATIR/LIMO dataset (Ye et al., 2025) as the training set, which has demonstrated
strong potential for improving the reasoning performance of large-scale (32B) models in offline
SFT. Evaluation is conducted on four standard math reasoning benchmarks: AIME24, AMC23,
MATH500 (Hendrycks etal.,2021), and OlympiadBench (He et al., 2024). Our aim is to highlight
the rich learning signal contained in all-negative-sample groups, showing that training exclusively
on them can still yield performance gains. For benchmarks with fewer than 100 questions (AMC2 3,
AIME24), we report avg@16 results with a decoding temperature of 0.6 and Top P = 0.95.
For benchmarks with more than 100 questions, we report pass@1 results using greedy decoding.
Across all experiments, the maximum decoding length is set to 32768 tokens.

We conduct all response generation and model updates using offline RL (Peters & Schaal, 2007)
with the standard GRPO mechanism. Specifically, the model is updated with advantages estimated
from the offline dataset (see, e.g., Peng et al., 2019; Li et al., 2024b). For each prompt, we sample six
responses per group and identify all-negative-sample groups in which all responses yield incorrect
answers. Within these groups, we apply the step-wise judge model to assign differentiated rewards
to negative samples, which are then used for offline RL updates. The model is trained for three
epochs with a learning rate of 2 x 107, As a contrastive baseline, we also perform offline RL using



Under review as a conference paper at ICLR 2026

Table 2: Evaluation results on online RL training. We refer to BASELINE as the performance of the
original model without RL finetuning. Overall is average performance across all the benchmarks.
Note that the training dataset is AIME1997-2023. For DeepSeek—R1-Distill-Qwen-7B,
we report additional results, including (i) compatibility with more judge models and (ii) ablation on
the stability parameters 3 and ~.

‘Kaoyan GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 GaoKao AMC23 ‘Overall

pass@l pass@l pass@l pass@l avg@le avg@le avg@lée avg@lée avgllé avg
DeepSeek-R1-Distill-Qwen-7B
BASELINE 50.25 41.43 87.00 49.93 73.75 40.62 52.92 80.22 89.53 62.85
GRPO 55.78 43.33 89.40 56.00 71.04 36.68 52.08 80.30 88.91 63.72
SGPO+04-MI1N1-0416 57.79 46.19 90.80 54.67 75.00 38.33 54.58 81.33 90.00 65.41
SGPO+DEEPSEEK-V3-0324 54.77 47.17 91.00 55.11 77.29 40.42 56.87 82.28 90.83 66.19
SGPO+QwEN3-235B-A22B 56.78 46.67 92.00 54.67 73.33 37.92 55.63 81.17 90.63 65.42
SGPO+QwQ-32B 52.26 45.24 92.00 53.78 75.00 35.21 56.46 82.28 91.88 64.91
SGPO+QwQ-32B W/0 {3,7} 58.29 42.38 90.20 55.11 74.58 38.69 53.63 81.24 88.75 65.08
DeepSeek-R1-Distill-Llama-8B
BASELINE 29.15 23.81 77.40 41.48 61.46 27.92 42.29 72.78 87.97 51.58
GRPO 35.68 28.33 84.00 46.32 57.08 28.33 42.08 68.99 86.72 53.06
SGPO+CrLauDE-3.7 39.70 29.05 83.60 48.44 58.96 24.58 39.37 71.52 89.06 53.81
Qwen2.5-14B-Instruct
BASELINE 37.69 49.52 80.40 41.78 21.88 13.13 14.58 41.14 58.59 39.85
GRPO 43.22 47.14 80.20 43.11 21.88 13.13 13.33 39.16 59.84 40.11
SGPO+04-M1N1-0416 38.69 53.33 81.00 44.00 22.92 16.67 14.17 39.00 59.22 41.00
Qwen2.5-32B-Instruct
BASELINE 45.73 53.81 83.60 45.93 26.87 12.29 17.08 44.15 64.22 43.74
GRPO 48.24 52.86 83.20 45.93 22.50 12.08 21.67 45.73 67.34 44.39
SGPO+04-M1N1-0416 48.24 53.81 83.00 46.81 29.79 14.58 19.58 45.09 69.53 45.06
QwQ-32B

BASELINE 64.32 62.38 94.60 68.74 89.39 68.54 77.71 86.88 97.03 78.84
GRPO 71.36 63.81 94.60 69.48 88.75 64.38 75.83 87.11 97.03 79.15
SGPO+DEEPSEEK-V3-0324 73.37 64.76 95.00 70.22 88.33 66.46 78.33 87.11 97.97 80.17

only positive rollouts with correct answers. This parallel setup enables a direct comparison between
learning from exclusively negative reasoning trajectories and from exclusively positive ones.

We conduct offline RL training to demonstrate that utilizing all-negative-sample groups can enhance
the reasoning abilities of LLMs. For comparison, we also include positive-only offline RL training.
As shown in Table 1, SGPO with negative samples consistently improve performance across most of
benchmarks, in some cases even surpassing models trained solely on positive samples. Notably, in
the 14B model experiment, training on negative samples yields improvements on four benchmarks
relative to the positive-sample baseline. These findings underscore the utility of negative samples,
which should not be discarded in online GRPO training; see more discussions in Section 4.4.

4.2 ONLINE TRAINING

For baselines, we consider applying Qwen?2.5-14B-Instruct, Qwen2.5-32B-Instruct,
QwQ—-32B,DeepSeek-R1-Distill-Qwen-7Band DeepSeek—-R1-Distill-Llama-38B.
Online GRPO training is implemented using the ver1 framework (Sheng et al., 2025). For the step-
wise judge model, we adopt a diverse set of LLMs, ranging from closed-source models with strong
reasoning capabilities (04-mini, Claude3. 7) to open-source models that are more accessible to
the community, including DeepSeek-V3-0324, Qwen3-235B-A22B, and QwQ—-32B.

Compared to offline RL, online RL yields larger improvements in a model’s reasoning capabil-
ities. Since our baselines already include strong distillation models, some benchmarks used in
offline evaluation are nearing saturation. To provide a better assessment, we expand our evalu-
ation suite beyond AMC23, AIME24, MATH500, and OlympiadBench by including ATME25,
GradeSchool (Ye et al., 2025), CHMath24, Kaoyan, and Gaokao. Specifically, CHMath24
is the benchmark from the 2024 Chinese High School Mathematics League Competition, Gaokao
from China’s 2024 National College Entrance Examination, Kaoyan from the Chinese Graduate
School Entrance Examinations, and GradeSchool targets elementary-level mathematical reason-
ing. Among these, CHMath24 and Gaokao each contain fewer than 100 questions, for which we
apply the temperature-based decoding for evaluation.

For GRPO training, we use the AIME collections from 1997 to 2023 provided in DeepScaler (Luo
et al., 2025b), training for 12 epochs. All training questions are in English, while evaluation bench-
marks include multilingual questions. Notably, negative samples learned during training generalize
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Table 3: Evaluation results are reported for DeepSeek-R1-Distill-Qwen-7B across four
independent runs. First column indicates judge models and its corresponding reward stability setup.

Kaoyan  GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 GaoKao amMc23 Overall
pass@l pass@l pass@l pass@l avg@le avg@le avglle avg@le avg@le avg

DeepSeek-R1-Distill-Qwen-7B-SGPO
+Qwen3-235B-A22B | 53.90 £2.10 4655024 91.30+0.87 5345+135 7448+ 1.10 3740+ 1.05 5573+139 81.33+0.18 90.19+0.48 | 64.92+0.37

+QwQ-32B 53.89+1.66 44884136 91.15+£084 53.71+£0.74 7433+129 37.03+123 5476+ 1.87 81.91+£0.53 90.08+1.23 | 64.64 +0.41
+QwQ-32Bw/o {8y} | 56.14 £2.76 4453 +£241 90.10 £0.66 53.64+1.08 7389+ 1.13 38704 1.80 53.63+2.15 81.24+0.50 88.83 +0.81 | 64.5240.57

Table 4: Evaluation results are reported for DeepSeek-R1-Distill-Qwen—7B as base model
and QwQ-32B as judge model with and without majority voting.

Kaoyan GradeMath  MATH500 Olympiads CHMath24 AIME25 AIME24 GaoKao AMC23 Overall
pass@l pass@l pass@l pass@l avgl16 avg@16 avg@16 avgl16 avg@16 avg

DeepSeek-R1-Distill-Qwen-7B-SGPO

53.89£1.66 44.88+1.36 91.15+0.84 53.714+0.74 74.33+£1.29 37.03+1.23 54.76+1.87 81.91+£0.53 90.08+1.23
56.66 £1.66 4524+£2.16 91.35+0.50 53.824+094 74.19+£092 37.35+225 55.81+£0.99 82124043 90.53 +1.07

+QwQ-32B
+QwQ-32B with voting

64.64 £0.41
65.23 £0.18

Table 5: Evaluation results are reported in terms of pass@16 across benchmarks. The first two
columns show the total number of questions and the number solved within 16 attempts, while the
last two columns report the number of unique questions solved by one method but not the other.

| SGPO - pass@16 | GRPO-pass@1l6 | SGPO\ GRPO | GRPO \ SGPO

AIME24 23/30 19/30 4 0
AIME25 21/30 21/30 1 1
Gaokao 70/79 68/79 2 0
AMC23 39/40 38/40 1 0
CHMath24 27/30 25/30 2 0

well to out-of-domain mathematical reasoning tasks. SGPO training follows the same setup. With
batch-simultaneous processing, judge model calls take 90 seconds per batch of negatives, adding
10% wall-clock time relative to rollout and update. Step-wise supervision is applied only to all-
negative-sample groups during the first three epochs, as we expect this duration to suffice for the
model to internalize corrective signals; beyond this point, unresolved examples are more indicative
of model capacity limits than learnability. For all models, rollout length is fixed at 8192 tokens and
group size at 8. Models less than 8B are trained on 8§ H100, 14B models on 16 H100, and 32B
models on 32 H200. We adopt the default KL coefficient and learning rate from the verl training
script (Sheng et al., 2025), and use the LIMO evaluation script (Ye et al., 2025), both of which are
standard practices in the community.

A key insight from Table 2 is that stronger models generate higher-quality negative samples, which
substantially aid learning. As model capability improves, so does the informativeness of its mis-
takes. Negative samples broadly fall into two categories: (i) correct reasoning trajectories truncated
by output length limits, and (ii) trajectories containing logical errors. The first type remains highly
valuable — yet discarded in GRPO - since it preserves meaningful reasoning steps, motivating our
step-wise judge model. The second type, though incorrect, still provides informative signals, espe-
cially when all samples fail on genuinely challenging problems. Notably, stronger distilled models
average 6K tokens per response, compared to only 1K tokens for weaker base models, making trun-
cated but informative negative samples more common in the stronger case. Likewise, their erroneous
responses also tend to be richer and more useful for step-level judgment.

4.3 OTHER ABLATION STUDIES

To assess reliability of judge models, we evaluate our approach not only with strong closed-source
reasoning models but also with publicly available models of weaker capacity: DeepSeek-V3,
Qwen3-235B and QwQ-32B. As shown in Table 2 (best-tuned results) and Table 3 (multiple runs
with weaker judges), performance remains stable, indicating that weaker judges do not significantly
degrade outcomes. We attribute this reliability to two design choices: (i) first-step error identification
with a reference answer. SGPO requires the judge only to verify each step against the reference, not
to solve the problem, thereby reducing task difficulty and avoiding the pitfalls of generic PRMs;
(ii) reward stability parameters 8 and -y, which filter and smooth noisy signals. As confirmed by
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ablations, removing 3 and ~y increases variance and weakens performance. To improve verification,
we incorporate a Grok4—Heavy-inspired strategy: multiple independent evaluations by the judge
model, with the error position selected by majority voting. Using QwQ—-32B as the judge model,
DeepSeek-R1-Distill-Qwen-7B as the base model, and four rollouts per judgment, we have
observed noticeable gains in consistency and stability (see Table 4).

While avg@16 measures average performance across rollouts, pass@16 reflects the ability to
solve new questions with multiple attempts. As shown in Table 5, SGPO’s gains in pass@16 stem
directly from leveraging negative samples. Learning only from solvable problems reinforces existing
ability, whereas all-negative-sample groups correspond to genuinely difficult questions where GRPO
consistently fails. These are precisely the cases where additional feedback can be most valuable. By
providing step-level signals, SGPO rewards near-misses by reinforcing correct reasoning up to the
first error, penalizes early failures by discouraging persistent error modes, and exposes blind spots
by turning hard cases into informative training signals. In this regard, SGPO provides benefits that
GRPO cannot match, covering more hard problems and providing sharper credit assignment, which
translates to faster and more reliable learning under realistic compute budgets.
DeepSeek-R1-Distill-Llama-8B

By leveraging richer early-stage signals from 0.70 SGPO rewards ended ——ors
negative samples, SGPO can achieve faster and 065 — — GRPO
stronger performance than GRPO. As shown

in Figure 2, SGPO continues improving be- 0.60 1

yond epoch 5 by solving several additional hard
training problems, whereas GRPO plateaus.
This improvement stems from informative neg- 0.50 4
ative samples that help resolve previously un-
solved problems as also shown in Table 5. We
also find that SGPO converges more rapidly to a 0.40 i i i i i
deterministic policy, as illustrated by the train- 0 2 Y ks 8 10

ing trajectories in Figure 3 (see Appendix B). Figure 2: Evaluation results on GRPO and SGPO.
SGPO rewards end at epoch 3.

4.4 DISCUSSIONS

We highlight the motivation for evaluating both offline and online RL. In the offline setup, training
uses only negative samples, allowing us to directly test whether incorrect or incomplete reasoning
trajectories can improve performance. In the online setup, we simulate realistic GRPO training,
where batches contain a random mix of positive and negative samples. This demonstrates that
negative samples are not only effective in isolation but also remain valuable in practical settings
with noisier, mixed data. While mixing positives and negatives introduces noise, simply discarding
negative samples does not stabilize training; in several cases, the performance of GRPO even drops
below baseline, as the model overfits to problems it can already solve.

This instability arises from limited out-of-domain generalization and catastrophic forgetting. With-
out exposure to challenging or partially correct reasoning, the model risks overfitting to easy cases,
reinforcing shallow heuristics instead of developing robust problem-solving skills. The absence of
diverse failure cases can also cause catastrophic forgetting, degrading performance on previously
solvable tasks. Incorporating negative samples mitigates these issues, as SGPO consistently outper-
forms GRPO on Chinese OOD math benchmarks. Nonetheless, further work is needed to design
more stable training frameworks, including richer reward diversification mechanisms for handling
negative samples and corresponding efficient RL methods beyond GRPO.

5 CONCLUSION

We propose a simple and efficient framework that introduces response diversity within all-negative-
sample groups and prove, in a simplified setting, that such diversification can accelerate the learning
dynamic of GRPO. Empirically, our approach can yield consistent improvements across model sizes
in both offline and online training over nine benchmarks, including base and distilled variants. Future
works include extending theoretical results to broader multi-step reasoning tasks, applying response
diversity to accelerate other RL methods, and designing lightweight, task-specific reward models
that evaluate reasoning steps correctly even if they cannot solve the full problem.



Under review as a conference paper at ICLR 2026

REFERENCES

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. GPT-4 technical report. ArXiv Preprint: 2303.08774, 2023. (Cited
on page 1.)

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. Optimality and approximation with policy
gradient methods in markov decision processes. In COLT, pp. 64—66, 2020. (Cited on page 21.)

S. Agarwal, Z. Zhang, L. Yuan, J. Han, and H. Peng. The unreasonable effectiveness of entropy
minimization in LLM reasoning. ArXiv Preprint: 2505.15134, 2025. (Cited on page 21.)

A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Ustiin, and S. Hooker.
Back to basics: Revisiting REINFORCE-style optimization for learning from human feedback in
LLMs. In ACL, pp. 12248-12267, 2024. (Cited on page 1.)

D. Arora and A. Zanette. Training language models to reason efficiently. ArXiv Preprint:
2502.04463, 2025. (Cited on page 19.)

M. G. Azar, Z. Guo, B. Piot, R. Munos, M. Rowland, M. Valko, and D. Calandriello. A general
theoretical paradigm to understand learning from human preferences. In AISTATS, pp. 4447—
4455, 2024. (Cited on page 20.)

Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirho-
seini, C. McKinnon, et al. Constitutional Al: Harmlessness from Al feedback. ArXiv Preprint:
2212.08073, 2022. (Cited on page 20.)

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda,
T. Lehmann, H. Niewiadomski, P. Nyczyk, et al. Graph of thoughts: Solving elaborate prob-
lems with large language models. In AAAIL pp. 1768217690, 2024. (Cited on pages 1 and 19.)

X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H. Ding, K. Dong, Q. Du, Z. Fu, et al. Deepseek
LLM: Scaling open-source language models with longtermism. ArXiv Preprint: 2401.02954,
2024. (Cited on page 20.)

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In NeurIPS, pp. 1877-1901,
2020. (Cited on page 1.)

H. Chen, G. He, L. Yuan, G. Cui, H. Su, and J. Zhu. Noise contrastive alignment of language models
with explicit rewards. In NeurIPS, pp. 117784-117812, 2024a. (Cited on page 20.)

H. Chen, H. Zhao, H. Lam, D. Yao, and W. Tang. MallowsPO: Fine-tune your LLM with
preference dispersions. In ICLR, 2025a. URL https://openreview.net/forum?id=
d8cnezVcaW. (Cited on page 20.)

P. Chen, X. Chen, W. Yin, and T. Lin. ComPO: Preference alignment via comparison oracles. ArXiv
Preprint: 2505.05465, 2025b. (Cited on page 20.)

Q. Chen, L. Qin, J. Liu, D. Peng, J. Guan, P. Wang, M. Hu, Y. Zhou, T. Gao, and W. Che. Towards
reasoning era: A survey of long chain-of-thought for reasoning large language models. ArXiv
Preprint: 2503.09567, 2025c. (Cited on page 19.)

X. Chen, J. Xu, T. Liang, Z. He, J. Pang, D. Yu, L. Song, Q. Liu, M. Zhou, Z. Zhang, et al. Do not
think that much for 2+3 = ? on the overthinking of ol-like LLMs. ArXiv Preprint: 2412.21187,
2024b. (Cited on page 19.)

J. Cheng and B. Van Durme. Compressed chain of thought: Efficient reasoning through dense
representations. ArXiv Preprint: 2412.13171, 2024. (Cited on page 19.)

D. R. Chialvo and P. Bak. Learning from mistakes. Neuroscience, 90(4):1137-1148, 1999. (Cited
on page 2.)

10


https://openreview.net/forum?id=d8cnezVcaW
https://openreview.net/forum?id=d8cnezVcaW

Under review as a conference paper at ICLR 2026

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. Journal of
Machine Learning Research, 24(240):1-113, 2023. (Cited on page 1.)

P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In NeurIPS, pp. 4302-4310, 2017. (Cited on page 20.)

X. Chu, H. Huang, X. Zhang, F. Wei, and Y. Wang. GPG: A simple and strong reinforcement
learning baseline for model reasoning. ArXiv Preprint: 2504.02546, 2025. (Cited on pages 1
and 3.)

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, et al. Training verifiers to solve math word problems. ArXiv Preprint: 2110.14168,
2021. (Cited on pages 1 and 20.)

G. Cui, Y. Zhang, J. Chen, L. Yuan, Z. Wang, Y. Zuo, H. Li, Y. Fan, H. Chen, W. Chen, et al. The
entropy mechanism of reinforcement learning for reasoning language models. ArXiv Preprint:
2505.22617, 2025. (Cited on page 20.)

P. Dayan. Reinforcement comparison. In Connectionist Models, pp. 45-51. Elsevier, 1991. (Cited
on page 5.)

B. Ding, C. Qin, L. Liu, Y. K. Chia, B. Li, S. Joty, and L. Bing. Is GPT-3 a good data annotator? In
ACL, pp. 11173-11195, 2023. (Cited on page 20.)

H. Dong, W. Xiong, D. Goyal, Y. Zhang, W. Chow, R. Pan, S. Diao, J. Zhang, K. Shum, and
T. Zhang. RAFT: Reward ranked fine-tuning for generative foundation model alignment. Trans-
actions on Machine Learning Research, 2023. URL https://openreview.net/forum?
1id=m7p507zblY. (Cited on page 20.)

H. Dong, W. Xiong, B. Pang, H. Wang, H. Zhao, Y. Zhou, N. Jiang, D. Sahoo, C. Xiong, and
T. Zhang. RLHF workflow: From reward modeling to online RLHF. Transactions on Machine
Learning Research, 2024. URL https://openreview.net/forum?id=al3aYUU9%eU.
(Cited on page 20.)

K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Model alignment as prospect
theoretic optimization. In ICML, pp. 12634-12651, 2024. (Cited on page 20.)

G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang. Towards revealing the mystery behind chain
of thought: A theoretical perspective. In NeurlPS, pp. 70757-70798, 2023. (Cited on page 19.)

K. Gandhi, D. Lee, G. Grand, M. Liu, W. Cheng, A. Sharma, and N. D. Goodman. Stream of search
(SOS): Learning to search in language. ArXiv Preprint: 2404.03683, 2024. (Cited on page 19.)

L. Gao, J. Schulman, and J. Hilton. Scaling laws for reward model overoptimization. In ICML, pp.
10835-10866, 2023. (Cited on page 19.)

F. Gilardi, M. Alizadeh, and M. Kubli. ChatGPT outperforms crowd workers for text-annotation
tasks. Proceedings of the National Academy of Sciences, 120(30):2305016120, 2023. (Cited on
page 20.)

Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, M. Huang, N. Duan, and W. Chen. ToRA: A tool-
integrated reasoning agent for mathematical problem solving. In ICLR, 2024. URL https:
//openreview.net/forum?id=Ep0Tt jVoap. (Cited on page 19.)

Y. Gu, L. Dong, F. Wei, and M. Huang. MiniLLM: Knowledge distillation of large language models.
In ICLR, 2024. URL https://openreview.net/forum?id=5h0gf7IB%%. (Cited on
page 4.)

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning. ArXiv
Preprint: 2501.12948, 2025a. (Cited on pages 1, 6, 19, and 20.)

11


https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=5h0qf7IBZZ

Under review as a conference paper at ICLR 2026

J. Guo, Y. Wu, J. Qiu, K. Huang, X. Juan, L. Yang, and M. Wang. Temporal consistency for LLM
reasoning process error identification. ArXiv Preprint: 2503.14495, 2025b. (Cited on page 19.)

S. Hao, Y. Gu, H. Ma, J. Hong, Z. Wang, D. Wang, and Z. Hu. Reasoning with language model is
planning with world model. In EMNLP, pp. 8154-8173, 2023. (Cited on page 19.)

S. Hao, Y. Gu, H. Luo, T. Liu, X. Shao, X. Wang, S. Xie, H. Ma, A. Samavedhi, Q. Gao, Z. Wang,
and Z. Hu. LLM reasoners: New evaluation, library, and analysis of step-by-step reasoning with
large language models. In COLM, 2024a. URL https://openreview.net/forum?id=
b0y 6£fbSUGO. (Cited on page 19.)

S. Hao, S. Sukhbaatar, D. Su, X. Li, Z. Hu, J. Weston, and Y. Tian. Training large language models
to reason in a continuous latent space. ArXiv Preprint: 2412.06769, 2024b. (Cited on page 19.)

A. Havrilla, Y. Du, S. C. Raparthy, C. Nalmpantis, J. Dwivedi-Yu, M. Zhuravinskyi, E. Hambro,
S. Sukhbaatar, and R. Raileanu. Teaching large language models to reason with reinforcement
learning. ArXiv Preprint: 2403.04642, 2024. (Cited on page 19.)

C. He, R. Luo, Y. Bai, S. Hu, Z. Thai, J. Shen, J. Hu, X. Han, Y. Huang, Y. Zhang, et al. Olympiad-
Bench: A challenging benchmark for promoting AGI with Olympiad-level bilingual multimodal
scientific problems. In ACL, pp. 3828-3850, 2024. (Cited on page 6.)

T. He, R. Mu, L. Liao, Y. Cao, M. Liu, and B. Qin. Good learners think their thinking: Generative
PRM makes large reasoning model more efficient math learner. ArXiv Preprint: 2507.23317,
2025. (Cited on page 2.)

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the MATH dataset. In NeurIPS Datasets and
Benchmarks Track, 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.
(Cited on pages 3, 6, and 20.)

J. Hong, N. Lee, and J. Thorne. ORPO: Monolithic preference optimization without reference
model. In EMNLP, pp. 11170-11189, 2024. (Cited on page 20.)

A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-STar: Training veri-
fiers for self-taught reasoners. In COLM, 2024. URL https://openreview.net/forum?
id=stmgBSW2dV. (Cited on pages 1 and 20.)

J. Huang and K. C-C. Chang. Towards reasoning in large language models: A survey. In ACL, pp.
1049-1065, 2023. (Cited on page 19.)

K. Huang, J. Guo, Z. Li, X. Ji, J. Ge, W. Li, Y. Guo, T. Cai, H. Yuan, R. Wang, Y. Wu, M. Yin,
S. Tang, Y. Huang, C. Jin, X. Chen, C. Zhang, and M. Wang. MATH-Perturb: Benchmarking
LLMs’ math reasoning abilities against hard perturbations. ArXiv Preprint: 2502.06453, 2025.
(Cited on page 19.)

S. Huang, Z. Ma, J. Du, C. Meng, W. Wang, and Z. Lin. Mirror-consistency: Harnessing inconsis-
tency in majority voting. In EMNLP, pp. 2408-2420, 2024. (Cited on page 19.)

H. Hwang, D. Kim, S. Kim, S. Ye, and M. Seo. Self-explore: Enhancing mathematical reasoning in
language models with fine-grained rewards. In EMNLP, pp. 1444—-1466, 2024. (Cited on page 20.)

A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry, A. Beutel,
A. Carney, et al. OpenAl ol system card. ArXiv Preprint: 2412.16720, 2024. (Cited on pages 1
and 19.)

N. Jain, K. Han, A. Gu, W-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, and I. Stoica.
LiveCodeBench: Holistic and contamination free evaluation of large language models for code.
In ICLR, 2025. URL https://openreview.net/forum?id=chfJJYC31iL. (Cited on
page 1.)

M. Kang, S. Lee, J. Baek, K. Kawaguchi, and S. J. Hwang. Knowledge-augmented reasoning
distillation for small language models in knowledge-intensive tasks. In NeurIPS, pp. 48573—
48602, 2023. (Cited on page 4.)

12


https://openreview.net/forum?id=b0y6fbSUG0
https://openreview.net/forum?id=b0y6fbSUG0
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=stmqBSW2dV
https://openreview.net/forum?id=stmqBSW2dV
https://openreview.net/forum?id=chfJJYC3iL

Under review as a conference paper at ICLR 2026

T. Khot, H. Trivedi, M. Finlayson, Y. Fu, K. Richardson, P. Clark, and A. Sabharwal. Decomposed
prompting: A modular approach for solving complex tasks. In ICLR, 2023. URL https:
//openreview.net/forum?id=_nGgzQjzaRy. (Cited on page 19.)

M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with language models. In ICLR,
2023. URL https://openreview.net/forum?id=10uNUgI5K1. (Cited on page 20.)

A. K. Lampinen, 1. Dasgupta, S. C. Y. Chan, H. R. Sheahan, A. Creswell, D. Kumaran, J. L. Mc-
Clelland, and F. Hill. Language models, like humans, show content effects on reasoning tasks.
PNAS Nexus, 3(7):pgae233, 2024. (Cited on page 19.)

Y. LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1-62, 2022. (Cited on page 19.)

H. Lee, S. Phatale, H. Mansoor, T. Mesnard, J. Ferret, K. Lu, C. Bishop, E. Hall, V. Carbune,
A. Rastogi, et al. RLAIF vs. RLHF: Scaling reinforcement learning from human feedback with
Al feedback. In ICML, pp. 26874-26901, 2024. (Cited on page 20.)

L. Lehnert, S. Sukhbaatar, D. Su, Q. Zheng, P. McVay, M. Rabbat, and Y. Tian. Beyond A*:
Better planning with transformers via search dynamics bootstrapping. In COLM, 2024. URL
https://openreview.net/forum?id=SGoVICOuO£f. (Cited on page 19.)

Z.1i, H. Liu, D. Zhou, and T. Ma. Chain of thought empowers transformers to solve inherently serial
problems. In ICLR, 2024a. URL https://openreview.net/forum?id=3EWTEy 9MTM.
(Cited on page 19.)

Z. L, T. Xu, Y. Zhang, Z. Lin, Y. Yu, R. Sun, and Z-Q. Luo. ReMax: A simple, effective, and
efficient reinforcement learning method for aligning large language models. In ICML, pp. 29128-
29163, 2024b. (Cited on pages 1, 5, 6, and 21.)

Z. Li, C. Chen, T. Xu, Z. Qin, J. Xiao, Z-Q. Luo, and R. Sun. Preserving diversity in supervised
fine-tuning of large language models. In ICLR, 2025. URL https://openreview.net/
forum?id=NQEe7B7bSw. (Cited on page 19.)

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. In ICLR, 2024. URL https:
//openreview.net/forum?id=v8LOpN6EO1. (Cited on pages 1, 2, 4, 19, and 20.)

T. Liu, Y. Zhao, R. Joshi, M. Khalman, M. Saleh, P. J. Liu, and J. Liu. Statistical rejection sam-
pling improves preference optimization. In /CLR, 2024a. URL https://openreview.net/
forum?id=xbjSwwrQOe. (Cited on page 20.)

T. Liu, Z. Qin, J. Wu, J. Shen, M. Khalman, R. Joshi, Y. Zhao, M. Saleh, S. Baumgartner, J. Liu,
et al. LiPO: Listwise preference optimization through learning-to-rank. In NAACL, pp. To appear,
2025a. (Cited on page 20.)

Z. Liu, M. Lu, S. Zhang, B. Liu, H. Guo, Y. Yang, J. Blanchet, and Z. Wang. Provably mitigating
overoptimization in RLHF: Your SFT loss is implicitly an adversarial regularizer. In NeurIPS, pp.
138663-138697, 2024b. (Cited on page 20.)

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin. Understanding R1-zero-like
training: A critical perspective. ArXiv Preprint: 2503.20783, 2025b. (Cited on pages 1 and 3.)

H. Luo, L. Shen, H. He, Y. Wang, S. Liu, W. Li, N. Tan, X. Cao, and D. Tao. ol-pruner: Length-
harmonizing fine-tuning for o1-like reasoning pruning. ArXiv Preprint: 2501.12570, 2025a. (Cited
on page 19.)

L. Luo, Y. Liu, R. Liu, S. Phatale, M. Guo, H. Lara, Y. Li, L. Shu, Y. Zhu, L. Meng, et al. Improve

mathematical reasoning in language models by automated process supervision. ArXiv Preprint:
2406.06592, 2024. (Cited on pages 2 and 20.)

13


https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=SGoVIC0u0f
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=NQEe7B7bSw
https://openreview.net/forum?id=NQEe7B7bSw
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=xbjSwwrQOe
https://openreview.net/forum?id=xbjSwwrQOe

Under review as a conference paper at ICLR 2026

M. Luwo, S. Tan, J. Wong, X. Shi, W. Y. Tang, M. Roongta, C. Cai, J. Luo,
L. E. Li, R. A. Popa, and I. Stoica. DeepScaleR: Surpassing ol-preview with a
1.5B model by scaling RL. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-0l-Preview-with—-a-1-5B-Model-by-Scaling-RL-19681902c1468005k
2025b. Notion Blog. (Cited on page 7.)

A. Madaan, K. Hermann, and A. Yazdanbakhsh. What makes chain-of-thought prompting effective?
a counterfactual study. In EMNLP, pp. 1448—-1535, 2023. (Cited on page 19.)

J. Mei, Y. Gao, B. Dai, C. Szepesvari, and D. Schuurmans. Leveraging non-uniformity in first-order
non-convex optimization. In ICML, pp. 7555-7564, 2021. (Cited on page 21.)

Y. Meng, M. Xia, and D. Chen. SimPO: Simple preference optimization with a reference-free
reward. In NeurlPS, pp. 124198-124235, 2024. (Cited on page 20.)

W. Merrill and A. Sabharwal. The expressive power of transformers with chain of thought. In ICLR,
2024. URL https://openreview.net/forum?id=NjNG1Ph8Wh. (Cited on page 19.)

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
In NeurlPS, pp. 2773027744, 2022. (Cited on page 20.)

A. Pal, D. Karkhanis, S. Dooley, M. Roberts, S. Naidu, and C. White. Smaug: Fixing failure modes
of preference optimisation with DPO-positive. ArXiv Preprint: 2402.13228, 2024. (Cited on
page 20.)

R. Y. Pang, W. Yuan, H. He, K. Cho, S. Sukhbaatar, and J. Weston. Iterative reasoning preference
optimization. In NeurIPS, pp. 116617-116637, 2024. (Cited on page 20.)

R. Park, R. Rafailov, S. Ermon, and C. Finn. Disentangling length from quality in direct preference
optimization. In ACL, pp. 4998-5017, 2024. (Cited on page 20.)

X. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. ArXiv Preprint: 1910.00177, 2019. (Cited on page 6.)

J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In ICML, pp. 745-750, 2007. (Cited on page 6.)

R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. In NeurIPS, pp. 53728-53741,
2023. (Cited on page 19.)

R. Rafailov, J. Hejna, R. Park, and C. Finn. From $r$ to $q™*$: Your language model is secretly a Q-
function. In COLM, 2024. URL https://openreview.net/forum?id=kEVcNxtgXk.
(Cited on page 20.)

N. Razin, S. Malladi, A. Bhaskar, D. Chen, S. Arora, and B. Hanin. Unintentional unalignment:
Likelihood displacement in direct preference optimization. In /CLR, 2025. URL https://
openreview.net/forum?id=uaMSBJDnRv. (Cited on page 20.)

P. Roit, J. Ferret, L. Shani, R. Aharoni, G. Cideron, R. Dadashi, M. Geist, S. Girgin, L. Hussenot,
O. Keller, et al. Factually consistent summarization via reinforcement learning with textual en-
tailment feedback. In ACL, pp. 6252-6272, 2023. (Cited on page 20.)

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel. Trust region policy optimization. In
ICML, pp. 1889-1897, 2015. (Cited on page 1.)

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. ArXiv Preprint: 1707.06347,2017. (Cited on page 1.)

A. Setlur, C. Nagpal, A. Fisch, X. Geng, J. Eisenstein, R. Agarwal, A. Agarwal, J. Berant, and
A. Kumar. Rewarding progress: Scaling automated process verifiers for LLM reasoning. In /CLR,
2025. URL https://openreview.net/forum?id=A6Y7AqglzLW. (Cited on pages 1, 2,
and 20.)

14


https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=uaMSBJDnRv
https://openreview.net/forum?id=uaMSBJDnRv
https://openreview.net/forum?id=A6Y7AqlzLW

Under review as a conference paper at ICLR 2026

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RL
on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. In NeurIPS,
pp- 4300043031, 2024. (Cited on page 20.)

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, et al.
DeepSeekMath: Pushing the limits of mathematical reasoning in open language models. ArXiv
Preprint: 2402.03300, 2024. (Cited on pages 1 and 19.)

G. Sheng, C. Zhang, Z. Ye, X. Wu, W. Zhang, R. Zhang, Y. Peng, H. Lin, and C. Wu. HybridFlow:
A flexible and efficient RLHF framework. In EuroSys, pp. 1279-1297. ACM, 2025. (Cited on
pages 7 and 8.)

B. Shi, M. Tang, K. R. Narasimhan, and S. Yao. Can language models solve Olympiad program-
ming? In COLM, 2024. URL https://openreview.net/forum?id=kGad4fMtPI1.
(Cited on page 1.)

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484-489, 2016. (Cited on page 19.)

A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. J. Liu, J. Harrison, J. Lee,
K. Xu, A. T. Parisi, A. Kumar, A. A. Alemi, A. Rizkowsky, A. Nova, B. Adlam, B. Bohnet, G. F.
Elsayed, H. Sedghi, I. Mordatch, 1. Simpson, I. Gur, J. Snoek, J. Pennington, J. Hron, K. Kenealy,
K. Swersky, K. Mahajan, L. A. Culp, L. Xiao, M. Bileschi, N. Constant, R. Novak, R. Liu,
T. Warkentin, Y. Bansal, E. Dyer, B. Neyshabur, J. Sohl-Dickstein, and N. Fiedel. Beyond human
data: Scaling self-training for problem-solving with language models. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?
id=1NAyUngGFK. Expert Certification. (Cited on page 20.)

I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg.
ProgPrompt: Generating situated robot task plans using large language models. In ICRA, pp.
11523-11530. IEEE, 2023. (Cited on page 1.)

J. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger. Defining and characterizing reward
hacking. In NeurlIPS, pp. 9460-9471, 2022. (Cited on page 2.)

C. V. Snell, J. Lee, K. Xu, and A. Kumar. Scaling LLM test-time compute optimally can be more
effective than scaling parameters for reasoning. In /ICLR, 2025. URL https://openreview.
net/forum?id=4FWAwZtd2n. (Cited on pages 19 and 20.)

F. Song, B. Yu, M. Li, H. Yu, F. Huang, Y. Li, and H. Wang. Preference ranking optimization for
human alignment. In AAAZ pp. 18990-18998, 2024. (Cited on page 20.)

S. Srivastava, A. PV, S. Menon, A. Sukumar, A. Philipose, S. Prince, S. Thomas, et al. Func-
tional benchmarks for robust evaluation of reasoning performance, and the reasoning gap. ArXiv
Preprint: 2402.19450, 2024. (Cited on page 19.)

N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano. Learning to summarize with human feedback. In NeurIPS, pp. 3008-3021, 2020.
(Cited on page 20.)

D. Su, S. Sukhbaatar, M. Rabbat, Y. Tian, and Q. Zheng. Dualformer: Controllable fast and
slow thinking by learning with randomized reasoning traces. In ICLR, 2025. URL https:
//openreview.net/forum?id=bmbRCRiNDu. (Cited on page 19.)

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, volume 1. MIT Press,
1998. (Cited on page 3.)

F. Tajwar, A. Singh, A. Sharma, R. Rafailov, J. Schneider, T. Xie, S. Ermon, C. Finn, and A. Kumar.
Preference fine-tuning of LLMs should leverage suboptimal, on-policy data. In ICML, pp. 47441—
47474, 2024. (Cited on page 20.)

15


https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=bmbRCRiNDu
https://openreview.net/forum?id=bmbRCRiNDu

Under review as a conference paper at ICLR 2026

Y. Tang, Z. Guo, Z. Zheng, D. Calandriello, R. Munos, M. Rowland, P. H. Richemond, M. Valko,
B. Pires, and B. Piot. Generalized preference optimization: A unified approach to offline align-
ment. In ICML, pp. 47725-47742, 2024. (Cited on page 20.)

K. Team, A. Du, B. Gao, B. Xing, C. Jiang, C. Chen, C. Li, C. Xiao, C. Du, C. Liao, et al. Kimi
k1.5: Scaling reinforcement learning with LLMs. ArXiv Preprint: 2501.12599, 2025. (Cited on
pages 1 and 19.)

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. ArXiv
Preprint: 2302.13971, 2023. (Cited on page 1.)

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and 1. Hig-
gins. Solving math word problems with process-and outcome-based feedback. ArXiv Preprint:
2211.14275, 2022. (Cited on pages 1 and 20.)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polo-
sukhin. Attention is all you need. In NeurIPS, pp. 6000—6010, 2017. (Cited on page 3.)

H. Wang, C. Qian, W. Zhong, X. Chen, J. Qiu, S. Huang, B. Jin, M. Wang, K-F. Wong, and H. Ji.
OTC: Optimal tool calls via reinforcement learning. ArXiv Preprint: 2504.14870, 2025. (Cited on
page 19.)

P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-Shepherd: Verify
and reinforce LLMs step-by-step without human annotations. In ACL, pp. 9426-9439, 2024.
(Cited on pages 1, 2, 19, and 20.)

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In /CLR, 2023. URL
https://openreview.net/forum?id=1PLINIMMrw. (Cited on page 19.)

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou.
Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS, pp. 24824—
24837, 2022. (Cited on pages 1 and 19.)

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229-256, 1992. (Cited on page 3.)

Y. Wu, Z. Sun, S. Li, S. Welleck, and Y. Yang. Inference scaling laws: An empirical analy-
sis of compute-optimal inference for LLM problem-solving. In ICLR, 2025. URL https:
//openreview.net/forum?id=VNckp7JEHn. (Cited on page 20.)

V. Xiang, C. Snell, K. Gandhi, A. Albalak, A. Singh, C. Blagden, D. Phung, R. Rafailov, N. Lile,
D. Mahan, et al. Towards system 2 reasoning in LLMs: Learning how to think with meta chain-
of-though. ArXiv Preprint: 2501.04682, 2025. (Cited on page 1.)

J. Xiao, Z. Li, X. Xie, E. Getzen, C. Fang, Q. Long, and W. J. Su. On the algorithmic bias of
aligning large language models with RLHF: Preference collapse and matching regularization.
ArXiv Preprint: 2405.16455, 2024. (Cited on page 20.)

Y. Xie, K. Kawaguchi, Y. Zhao, J. X. Zhao, M-Y. Kan, J. He, and M. Q. Xie. Self-evaluation guided
beam search for reasoning. In NeurIPS, pp. 41618-41650, 2023. (Cited on page 19.)

W. Xiong, H. Dong, C. Ye, Z. Wang, H. Zhong, H. Ji, N. Jiang, and T. Zhang. Iterative preference
learning from human feedback: Bridging theory and practice for RLHF under KL-constraint. In
ICML, pp. 54715-54754, 2024. (Cited on page 20.)

W. Xiong, J. Yao, Y. Xu, B. Pang, L. Wang, D. Sahoo, J. Li, N. Jiang, T. Zhang, C. Xiong, and
H. Dong. A minimalist approach to LLM reasoning: From rejection sampling to reinforce. ArXiv
Preprint: 2504.11343, 2025a. (Cited on pages 1, 2, and 19.)

W. Xiong, W. Zhao, W. Yuan, O. Golovneva, T. Zhang, J. Weston, and S. Sukhbaatar. StepWiser:
Stepwise generative judges for wiser reasoning. ArXiv Preprint: 2508.19229, 2025b. (Cited on
page 2.)

16


https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn

Under review as a conference paper at ICLR 2026

H. Xu, A. Sharaf, Y. Chen, W. Tan, L. Shen, B. Van Durme, K. Murray, and Y. J. Kim. Contrastive
preference optimization: Pushing the boundaries of LLM performance in machine translation. In
ICML, pp. 55204-55224, 2024. (Cited on page 20.)

Y. Yang, D. Campbell, K. Huang, M. Wang, J. Cohen, and T. Webb. Emergent symbolic mechanisms
support abstract reasoning in large language models. ArXiv Preprint: 2502.20332, 2025. (Cited
on page 19.)

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning. HotpotQA:
A dataset for diverse, explainable multi-hop question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2369-2380, 2018. (Cited
on page 1.)

S. Yao, D. Yu, J. Zhao, 1. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. In NeurIPS, pp. 11809-11822, 2023.
(Cited on pages 1 and 19.)

Y. Ye, Z. Huang, Y. Xiao, E. Chern, S. Xia, and P. Liu. LIMO: Less is more for reasoning. ArXiv
Preprint: 2502.03387, 2025. (Cited on pages 6, 7, and 8.)

F. Yu, A. Gao, and B. Wang. OVM, Outcome-supervised value models for planning in mathematical
reasoning. In NAACL, pp. 858-875, 2024a. (Cited on page 20.)

F Yu, L. Jiang, H. Kang, S. Hao, and L. Qin. Flow of reasoning: Efficient training of LLM policy
with divergent thinking. In ICML, pp. To appear, 2025a. (Cited on page 19.)

L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. Kwok, Z. Li, A. Weller, and W. Liu. MetaMath:
Bootstrap your own mathematical questions for large language models. In ICLR, 2024b. URL
https://openreview.net/forum?id=N8NOhgNDRt. (Cited on page 19.)

Q. Yu, Z. Zhang, R. Zhu, Y. Yuan, X. Zuo, Y. Yue, T. Fan, G. Liu, L. Liu, X. Liu, et al. DAPO: An
open-source LLM reinforcement learning system at scale. ArXiv Preprint: 2503.14476, 2025b.
(Cited on pages 1 and 3.)

H. Yuan, Z. Yuan, C. Tan, W. Wang, S. Huang, and F. Huang. RRHF: Rank responses to align
language models with human feedback. In NeurIPS, pp. 10935-10950, 2023a. (Cited on page 20.)

L. Yuan, G. Cui, H. Wang, N. Ding, X. Wang, B. Shan, Z. Liu, J. Deng, H. Chen, R. Xie, Y. Lin,
Z.Liu, B. Zhou, H. Peng, Z. Liu, and M. Sun. Advancing LL.M reasoning generalists with prefer-
ence trees. In ICLR, 2025. URL https://openreview.net/forum?id=2ea5TNVROc.
(Cited on page 20.)

Z. Yuan, H. Yuan, C. Li, G. Dong, K. Lu, C. Tan, C. Zhou, and J. Zhou. Scaling relationship
on learning mathematical reasoning with large language models. ArXiv Preprint: 2308.01825,
2023b. (Cited on page 20.)

X. Yue, X. Qu, G. Zhang, Y. Fu, W. Huang, H. Sun, Y. Su, and W. Chen. MAmmoTH: Building
math generalist models through hybrid instruction tuning. In ICLR, 2024. URL https://
openreview.net/forum?id=yLC1Gs7701I. (Cited on page 19.)

E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. STaR: self-taught reasoner bootstrapping reasoning
with reasoning. In NeurlPS, pp. 15476—15488, 2022. (Cited on pages 1 and 20.)

K. Zha, Z. Gao, M. Shen, Z-W. Hong, D. S. Boning, and D. Katabi. RL Tango: Reinforcing
generator and verifier together for language reasoning. ArXiv Preprint: 2505.15034, 2025. (Cited
on page 2.)

D. Zhang, S. Zhoubian, Z. Hu, Y. Yue, Y. Dong, and J. Tang. ReST-MCTS*: LLM self-training via
process reward guided tree search. In NeurIPS, pp. 64735-64772, 2024a. (Cited on page 4.)

K. Zhang, Y. Hong, J. Bao, H. Jiang, Y. Song, D. Hong, and H. Xiong. GVPO: Group variance
policy optimization for large language model post-training. ArXiv Preprint: 2504.19599, 2025a.
(Cited on pages 1 and 3.)

17


https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=2ea5TNVR0c
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I

Under review as a conference paper at ICLR 2026

L. Zhang, A. Hosseini, H. Bansal, M. Kazemi, A. Kumar, and R. Agarwal. Generative verifiers:
Reward modeling as next-token prediction. In The NeurlPS Workshop on System-2 Reasoning
at Scale, 2024b. URL https://openreview.net/forum?id=aLgXy8A7k7. (Cited on
page 20.)

Z. Zhang, C. Zheng, Y. Wu, B. Zhang, R. Lin, B. Yu, D. Liu, J. Zhou, and J. Lin. The lessons
of developing process reward models in mathematical reasoning. ArXiv Preprint: 2501.07301,
2025b. (Cited on pages 1 and 2.)

H. Zhao, G. I. Winata, A. Das, S-X. Zhang, D. Yao, W. Tang, and S. Sahu. RainbowPO: A uni-
fied framework for combining improvements in preference optimization. In /CLR, 2025. URL
https://openreview.net/forum?id=trKee5pIFv. (Cited on page 20.)

Y. Zhao, R. Joshi, T. Liu, M. Khalman, M. Saleh, and P. J. Liu. SLiC-HF: Sequence likelihood
calibration with human feedback. ArXiv Preprint: 2305.10425, 2023. (Cited on page 20.)

D. Zhou, N. Schirli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet,
Q. V. Le, and E. H. Chi. Least-to-most prompting enables complex reasoning in large language
models. In ICLR, 2023. URL https://openreview.net/forum?id=WzZH7099tgfM.
(Cited on page 19.)

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
Fine-tuning language models from human preferences. ArXiv Preprint: 1909.08593,2019. (Cited
on page 20.)

18


https://openreview.net/forum?id=aLgXy8A7k7
https://openreview.net/forum?id=trKee5pIFv
https://openreview.net/forum?id=WZH7099tgfM

Under review as a conference paper at ICLR 2026

A RELATED WORKS

We comment on all related topics, including reasoning through test-time compute, chain-of-thought
and its variants, direct preference alignment methods, reward models and reinforcement learning
from Al feedback. For an overview of more reasoning models and methods, we refer to two recent
surveys (Huang & Chang, 2023; Chen et al., 2025¢).

Reasoning through test-time compute. OpenAl-ol (Jaech et al., 2024) is among the first large-
scale applications of RL to reasoning, and achieved state-of-the-art performance upon release. Fol-
lowing this trend, DeepSeek-R1 (Guo et al., 2025a) is the first open-weight model to match or exceed
OpenAl-ol. Their real-world success stories have involved several simple yet novel techniques that
enhance LLM reasoning through more test-time compute, including chain-of-thought (Wei et al.,
2022), self-consistency (Wang et al., 2023), best-of-N sampling (Snell et al., 2025), process reward
models (Lightman et al., 2024), Monte Carlo tree search (Silver et al., 2016; Hao et al., 2023), tree-
of-thought (Yao et al., 2023), and recent works on preventing overthinking (Chen et al., 2024b; Team
etal., 2025; Luo et al., 2025a; Arora & Zanette, 2025) and compressing chain-of-thought (Hao et al.,
2024b; Cheng & Van Durme, 2024). More specifically, chain-of-thought is a reasoning approach
where intermediate steps are explicitly written to make complex problem-solving processes more
transparent and logical. Self-consistency suggests generating multiple final answers and returning
the mode of an empirical distribution, enhancing test-time performance when test-time verifiers are
unavailable. Unfortunately, it is computationally expensive and effective only when answers can be
clustered. Best-of-N sampling resolves this issue by sampling answers from the model and select-
ing the best at test time according to the scoring function; however, it is sensitive to the accuracy
of test-time scoring functions (Gao et al., 2023). Process reward models offer fine-grained supervi-
sion of chain-of-thought reasoning, but they might be vulnerable to reward hacking and introduce
computation overhead. Monte Carlo tree search is a generic technique that allocates computational
resources toward the most promising regions of the search space, and tree-of-thought and its exten-
sion (Besta et al., 2024; Gandhi et al., 2024) simplified this idea by exploring multiple reasoning
paths in a specific structure, allowing language models to select the most promising line of thought
for complex problem-solving. Both length regularization and compressed chain-of-thought are de-
veloped to reduce inference costs for reasoning, which is crucial for the economic feasibility, user
experience and environmental sustainability of LLMs. In addition, several works have focused on
specific reasoning tasks (Lampinen et al., 2024; Yang et al., 2025; Srivastava et al., 2024; Huang
et al., 2025; 2024; Guo et al., 2025b; Gou et al., 2024; Wang et al., 2025), demonstrating promis-
ing performance. The recent findings Xiong et al. (2025a) have shown that the REINFORCE-type
methods (including GRPO (Shao et al., 2024)) can not effectively learn from all-negative-sample
groups. Our work alleviates this issue by leveraging Al feedback to differentiate negative samples.
We also provide a theoretical analysis through a stylized model, explaining why such diversification
improves GRPO’s learning dynamics.

Chain-of-Thought and its variants. Chain-of-thought (CoT) refers to as a broad class of methods
that generate an intermediate reasoning process before arriving at a final answer. These approaches
either prompt LLMs (Wei et al., 2022; Khot et al., 2023; Zhou et al., 2023) or train LLMs to gen-
erate reasoning chains through supervised fine-tuning (SFT) (Yue et al., 2024; Yu et al., 2024b; Li
et al., 2025) and/or RL (Wang et al., 2024; Shao et al., 2024; Havrilla et al., 2024; Yu et al., 2025a).
While CoT has proven effective for certain tasks, its auto-regressive generation nature makes it
challenging to mimic human reasoning on more complex problems (LeCun, 2022; Hao et al., 2023),
which require planning and search. Recent efforts were devoted to equipping LLMs with tree search
methods (Xie et al., 2023; Yao et al., 2023; Hao et al., 2024a) or training LLMs on search trajecto-
ries (Lehnert et al., 2024; Gandhi et al., 2024; Su et al., 2025). Several other works have investigated
why CoT is effective. For example, (Madaan et al., 2023) used a counterfactual prompting approach
to examine the relative contributions of prompt elements, including symbols (digits, entities) and
patterns (equations). (Feng et al., 2023; Merrill & Sabharwal, 2024; Li et al., 2024a) analyzed CoT
from the perspective of model expressivity, and (Feng et al., 2023) showed that employing CoT in-
creases the effective depth of a transformer since the generated outputs are looped back to the input.
This insight motivated the chain-of-continuous-thought paradigm (Hao et al., 2024b), and a related
approach has been proposed in (Cheng & Van Durme, 2024).

Direct preference alignment methods. These methods (e.g., DPO (Rafailov et al., 2023)) are
simple and stable offline alternatives to online RLHF. Various DPO variants with other objectives
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have been proposed, including ranking ones beyond pairwise preference data (Dong et al., 2023;
Yuan et al., 2023a; Song et al., 2024; Chen et al., 2024a; Liu et al., 2025a) and simple ones that do
not rely on a reference model (Hong et al., 2024; Meng et al., 2024). Since DPO does not train a
reward model, the limited size of human labels becomes a bottleneck. To alleviate this limitation,
subsequent works proposed to augment preference data using a trained SFT policy (Zhao et al.,
2023) or arefined SFT policy with rejection sampling (Liu et al., 2024a). The DPO loss was recently
extended to token-level MDP (Rafailov et al., 2024) given that the transition is deterministic — which
has covered the fine-tuning of LLMs — and more general RL problems (Azar et al., 2024). There
are other DPO variants (Ethayarajh et al., 2024; Park et al., 2024; Xu et al., 2024; Tang et al., 2024;
Meng et al., 2024; Chen et al., 2025a; Zhao et al., 2025). For example, (Ethayarajh et al., 2024)
designed the specific loss using a prospect theory, (Tang et al., 2024) optimized a general preference
loss instead of the log-likelihood loss, and (Meng et al., 2024) aligned the reward function in the
preference optimization objective with the generation metric. Dong et al. (2024) and (Xiong et al.,
2024) proposed to generate human feedback in an online fashion to mitigate the distribution-shift
and over-parameterization phenomenon. This improves DPO for complex reasoning tasks (Pang
et al., 2024). Several other works focus on unintentional alignment of DPO and developing new
methods (Pal et al., 2024; Tajwar et al., 2024; Liu et al., 2024b; Xiao et al., 2024; Yuan et al.,
2025; Razin et al., 2025; Chen et al., 2025b). Among these works, (Razin et al., 2025) proposed
to measure the similarity between preferred and dispreferred responses using the centered hidden
embedding similarity (CHES) score and showed that filtering out preference pairs with small CHES
score improves DPO, while (Chen et al., 2025b) proposed to use comparison oracles, and showed
that combining it with DPO effectively alleviated the issue of unintentional alignment.

Reward models. For the prompt x with a ground-truth response yJ%, we evaluate by implementing
a regular expression match on the final answer (Hendrycks et al., 2021): r(x,y) = 1 if y matches
vy on the final answer and r(x,y) = 0 otherwise. An outcome reward model (ORM) (Cobbe et al.,
2021; Uesato et al., 2022) is trained for estimating r(x,y). In particular, we first choose x € D
and collect training samples (x,y ~ 7p(:|x),r(x,y)). Then, we take (x,y) as input and train an
ORM to predict r(x,y). This can be done using binary classification (Cobbe et al., 2021; Yu et al.,
2024a), direct preference optimization (Hosseini et al., 2024) or next-token prediction (Zhang et al.,
2024b). Previous works also train LLMs on self-generated data using the ground-truth outcome
reward model with either supervised fine-tuning (Singh et al., 2024; Yuan et al., 2023b; Zelikman
et al., 2022) or online RL (Bi et al., 2024; Guo et al., 2025a). A process reward model (PRM)
is trained to score ay, at s, = (x,a1,...,a,—1) either using human annotations (Lightman et al.,
2024) or the value functions based on LLM-generated data (Wang et al., 2024; Luo et al., 2024;
Setlur et al., 2025); indeed, PRMs estimate either the likelihood of future success or the change in
the likelihood of future success before and after taking aj. In addition, PRMs were also developed
to improve search methods (Snell et al., 2025; Wu et al., 2025), and to identify the “first pit” in an
incorrect reasoning trajectory to construct preference pairs for direct preference alignment (Hwang
et al., 2024; Setlur et al., 2024).

Reinforcement learning from AI feedback. Reinforcement learning from human feedback
(RLHF) uses human-preference-aligned reward models to evaluate response quality (Christiano
et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022). A key barrier to scale
RLHF is the need for high-quality human labels. Previous studies (Gilardi et al., 2023; Ding et al.,
2023) have shown that modern LLMs exhibit strong alignment with human judgments, suggesting
that Al-generated labels can serve as a viable alternative. In this context, (Bai et al., 2022) was the
first to explore RLAIF, jointly optimizing helpfulness and harmlessness using both human and Al-
generated labels, and (Roit et al., 2023; Kwon et al., 2023; Lee et al., 2024) showed that LLMs can
produce informative reward signals for RL post-training. Our approach can leverage Al feedback
to introduce response diversity within all-negative-sample groups by assigning intermediate binary
rewards to reasoning steps. Indeed, one identifies the proportion of correct steps in the reasoning
trajectory and use it to compute a reward r; € [0, 1).

B ADDITIONAL EXPERIMENTAL RESULTS

Beyond aggregate results, we provide a targeted analysis of SGPO’s impact. In line with our theo-
retical finding that SGPO converges faster than GRPO, empirical metrics offer supporting evidence.
Prior work on RLVR entropy highlights its link to performance: Cui et al. (2025) showed that lower
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Figure 3: Policy entropy levels during training for GRPO and SGPO across different base models.

policy entropy under correct signals correlates with stronger policies, while Agarwal et al. (2025)
demonstrated that directly minimizing entropy can improve performance. As shown in Figure 3,
SGPO reduces policy entropy more rapidly than GRPO, indicating faster convergence toward de-
terministic RLVR behavior with higher rollout confidence. This matches our theoretical results,
confirming that step-wise signals accelerate convergence.

C MISSING PROOFS

We first present the detailed setup for our stylized model and prove several technical lemmas. Then,
we use these lemmas to prove our main result in Theorem 3.3.

C.1 STYLIZED MODEL

We consider a policy parameterized by a softmax function, which is standard in the analysis of
reinforcement learning methods (Agarwal et al., 2020; Mei et al., 2021; Li et al., 2024b):

T
X,a1:4—1,0¢

T
(6 )
mo(arr | %) = [ 7o, (ar | %, a1000) = [ [ =2 —"=
t=1 f ’ t=1 ZaQEV* exp(0,” reet 4)7

By convention, we assume that 7y, (a1 | X, a1.0) = e, (a1 | X).

For simplicity, we perform our analysis in the likelihood space rather than in the parameter space
(i.e., 0) directly. Indeed, we define the key quantities as follows,

0%:2 0%:2,2
- — — el - — — — e’2
p =, (a1 =2[x) = EXNEE q=mg,(az =2|x,a1 =2) = GRZ T X ZZ -
e’l +e’l e’2 +e”2

Note that the original 4-dimensional parameter space defined by 83", 7%, 63*! and 63 in R is
reduced to a 2-dimensional likelihood space defined by p, ¢ € [0, 1].

We rewrite the generic GRPO update with a step size n > 0 as follows,

N G H
1 S
9(k+1) — e(k) +n- 9(9); where g(Q) = W (Z Z Z se(xl7 a}17;];Ll)Ai7k> s

i=1 k=1h=1
where N is the number of prompts, G is the number of groups, H is the number of reasoning steps
in each response, sq (X!, a;’iq) := Vg logmg(as|x, a1.,—1) is the score function, and the advantage
A i, 18 defined by
r(x'y ") -(1/G) X r(x"y"™)

Aip = — —
b G S (e y ) —(1/G) 26 _, r(xiyia))?

To distinguish, we denote gerpo(-) as the gradient estimator using classical outcome reward model
r, and gsepo(+) as the gradient estimator using the reward rscpo as proposed in Section 3.1.

For our simple stylized model, we compute the score functions in terms of likelihood parameters
p, q as follows,
p b=
_ 1—
slan=11x)=| P, sm=2x=| 7|
0 0
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and
0

0
qg—1
—q I-¢q
Note that we restrict the sample space toy € {(1,1),(2,1),(2,2)}, excluding the sample (1,2).
The responses can be drawn i.i.d. from the distribution as follows,

(Ll)a w.p. 1_p7
(a17a2) = (271)a Ww.p. P(1*Q)7 .
(2,2), wp.pg.

We set G = 2 and focus on the SGPO and GRPO training dynamics with population-level policy
gradient which can be computed exactly for the stylized model as follows,

s(aa =1]%x,a1 =2) =

0
0
E s(ag =2|x,a1 =2) =

i oy
_ _ _ 1| plL—=Pp p _ _ 1 (Pl —D)g
gSGPO(a) = E[gSGPO(G)] =3 p2q(q _ 1) 3 gGRPO(Q) = ]E[gGRPO(g)} ) pq(q — 1)

*q(1—q) a(l=q)

Since gerpo(#) and gsepo(f) concentrate around Gerpo(6) and gsepo(#) when the number of sam-
ples in each group is sufficiently large, it is reasonable to analyze the population-level dynamics at
first. Note that the high-probability guarantees for the sample-level dynamics can be derived using
concentration inequalities under certain conditions.

We can explicitly write down the SGPO and GRPO update rules with = 1 using the likelihood
parameters p and ¢ as follows,

k+1 k k+1 k k
plets) = exp(fir(peeo)), 4 PRk = exp(far(pliro, atero)). 3
(k+1) _ *) (k) an (k+1) _ k) (k) )
dscpo _exp(f12(pSGPO7QSGPO))7 qdcrro —eXP(fZZ(pGRPo»QGRpo))v

where the functions f;; are defined by

f11(p) = log(p) + p(1 — p) — log(1 — p + per* 7)),

fa1(p, q) =log(p) + p(1 — p)g — log(1 — p + pe? 7)), @
Fr2(p, @) = log(q) + pPq(1 — q) — log(1 — g + ge?"11=9),

fa2(p.q) =1log(q) + pa(1 — q) — log(1 — q + qe?'~9)).

C.2 TECHNICAL LEMMAS

We provide several technical lemmas that are important to the subsequent proof of Theorem 3.3. In-
deed, the first lemma summarizes the properties of particular functions related to the aforementioned
functions f11, fo1, f12 and foo from Eq. (4).

Lemma C.1. The following statements hold true,

(i) The function f11 is strictly increasing on (0, 1).

(ii) The function h,(x) := x — log(1 — p + pe®) is strictly increasing for any fixed p € (0, 1).
(iii) The function fa; is strictly increasing in either p for any fixed q or q for any fixed p on (0, 1).
(iv) The function p(z) = log(1 + (1/2)e=¢") is strictly concave on (—o0,0).

Proof. First of all, we have

/ _ _1+(-2p1)pi(1—p1) 3
fu(pl) " pi(1+pi+pierr(1-P1)) > 4p1 (14+p1+p1eP1(1-P1)) > 0.

Thus, the function fi; is strictly increasing on (0, 1).

Furthermore, we have
0<p<1

/ 1 _ pe” _ 1-—p
hp(x) =1 1—p+pe® — 1—p+pe®

Thus, the function hy,(z) is strictly increasing.

22



Under review as a conference paper at ICLR 2026

Moreover, we have

Ofa1(prp2)  _—  _tpa(=2p)p(=p1) 3 >0
P1 p1(14p1+prer2Pr1(1-r1)) 4p1 (1+p1+prer1(-r1)) ,
Of21(p1,p2) _ p1(1—p1)®
= a5 > 0.
P2 14-p1+preP2P1ii=r1

Thus, the function fo; is strictly increasing in either p for any fixed ¢ or ¢ for any fixed p on (0, 1).

Finally, we have

e*te’ ja_e” j2-1/4
50//(33) _( 62{3 +eer/+1/4/ )e’

Since u = e” € (0, 1) for x < 0, we have
(ue*/2 —e*/2 = 1/4)u = (e"(u—1)/2 = 1/4H)u < —(1/4)u < 0.
Thus, " () < 0 for all z < 0 which shows that f is strictly concave on (—o0, 0). O

The second lemma presents an inequality which plays a key role in the proof of Theorem 3.3.
Lemma C.2. We define the auxiliary functions as follows,
Alz) =1+ (L -1)e =) Ba,y) =1+ <% - 1) e~ e v(-y),
Clz) =1+ (L —1)e =02,
Then, we have C(\/zy)* > A(x)B(z,y) for all x and y satisfying 1/2 < y < x < 1.
Proof. We consider the lower and upper bound of e™* when u > 0:
1—u+§—%3<6_“<1—u+§.
Since 1/2 —1,1/y — 1 and 1/,/zy — 1 are all positive, we have

A(x)g1+1—7f(1—x(1—x)+M):%—(1-:@%%.

4,2 2 4 3
B(z,y) <1+ " (1—96%/(1—2/)—#%) =1 21— y)?+ U

Clz) > 1+47 (1 —22(1 - z) 4+ 20T z‘*(lgz)3>

_ 1 2 23(1-2)3 2°(1—2)*
= s —z2(1—-2)?+ =5+ - —%—.

Set 22 = zy, the original statement is equivalent to (2C(2))? > (zA(x))(yB(x,y)). Using the
above upper and lower bound, it suffices to show C (\/Zy)? > A (z)B1(x,y) where

Ay(z) =1—2(1 —2)> +2%(1 — 2)%/2, Bi(z,y) =1 — 2%y(1 — y)* + 2™*(1 — y)3/2,
Ci(z) =1—22(1—2) +2*(1 - 2)3/2 - 25(1 — 2)*/6.
By Lemma C.3, this is indeed true. This completes the proof. (|

Lemma C.3. Define functions
Ar(z) =1 (1l - 2)? +2°(1 - 2)°/2, Bi(z,y) =1 - 2’y(1 —y)* + 2y*(1 — y)*/2,
Ci(2) =1-22(1—2)? 4+ 2*(1 - 2)3/2 = 25(1 — 2)* /6.
Then, C1(\/zy)? > A1 (x)Bi(z,y) forall 1/2 <y <z < L

Proof. Let x = u? and y = v2, then 1 > u > v > 1/v/2 and z = uv. We next show the desired
inequality holds on a larger region, i.e., 1 > w > v > 2/3. On this larger region, we have the
reparameterization as follows:

__ 2843 _ 2r4+2s+3
u= 3555 U= ey 51 € (0,400),

or equivalently,
o 3(u—v)
(Bu—2)(3v—2)>

1>u>v>§.
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It is easy to see this defines a one-to-one correspondence from (u, v)-space to (s,r)-space. Thus,
we aim to prove the following function f is positive:

2 2 2 2
- 2s5+3  2r+2s+3 _ 2543 2s5+3 2r+2s+3
F(s,r):=C (35+3 3r+3s+3> A ((35+3) ) B <<3s+3) ’ (3r+35+3> ) :

By leveraging Sympy’s symbolic engine, the function expands and simplifies to:

20
F(s,r) = %7 where f(s,7) := ZCQO,k(s)TQO_k,
k=0

where ¢ > 0 is a universal constant, and single-variable polynomials ca0(s), . .., ca(s),co(s) > 0
and Ay = c1(5)? — 4ea(s)co(s) < 0, for all s > 0 (see Table 6 for details). Notice that from
the table, we can see the only nontrivial parts are c3(s) > 0 and cz(s) > 0 because only these two
contain negative coefficients. The positivity of c3(s) is simple because there is only one term (s”)
with negative coefficient and for all s > 0,

194714567104543630051526645'0+96845883777316430719272365° > 144138231093502245414997265°.
To see this, simple estimation and AM-GM inequality yield

LHS > 1.9 x 10?50 4+ 9.6 x 10%*s® > 2v/182.4 x 10%*s° > 2.7 x 10*°s” > RHS.

The positivity of co(s) is more complicated because it has 4 negative terms 519, 5%, 5%, s7. However,

we can use similar idea, i.e., choosing a pair of positive terms to bound a negative term:
95791062786555508724088742320s' + 5718095505418079375309525° > 702735952364323683297077165';
437858623301624990522095297685'* + 184789343789534461150530s > 998540727043228715373926045;
163267368535271229917151558245'3 + 354883755696224721692405% > 357260313779697920881889255%;
46082190500843267907489331535'% 4 43629508588131704492285% > 60990378953076701422876085" .

To see this, simple estimation and AM-GM inequality yield

LHS > 9.5 x 10285 4+ 5.7 x 10?35 > 2v/541.5 x 10?°s'° > 4.6 x 10%°5'° > RHS;
LHS > 4.3 x 102%™ 4+ 1.8 x 10%s* > 2v/77.4 x 10%°s° > 1.7 x 10%°5'° > RHS;
LHS > 1.6 x 10285 4+ 3.5 x 10?25% > 2v/5.6 x 10*°s” > 4.7 x 10*°s® > RHS;
LHS > 4.6 x 10%7s'2 4+ 4.3 x 10?*s? > 2v/19.7 x 10**s7 > 8.8 x 10?*s” > RHS.

In conclusion, we have all coefficient ¢;(s) positive except c1(s), but it doesn’t affect the positivity
of f because Ay < 0. This completes the proof. |
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Table 6: Coefficient Lists of F'(s, )

(Notation|

Value

c

437675956526049436836

C20

2(2s  + 3)*(1714774320744848750s  +  26610409260691576200s""

1917787464688023171815'6 + 85019414985508231922451°
2587082434290045806049 54 + 5704415906039160731874s3
9366197581963232054460512 + 11563054951307567026248s11
10670965452123886149660s9 + 71871767695820752612925°
33729721689965794300175s8 + 107208283615822070395257
370302094042890771285s5 + 3299016773769024258185°

28279998680561626786254 + 151168270170893365008s3

4913984951834551336852 + 9090603727935062976s + 742484948385838248)

C19

8(2s + 3)*(8573871603724243750s"7 4+  141183751848798840450s™®
1085065457535611084097s7 + 5159905424662678527663s6
16962017821014041355285s5 + 40761515892906930261393s4
737773588617626779831265'3 + 101968163476291942277643s'2
107719550183279202945336s 1 + 85951871005332247942347s'0
504771424207638727470395° + 212284617104842272708125s%
7175576253360286202193s7 + 3821642119447908810138s°
33431406025396150709825° + 23080587413803109461445%
104652869156562147134453 + 3007692858607441460285>
50403014643440592936s + 3785769852305984190)

C18

2(2s + 3)%(325807120941521262500s°° + 5673987380977312396200s'°
46320143614200183575358s18 + 235164624868455434314740s17
83033078234649987863140251° + 2159105892766696625508432515
4268066364777710628878112s + 65211777262765861916282645'3
7742933419720025359660131s'2 + 7110911361873582109051992s1!
4976474876383070663195517s0 + 26002307191355911482692225s°
1035307928116150386109695s° + 4204952201581657836723005"
287436345862168026209421 s° + 2257499121175270471203545°
1322055539247657570232865% + 5254626209874789553286453
135964972588619305441085> + 20873057772457298889365s
145293329180967197454)

C17

12(2s + 3)%(325807120941521262500s%T + 5982992191700268855300520
517009305126133274034065° + 27907978077725947794459058
105318731794504536476796657 + 294545890280984958687681056
6310900331865363012743844s° 4+  10554182290179327214273482514
13894164004300292404029789s13  +  14397511755502695216399777 512
11648187532971253859583195s11 4+ 7253672843249894875203621 50
3463934076062711984148183s° + 14013118711246369225106795s°
70963507345380338433066357 + 526601300781722718969621 s°
366411462920903557014120s° + 1877909383669174506336065*
6682826578897923841868453 + 1577499396431898546259252
22381772821590129459665 + 145311275743961970078)

Ci6

3(2s + 3)%(5538721056005861462500s*% + 106963949041194830344800s%1
97537241738707509555711052° + 5577701869567635624516312s19
22401070138854784562671602s'8  +  67034725561809321462257220s7
154689592660061775780683034s¢ 4+ 280889539801332767094091608s°
405664328993005936098158220s4  +  4674322345974503233776546245'3
428162911701836470453488816s'2  +  3088511931774198596481206645'1
173923711507624595412555792s0 4+ 786110439022952773050143645°
3450272393210865996806819158 + 20784869678087847011350512s7
152110704912752708992604795° + 9439795169478817720557390s°
4323642777299210867466840s* + 139833625522522566868617653
304165103383419145366680s> + 40170170984468888396880s
2445688799534592091926)

i e i e i e i e o I e I et i ol I S S A S
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C15

12(2s + 3)2(4430976844804689170000s° + 89773624658788072119600522
861449789967478967902968s21  +  52020523405703639617992725%°
22150958674722147636887880s'0  +  706107689774315971385024165'3
1745477477190387415792491485'7  +  3418467988302207597440068025 16
5370178974940504732208874755'  +  680386317088643909072652357s"4
694900917445527709102606203s'3 4+ 5688542943514523525591553575'2
370162500862325208186949407s™  +  1920899346152748101431136375°
85560000374404871078044743s°  +  421889790693255956904848945°
27986482983635448916149477s7  +  193494730005279484231600985°
10826549522417650582347903s5  +  4499119009419911850147903s*
1337268081929646109116429s%  +  270188727447397870150299
33412191448722202871793s + 1916481339467789227047)

C14

3(2s + 3)%(44309768448046891700000s°* + 9397609008462027996336005>°
94658822314499792705816165%2 +  601894156442872654302402245%
270831851136366961169859120s%°  +  916082243422713193340650464.51°
241460571833561888085397003258  +  5071784805050410035823167576s7
86060033517866280191398110245¢ + 1188207272155926800257859433651°
1337313573606658891526722519251 + 12233789753017327381398656592513
9038087243602138768195078704s'2  + 5369286552690873446276117328s'!
2623535852573549267091555300s°  +  11960717809829396518651440965°
660078244623496780263588075s°  +  45139319599766620866745885257
290343677073268941864046305s°  +  148042042832629803967321050s°
56464193331043404116741784s% + 15559478430192850829818824.53
2939179015494775847121192s> + 3420469295854970612531765s
18557914646800278459054)

C13

6(2s + 3)%(44309768448046891700000s%° + 9817855551045248780712005°*
10357132334422169539112688s%%  +  6916613178338427499706232052>
327906609514495942625889552s%1 4+ 11728729364420192968250046725%°
3283063721629310545911589320s° +  73603332392207859667143222125'8
13411238091959519801173855314s'7 + 200308743312586394476164054305'6
2461263206658443506304569389651° + 2486180794324324784856470272854
20554616309938676564088193632s% + 138287017746444456071984892965'2
7593307018019776947591316692s'1  +  35731644376825396511402989145'0
1711205400898634741432588709s°  +  1026436201325482873227731181s°
693346698158130213351442587s7  +  4137294683274523410927838235°
194077643830831926535960674s°  +  68561905220231775619051080s%
17640970508803332546397944.53 + 31326337694531987328010325>
344560424227000935565860s + 17745096925489168423620)

C12

3(2s + 3)%(144006747456152398025000s°° + 33273831804292526086536005%°
366868066779219215750244125%*  +  2567126637857826878686070405
12788784884439188697189775325%2 +  482250196563585207839970876052
1428493716760540762512361303252° + 3403967573402053121871363996051°
662691940873478048426418909365% + 10642025118199905948373959146457
1416737183478865486115278969445¢ + 156512253734744849831503592064.51°
143119458698672790284020359156514 + 10777291945795700653556290323653
66583563316818931905117287625s2 + 34208027977787101480006575072s1
15821430510294339891416781741s'% 4+  80309135220926647430570804825"
5050521785734143734257145460s° +  3292374301511579644939102872s7
1827212365211212115171329068s5  +  7951466255776474175898377405°
262142182103903879108812389s*  +  633544272142961809377795845°
106256104197218980943202725s2 + 1108770079900593722922360s
54371622599418650521707)
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C11

2(2s + 3)%(2880134949123047960500005%7 + 69279266135375987271516005%° +
796849940507240886962295605%° 4+ 583013575348670021732718984s%4  +
3044719667796555717818159544523 +  12071152881690852686028406920522 +
377197518022830645618602283125%1 + 95186570754684978954315680724520 +
1971414432505091371211002980185% + 3386213982946173069363008884865'5 +
4853203941721254940783622901425'7 + 5817879064516111538357630359265'6 +
5828027860833244086757468021925'% + 485993832849417808677870096480s +
335594444689992516446373541470s'3 + 1918186782349513132753181871665'2 +
93215508141687941579846043591s 1 + 429954885566190729654211278455'0 +
22993334205445704498638551659s° + 14702002876383491619167125293s° +
9151802478157350485470780638s7 +  47464951715999981131404092945°  +
19302388834938005528214678365°  +  597661705826550277052178582s*  +
136369421095118152409287875s3  +  21690051407678516824173015s2  +
2154400447443907595487183s + 100873131758694046028745)

C10

(2s + 3)%(633629688807070551310000s*® + 15842391105676722921391200s*" +
189762104968446645014104296526  +  14488992334199058656962307045%5  +
7915017749037631812296989272s%4 +  32911374092963881171128851808s%% +
108184113680419836957062571120s%2 + 28818145740591320391556014765652* +
6325630775471257682897241758525%° +1156966248842167228077853758672s% +
17756102303891520918403983262925'8+229466176991789299757557690348851 7+
24981929658677011622686888359245'6+22856591123054892544345187114165°+
1748991971403770816761602941934544+111379768416378584626496732337651%+
59249139515974357439009674211152 + 274476600715541565615011213796s1 +
127044619585271350650188845452s0 + 70538582326147723865407765680s" +
44889681102540017067072498465s° + 266028988871607595678363345205"
12967769746561749479001701280s% +  49607897451480785554112998445°
1450732098731590049595423084s*  +  31393089446832908214528495653
47525670620612611058618019s2 + 4506795195444098216749962s
201981066438920088074121)

C9

2(2s + 3)%(2880134949123047960500005%° + 747424711889578574684040052%
030851379788260929896841845%7 +  740402244183890613610238616526
4222492016436341447317422840525 + 18373474587737757143576597976524
63374311264983526695777429384523 + 177689296198984770408646605492 522
411992129847683864453855977890s21 + 799270570087512158479167778014520 +
130745456326597053066166231048851°+1811440906673507850196226957292518+
2129008833631551803404401966618s7+2120318902997465121470552812398516+
178275257814277404088212604584651°+1258348636755929955587480574282514+
742222950605778500648135120808s3 + 368759532677717760323871620448512 +
163292340177616665345297878034s'! + 75628135544208165254280371040s0 +
42858735954613893102489442569s° + 26815609860493555439017106967s8
15154066307595953401565854680s7 + 69865028982347636274484980065°
2529774938694747662152377363s° +  7023305018106747704878627235*
144732655027863948827862261s%  +  2092454720837126248556029552
1899529777608715114521399s + 81667865388403953518175)
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Cg

3(2s + 3)?(144006747456152398025000s°0 + 3873703685787439628342400s%° +
5008695060602392586847903652%  +  414347293343103311413357200s%7  +
2462455716417895553466814404526 + 111903118390663442595367140245%° +
404092959727731770501045665565%4 + 118947134811306669490272616200523 +
2904604480014499379866096419845%2 + 59565098287696170044424791613652% +
1034394503332837044832871973660s2° +1529122522398341452237748264328 5%+
19291701121444085312952472403525'8+20772757298357798986279724525645 7+
1904400092584849147398803257857516+1479295019246765244421617960408 5%+
967232587581523134128767690737s'4 + 529827149456294513579866857762512 +
2458501493711512202476023508385'2 + 10358618198141596236507935013651! +
47441969831005210765856651490s'0 + 27017370328613731242988726116s° +
16543604074621342316534833896s° +  8959808104815503968120901160s7
3934148480503417587877177653s5  +  13567085019266032207440806945°
359356010050812330787473279s*  +  708003980253654289019192525°
980570563944186001099307452 + 8542944279890061972050525
35306186075611540243056)

c7

12(2s + 3)?(22154884224023445850000s%" + 6169667403272286743484005°°
82709070736961626834304885%° + 7105488837495844741933140058
439319157110546803811896968s%7 +  208115303570456665813062480052°
78516994084586808022426344845%5 + 242075167606254230722070734145%4
620925174288058758667946748815%3 + 134191349159021239688414857431522
246518378732311775029464265197s%1 + 38722904880065353173811473999952°
52184907756189465763639844965551% + 60401049965902695146089760774158
599706193952136964321127694249s'7 + 50893260009270036230801469486656
366923845830106735087199088303s15 + 222970678878271885535159028828514
1135107514048166915897613558155% + 48959621580159733845289884633512
19343819733170955544319552163s'1  + 8570967648243419298660377211s0
4842281705213527108416513279s°  +  29091383745623179903600313945%
1522921303596173996138575905s7  +  642212965528640572310436879s°
212347408792609836644815359s°  +  539405048691381659833555565%
10200981421548866272272021° + 135760942374822642715777852
113782587792457476788865s + 4528476210896135134182)

Ce

3(2s + 3)2(44309768448046891700000s>2 + 12759581349127794271344005°T
17712124648743520374246000s° 4+  15780078330319234248480777652°
1013476002096822653934247536528  + 4996346811471994438240970400527
196568910490037599977382196645%¢ + 6334301858598682308261972928852°
1702585370436327792294737235845%* + 3867192559701889939172245743365%3 +
749195973037122202127202135768522 +1245952789865163842159925500256521 4+
1785990969360715046000117363568520+2210911897085152430737822315488519+
236332565694983363186993047423258+2176386534475868543250178452024 517+
1718519269597730769046219931925516+1154898997656814617038309424924 515+
653993799682370716585040976045s'* + 309097812387589842994049088882s13 +
122649986514805927975811013678s%2 + 44139321593386486437541304232s% +
18194600512073131179652474218s10 + 10080729455247177149466360108s° +
6012154495009832863143860703s° +  3086713901904485302077423912s7
1264536513002644891553573532s% 4+ 4042690043135359977090641885°
09085318554137395893467265s*  +  18066869592965845573731768s3
2318037559219684454533893 52 + 1873358777849595772989785
7192069815364796066229)
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6(2s + 3)%(8861953689609378340000s%° + 2635965578342203011144005%2
378446018425834321172203253! +  3492046692914393487980836853°
2326421301668771204257529765%7  +  1191697800945367086458055072528
48806947518804415592184766325%7 + 16406950824469547680560778764.5%°
461128652804188514893220741345%° + 109812274944960351155991786018524
22372585643351671399884980563252% + 39266014091709822788394101988052
59645033289927608500675400043652% + 78624155913942530616774743732452°
900162472445706270827205735408s'9 + 8941184561988137623747448748425'8
cs 768019765700356821541048064211s'7 + 567188919515029404795124639815516
356892849173690588784279865923s15 + 188887726440058090918123569807 514
82758519677573937797801658678s'3 + 29755841968295155180938377160s'2
9265655123985315388229427762s'1 4+ 3269804705124270960946179492510
1745378750437674672254525343s°  +  10671241715712761650793291615°
553192327447935426146669544s7  +  2244718815472323100975588925°
702712871138293330928492345° + 16759856517295120894936656 5
2963427571961631174417201s° + 36798809396238246787532152
28750493973686584294998s + 1066338997876680421860)

3(2s + 3)%(5538721056005861462500s%* + 170000930428677948001200s%°
2521542870629614052494182532 +  24069033861073900393194288s31
166112140239471730224127950s3° 4+ 88286198474324819522022706852°
3758135559481861075860190560s% + 131557876582587412358907558005%7
3858713497344878636633024803252¢ + 961291093455837658866383212325%
2054471477463803356647687549545%* + 379449453375926778871028692368523 +
6087767809804353811451779316465%2 + 851251839731897497067600541072s%L +
10391283871123404096276184222115%04-11073389076832412879108175746165°+
1028236425910911889110211542327s'% +828653388719550997841334599814517 +
575679860099214460991336767122516 + 341113980250874385715195498752s15 +
169602112160966873244672554562514 + 690191218805241781083951520925'3 +
22192275965509681657763172138s'2 +  5513039324469607430622101184s!  +
1308552733582056616685717799s1°  +  6228224269682729356107505625°
441208218615564366021478680s°  +  2510866267449979188062218325
105542726343197962447668330s°  +  331827120417510381926849045°
7819078036046387444720541s% + 1353372939412637489000388s3
1635933722331722818732025> + 12396727299661082512092s
444813790293506728368)

t+4+++ AR+

Cq

6(2s + 3)%(651614241883042525000s° + 20618119083643318565400s>%
315621334999692786151116533 + 3113065178572047666007860s%2
22229797545183952680520284s3!  +  122422561739941481599835484.5%C
540840514528742111761776912s%° 4+  19683840172480631833231049765>3
6014334916396782599305697730s%7 + 156427335090591079949478304025%°
34991063427920339849664070098s%° + 67834512242456744868412053510s%4
114610735641635823232680558264.5%3 + 1694202892194124436822450064365%
21963012945790594367645747580652% + 24991488845891757586328048587852°
249458032509437740525240777731s'9 + 217920380868106493481515756421 58
165868299839291545410161133771s'7 4 1091968041316217564562484267895'°
61455743971044438451107683232s%° + 29010820857450160933812140136s'*
11111724769820435809112639700s'3 + 3230978841571830756780993930s'2
597734071316630030096071452st  +  1947145671045436300515266450
144138231093502245414997265° + 9684588377731643071927236s°
12560219583039185504039910s7 + 6629813221106696409536742s°
2267528918316638233964400s° + 549510851612447197946100s*
95169593716835317546698 s> + 11333379076369208961606 5>
8377615455010504271465s + 29118359247617829474)
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C2

(2s + 3)%(651614241883042525000s°° + 21236128705089231483600s%° -+
335176828913504517258492s%%  +  3412480272349060314590760s%3  +
25184187621847674304218612s%2  +  143532477912633204107111040s3>  +
657199533413487737746005840s°C  +  2483057802762141981372604872527  +
7890444256414221204984097182s2% + 21386706626264438997499257504527 +
4996862660986503205494353272252¢ + 1014439442075341249520382837485%° +
1800227084981344254247742573585%4 + 28047331654865333070376493923252% +
3847701887175612902111068827245%% + 4655680614090253461407950552685% +
4970705288178906475764968742215%° + 4678534555507223380165602910685° +
387255091639245361342752551670s18 + 280658492377779215502417761676s'7 +
176840580743027422215976620477s6 + 957910627865555087240887423205° +
437858623301624990522095297685* + 16326736853527122991715155824512 +
4608219050084326790748933153s2  +  763090880285610579007863108s'1  —

70273595236432368329707716s'°  —  998540727043228715373926045° -
357260313779697920881889255% - 6099037895307670142287608s” +
38599700071122383235616855 + 5718095505418079375309525° +
184789343789534461150530s% + 35488375569622472169240s3 +

43629508588131704492285%+320602140994390122456 5+ 10806813741383936712)

252(2s + 3)2(5s + 6)%(1371819456595879000s>% + 42716345570559668088552 +
6435444751783137019085531 + 6247566555702580389060530 +
4391676556526924901666052° + 238129437052493452170540528 +
1036074226442125183419168527 +  3714930106381256786671824526 +
11187728687072575053763704s2°  +  28696708254175557235886484524  +
63352891406570842442956878s23  +  121330161626918848657558398522  +
202765255131175811905486752s%1  +  296952156159684842999476188s%°  +
382193906007924533060066196s'° +  432977106373155008061033636s'% +
1 431882942555537334945182376s'7 4+  378922778321739951076319160s'¢  +
291693785851369028780662644s15 +  196147224158011892839433394s14  +
114410349624644626423212729s'3 4+ 57248884332430976396451627s'2  +
24130617950503756984051008s'1  +  8287189086050003227856022s10  +
2152391916458370195915867 52 + 325184614597411140314601s° -
3300797235187890347540457 — 41792510938686638897304.55 —
158311859729964497303585° — 3877006197061115690130s* —
6655060240921758556805° —78419814392209911120s2 — 57591867469515218285 —
200126180395998828)
sT(2s + 3)%2(5s + 6)%(54872778263835165°0 + 1629002070479364485%° +
2337377142714373098528 + 21588165729897598296527 +
1442107043736372374225%6 + 74220685242144980727652° +
3061285798160471289822524 + 10391895636644586020112523 +
29588363727735612069036 522 + 71651404108146138897096521 +
149117620073027461547436520 + 268806705178958727187248519 +
422185992215286625454736518 + 580191752386498986323712s17 +
o 69969472431023162406427256 + 741757261801656111225984 515 +
691666247103583662351612s54 + 567033087779716710023352513 +
408047131644656580559296512 + 257036644794565634383008s1 +
14114526414182680407357650 + 671784605322888849095165° +
27499663057942951141041 58 + 05824912784892428556725s7 +
28033651394198231507825° + 6756829533138365528765° +
1306594986712056470525% + 19489563056909654496 53 +

2105305456045150908s% + 146594486051390088s + 4941387170271576)

30




Under review as a conference paper at ICLR 2026

—365%(2s + 3)%(5s + 6)*(1881888621495012747598719782641000005°°
+117198227936733893548520489177218704005%°
+359034059515843764915172404946627408992 564
+72120885712664525163224190900239653019525%3
+106839132025368784093448214456114080089896552
+1244653930745343462400612341123366430556112551
+11874531272586759157048871425273 7764196464800
+953971746397808491174002179252908607975430725%9
+6586014211961623946750060924092706557833870965°8
+3968022355733696091765263130542489256493297296 %7
+211171821578745369801696554651560917442769203805°¢
+1002346955322263064366492155231201633504320407845%°
+427723545408455739277440670239201960498527445168 554
+16516932048985831100019838316753837038388031112805°3

A,y +5803881305128515928064472759889503906134840719788552
+18645262399111732404927179918528703191829668776944.551
+54982160923970862907155853987157692828051002129468550
+1493403271312119095060211916193032794760693070014805%°
+374738908504925756556865067810806785110272348870998548
+870959171363388767125455183938474548684433032733976547
+1879125423105677523532695113591118653251030543219650546
+3770893425502604495219029177077658520798571516698604.54°
+7050015221784174490794108388251813073259643663091008544
+122975169781454008873774301254059723913095352364048165%3
+20038164484164236659289158464333223322979861456369558 542
+30532204930658301922179960307897986850960973110401060s%
+43539740165642307747449376716152274738997971952381288 540
+581479427223404746884552844635854669268294471246908645%9
+727656098196702459816422262294213335428161653007864785538
+85352226271944117403522054472274990615987412077658020537
+93861185123580180986528832241395054124125210332787978 536
+9677367622870745479418594983628077002220070263778913653°
+93535505340566829835280969592461902479874869737070324.534
+84726573070331222224010481384087646174794999517275720533
+71892923025396467242385567135204296459367606931171072552
+57107505385821670765861094421169358296399126222638720531
+42429475579369200294980396815322839839865021711481712530
+29453402248671311370918975586371950400100875859184424.529
+19076887418815475591391225344828673331985433949859745528
+11509630902613742430056710113025979946368929363591560527
+6455314570589262935425947995355398219841083619460275526
+335743256106102060358038278592258590053639639391086252°
+1614483581569691108434974127018929362203153022365980524
+715184392123946764432274154396140356129136774278152523
+290561593707882411154971270303899134550457836920080522
+107686614725038641896140906093508540897806554334884 52
+36175123767827876571287168571772096066641842189715520
+10936295413621417840147244658584579127207174389352519
+2956231446951945885452453177600650222360031507853 518
+714328315495087334767452511829810830341704532294 517
+1578622563973412013157962625289520289452101601 78516
+3466918481540893224348429068849868462291600055251°
+8792208859688249070338942374434094956929968434 514
+272895891349790467960562930434828306766214915653
+908514477310679518991239534084776498569549130512
+2819973846515718244314169254440158181016966005*
+76595712561329944441138942454188872738496992510
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+178232353688059165054335440161954159966815845"
+35225074079403593877757698013822148284205165°
+58678200506460800083204347410791939551955257
+8148452315276322918847755584680364066167255
+92756899932438870538994638284989299633445°
+843808167321923057379954129881612634096s*
+589880875894121296236334664761372978565>
+29725812874330715681181158507796330725>
+959233912036916287714016721581540165
+1483351410366365393372190806569392)

The last lemma presents some properties for the population-level SGPO and GRPO dynamics.
Lemma C.4. Under the assumptions from Theorem 3.3, the following statements hold true,
L (K k k k
() PCros @5er0s PEseos 4lsino € (0,1) for all k = 0.
(ii) p(SZ)PO, q(sléz,o,pg;)lpo, q,(gg,o are strictly increasing in k and lie in (%, 1) forallk > 1.
oo (K k
(iii) ng)PO > ngLofor allk > 1.

Proof. We first rewrite the update rule in Eq. (3) as follows,

(k)
(k+1) _ (k) e seeo,p (k) _ (k) (k)
Pscpo’ = Pscpo o o Al where ASGPo,p = pscro(l — Pscro)s
1_pSGPO+pl§él‘Oe SCEO.P
(k+1) _ (k) 25670, (k) _ (k) 2 (k) (k)
qdscpo = 4scpo o Al where ASGPo,q = (Pscro) @saro(l — dscro)s
l_qSGPOJ’_qSkG’POe SCE0.q
(k+1) _ (k) e2GrEO,p (k) _ (k) (k) (k)
Pcrro” = PGrpo o o Al where AGRPo,p = Perpoll — Pereo)derpos
1_1’GRP0+PISR§06 CREO,P
(k+1) _ (k) e26rPO,q (k) _ k) (k) (k)
9dcrro = 9GrPO o Al where AGRPo,q = Perpoderro(l — Gerpo)-

1—qerpotdcrroe 1

First of all, the uniform initialization yields the desired result for £ = 0. Suppose pgé)Po € (0,1) for
some k£ > 0. Then, we have

(k) Al (k) AL

(k) SGPO,p > O

1 = psgro + Psapo€™ *%P > Pggpo€

which implies pgg{é) € (0,1). By induction, we have pé’é)}?o € (0,1) for all £k > 0. Similarly, we

can show that qggo,pé’%o, qég;o € (0,1) forall k > 0.

Furthermore, we have Aé’é)l,oyp > 0 since pé’é)Po € (0,1). This implies

e : . .
Pl (1,péggo)e—A§'§30,p+pg§go 1-plEo+pil,
Since p(S%)PO = %, we have pé’é)Po € (%,1) for all k& > 1. Similarly, we can show that
qé’é)Pm pé’;LO, qéﬁ)PO are strictly increasing and lie in (%, 1).
Finally, we have pé%)Po > qé%)}?o. Thus, it suffices to show that pgé)Po > qégo implies pgg{é ) >
qé]é;'g ) for all k > 0. Indeed, Lemma C.1(i) and pé@Po > qé’é)Po yield

k k k k k k
ple’ = exp(fir(piho)) = exp(f11(aktho)) = exp(log(aitho) + oo (aleho(l — atho))-

Then, Lemma C.1(ii) and pgé)PO € (0,1) yield

k k k k k k k
eXP(IOg(QéGLo) + hqé’gp)e (QéG)Po(l - ng)Po))) > exp(log ng)Po + h’qé’ggo((p(SG)PO)QqéG)PO(l - ng)Po)»-

In addition, we have

k k k k k k k
qgcgc}) = exp(f12(péG)PO7 ng)Po)) = exp(log ng)Po + hqégo((péG)PO)gqéG)PO(l B qéG)PO)))'

Putting these pieces together yields pgg,fé ) > qé’é;rol ), O
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C.3 PROOF OF THEOREM 3.3

To show (i), recall that the sequence (pé@PO)keN is strictly increasing and bounded in (0, 1) from
Lemmas C.4(i) and C.4(ii), so it converge to some value ¢ € (0, 1]. Take limit as k — oo:
(k+1)

1= lim 2&o" — Jim L = e
k—o0 péGﬁo k—o00 (lfpg’ggo)e*Agsp)o,depé’;go (1—c)eell=te

Using the simple Taylor lower bound e™* > 1 — z, we have
1= = (c—1)*<0 = c=1.

This shows pg’f;)Po — 1 as k — oo. Similarly, we can show qé’é{,o,pggpo, qé’ééo —lask — oo.

1 1
(1—c)e=c=c)4c z (1—c)(1—c(1—c))+c

To show (ii), consider the base case:

1 0 0 0 0
péG)PO = exp(fll(p(SG)PO)) = EXP(IOgPéG)Po + hpé‘ééo (p(SG)PO(]' - péG)PO)))

= exp(log ng){)PO + hpéggo (pé%)PO(l - péOR)Po)))

0 0 0 0 0 0 1
> eXp(logpéR)PO + hpéggo (péR)PO(l - péR)PO)qC(SR)PO)) = eXp(f21(péR)Pov Q((;R)Po)) = péR)POa

where the inequality follows from Lemma C.1(ii). Thus, we use induction and assume p(SIZ)PO >

pé’;{,o for some k£ > 1. Then we have,

k k k k k k
piete’ = exp(f11(plEho)) > exp(fi1(pliko)) = exp(log ko + Ao (piko(1 = Pliko))

k k k k k k k41
> eXp(IngéR)Po + hpégo (péR)PO(l - péR)PO)qéR)PO)) = exp(fa1 (péR)PO’ qéR)PO)) = péR;O)7
where the first inequality uses Lemma C.1(i) and the second one uses Lemma C.1(ii). Thus,

pggé ) > pé@é ) and induction completes. We have proved that pé’é)Po > pé};)Po forall k > 1.

To show (iii), first notice that we can show pé’;)m = qéﬁ)Po for all k& > 0 by induction. The base

case is trivial by initialization. Suppose pé’;)m = qé’;{)o for some k£ > 0, then by noticing that

f21(p, p) = fa2(p, ), we have

k+1 k k k k
p((SR-]!:O) = eXp(fﬂ(p((;R)POa qu)Po)) = eXp(f21(p<(3R)Po,P<(3R)Po))

k k k k k+1
= exp(faz (péR)PO7péR)PO)) = exp(f22 (p(GR)PO7 QéR)Po)) = QC(;RPO)'
Thus, by induction, pé’;Lo = qé’;{)o for all £ > 0. Now, we can reduce the update rule of pg;)Po as
(k+1) _ 1
Poreo” = (0, 1) exp(— (o) 2 (1)) 11
Also recall the update rule of pgé)Po and qé]é)PO:
(k+1) 1
Pssro = 1) exp(—p (- p o) +1
q(k+1) _ 1 )
sero (1/ 45620 —1) exp(—(p{E20) 245600 (1~ a5620))+1

and it suffices to show pé@Poqégo > (pé];)PO)2 for all £ > 1. We prove by induction. For the base

case,
WD () 1 1 1 QY
Pscpolscro = \/1+(1/2)€_1/4 " TH(1/2)e-1/16 > 15 (1/2)e-178 — Pereo-

The above inequality holds true since Lemma C.1(iv) implies

2log(1+ (1/2)e™"/%) > log(1 + (1/2)e /) + log(1 + (1/2)e/1%),
1 k k k . . k k k
It remains to show that péG)Po‘JéG)Po > (p(GR)po)2 implies Pés—gé )QéG—P% ) > (péR-é’_()l ))2 for k

Lemma C.4(iii), we know pgé)Po > qé?Po for all £ > 1. Thus, Lemma C.2 implies that
(k+1) (k+1) 1 1

= > .
Pscpo” dscro A(p(k) YB( (k) (k) C( (k) (k) )2

SGPO Pscpo+9scro PsonodSeno

Y

1. By

Using Lemma C.1(iii), we complete the induction by applying our induction hypothesis:

k k k k k k k
Lo = o (o (VoD VoBacalfho ) ) > explfor 0o 5he)) = G520

2
k k
c ( V péGgoqéGP)O)

This completes the proof.
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C.4 EMPIRICAL EVALUATIONS

We conduct simple simulations to compare SGPO and GRPO under the stylized model and plot
the resulting learning curves in Figure 4. The left panel shows the probability of selecting the
“good” action in the first step at iteration k (i.e., p(s’é)Po Vs. pékR)Po), while the right panel shows the
probability of learning the optimal policy (i.e., pé’é)Poqgé)Po vs. pé];l,oqéﬁ%o). The results align with
the predictions of Theorem 3.3, demonstrating that the likelihood of learning the optimal policy

under SGPO consistently exceeds that of GRPO across training.

Comparison of evolution of p Comparison of evolution of p-q

10° 10’ 10? 10° 10’ 10%
Iteration k Iteration k

Figure 4: Learning dynamics of GRPO and SGPO in the simplified setting.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In addition to serving as the step-wise judge model, we also use LLMs to aid and polish the writing.
Specifically, we employ them for grammar and style checking to improve the readability of this
work.
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