
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXTENDING CONTEXTUAL SELF-MODULATION:
META-LEARNING ACROSS MODALITIES, TASK DIMEN-
SIONALITIES, AND DATA REGIMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Contextual Self-Modulation (CSM) is a potent regularization mechanism for Neural
Context Flows (NCFs) which demonstrates powerful meta-learning on physical sys-
tems. However, CSM has limitations in its applicability across different modalities
and in high-data regimes. In this work, we introduce two extensions: iCSM, which
expands CSM to infinite-dimensional tasks, and StochasticNCF, which improves
scalability. These extensions are demonstrated through comprehensive experimen-
tation on a range of tasks, including dynamical systems with parameter variations,
computer vision challenges, and curve fitting problems. iCSM embeds the con-
texts into an infinite-dimensional function space, as opposed to CSM which uses
finite-dimensional context vectors. StochasticNCF enables the application of both
CSM and iCSM to high-data scenarios by providing a low-cost approximation of
meta-gradient updates through a sampled set of nearest environments. Additionally,
we incorporate higher-order Taylor expansions via Taylor-Mode automatic differ-
entiation, revealing that higher-order approximations do not necessarily enhance
generalization. Finally, we demonstrate how CSM can be integrated into other
meta-learning frameworks with FlashCAVIA, a computationally efficient exten-
sion of the CAVIA meta-learning framework (Zintgraf et al. 2019). FlashCAVIA
outperforms its predecessor across various benchmarks and reinforces the utility of
bi-level optimization techniques. Together, these contributions reaffirm the power-
ful benefits of CSM, and suggest that its spectrum of addressable meta-learning and
out-of-distribution tasks is limited to physical systems. Our open-sourced library,
designed for flexible integration of self-modulation into contextual meta-learning
workflows, is available at AnonymousGitHubRepo.

1 INTRODUCTION

Meta-learning has emerged as a powerful paradigm in machine learning, addressing the limitations of
conventional approaches that train a single algorithm for a specific task. This innovative technique
aims to develop models capable of rapid adaptation to novel but related tasks with minimal data,
a process often referred to as “learning to learn” (Wang et al., 2021). By leveraging common
information across multiple training environments (or meta-knowledge), meta-learning algorithms
can efficiently adapt to new scenarios without starting from scratch (Hospedales et al., 2021). The
success of meta-learning has been demonstrated in various domains, including dynamical system
reconstruction (Norcliffe et al., 2021), program induction (Devlin et al., 2017), out-of-distribution
(OoD) generalization (Yao et al., 2021), and continual learning (Hurtado et al., 2021).

Recent advancements in meta-learning have focused on reducing the number of adaptable parameters
to a smaller subset known as a “context”, which encodes environment-specific information. This
approach, termed “contextual meta-learning”, has shown superior performance in terms of speed,
memory efficiency, and accuracy compared to alternative methods (Zintgraf et al., 2019; Garnelo
et al., 2018; Gordon et al., 2019; Nzoyem et al., 2024). Given the growing popularity of contextual
meta-learning, a comprehensive comparison of some of its methods is essential to guide its users. In
this paper, we identify three critical axes of comparison—task modality, task dimensionality, and
data regime—necessary for evaluating the general competitiveness and applicability of contextual
meta-learning approaches.

1

AnonymousGitHubRepo

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(R1 - Task Modality) Contextual meta-learning methods have demonstrated remarkable success
across various data modalities, including images, meshes, audio, and functas (Dupont et al., 2022).
However, recent observations have revealed limitations in their performance on time series data
from physical systems (Kirchmeyer et al., 2022). For instance, CAVIA (Zintgraf et al., 2019)
with its bi-level optimization algorithm has been reported to overfit when learning the underlying
parameter-dependence of dynamical systems (Nzoyem et al., 2024). Conversely, the Neural Context
Flow (NCF) (Nzoyem et al., 2024), which has recently achieved state-of-the-art results on several
dynamical systems benchmarks, remains untested in decision-making scenarios and other domains
where established contextual meta-learning methods excel.

(R2 - Task Dimensionality) The ability to adapt to infinite-dimensional changes, rather than
fixed-size vector embeddings, is increasingly demanded of contextual meta-learning. Such demands
are pressing in physical systems learning (Yin et al., 2021; Mishra et al., 2017; Nzoyem et al., 2024),
where a common challenge is generalizing to parameter changes in the underlying dynamical system,
such as the time-invariant gravity g of a swinging pendulum. While several recent works have
successfully modelled such time-invariant parameter changes through contextual meta-learning (Liu
et al.; Day et al., 2021), many approaches have overlooked cases where the changing parameter is
itself a function of time, such as the forcing term f(·) of a pendulum.

(R3 - Data Regime) While meta-learning is designed to require limited data during the meta-testing
stage (Hospedales et al., 2021), the optimal amount of data needed for effective meta-training remains
an open question. This issue is particularly evident in image completion tasks, where Conditional
Neural Processes (CNPs) perform well in low-data regimes but struggle to reconstruct known pixels in
high-data scenarios (Gordon et al., 2019). Understanding the necessary adjustments for meta-learning
in both low and high-data regimes is crucial, especially given the potential contradictions between
neural scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022) and monotone learning in some
scenarios (Bousquet et al., 2022).

Contextual Self-Modulation (CSM) is a recently proposed regularization mechanism for smooth
physical systems (Nzoyem et al., 2024) that shows promise in addressing the aforementioned re-
quirements. Importantly, it can be combined with other contextual meta-learning techniques. This
work examines several families of contextual meta-learning approaches through the lens of CSM. In
the following sections, we present a common problem setting followed by a brief summary of the
methods involved.

1.1 PROBLEM SETTING

We consider two distributions ptr(E) and pte(E) over (meta-)training and (meta-)testing environments
(or tasks), respectively. The former is used to train the model to learn how to adapt to given tasks,
while the latter evaluates its ability to quickly adapt to previously unseen but related environments
with limited data. Adaptation is qualified as In-Domain (InD) when ptr = pte, and Out-of-Distribution
(OoD) otherwise. From either distribution, we assume a maximum of N distinct environments can be
sampled.

In the typical regression setting, our goal is to learn a mapping f : x 7→ y, where x ∈ X is a datapoint
and y ∈ Y is its corresponding label. In this work, all environments share the same X ,Y , and
loss function Le. Each environment e is defined by a distribution qe(x, y) over labelled datapoints.
We sample two datasets from qe: the training (or support) set De

tr = {(xe, ye)m}M
e
tr

m=1 and the test
(or query) set De

te = {(xe, ye)m}M
e
te

m=1, with Me
tr and Me

te representing the number of support and
query datapoints, respectively. Adaptation to environment e is performed using the former set, while
performance evaluation is done on the later.

In contextual meta-learning, we train a model f : xe, θ, ξe 7→ ŷe, where θ ∈ Rdθ are dθ-dimensional
learnable parameters shared across all environments (e.g., neural network weights and biases),
and ξe ∈ Ξ are task-specific contextual parameters that modulate the behavior of θ. Although we
generally define Ξ as a subset of Rdξ , it is important to note that this definition may obscure additional
considerations (cf. Section 2).

Dynamical system reconstruction (Göring et al., 2024; Kramer et al., 2021) can be viewed as a
supervised learning problem. In this case, the predictor maps from a bounded set A to its tangent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

bundle TA, forming an evolution term to define a differential equation over a time interval [0, T]:

dxe
t

dt
= f(xe

t , θ, ξ
e). (1)

In this work, trajectories xe
t are computed using differentiable numerical integrators. During data

generation, the initial condition, xe
t0 , which determines the subsequent trajectory xe

t , is sampled from
a known distribution for both meta-training and meta-testing. Meanwhile, the underlying physical
parameters that define the vector field are sampled from either ptr or pte, as previously described.

1.2 RELATED WORK

Contextual meta-learning methods aim to modulate the behavior of a main network with latent
information. Our work broadly encompasses three families of contextual meta-learning methods: the
Neural Processes family, Gradient-Based Meta-Learning (GBML), and Neural Context Flows (NCFs).
The Neural Processes family, represented here by the CNP (Garnelo et al., 2018), leverages an encoder
gϕ with input-output pairs to construct its contextual representation, which is subsequently processed
by a decoder fθ. GBML approaches employ a bi-level optimization scheme during meta-training and,
unlike Neural Processes, require a form of gradient descent even during adaptation. In this work, we
investigate the GBML family through the lens of CAVIA (Zintgraf et al., 2019). The NCF (Nzoyem
et al., 2024), discards the bi-level optimization scheme for a more computationally efficient proximal
alternating scheme. Table 1 presents several differences and similarities between representatives
of these families. Additional algorithmic details on each method, along with other bodies of work
relevant to R1-R3, are presented in Appendix A.

Table 1: Comparison of contextual meta-learning approaches for generalization on a typical regression
task. The Memory column accounts for the size of the context-fitting component in the framework
during training. We expect better contexts when this component increases in size. The Computation
column indicates the cost of making m predictions based on n few-shot adaptation points (used to
generate context vectors). The notation |X| denotes the number of elements in X (Park et al., 2023).

METHOD PARAMETERS ADAPTATION RULE MEMORY COMPUTATION

CNP fθ, gϕ ξe = gϕ(De
tr) O(|ϕ|) O(n+m)

CAVIA f{θ,ξe} Inner gradient updates with H steps O(|θ| ·H) O((n+m) ·H)
NCF f{θ,ξe} Gradient descent with H steps O(1) O((n+m) ·H)

1.3 CONTRIBUTIONS

Our primary contribution is the systematic examination of Contextual Self-Modulation (CSM) in
various task and data settings, exploring strategies to mitigate issues that arise, and investigating its
potential to enhance established meta-learning techniques. Specifically, we contribute the following
four points:

(1) We extend the CSM regularization mechanism to infinite dimensions (iCSM) and arbitrarily
high Taylor orders, which we successfully apply to complex dynamical systems with functional
parameter changes and beyond. Notably, we show that iCSM performs consistently well, even on
finite-dimensional problems, thus generalizing CSM.

(2) We propose StochasticNCF, a stochastic generalization of Neural Context Flows (NCF) (Nzoyem
et al., 2024) designed to handle the computational demands of high-data regimes like curve-fitting
and image completion. The randomness it introduces is compatible with both CSM and iCSM, and
enables robust comparison of NCF against gradient-based meta-learning which has such a randomness
feature built-in.

(3) We present FlashCAVIA, a powerful update of CAVIA (Zintgraf et al., 2019). This implementation
demonstrates the compatibility of CSM with bi-level adaptation rules. Together, they enable more
efficient use of numerous inner updates, leading to more expressive models.

(4) We develop a software library that facilitates the application of all aforementioned strategies and
the combination thereof. The code, along with several examples, is made open-source and available
at AnonymousGitHubRepo.

3

AnonymousGitHubRepo

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: (Left) Illustration of the classical setting of concatenation-based conditioning (Dumoulin
et al., 2018; Zintgraf et al., 2019) for predictions in the environment e. (Right) Illustration of
Contextual Self-Modulation (CSM) where, in addition to concatenation, Taylor expansion as defined
in Eq. (2) is performed at ξe using neighbouring contexts ξj , with j = 0, . . . , p (Nzoyem et al., 2024).
In our iCSM setting, xe is concatenated to ξj(·) rather than ξj itself.

2 METHODS

2.1 CONTEXTUAL SELF-MODULATION

Contextual Self-Modulation (CSM) is an innovative technique that enhances a function’s adaptability
across various contexts by leveraging its inherent smoothness with respect to contextual parameters
(Nzoyem et al., 2024). Consider a function fθ : X × Ξ→ Y , where X is the input space, Ξ is the
context space, and Y is the output space. CSM generates a set of candidate approximations for any
target context ξe ∈ Ξ, using a pool of known nearest1 contexts P = {ξ1, . . . , ξp} ⊂ Ξ.

The core of CSM lies in the generation of candidate approximations {f̂ j
θ}

p
j=1 using the k-th order

Taylor expansion of fθ around each ξj ∈ P

f̂ j
θ (x

e, ξe) =

k∑
n=0

1

n!
∇n

ξ fθ(x
e, ξj)⊗ (ξe − ξj)n, (2)

where ∇n
ξ f denotes the n-th order tensor derivative of f with respect to ξ, and (ξe − ξj)

n is the
n-fold tensor product. The discrepancy between these candidate approximations and the ground truth
label is then minimized

min
θ,ξe
Le(θ, ξe,De) := min

θ,ξe
E(xe,ye)

1

p

p∑
j=1

ℓ(f̂ j
θ (x

e, ξe), ye)

 , (3)

where ℓ is an appropriate loss function. This formulation is illustrated in Fig. 1; it allows the predictor
to seamlessly interpolate and extrapolate across the context space, drawing insights from known
contexts to improve performance in novel situations.

Finite dimensions. The original CSM methodology (Nzoyem et al., 2024) proposes Ξ ⊂ Rdξ . In
that approach, the context is pre-processed by an optional context network, then concatenated to (a
pre-processed) xe before feeding into a main neural network.

Infinite dimensions. We extend CSM to infinite-dimensional variations by letting Ξ be a function
space, naming this approach iCSM (see Fig. 1). This extension allows our model fθ to adapt to a
broader range of changes. In our implementation of iCSM, we chose Ξ as the space of multi-layer
perceptrons, whose weights are flattened into a 1-dimensional tensor to perform Taylor expansion.
The input xe is no longer concatenated to this 1-dimensional tensor ξe, but rather to its output ξe(·)
– the context is viewed as a function of another variable, typically time t when learning dynamical
systems. To ensure stability of our predictive mapping, we initialize the weights of these neural
networks at 0 since Taylor expansions are local approximations and perform better when ξe is close
to ξj . Random initialization of neural networks does not guarantee such proximity, and leads to
divergence early in the training process.

1Proximity is calculated in L1 norm over the space Ξ, and all p contexts in the pool must be distinct.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Higher-order Taylor expansions. With Proposition 3.1, Nzoyem et al. (2024) propose a technique
to efficiently calculate the second-order Taylor expansion without materializing Hessians. However,
their approach is limited to second order, and a naive calculation of higher-order derivatives would
incur an exorbitant cost of O(exp(k)) due to redundant recomputations (Bettencourt et al., 2019). In
this work, we leverage Taylor-mode automatic differentiation (AD) to compute these derivatives at a
much lower cost. Specifically, we adapt the jet API (Bradbury et al., 2018) to derive f̂ j

θ in Eq. (2).
While jet requires both a primal value and a series of coefficients to calculate the derivatives of
f = g ◦ h, our setting is not concerned with function composition. As such, we set our primal value
to ξj and the demanded series to [ξe − ξj ,0, . . . ,0]. The output sequence is then multiplied by the
appropriate inverse factorials and summed to produce the Taylor approximation. For the remainder of
this work, any Taylor expansion of order k > 2 leverages the jet API.

Benefits of self-modulation. A key advantage of both CSM and iCSM is uncertainty quantification
(Nzoyem et al., 2024). Upon training, we obtain multiple contexts in close proximity, allowing us to
produce an ensemble of candidate predictions in order to ascertain the variance inherent in the task
distribution through the learned contexts (see for example Figs. 11 and 12).

Perceived limitations. We acknowledge that not all functions can be approximated near ξ0 ∈ Ξ by
Taylor expansion, as such guarantees are only valid for analytic functions within a prescribed radius
of convergence R > 0 (Cartan, 1995). In Appendix B.2, we address the question of whether our
power series in Eq. (2), modulated through CSM, can recover discrepancies when the underlying
parameters are farther apart than R.

CSM for NCF. In the framework of Neural Context Flows (NCF) (Nzoyem et al., 2024), CSM
refers specifically to the Taylor expansion process used to produce candidate predictions. It does
not encompass other concepts, such as the 3-networks architecture2, penalization, or the alternating
optimization scheme. In fact, we introduce a joint-optimization variant termed NCF* in Section 3.4,
demonstrating improved performance over NCF while keeping the same CSM mechanism.

2.2 STOCHASTICNCF

StochasticNCF introduces a stochastic element to the Neural Context Flows framework, allowing for
training on excessively large datasets. We denote by L the mean loss across environments:

L(θ, ξ,D) = 1

N

N∑
e=1

Le(θ, ξe,De), (4)

where ξ := {ξe}Ne=1 is the union of all learning contexts. At each iteration, we approximate ∇θL
and ∇ξL using the gradients of only a few indices when evaluating L(θ, ξ,D). Those indices
are collectively grouped in B ⊂ {1, 2, ..., N} with cardinality |B| set as a hyperparameter. The
minibatch B is selected using a “nearest-first” approach3: we randomly sample the first element e∗
from U{1, N}, then select the remaining |B| − 1 indices based on their L1-proximity to e∗ in the
context space. We use the unbiased SGD estimator for gradient estimation

∇̃θL(θ, ξ,D) =
1

|B|
∑
e∈B

∇θLe(θ, ξe,De), (5)

while remarking that this approach is compatible with other biased and unbiased gradient estimators,
e.g. SAGA, SARAH (Driggs et al., 2021).

This approach not only accelerates training by enabling more computationally efficient steps, but
also prevents forced information sharing across unrelated or distant environments. It augments
the ability of the model to automatically discriminate clusters of environments. In the rest of this
paper, we use NCF to refer to both StochsticNCF and deterministic NCF, with the understanding that
deterministic NCF is equivalent to StochasticNCF with the maximum number of loss contributors,
i.e. |B| = N .

2When evaluating the iCSM implementation, we found the “context network” from (Nzoyem et al., 2024) to
provide no expressivity benefits, which motivated its removal.

3Note that the “nearest-first” approach performed at this stage is in addition to the one performed in the
context pool P.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.3 FLASHCAVIA

To demonstrate the applicability of CSM within other meta-learning frameworks, we redesigned and
implemented CAVIA (Zintgraf et al., 2019) from scratch, resulting in FlashCAVIA. This derivative
framework is designed for greater performance compared to the original CAVIA implementation,
while incorporating CSM at the model level.

Some key improvements in FlashCAVIA include:

(i) Parallelization: We parallelize the sequential task loop (line 6 in Algorithm 1) to process all
environments simultaneously, allowing for fairer comparison with the three-way parallelized
NCF (Nzoyem et al., 2024).

(ii) Efficient inner updates: For each inner gradient loop, we use the prefix sum primitive
scan (Bradbury et al., 2018) to perform longer and more efficient inner updates. This
follows a recent trend with efficient hardware-aware implementations of state-space models
(Gu & Dao, 2023).

(iii) Custom optimizer: We leverage a custom optimizer to steer the inner gradient updates,
which is particularly important when performing a large number of inner gradient updates
(e.g., H = 100 in Section 3.1).

Although it requires no changes at the model architecture level, our main contribution to FlashCAVIA
is the integration of CSM. The forward-mode Taylor expansion step may require a bespoke reverse-
mode automatic differentiation depending on the AD mode used at higher levels of the optimization
process, and whether custom adjoint rules are involved.

These improvements in FlashCAVIA not only enhance its performance but also provide a versatile
platform for comparing different meta-learning approaches. They also allow the exploration of the
benefits of CSM across various frameworks.

3 EXPERIMENTAL SETUP & RESULTS

This section presents a comprehensive analysis of the CSM mechanism’s performance across four
distinct problem domains: curve-fitting, optimal control, dynamical system reconstruction, and image
completion. We examine how requirements R1 to R3 are met in these varied settings. For each
experiment, we describe the dataset and analyze the results and their implications. The training
hyperparamters are detailed in Appendix B.

3.1 SINE REGRESSION

The sine regression experiment, a standard benchmark in meta-learning (Finn et al., 2017), serves as
our initial test for the CSM mechanism. This curve-fitting regression problem allows us to assess
its benefits in NCF. This experiment also evaluates the impact of H ∈ {1, 5, 100} gradient update
iterations on the CAVIA (Zintgraf et al., 2019) and MAML (Finn et al., 2017) baselines, and in our
FlashCAVIA implementation. We generate input-output pairs based on the generalized sinusoid
y = A sin (x− α), where amplitude A ∈ [0.1, 5.0] and phase α ∈ [0, π] are sampled from uniform
distributions. The same distributions are used for both meta-training and adaptation. We explore
low-, medium-, and high-data regimes with N = 250, N = 1000, and N = 12500 environments,
respectively.

The results of our large-scale sine regression experiment comparing MAML, CAVIA, FlashCAVIA,
and NCF across various data regimes, are presented in Table 2. MAML and the original CAVIA
implementation demonstrate performance consistent with (Zintgraf et al., 2019), showing minimal
improvement when scaling inner gradient updates to 100. In contrast, FlashCAVIA exhibits significant
benefits from 100 inner updates, surpassing NCF in high-data regimes (N = 125000). Notably, all
GBML methods display poorer results with larger |B|, suggesting potential issues with meta-gradient
descent directions. Conversely, NCF performance improves with increased tasks per meta-update.
An important observation is the larger error bars for NCF compared to GBML baselines, indicating
greater variability in environment resolution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results for the sine curve-fitting experiment with varying numbers of environments N , for
both small and large number of tasks per meta-update |B|. We report the mean MSE across evaluation
environments with one standard deviation. The number of inner gradient updates H is indicated
following the method’s name. FlashCAVIA-100 consistently outperforms others across all columns
(all shaded in grey). This experiment includes further runs which were averaged across Taylor orders
k and context size dξ, and we direct the reader to Fig. 6 for additional details including those.

|B| = 25 N = 250 N = 1000 N = 12500

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MAML-1 2.02 ± 1.01 1.98 ± 1.07 2.36 ± 1.35 1.90 ± 0.97 2.05 ± 1.15 1.97 ± 1.16
CAVIA-1 0.53 ± 0.15 0.49 ± 0.08 0.47 ± 0.10 0.43 ± 0.06 0.49 ± 0.14 0.50 ± 0.12
FLASHCAVIA-1 1.28 ± 0.47 1.52 ± 0.41 1.37 ± 0.40 1.53 ± 0.38 0.98 ± 0.32 1.09 ± 0.33
MAML-5 1.76 ± 0.84 1.78 ± 0.82 1.82 ± 0.91 1.79 ± 0.92 2.07 ± 1.07 1.77 ± 0.79
CAVIA-5 0.41 ± 0.16 0.42 ± 0.16 0.42 ± 0.23 0.41 ± 0.22 0.42 ± 0.21 0.40 ± 0.21
FLASHCAVIA-5 0.19 ± 0.05 0.27 ± 0.06 0.23 ± 0.10 0.29 ± 0.11 0.12 ± 0.06 0.17 ± 0.09
MAML-100 3.76 ± 0.13 3.84 ± 0.30 3.73 ± 0.16 3.73 ± 0.45 4.13 ± 0.05 3.86 ± 0.08
CAVIA-100 1.76 ± 0.47 1.99 ± 0.65 1.79 ± 0.74 1.61 ± 0.78 2.51 ± 1.23 2.36 ± 1.16
FLASHCAVIA-100 0.0012 ± 0.0008 0.0040 ± 0.0026 0.0245 ± 0.0490 0.0349 ± 0.0607 0.0004 ± 0.0004 0.0013 ± 0.0010

NCF 0.022 ± 0.035 0.460 ± 0.342 0.045 ± 0.035 0.148 ± 0.151 0.222 ± 0.055 0.047 ± 0.036

|B| = 250 N = 250 N = 1000 N = 12500

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MAML-1 3.95 ± 0.68 3.91 ± 0.62 3.95 ± 0.68 3.91 ± 0.62 3.71 ± 0.71 4.50 ± 0.72
CAVIA-1 3.40 ± 0.60 3.39 ± 0.57 3.42 ± 0.61 3.40 ± 0.57 3.34 ± 0.62 4.11 ± 0.67
FLASHCAVIA-1 1.22 ± 0.48 1.46 ± 0.45 1.33 ± 0.40 1.49 ± 0.37 1.29 ± 0.44 1.41 ± 0.42
MAML-5 1.76 ± 0.84 1.78 ± 0.82 4.12 ± 0.73 4.04 ± 0.65 3.75 ± 0.73 4.53 ± 0.73
CAVIA-5 0.41 ± 0.16 0.42 ± 0.16 3.95 ± 0.69 3.90 ± 0.62 3.64 ± 0.70 4.42 ± 0.71
FLASHCAVIA-5 0.29 ± 0.29 0.36 ± 0.30 0.26 ± 0.08 0.33 ± 0.07 0.25 ± 0.06 0.31 ± 0.06
MAML-100 3.76 ± 0.13 3.84 ± 0.30 4.51 ± 0.81 4.61 ± 0.78 4.53 ± 0.74 4.50 ± 0.83
CAVIA-100 1.76 ± 0.47 1.99 ± 0.65 4.17 ± 0.73 4.10 ± 0.65 4.27 ± 0.68 4.18 ± 0.76
FLASHCAVIA-100 0.002 ± 0.002 0.005 ± 0.003 0.005 ± 0.008 0.014 ± 0.025 0.003 ± 0.002 0.008 ± 0.004
NCF 0.002 ± 0.003 0.123 ± 0.190 0.008 ± 0.009 0.112 ± 0.180 0.049 ± 0.016 0.071 ± 0.068

Our findings indicate that the extended inner optimization process in FlashCAVIA significantly
enhances its performance, unlike the original CAVIA and MAML. However, Fig. 6 suggests that
FlashCAVIA may not necessarily benefit from the CSM process, particularly with dξ = 50. This
contrasts the relation NCF has with dξ. We also observe that NCF exhibits greater overfitting than
GBML in low N - low |B| regimes. These results suggest that for curve-fitting problems permitting
large batches of |B|, NCF is preferable, while FlashCAVIA should be chosen over other GBML
approaches when time and computational resources are abundant.

Given the substantial improvements demonstrated by FlashCAVIA over CAVIA, our subsequent
comparisons will focus on the former. Additionally, as the sine regression experiment does not test
the model out-of-distribution (OoD), we have designed experiments to explicitly leverage different
distributions for training and adaptation.

3.2 OPTIMAL CONTROL

While CAVIA and MAML have proven essential for decision-making systems like Meta Reinforce-
ment Learning, NCF’s efficacy in this domain remains unexplored. In the scientific machine learning
community (Cuomo et al., 2022), optimal control has been investigated as a decision problem, albeit
often limited to controlling Neural ODEs to a single target (Chen et al., 2018; Böttcher et al., 2022;
Chi, 2024). Neural ODEs offer the implicit benefit of regularizing the control energy (Böttcher &
Asikis, 2022). Our experiment in this section aims to evaluate the suitability of NCF and its CSM
and iCSM mechanisms for optimal control across multiple targets using Neural ODEs.

We seek to leverage the parametrized control signal uθ to drive a 2-dimensional linear ordinary
differential equation to a terminal state x(T). The system is defined as:

dxe

dt
(t) = Axe(t) +Buθ(t,x0, ξ

e)

xe(0) = x0

, t ∈ [0, T], (6)

where A =
(
0 1
1 0

)
, B =

(
1
0

)
, and x0 is an initial condition sampled from U{−1, 1}. The desired

target states are denoted {xe
∗}Me=1, each corresponding to one environment or task. We evolve the

system and minimize the loss ℓ(θ, ξe,x0) = ∥xe(T)− xe
∗∥22.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In all environments, we generate the same Mtr = 12 and Mtr = 1 initial conditions for meta-training
and meta-testing, respectively. Evaluation in both cases is performed on Mte = 32 other initial
conditions, all stemming from the same underlying distribution. We then proceed to generate N = 10
target positions sampled from U{−1, 1} during training, then N = 16 targets from U{−2, 2} for
meta-testing. Sample initial and target states are reported in Appendix B.4.

0 2 4 6 8 10 12
k

10 5

10 4

10 3

10 2

10 1

M
SE

(a)
InD-CSM
OoD-CSM
InD-iCSM
OoD-iCSM

0 2 4 6 8 10 12
k

0

1000

2000

3000

4000

W
al

l T
im

e
(s

)

(b)
Training
Adaptation

Figure 2: Results on the optimal control experiment with the NCF framework. (a) MSE showing best
OoD performance for Taylor order k = 1. (b) Training and adaptation times average across CSM and
iCSM. While training grows linearly up to 4500 seconds (see Section 2), the adaptation time remains
constant at roughly 40 seconds (see Table 1), except for k = 0.

The results of this experiment, presented in Fig. 2, demonstrate the efficacy of the CSM mechanism
across a range of Taylor orders k. While maintaining a consistent InD loss, the CSM mechanism
shows clear benefits for OoD evaluation, particularly in infinite-dimensional settings. Notably, we
observe a linear scaling of wall-clock training time, as predicted by Bettencourt et al. (2019) (see
Section 2). The meta-testing time – with CSM deactivated – is near-constant and negligible compared
to training time, enabling rapid adaptation as required of any meta-learning method (Hospedales
et al., 2021). Additionally, Fig. 2b reveals a slightly higher adaptation time for k = 0, suggesting
that employing Taylor expansion during training (only to be removed during adaptation) induces
regularization of the vector field itself, leading to faster numerical integrations during adaptation.

Although these results appear to unanimously favor iCSM based on superior performance and lower
parameter count (see Appendix B.4), it is important to note that the lowest OoD performance with
CSM is achieved when k = 1, before worsening with increased k. This observation underscores the
importance of aligning model and problem biases; in this case such inductive bias referring to the
relation between the control and the target state.

3.3 FORCED PENDULUM

The forced pendulum experiment, conducted in a low data-regime similar to (Nzoyem et al., 2024),
focuses on learning to reconstruct a dynamical system with varying parameter values. In this case,
the vector field to be learned is that of a simple pendulum with a variable forcing functions, where
each forcing term represents a distinct environment.

For each environment e, we generate multiple trajectories over t ∈ [0, 6π] following the ODE
dxe(t)

dt
= ve(t),

dve(t)
dt

= −2 · µ · ω · ve(t)− ω2 · xe(t) + F e(t),

where xe(t) represents position, ve(t) velocity, ω the natural frequency, µ the damping coefficient,
and F e(t) the forcing function. For training environments, we employ 8 oscillating forcing functions
with constant or increasing amplitude, while for adaptation, we use 6 functions with faster increasing
amplitude. The complete list of forcing terms is provided in Appendix B.5. Support sets comprise
4 initial conditions sampled from U{0, 1} for meta-training and 1 for adaptation, with query sets
containing 32 initial conditions. All trajectories are generated using a 4th order Runge-Kutta scheme
with ∆t = 0.1. For training NCF, we parametrise our vector field as in Eq. (1), then we implement
the CoDA baseline (Kirchmeyer et al., 2022) with exponential scheduled sampling (Bengio et al.,
2015) and a context size of 2564 (the same value used for CSM within NCF).

4We note that using a “low-rank” context as suggested in (Kirchmeyer et al., 2022) did not converge. Using
dξ = 256 leads to a massive increase in the total number of parameters, but allows for a more fair comparison.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Our findings, illustrated in Fig. 3, highlight the excellent performance of NCF on this task. In contrast
to CoDA, which often becomes trapped in local minima during a significant portion of its training,
NCF, whether employing CSM or iCSM, consistently improves with increased compute. These
differences are further quantified in Table 3, where we observe superior performance with CSM
and iCSM. Notably, OoD performance is optimized with iCSM and k = 3, indicating that this
infinite-dimensional task benefits from higher-order Taylor approximations of the vector field.

0 25 50 75 100
Training Progress (%)

10 3

10 2

10 1

100

101

M
SE

CoDA
CSM-0
iCSM-0
CSM-1
iCSM-1
CSM-2
iCSM-2
CSM-3
iCSM-3

Figure 3: Training losses for the forced pendu-
lum, involving NCF+CSM, NCF+iCSM and the
baseline CoDA. CSM-k and iCSM-k refer to
methods with a Taylor order of k.

InD OoD

CoDA 11.2 ± 4.75 17.2 ± 6.56
CSM-0 0.79 ± 0.21 1.75 ± 0.85
iCSM-0 1.20 ± 0.15 1.86 ± 0.35
CSM-1 1.08 ± 0.37 1.66 ± 0.54
iCSM-1 1.42 ± 0.54 2.09 ± 0.72
CSM-2 1.18 ± 0.39 2.01 ± 1.27
iCSM-2 1.39 ± 0.38 3.48 ± 3.73
CSM-3 0.98 ± 0.23 1.91 ± 0.18
iCSM-3 0.96 ± 0.23 1.48 ± 0.42

Table 3: MSE results for the forced pendulum.
Values are reported in units of 10−2, with the
standard deviation across 3 runs with different
seeds. The best results are shaded in grey.

3.4 IMAGE COMPLETION

To assess the impact of bi-level optimization schemes like FlashCAVIA and alternating ones like
NCF, we focus on the challenging image completion task from (Garnelo et al., 2018; Zintgraf
et al., 2019). Using the CelebA32 dataset (Liu et al., 2018), our objective is to learn the mapping
f : [0, 1]2 → [0, 1]3 from pixel coordinates to RGB values. We treat each image as an environment,
meta-training on the CelebA Training split and meta-testing on both its Validation (not reported) and
Test splits. The support set for each environment consists of a few K = 10, 100 or 1000 labeled
pixels, while the query set comprises all 1024 pixels. For this task, we introduce NCF*, a variation of
NCF that eliminates the costly proximal alternating gradient descent regularization mechanism and
performs joint optimization of both contexts and model weights.

Fig. 4 illustrates that Taylor expansion has a smoothing or underfitting effect, particularly noticeable
with FlashCAVIA. Contrasting with additional results in Table 6, we observe that visual quality tends
to be negatively correlated with the FlashCAVIA MSE metrics, a sign of overfitting on the few-shot
pixels, an effect compounded by the algorithmic adjustments detailed in Appendix A. Additionally,
Fig. 4 demonstrates the degradation of results for NCF and NCF* with increasing learning shots,
potentially explained by massive overfitting and monotone learning (Bousquet et al., 2022). In their
current state, the joint and alternating optimization schemes appear suboptimal for this task, with
results falling short of the state-of-the-art (Garnelo et al., 2018). Consequently, further investigations
into their generalization capabilities across low and high data regimes are warranted.

4 DISCUSSION

4.1 RESULTS SYNTHESIS

The four experiments conducted in this study collectively establish Contextual Self-Modulation
(CSM) (along with its iCSM and stochastic variants), as a versatile regularization framework for meta-
learning and generalization to unseen environments. This finding aligns with the requirements R1 (task
modality), R2 (task dimensionality), and R3 (data regime) outlined in Section 1. When incorporated
into FlashCAVIA, CSM exhibits intriguing smoothing properties. We posit that this behaviour may
extend to CSM embedded into other contextual meta-learning methodologies, warranting further
investigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

FlashCAVIA

Ground
Truth

10 Random
Pixels

Cubic
Interpolation

NCF NCF* FlashCAVIA

100 Random
Pixels

Cubic
Interpolation

NCF NCF* FlashCAVIA

1000 Random
Pixels

Cubic
Interpolation

NCF NCF*

Not Available

Not Available

Not Available

Not AvailableNot Available

Figure 4: Visual comparison of completed images with varying numbers of random pixels K. The
first three columns correspond to K = 10, the next three to K = 100, and the final three to K = 1000.
The various methods outperform the cubic interpolation baseline up to the highest data regime.

Despite its proximal, stochastic, and CSM regularization mechanisms, our experiments on sine
regression and image completion reveal limitations in Neural Context Flows (NCF) for high-data
regimes. In these scenarios, NCF and its variants struggle to discriminate between environments
amid vast data quantities. With higher-order Taylor expansions, we effectively hit diminishing
returns. Conversely, NCF demonstrates unparalleled efficacy in physical systems such as linear
optimal control and forced pendulum, presumably due to the inherent regularity these systems exhibit
compared to computer vision challenges. This dichotomy suggests that NCF is optimally suited for
physical systems with clear inter-task commonalities.

4.2 LIMITATIONS

While our work provides extensive experimental results on CSM, several limitations merit acknowl-
edgment • (i) First, while substantive discussion of the Neural Process family is provided in Ap-
pendix A, our investigation still focuses on Neural Context Flows and Gradient-Based Meta-Learning,
and does not encompass all contextual meta-learning frameworks • (ii) Furthermore, our study did
not address classification tasks, which have traditionally served as fertile ground for meta-learning
experimentation • (iii) Finally, in scenarios precluding the use of forward- or Taylor-mode AD (e.g.,
Neural ODEs within FlashCAVIA), reliance on reverse-mode AD renders Taylor approximations
of order greater than 3 computationally prohibitive. Focusing on FlashCAVIA, we note that further
theoretical work is required to elucidate its benefits.

4.3 CONCLUSION & FUTURE WORK

This study has substantially advanced the application scope of Contextual Self-Modulation (CSM)
beyond Neural Context Flows (NCF), elucidating its efficacy and constraints across a spectrum
of tasks and modalities. Our contributions, encompassing the introduction of iCSM for infinite-
dimensional tasks and StochasticNCF for improved scalability in high-data regimes, offer valuable
methodologies for advancing meta-learning in dynamical systems, computer vision challenges, and
curve fitting problems. Through extensive empirical evaluation, we have demonstrated iCSM’s
capacity to facilitate OoD generalization and, when integrated with bi-level optimization schemes, to
enhance prediction quality. These findings underscore the efficacy of iCSM for smooth dynamical
systems, where StochasticNCF exhibits superior performance. We also identified several limitations
associated with its alternating optimization scheme, notably a low expressiveness in high-data settings.
These constraints delineate critical areas for improvement and future research, potentially culminating
in a general-purpose framework for meta-learning across a broader range of domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The potential adaptability of our meta-learning research to unintended scenarios poses ethical con-
cerns. To mitigate these risks, we commit to rigorous evaluation and validation of our models in
diverse, controlled settings prior to their release to the open-source community. This proactive
approach aims to ensure responsible development and deployment of our technologies, balancing
innovation with ethical considerations.

REFERENCES

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems, 28,
2015.

Jesse Bettencourt, Matthew J Johnson, and David Duvenaud. Taylor-mode automatic differentiation
for higher-order derivatives in jax. In Program Transformations for ML Workshop at NeurIPS
2019, 2019.

Matthieu Blanke and Marc Lelarge. Interpretable meta-learning of physical systems. In ICLR
2024-The Twelfth International Conference on Learning Representations, 2024.

Lucas Böttcher and Thomas Asikis. Near-optimal control of dynamical systems with neural ordinary
differential equations. Machine Learning: Science and Technology, 3(4):045004, 2022.

Lucas Böttcher, Nino Antulov-Fantulin, and Thomas Asikis. Ai pontryagin or how artificial neural
networks learn to control dynamical systems. Nature communications, 13(1):333, 2022.

Olivier J Bousquet, Amit Daniely, Haim Kaplan, Yishay Mansour, Shay Moran, and Uri Stemmer.
Monotone learning. In Conference on Learning Theory, pp. 842–866. PMLR, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Wessel P Bruinsma, Stratis Markou, James Requiema, Andrew YK Foong, Tom R Andersson, Anna
Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
neural processes. arXiv preprint arXiv:2303.14468, 2023.

Henri Cartan. Elementary theory of analytic functions of one or several complex variables. Courier
Corporation, 1995.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/
torchdiffeq.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Cheng Chi. Nodec: Neural ode for optimal control of unknown dynamical systems. arXiv preprint
arXiv:2401.01836, 2024.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Ben Day, Alexander Norcliffe, Jacob Moss, and Pietro Liò. Meta-learning using privileged informa-
tion for dynamics. arXiv preprint arXiv:2104.14290, 2021.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. Advances in Neural Information Processing Systems, 30, 2017.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

11

http://github.com/google/jax
https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Derek Driggs, Junqi Tang, Jingwei Liang, Mike Davies, and Carola-Bibiane Schonlieb. A stochastic
proximal alternating minimization for nonsmooth and nonconvex optimization. SIAM Journal on
Imaging Sciences, 14(4):1932–1970, 2021.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 2018. doi: 10.23915/distill.00011.
https://distill.pub/2018/feature-wise-transformations.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to
functa: Your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204,
2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pp. 1704–1713. PMLR, 2018.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556,
2019.

Niclas Göring, Florian Hess, Manuel Brenner, Zahra Monfared, and Daniel Durstewitz. Out-of-
domain generalization in dynamical systems reconstruction. arXiv preprint arXiv:2402.18377,
2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Julio Hurtado, Alain Raymond, and Alvaro Soto. Optimizing reusable knowledge for continual
learning via metalearning. Advances in Neural Information Processing Systems, 34:14150–14162,
2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based meta-
learning methods. Advances in Neural Information Processing Systems, 32, 2019.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model. In
International Conference on Machine Learning, pp. 11283–11301. PMLR, 2022.

Daniel Kramer, Philine Lou Bommer, Carlo Tombolini, Georgia Koppe, and Daniel Durstewitz.
Reconstructing nonlinear dynamical systems from multi-modal time series. arXiv preprint
arXiv:2111.02922, 2021.

Hyungi Lee, Eunggu Yun, Giung Nam, Edwin Fong, and Juho Lee. Martingale posterior neural
processes. arXiv preprint arXiv:2304.09431, 2023.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10657–10665, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiaqi Liu, Jiaxu Cui, Jiayi Yang, and Bo Yang. Stochastic neural simulator for generalizing dynamical
systems across environments.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes. Advances in Neural Information Processing Systems, 33:3952–3963, 2020.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017.

A Nichol. On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999, 2018.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ode processes.
arXiv preprint arXiv:2103.12413, 2021.

Roussel Desmond Nzoyem. gen-dynamics, 2024. URL https://github.com/ddrous/
gen-dynamics.

Roussel Desmond Nzoyem, David AW Barton, and Tom Deakin. A comparison of mesh-free
differentiable programming and data-driven strategies for optimal control under pde constraints.
In Proceedings of the SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, pp. 21–28, 2023.

Roussel Desmond Nzoyem, David AW Barton, and Tom Deakin. Neural context flows for learning
generalizable dynamical systems. arXiv preprint arXiv:2405.02154, 2024.

Junyoung Park, Federico Berto, Arec Jamgochian, Mykel Kochenderfer, and Jinkyoo Park. First-order
context-based adaptation for generalizing to new dynamical systems. 2023.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Swish: a self-gated activation function. arXiv:
Neural and Evolutionary Computing, 2017. URL https://api.semanticscholar.org/
CorpusID:196158220.

Haoxiang Wang, Han Zhao, and Bo Li. Bridging multi-task learning and meta-learning: Towards
efficient training and effective adaptation. In International conference on machine learning, pp.
10991–11002. PMLR, 2021.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, et al.
Improving generalization in meta-learning via task augmentation. In International conference on
machine learning, pp. 11887–11897. PMLR, 2021.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
Learning dynamical systems that generalize across environments. Advances in Neural Information
Processing Systems, 34:7561–7573, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702.
PMLR, 2019.

13

https://github.com/ddrous/gen-dynamics
https://github.com/ddrous/gen-dynamics
https://api.semanticscholar.org/CorpusID:196158220
https://api.semanticscholar.org/CorpusID:196158220

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

This section expands upon Section 1.2 by providing a detailed description of each contextual meta-
learning method involved in this work. We elucidate their functionalities, strengths, and weaknesses,
as well as their potential to complement and enhance one another.

Table 4: Summary of the major acronyms, definitions, and their original references if traceable, as
used throughout this work.

ACRONYM DEFINITION REFERENCE

InD In-Domain
OoD Out-of-Distribution
CSM Contextual Self-Modulation (Nzoyem et al., 2024)
NCF Neural Context Flow (Nzoyem et al., 2024)
CNP Conditional Neural Process (Garnelo et al., 2018)
GBML Gradient-Based Meta-Learning
MAML Model-Agnostic Meta-Learning (Finn et al., 2017)
CAVIA (Zintgraf et al., 2019)
AD Automatic Differentiation

Neural Process Family. Conditional Neural Processes (CNPs) (Garnelo et al., 2018), the progen-
itors of this family, ingeniously combine the test-time flexibility of Gaussian Processes with the
scalability and expressivity of Neural Networks. Utilizing an encoder network gϕ, CNPs construct
a permutation-invariant representation ξe for each environment in De

tr. Both input datapoints x and
their corresponding labels y are fed into g, adhering to the Deep Sets theory (Zaheer et al., 2017).
A decoder fθ is then introduced, whose predictions (conditional means and standard deviations)
on (x, ·) ∈ De

test are parametrized by ξe. Trained by minimizing the resulting negative Gaussian
probability, CNPs demonstrate significant advantages in function regression, image completion, and
dynamics forecasting (Norcliffe et al., 2021). Their particular appeal lies in their suitability for
streaming data, given their adaptation complexity scaling as O(n+m), where n and m represent the
number of points in De

tr and De
te, respectively (cf. Table 1).

While CNPs eliminate the need for gradient updates at test time, they tend to underfit. Extensive
research has been conducted to address this weakness, including notable contributions from (Gordon
et al., 2019) and (Bruinsma et al., 2023). However, this issue remains a topic of significant interest.
Another limitation of NPs is their restrictive assumption of finite-dimensional latent variables, a
problem addressed by (Gordon et al., 2019) through the introduction of infinite-dimensional latent
variables for translation equivariance, and further explored by (Lee et al., 2023), among others.

Gradient-Based Meta-Learning. Gradient-Based Meta-Learning (GBML) offers an alternative
approach to meta-learning through bi-level optimization. These methods optimise shared knowledge
θ in an outer loop while adapting to each task in an inner loop. Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017), for instance, searches for an optimal initialization in the outer loop
to facilitate fine-tuning in the inner loop, necessitating the use of second-order derivatives during
meta-training. While agnostic to model architecture, this approach scales poorly as models grow
larger, a challenge addressed by CAVIA (Zintgraf et al., 2019) whose training algorithm is presented
in Algorithm 15. CAVIA leverages external context parameters ξ := {ξe}Ne=1 to modulate the model,
with these contexts being the sole parameters adapted during meta-testing. Although more efficient
than MAML, CAVIA still requires Hessian information in its bi-level approach to optimising {θ, ξ}.
It is important to compare this form of contextual meta-learning with other, more computationally
efficient styles, such as joint or alternating optimization. Moreover, GBML methods are susceptible
to overfitting, necessitating further investigation into the role of dataset size in the training process.
Notably, significant efforts have been made to develop first-order MAML variants, as exemplified

5Our definition of CAVIA differs from Zintgraf et al. (2019) in that we perform meta-updates on the support
sets Dtr, rather than on Dte. This way, CAVIA sees the same labelled datapoints as NCF during its meta-training
process (cf. Algorithm 2). This ensures a fair comparison against NCF and CNP.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

by iMAML and Reptile (Nichol, 2018), with the latter even outperforming MAML in transductive
classification settings. However, the benefits of second-order information remain invaluable for
the expressivity of contextual methods like CAVIA, making the improvement of scalability while
maintaining accuracy a vital, unsolved challenge. The memory and computational complexity of
CAVIA’s adaptation rule is presented in Table 1.

Neural Context Flows. The original formulation of Neural Context Flow (NCF) (Nzoyem et al.,
2024) illustrated in Algorithm 2, optimizes model weights and contexts in an alternating manner,
diverging from the bi-level optimization approach. This training scheme mirrors the Multi-Task
Learning (MTL) joint training paradigm (Wang et al., 2021). To enable effective modulation
of weights, NCF introduces the concept of CSM, facilitating seamless information flow across
environments. This approach has been successfully tested on several physical systems with limited
number of trajectories. NCF offers several advantages, including interpretability and uncertainty
quantification, demonstrating state-of-the-art performance against CAVIA (Zintgraf et al., 2019)
and CoDA (Kirchmeyer et al., 2022) in few-shot learning of physical systems across dozens of
environments. Moreover, for linearly parameterized systems, the underlying physical parameters can
be recovered using a simple linear transform (Blanke & Lelarge, 2024). However, the efficacy of
CSM in high-data regimes remains largely unexplored.

Comparative studies between GBML and MTL with multi-head structures by Wang et al. (2021)
reveal that, in addition to sharing similar optimization formulations in certain settings, the predictions
generated by these two methods are comparable, with the gap inversely proportional to neural network
depth. Furthermore, their research demonstrates that MTL can achieve similar or even superior
results compared to powerful GBML algorithms like MetaOptNet (Lee et al., 2019), while incurring
significantly lower computational costs. In our work, we empirically evaluate the performance of
these training regimes across various settings.

Algorithm 1 CAVIA Meta-Training

1: Input: Dtr := {De
tr}Ne=1 defined by ptr

2: θ ∈ Rdθ randomly initialized
3: qmax, |B|, H ∈ N∗; ηθ, ηξ > 0
4: for q ← 1, qmax do
5: Sample batch of |B| tasks from ptr(E)
6: for e← 1, |B| do
7: ξe = 0
8: for h← 1, H do
9: ξe = ξe − ηξ∇ξLe(θ, ξe,De

tr)
10: end for
11: end for
12: ξ := {ξe}|B|

e=1
13: θ = θ − ηθ∇θL(θ, ξ,Dtr) ▷ Eq. (4)
14: end for

Algorithm 2 NCF Meta-Training

1: Input: Dtr := {De
tr}Ne=1

2: θ0 ∈ Rdθ randomly initialized
3: ξ0 := {ξe}Ne=1, where ξe = 0 ∈ Ξ
4: qmax ∈ N∗; β ∈ R+; ηθ, ηξ > 0
5: for q ← 1, qmax do
6: G(θ) := L(θ, ξq−1,Dtr) +

β
2
∥θ − θq−1∥22

7: θq = θq−1

8: repeat
9: θq ← θq − ηθ∇G(θq)

10: until θq converges
11: H(ξ) := L(θq, ξ,Dtr) +

β
2
∥ξ− ξq−1∥22

12: ξq = ξq−1

13: repeat
14: ξq ← ξq − ηξ∇H(ξq)
15: until ξq converges
16: end for

In conclusion, modulating neural network behaviour with contextual information presents a non-
trivial challenge. Beyond CNPs, CAVIA, and NCF, numerous approaches have attempted this task
using global context vectors (Norcliffe et al., 2021; Massaroli et al., 2020) and other methodologies.
The current landscape of contextual meta-learning is fragmented, with some methods tailored for
specific regression tasks, others for physical systems (Day et al., 2021; Nzoyem et al., 2024) or vision
challenges (Zintgraf et al., 2019; Garnelo et al., 2018), and many barely accommodating classification
tasks (Norcliffe et al., 2021). This fragmentation underscores the necessity for our work, with the
conclusions drawn herein aiming to elucidate and advance this rapidly evolving field.

B ADDITIONAL DETAILS & RESULTS

This section provides supplementary information on model architectures and training configurations
used in our experiments. We also present additional results that enhance the interpretations and con-
clusions reached in the main section. Throughout our experiments, we employ multilayer perceptrons

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(MLPs) with Swish activation functions unless otherwise specified. The Adam optimizer (Diederik,
2014) with a constant learning rate is used as the default for model weight optimization. For the
(infinite-dimensional) context vectors, the choice of optimizer depends on the method: Adam with a
learning rate of 10−3 for all Neural Context Functions (NCF) experiments, and stochastic gradient
descent (SGD) with a learning rate of 10−3 for all FlashCAVIA experiments (unless otherwise speci-
fied). The hyperparameters for the original CAVIA and MAML follow the conventions established
in (Zintgraf et al., 2019). When dealing with dynamical systems, we utilize the Dopri5 integrator
(Kidger, 2022) by default, with datasets following the interface described in the Gen-Dynamics(?)
initiative (Nzoyem, 2024). The CoDA implementation for dynamical systems relies on the library by
Chen (2018). For methods in this work, we used a RTX 4080 GPU to accelerate the training.

B.1 LOTKA-VOLTERRA

We conduct an experiment with FlashCAVIA using the iCSM mechanism on the Lotka-Volterra
problem, as described in (Kirchmeyer et al., 2022). This problem is chosen for its well-understood
linearity and its relevance to the NCF task. The Lotka-Volterra dynamics describe the evolution of
prey (x) and predator (y) populations over time (t):

dx
dt

= αx− βxy,

dy
dt

= δxy − γy,

where α represents the prey population growth rate, β the predation rate, δ the rate at which predators
increase by consuming prey, and γ the natural death rate of predators. The time-invariant parameters
β and δ define our 9 meta-training and 4 meta-testing environments, as described in (Kirchmeyer
et al., 2022).

We set our model hyperparameters identical to those in (Nzoyem et al., 2024), with the context
function implemented as a 3-layer MLP with 32 hidden units and 128 output units. To evolve our
dynamics through time in a differentiable manner, we leverage a custom RK4 integrator based on
JAX’s scan primitive (Bradbury et al., 2018).

In this work, we employ iCSM and observe that the predictions of the context functions are themselves
invariant with time, mirroring the time-invariant nature of the two parameters β and δ they are meant
to encode (see Fig. 5). This observation, along with results in Section 3.2, suggests that the iCSM
protocol generalizes the CSM and should be prioritized for maximum flexibility and performance.

0 2 4 6 8
Time

0.2

0.1

0.0

0.1

0.2

C
on

te
xt

 P
re

di
ct

io
ns

Env 0
Env 1
Env 2
Env 3

Figure 5: Predictions from the infinite-dimensional context functions on the Lotka-Voltera dynamical
problem after adaptation to 4 environments. This case uses the FlashCAVIA method. Since this is a
finite-dimensional problem, the model learns to ignore the input t entirely and predict constant values
(albeit different for different environments).

B.2 DIVERGENT SERIES

This experiment is designed to investigate the effect of diverging power series used in the data
generating process on the performance of CSM. We generate trajectories with two carefully crafted

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

vector fields f , where the varying parameters c are spaced farther than f ’s convergence radius R
(with respect to the parameter c). The first experiment sets f : x 7→ x

1−c with R = 1, while the
second experiment sets f : x 7→ x

1+(cx)2 with R = 1
|x| , meaning the suitability of a context ξe for

Taylor approximation near ξj depends on the system’s state.

For meta-training in both experiments, we select 7 values for c ∈ [1.25, 10) regularly spaced by 1.25.
For meta-testing, we similarly choose 15 regularly spaced values in [1.25, 20). The model is trained
for 100 outer steps with 10 inner steps in the NCF proximal alternating minimization. We place 4
contexts in the context pool, each with finite dimensionality dξ = 128. Adaptation is performed for
7500 steps, still resulting in a fraction of the total training time. The initial learning rate for the Adam
optimizer for both weights and contexts is set to 5e− 4, with a scheduling factor of 0.5 for scaling at
one and two-thirds of the total 2000 training steps.

We use the same model architecture as the previous experiment for both data and main networks. The
context network (embedded in the vector field) is a 1-layer MLP with 128 input units, 32 hidden units,
and 128 output units. We employ 10 inner steps and 100 outer steps in the NCF proximal algorithm.
Our results, presented in Table 5, demonstrate that the CSM mechanism can successfully reconstruct
the trajectories despite the use of extremely small neural networks. This finding underscores the
need for a clearer notion of task-relatedness in dynamical systems based on power series and radii
of convergence, which would complement efforts in the meta-learning community to define such
notions of relatedness (Khodak et al., 2019).

Table 5: In-Domain (InD) and adaptation (OOD) test MSEs (↓) for the divergent series problems.
The first ODE, termed ODE-1, is x 7→ x

1−c , and the second, termed ODE-2, is x 7→ x
1+(cx)2 . We

additionnaly indicate the small size of the vector field used to learn these prametric mappings.

ODE-1 (×10−4) ODE-2 (×10−4)

#PARAMS IND OOD #PARAMS IND OOD

NCF-t0 2099 0.47 ± 0.01 1.16 ± 0.2 2099 5.28 ± 0.12 6.71 ± 0.41
NCF-t2 2099 7.4 ± 0.25 11.0 ± 0.67 2099 5.34 ± 0.23 6.84 ± 0.29

B.3 SINE REGRESSION

For the sine regression task, we closely followed the directions outlined in (Zintgraf et al., 2019), in-
cluding the model architecture. However, we made one notable exception: the activation function was
switched from ReLU to Softplus to encourage smoothness in the approximation. This modification
allows for a more nuanced comparison of the different approaches.

Our training configuration employed |B| tasks per meta-update, which also determines the number
of environments contributing to the NCF loss function. To optimize computational efficiency, we
processed all datapoints within each environment simultaneously. The number of outer steps or
epochs varied by GBML approach, such that the training time was constrained to 6, 10, or 60 minutes
for K = 1, 5, and 100 inner gradient updates, respectively. NCF, being independent of K, was
limited to 6 minutes, at which point its loss curve had stabilized. While these time constraints may
not yield minimum test error in all cases, they enable fair comparison, particularly as many strategies
had reached peak performance within these timeframes.

Controlling the total number of environments used in the training process is straightforward using
the gen-dynamics interface (Nzoyem, 2024). For the original CAVIA and MAML, we control
N by setting two values in the dataloader class that reset each time we reach the threshold of N
environments. While the phase and amplitude seed is reset, the input-generating seed is allowed to
change to generate diverse datapoints as the training evolves, ensuring a rich and varied dataset.

In our FlashCAVIA implementation, we initially set the inner learning rate to 10−3. However, this
occasionally led to divergences. In such cases, we adjusted the rate to 10−4, which resolved the issue
while maintaining fair comparison. This adjustment is justified as the original CAVIA is documented
to scale its gradients with its inner learning rate (Zintgraf et al., 2019).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(b)(a)

(c) (d)

Figure 6: Visualization of test MSEs for MAML, CAVIA, FlashCAVIA, and NCF on the sine
regression problem with varying numbers of environments |B| per meta-update: |B| = 250 (Large),
and |B| = 25 (Small). Complementing Table 2, this experiment presents 24 comparisons in groups
of 6. (a) Meta-Train Large, (b) Meta-Test Large, (c) Meta-Train Small, (d) Meta-Test Small. The
horizontal bars plot the standard deviation across many evaluation environments.

B.4 OPTIMAL CONTROL

The CSM mechanism was applied to the vector field as prescribed in (Nzoyem et al., 2024). We
parametrized u as a set of MLPs with a 3-network architecture, utilizing either a latent vector of
size dξ = 2 as context or a 2-network architecture (without the context network, the two others
identical) with bespoke small MLPs as latent contexts. During meta-training, the total number of
learning parameters (|θ|+ |Ξ|) with CSM was 6581, while with iCSM it was only 5749. For CSM,
we found that small context sizes consistently provided better results for this task. For optimization,
we employ differentiable programming, which, despite the extensive literature on adjoint methods for
controlling physical systems, has demonstrated significant results for optimal control tasks (Kidger,
2022; Nzoyem et al., 2023).

On this task, we trained the NCF framework for 5000 outer steps with 10 inner steps. Adaptation was
also performed for 5000 steps. We employed the same optimizers as in the previous experiment, but
with an initial learning rate of 10−3 and a scaling factor of 0.25. The context pool size was set to 2,
matching the context size.

For the network architecture, we designed the data network with an input and an output layer, each
containing 32 hidden units and outputs. Before feeding into the data network, we concatenated the
input x0 with t. The main network consisted of a 3-layer MLP with 32 hidden units and 1 output
unit. When implementing iCSM, we maintained the data and main networks while removing the
context network. The infinite-dimensional context function was parametrized as a 2-layer MLP with
32 hidden units and 1 output unit. This careful design of the network architecture and training process
allowed us to effectively capture the dynamics of the optimal control problem, as evidenced by the
results presented in Figures 7 and 8.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Trajectories during evaluation on the optimal control problem’s meta-training query sets.
This result is for Taylor order k = 0 using NCF with CSM.

CoD
A

iC
SM-0

iC
SM-1

iC
SM-2

iC
SM-3

CSM-0

CSM-1

CSM-2

CSM-3
0

50

100

150

200

Tr
ai

ni
ng

 T
im

e
(m

in
s)

Figure 9: Training times on the forced pendulum problem. We observe a marginal increase in training
times with the Taylor order. The vertical bars indicate the standard deviation across 3 runs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Trajectories during evaluation on the optimal control problem’s meta-testing query sets.
This result is for Taylor order k = 0 using NCF with CSM.

B.5 FORCED PENDULUM

We parametrized our vector field as in Eq. (1), utilizing either a 3-network or 2-network MLP
architecture depending on the use of NCF with CSM or iCSM, all making use of Swish activations
(Ramachandran et al., 2017). Backpropagation of gradients is performed through the internals of
the numerical integrator to minimize the average MSE loss across all trajectory steps. We vary the
number of Taylor orders from k = 0 to k = 3, with a fixed context pool size of p = 2. For CSM, we
set the context size to dξ = 256, while for iCSM, we use a 2-layer MLP with 32 hidden units and 256
output units. For this task, we solely considered the CoDA baseline (Kirchmeyer et al., 2022). We
were unable to run FlashCAVIA due to the impracticality of forward-mode Taylor expansion within
its bi-level optimization framework, which includes an integration scheme with custom differentiation
rules.

We add that to allow a fair comparison, we ensured that the number of parameters in CoDA root’s
network was near-identical to that NCF’s main network plus state networks (see also (Park et al.,
2023) for a similar comparison strategy). It is important to note that only their main/root network’s

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Results for image completion, reported with standard deviation across many Training and
Testing evaluation environments. The cell with the lowest MSE in each column is shaded in grey.
Taylor order hyperparamter k is reported following the method’s name. The cross × points out
experiments that couldn’t be run due to memory limitations.

K = 10 K = 100 K = 1000

TRAIN TEST TRAIN TEST TRAIN TEST

FLASHCAVIA-0 0.0008 ± 0.0002 0.0987 ± 0.0378 0.0051 ± 0.0013 0.1350 ± 0.0672 × ×
NCF-0 0.0238 ± 0.0060 0.0493 ± 0.0205 0.0114 ± 0.0029 0.0214 ± 0.0134 0.0378 ± 0.0095 0.0342 ± 0.0173
NCF*-0 0.0043 ± 0.0011 0.0466 ± 0.0186 0.0067 ± 0.0017 0.0188 ± 0.0116 0.0387 ± 0.0097 0.0321 ± 0.0168
FLASHCAVIA-1 0.0021 ± 0.0005 0.1010 ± 0.0456 0.0118 ± 0.0030 0.1370 ± 0.0737 × ×
NCF-1 0.0297 ± 0.0074 0.0499 ± 0.0200 0.0169 ± 0.0042 0.0242 ± 0.0145 0.0392 ± 0.0098 0.0353 ± 0.0164
NCF*-1 0.0086 ± 0.0022 0.0457 ± 0.0174 0.0127 ± 0.0032 0.0207 ± 0.0113 0.0375 ± 0.0094 0.0322 ± 0.0164
FLASHCAVIA-2 0.0019 ± 0.0005 0.0998 ± 0.0472 0.0119 ± 0.0030 0.1360 ± 0.0740 × ×
NCF-2 0.0259 ± 0.0065 0.0489 ± 0.0202 0.0166 ± 0.0042 0.0240 ± 0.0144 0.0428 ± 0.0107 0.0350 ± 0.0164
NCF*-2 0.0095 ± 0.0024 0.0453 ± 0.0190 0.0129 ± 0.0032 0.0212 ± 0.0118 0.0406 ± 0.0102 0.0328 ± 0.0171
FLASHCAVIA-3 0.0034 ± 0.0009 0.1030 ± 0.0486 × × × ×
NCF-3 0.0294 ± 0.0074 0.0510 ± 0.0209 0.0176 ± 0.0044 0.0236 ± 0.0145 0.0380 ± 0.0095 0.0360 ± 0.0165
NCF*-3 0.0086 ± 0.0022 0.0448 ± 0.0188 0.0129 ± 0.0032 0.0211 ± 0.0122 0.0373 ± 0.0093 0.0328 ± 0.0169

parameter counts are intended to match. For NCF, we employ the Adam optimizer (Diederik, 2014)
with 2000 outer steps and 10 inner steps. Adaptation is performed for 1500 steps.

Interestingly, we found that NCF can achieve better performance than those presented in Table 3
by using a different set of hyperparameters similar to those in Appendix B.1, but with the Dopri5
scheme. This modification results in an MSE reduction of about one order of magnitude. However,
these considerations do not alter our conclusions in any significant way.

The complete list of forcing terms used to generate trajectories in our training environments includes:
sin(t), cos(t), sin(t)+cos(t), ecos(t), sin(cos(t)), ecos(t), sin(sin(t)+cos(t)), sinh(sin(t)+cos(t)),
sinh(sin(t)), sinh(cos(t)), tanh(cos(t)). For the adaptation environments, we used: sinh(cos(t)),
tanh(cos(t)), sin(t) · e0.01t, cos(t) · log

(
t
10 + 1

)
, sin(t) + t

10 , sin(t) · (1 + 0.02t). Despite their
clear discrepancies, candidate trajectories from all these environments were processed in a full-batch,
and the mean MSE was minimized to expedite training.

B.6 IMAGE COMPLETION

For the image completion task, we adopted the model hyperparameters from (Zintgraf et al., 2019),
implementing a 5-layer MLP with 128 hidden units each and a context size of 128. However, we made
one significant modification: the activation function was changed to softplus to promote smoothness
in the model’s behavior. This alteration allows for potentially more nuanced image completions.

Following Zintgraf et al. (2019), we use an MLP with 5 hidden layers of 128 nodes each, followed by
ReLU activations. The context vector is directly concatenated to the 2 inputs before being fed into
the first layer of the MLP. We test various orders of Taylor expansion, from k = 0 to k = 3, for all
methods. To ensure fair comparison, we adjust the number of epochs/steps to maintain a consistent
training duration of 1.5 hours across all methods.

In our FlashCAVIA implementation, we use 4 inner gradient updates, while for NCF, we employ 20
in the inner approximation of its proximal operators and a fixed 500 adaptation steps. To expedite
FlashCAVIA training, we meta-train on |B| = 512 environments simultaneously, which unfortunately
precluded running FlashCAVIA with high k and/or K values. We set the outer learning rate to 10−4

and the inner learning rate to 10−1. For NCF, we used a constant learning rate of 10−3 for both model
weights and contexts. To ensure fair comparison, we kept the number of training steps under control,
with no run lasting longer than 1.5 hours.

Our main results, presented in Table 6, demonstrate the performance of these methods on the CelebA
Training and Testing splits. FlashCAVIA’s performance gradually improves as K increases, aligning
with (Zintgraf et al., 2019). For NCF and NCF*, optimal MSEs are obtained at K = 100, with a
slight advantage for the less-regularized NCF*. Interestingly, performance degrades for K = 1000
compared to K = 100, an observation we found consistent across various batch sizes, model
architectures, and other hyperparameters during training.

It is worth noting that both NCF and FlashCAVIA can achieve more accurate results when allowed to
train for longer periods. The various plots in this section showcases these improved results, suggesting
the potential for even higher quality image completions with extended training time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

TRAIN TEST

Figure 10: Sample train and test image completions using FlashCAVIA after approximately 60 hours
of training. This visualization used 100 random pixels.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

True Few-shots Predicted Uncertainty Cubic Int.

Figure 11: Train-time face completions with NCF* using Taylor order k = 2, the same order with
which uncertainties (variance across 466 candidate predictions) are calculated. This visualization
used 100 random pixels.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

True Few-shots Predicted Uncertainty Cubic Int.

Figure 12: Test-time face completions with NCF* using Taylor order k = 2, the same order with
which uncertainties (variance across 466 candidate predictions) are calculated. This visualization
used 100 random pixels.

24

	Introduction
	Problem Setting
	Related Work
	Contributions

	Methods
	Contextual Self-Modulation
	StochasticNCF
	FlashCAVIA

	Experimental Setup & Results
	Sine Regression
	Optimal Control
	Forced Pendulum
	Image Completion

	Discussion
	Results synthesis
	Limitations
	Conclusion & Future Work

	Extended Related Work
	Additional Details & Results
	Lotka-Volterra
	Divergent Series
	Sine Regression
	Optimal Control
	Forced Pendulum
	Image Completion

