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Figure 1: Assorted mesh textures and panoramas generated using StochSync. StochSync extends
the capabilities of image diffusion models trained in square spaces to produce images in arbitrary spaces
such as cylinders, spheres, tori, and mesh surfaces.

ABSTRACT
We propose a zero-shot method for generating images in arbitrary spaces (e.g., a sphere
for 360◦ panoramas and a mesh surface for texture) using a pretrained image diffu-
sion model. The zero-shot generation of various visual content using a pretrained
image diffusion model has been explored mainly in two directions. First, Diffusion
Synchronization–performing reverse diffusion processes jointly across different pro-
jected spaces while synchronizing them in the target space–generates high-quality
outputs when enough conditioning is provided, but it struggles in its absence. Second,
Score Distillation Sampling–gradually updating the target space data through gradient
descent–results in better coherence but often lacks detail. In this paper, we reveal for
the first time the interconnection between these two methods while highlighting their
differences. To this end, we propose StochSync, a novel approach that combines
the strengths of both, enabling effective performance with weak conditioning. Our
experiments demonstrate that StochSync provides the best performance in 360◦

panorama generation (where image conditioning is not given), outperforming previous
finetuning-based methods, and also delivers comparable results in 3D mesh texturing
(where depth conditioning is provided) with previous methods.

1 INTRODUCTION

Diffusion models pretrained on billions of images have shown impressive zero-shot capabilities, generating
arbitrary-sized images (Bar-Tal et al., 2023; Lee et al., 2023), 3D mesh textures (Cao et al., 2023),
ambiguous images (Geng et al., 2024b), and zoomed-in images (Wang et al., 2024a; Geng et al., 2024a).
This cross-domain generation is achieved by mapping from the model’s native instance space (e.g., a 2D
square image) to a target canonical space (e.g., a cylinder for 360◦ panoramas or a 3D mesh for texture
generation), as illustrated in Fig. 1. This approach avoids the need for new data collection or separate
generative models for each type of data.
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Two main strategies have been proposed to address this problem. Diffusion Synchronization (DS) (Bar-
Tal et al., 2023; Kim et al., 2024a) jointly performs the reverse process of diffusion models across
multiple instance spaces while synchronizing their intermediate outputs in the canonical space, but it
often suffers from convergence issues and visible seams when strong conditioning is absent. In contrast,
Score Distillation Sampling (SDS) (Poole et al., 2023) and its variants (Lukoianov et al., 2024; Liang
et al., 2024) update the canonical space via gradient descent from instance spaces, offering robustness in
unconditional settings at the cost of realism.

In this work, we introduce Stochastic Diffusion Synchronization (StochSync), which fuses the strengths
of DS and SDS. We show that each SDS step can be interpreted as a one-step DDIM refinement that
maximizes stochasticity in the denoising process. By incorporating this stochasticity into DS, we achieve
better coherence across views and eliminate seam artifacts. To further enhance realism, we propose
improved clean sample prediction via multi-step denoising and the use of non-overlapping view sampling
strategy. Experiments on 360◦ panoramic image and mesh texture generation confirm that StochSync
outperforms previous zero-shot and finetuning-based methods, mitigating issues such as overfitting and
geometric distortions.

2 RELATED WORK

Panorama Generation. With the release of image diffusion models trained on large-scale datasets (Rom-
bach et al., 2022), methods that leverage these pretrained models for text-conditioned panorama generation
have gained attention. MVDiffusion (Tang et al., 2023) and PanFusion (Zhang et al., 2024a) finetune these
pretrained models using a panoramic images dataset (Chang et al., 2017). However, finetuning diffusion
models on a small dataset risks overfitting, reducing their generalizability. In contrast, SyncTweedies (Kim
et al., 2024a) employs DS for zero-shot panorama generation but relies on depth map conditions, which are
not commonly available in practice. L-MAGIC (Cai et al., 2024), on the other hand, adopts an inpainting
diffusion model, sequentially filling in the panoramic images. However, this iterative process cannot refine
previous predictions, leading to error accumulation and often resulting in wavy panoramas.

Mesh Texturing. 3D mesh texturing using image diffusion models has gained significant attention.
Among these approaches, Paint3D (Zeng et al., 2024) finetunes a pretrained diffusion model on a synthetic
3D mesh dataset (Deitke et al., 2023), but this often results in unrealistic texture images due to overfitting
to the synthetic dataset. For zero-shot approaches, previous works have utilized SDS to update the texture
of 3D meshes (Metzer et al., 2023; Chen et al., 2023b; Youwang et al., 2023). DS is also widely used
for 3D mesh texturing, with previous works (Liu et al., 2023; Zhang et al., 2024b; Kim et al., 2024a)
averaging the one-step predicted clean samples across multiple denoising processes. Another line of
research explores the outpainting approach (Chen et al., 2023a; Richardson et al., 2023), where the 3D
mesh is textured iteratively, often resulting in textures with visible seams.

“Majestically rising towards the heavens, the snow-capped mountain stood.”

(a) SyncTweedies (Kim et al., 2024a) (b) SDS (Poole et al., 2023)

(c) SyncTweedies + Max σt (d) SyncTweedies + Max σt + Impr.x0|t

(e) SDI (Lukoianov et al., 2024) (f) StochSync

Figure 2: A comparison of SyncTweedies (Kim et al., 2024a), a synchronization method, SDS (Poole et al.,
2023), and StochSync which uses SyncTweedies as a base and incorporates maximum stochasticity
(Max σt), multi-step x0|t computation (Impr. x0|t), and non-overlapping view sampling (N.O. Views),
alongside others that use only a subset of these components.

3 PROBLEM DEFINITION AND OVERVIEW

We propose a method for generating data points in one space (referred to as the canonical space Z) using
a pretrained diffusion model that has been trained on another space (referred to as the instance space X ),
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where the mapping from the canonical space to the instance space is known. For example, the canonical
space could be a sphere representing 360◦ panoramas, or a 3D mesh surface for creating mesh textures,
and the instance space is a 2D square, the space for most pretrained image diffusion models. In general, a
region of the canonical space is mapped to the instance space through a specific view. The mapping from
a region of the canonical space to the instance space through a view c is represented by the projection
operation fc(z) : Zc → X , where z ∈ Zc ⊆ Z . Our objective is to produce realistic data points in the
canonical space without using any generative model trained on samples in that space, but by leveraging
pretrained diffusion models in the instance spaces and their multiple denoising processes from different
views. This approach can extend the capabilities of pretrained diffusion models to produce diverse types
of data, eliminating the need to collect large-scale data and train separate generative models.

4 DIFFUSION REVERSE PROCESS

The forward process of a diffusion model (Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.
(2021b)) sequentially corrupts sample data using a predefined variance schedule α1, . . . , αT , where one
can sample xt at arbitrary timestep t from a clean sample x0:

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I). (1)

Song et al. (2021a) propose DDIM, a diffusion reverse process generalizing DDPM Ho et al. (2020),
by defining the posterior distribution qσt

(xt−1|xt,x0) with a parameter σt determining the level of
stochasticity as follows:

qσt (xt−1|xt,x0) = N
(
µσt(x0,xt), σ

2
t I
)
, (2)

where µσt
(x0,xt) =

√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
. (3)

In the reverse process, the noise ϵt is first estimated from xt using the noise predictor ϵθ(xt, y), where y is
the input condition (e.g., a text prompt). Tweedie’s formula (Robbins, 1956) is then applied to approximate
the clean sample in Eq. 2, denoted by x0|t:

x0|t = ψ(xt, ϵt) =
xt −

√
1− αtϵt√
αt

. (4)

A clean data sample x0 is then generated by first sampling standard Gaussian noise xT ∼ N (0, I) and
gradually denoising it over time by iteratively sampling a noisy data point xt from pθ (xt−1|xt). The
mapping from a noisy data point xt to x0 becomes deterministic when σt = 0 for all t and is equivalent
to solving an ODE (Song et al., 2021b; Chen et al., 2018) with a specific discretization.

Reverse Process from the Perspective of x0|t. Here, to connect the reverse process of DDIM to the
algorithms to be introduced in the next section, we reinterpret the reverse denoising process as an iterative
refinement process of the prediction of clean sample x0|t. See Alg. 1, where x0|t and ϵt are computed at
each timestep. Note that the mean of the likelihood distribution pθ (xt−1|xt) in Eq. 3 can be rewritten in
terms of x0 and ϵt:

µσt
(x0, ϵt) =

√
αt−1x0 +

√
1− αt−1 − σ2

t · ϵt. (5)

Apart from setting σt = 0, one can consider a special case when σt =
√
1− αt−1, which maximizes the

level of stochasticity during the sampling process. This cancels out the noise prediction term ϵt in Eq. 5.
We denote this case by overriding µσt(·, ·) with µ∗(·), which now takes a single parameter x0:

µ∗(x0) =
√
αt−1x0. (6)

5 DIFFUSION SYNCHRONIZATION AND SCORE DISTILLATION SAMPLING

5.1 DIFFUSION SYNCHRONIZATION

The idea of Diffusion Synchronization (DS) (Liu et al., 2022; Geng et al., 2024b; Kim et al., 2024a) is
to perform the reverse process jointly across multiple instance spaces while synchronizing the processes
through mapping to the canonical space. Among the various options for synchronization, Kim et al.
(2024a) have demonstrated that averaging the predictions of the clean samples x0|t in the canonical space
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Algorithm 1: Diffusion Reverse Process
Inputs: y: Input text prompt

Outputs: x0: An instance space sample aligned with y

1 Function Reverse Process(y):
2 xT ∼ N (0, I)
3 ϵT ← ϵθ(xT , y)

4 x0|T ← ψ(xT , ϵT )

5 for t = T . . . 2 do
6 xt−1 ∼ N (µσt (x0|t, ϵt), σ

2
t I) // Eq. 5

7 ϵt−1 ← ϵθ(xt−1, y)

8 x0|t−1 ← ψ(xt−1, ϵt−1) // Eq. 4

9 end

Algorithm 2: Diffusion Synchronization (DS)
Inputs: z: A canonical space sample
y: Input text prompt; c1:N : A set of views.
Outputs: z: Canonical space sample aligned with y

1 Function DS(z, y, c1:N):
2 x1:N

T ∼ N (0, I)
3 for i = 1 . . . N do
4 ϵ

(i)
T ← ϵθ(x

(i)
T , y)

5 x
(i)

0|T ← ψ(x
(i)
T , ϵ

(i)
T ) // Eq. 4

6 end

7 z← argmin
z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|T ∥
2

8 for t = T . . . 2 do
// c1:N is fixed for all t.

9 for i = 1 . . . N do
10 x

(i)

0|t ← f
c(i)

(z)

11 x
(i)
t−1 ∼ N (µσt (x

(i)

0|t, ϵ
(i)
t ), σ2

t I) // Eq. 5

12 ϵ
(i)
t−1 ← ϵθ(x

(i)
t−1, y)

13 x
(i)

0|t−1
← ψ(x

(i)
t−1, ϵ

(i)
t−1) // Eq. 4

14 end

15 z← argmin
z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|t−1
∥2

16 end

Algorithm 3: Score Distillation Sampling (SDS)
Inputs: z: A canonical space sample
y: Input text prompt
Outputs: z: Canonical space sample aligned with y

1 Function SDS(z, y):
2 while z not converged do
3 t ∼ U(0, T ); c← SampleRandomView()

4 x0|t ← fc(z)

// Noise prediction is not used and thus omitted.
5 xt−1 ∼ N ( µ∗(x0|t) , σ

2
t I) // Eq. 6

6 x0|t−1 ← ψ(xt−1, ϵθ(xt−1, y))

7 z← z− w(t)
[
fc(z)− x0|t−1

] ∂f
∂z

8 end

Algorithm 4: StochSync
Inputs: z: A canonical space sample
y: Input text prompt
Outputs: z: Canonical space sample aligned with y

1 Function StochSync(z, y):
2 c1:N ← SampleNonOverlappingViews(N)

x1:N
T ∼ N (0, I)

3 for i = 1 . . . N do
4 x

(i)

0|T ← G(x
(i)
T )

5 end

6 z← argmin
z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|T ∥
2

7 for t = T . . . Tstop + 1 do
8 c1:N ← SampleNonOverlappingViews(N) for

i = 1 . . . N do
9 x

(i)

0|t ← f
c(i)

(z)

// Noise prediction is not used and thus omitted.

10 x
(i)
t−1 ∼ N ( µ∗(x

(i)

0|t) , σ
2
t I) // Eq. 6

11 x
(i)

0|t−1
← G(x(i)

t−1)

12 end

13 z← argmin
z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|t−1
∥2

14 end

and then projecting it back to each instance space provides the best performance across a broad range of
applications. Alg. 2 shows the pseudocode, which, at each step, performs one-step denoising of DDIM for
each view (lines 10-11), updates the data point in the canonical space z while averaging x0|t by solving
a l2-minimization (line 13), and then projects z back to each space (line 9). The differences from the
reverse process of DDIM (Alg. 1) are highlighted in blue.

For the stochasticity of the denoising process, typically deterministic DDIM reverse process
(σt = 0) (Bar-Tal et al., 2023; Zhang et al., 2024b) or DDPM reverse process (σt =√

(1− αt−1)/(1− αt)
√

1− αt/αt−1) (Liu et al., 2023) have been used.

Previous works have shown the effectiveness of the synchronization approach in generating various types
of visual data using pretrained image diffusion models, including depth-conditioned panoramic images,
textures of 3D meshes and Gaussians (Kim et al., 2024a; Liu et al., 2023). However, we have observed
that this approach requires strong conditioning for each instance–such as depth images–to achieve optimal
quality. In cases where the input condition is not provided, such as generating depth-free 360◦ panoramas,
the outputs tend to show seams as shown in Fig. 2(a), mainly due to the wider data distribution and thus
difficulties in achieving convergence during synchronization.

5.2 SCORE DISTILLATION SAMPLING

Score Distillation Sampling (SDS) (Poole et al., 2023) and its variants (Wang et al., 2024b; Lukoianov
et al., 2024; Liang et al., 2024) are alternatives for generating samples in different spaces. Unlike DS,
SDS does not use the reverse diffusion process but instead employs gradient-descent-based updates. The
motivation behind SDS is to leverage the loss function from noise predictor training to discriminate real
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data points while projecting the canonical data point fc(z), corrupting it through the forward process, and
then predicting the added noise from it.

To clarify the similarities and differences between SDS and DS, we provide a different perspective on
understanding SDS, as shown in Alg. 3, aligning each computation with those in DS (Alg. 2). There
are several key differences, highlighted as green in Alg. 3. First, the timestep t is not decreased from
T to 1 but is randomly sampled until convergence (line 3). Second, while synchronization approaches
typically make the reverse process deterministic (Bar-Tal et al., 2023; Zhang et al., 2024b) or identical to
DDPM (Liu et al., 2023), SDS uses maximum stochasticity (σt =

√
1− αt−1), thus eliminating the need

to maintain the noise ϵt. Third, the prediction of the clean sample is updated to the canonical space not by
solving the l2 minimization but by performing a single gradient descent step (line 7). SDS was originally
introduced to perform gradient descent for the loss ∥ϵ − ϵθ(xt−1, y)∥2, which is equivalent to the loss
used in DS, ∥fc(z)− x0|t−1∥2, up to a scale as explained in Appendix (Sec. A).

As observed in previous works (Kim et al., 2024a; Huo et al., 2024), when input conditions are provided,
the quality of SDS-generated outputs is inferior to that of DS-based methods. However, SDS performs
better than DS when no conditions are given (except for the text prompt), effectively integrating images
from the instance spaces without producing seams, although it struggles to generate fine details (Fig. 2(b)).

6 STOCHSYNC : STOCHASTIC DIFFUSION SYNCHRONIZATION

Based on our analysis comparing Diffusion Synchronization (DS) and Score Distillation Sampling (SDS)
in Sec. 5, we propose our novel method, Stochastic Diffusion Synchronization, or StochSync for
short, which combines the best features of each method to achieve superior performance in unconditional
canonical sample generation. From the perspective of DS, we introduce three key changes in the algorithm.

Maximum Stochasticity in Synchronization. One of the key differences between SDS and previous
DS methods is that SDS can be interpreted as utilizing maximum stochasticity in the DDIM denoising
step (setting σt =

√
1− αt−1 in Eq. 5 and thus removing the ϵt term), while earlier DS methods have not

explored this aspect. We investigated whether maximum stochasticity helps DS achieve better coherence
of samples across instance spaces, similar to what is observed in SDS. As the results shown in Fig. 2(c),
it indeed helps remove seams, resulting in much smoother transitions across views. However, we also
observe a trade-off between coherence and realism: increased stochasticity leads to greater deviation from
the data distribution, producing less realistic images. We present a more detailed analysis of maximum
stochasticity on global consistency and realism in Appendix (Sec. D), along with experimental results.

Multi-Step x0|t Computation. To resolve the trade-off between coherence and realism, we propose
replacing the computation of x0|t from Tweedie’s formula (Eq. 4), the one-step prediction of the clean
sample x0 from xt, with a multi-step deterministic denoising process of DDIM, denoted as G(xt). We
observe that a more accurate prediction of the clean samples x0|t at each step along with maximum
stochasticity level allows us to achieve both high coherence and realism as shown in Fig. 2(d). Notably,
when replacing the computation of x0|t with multi-step denoising, StochSync can also be viewed
as iterating SDEdit (Meng et al., 2021): performing the forward process from x0|t to xt−1 at timestep
t (Alg. 4, line 10), followed by the reverse process back to x0|t−1 (line 11). As a result, the loop in
line 7 can be interpreted not as performing the reverse process but as iterating SDEdit, meaning it does
not need to proceed from timestep T to 1. Empirically, we find that stopping the iteration earlier with
Tstop ≫ 1 provides comparable results while saving computation time. More implementation details and
comparisons of inference speed against baseline methods are provided in Appendix (Sec. B and Sec. E).

Non-Overlapping View Sampling. In DS, x0|t is not directly used in the next timestep; instead, it is
first averaged in the canonical space (Alg. 2, line 15) and then projected back to the instance space (line
10). We note that this modification of x0|t also results in a degradation of realism in the final output. To
address this, we propose to sample views at each step without overlaps. x0|t is still synchronized over
time, as the set of non-overlapping views newly sampled at each step has overlaps with the views sampled
in previous steps. In practice, we alternate between two sets of non-overlapping views—one being a shift
of the other. The result further improved with the non-overlapping views is also shown in Fig. 2(f).

Comparison to DS and SDS. The pseudocode for our StochSync, incorporating the aforementioned
three major changes from DS, is provided in Alg. 4. Compared to DS (Alg. 2), the ϵt computation is
omitted due to the use of maximum stochasticity, Tweedie’s formula is changed to a multi-step computation
G(·) (line 11), and the set of views is not fixed but is sampled without overlaps within the set at each
step (line 8). In Alg. 4, the changes are highlighted in red. From the SDS perspective, StochSync can
also be seen as implementing three major changes. First, each iteration is performed not with a random
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Table 1: Quantitative results of panorama gener-
ation using the prompts provided in PanFusion
(Zhang et al. (2024a)). GIQA is scaled by 103.
The best result in each column is highlighted in
bold, and the runner-up is underlined.

Method FID ↓ IS ↑ GIQA ↑ CLIP ↑

SDS 96.44 8.21 17.90 30.87
SDI 143.70 8.08 15.03 29.12
ISM 114.32 8.16 17.08 31.31

MVDiffusion 70.49 10.87 18.81 30.79
PanFusion 93.85 9.90 17.79 28.21
L-MAGIC 59.83 9.12 19.13 29.73

StochSync 57.88 10.02 20.30 31.01

Table 2: Effectiveness of each components using
the prompts provided in PanFusion (Zhang et al.
(2024a)). GIQA is scaled by 103. The best result in
each column is highlighted in bold, and the runner-
up is underlined.

Id Max
σt

Impr.
x0|t

N.O.
Views

FID ↓ IS ↑ GIQA ↑ CLIP ↑

1 ✗ ✗ ✗ 80.55 8.65 18.22 30.07
2 ✔ ✗ ✗ 138.82 6.98 15.68 27.95
3 ✗ ✔ ✗ 84.87 7.33 19.06 30.49
4 ✔ ✔ ✗ 78.56 8.54 18.44 30.18
5 ✔ ✗ ✔ 117.09 7.56 16.32 28.75

6 ✔ ✔ ✔ 57.88 10.02 20.30 31.01

timestep t but with a linearly decreasing timestep (Alg. 4, line 8), following the scheduling of the reverse
process. Second, instead of reflecting x0|t to the canonical sample z through gradient descent, we fully
minimize the l2 loss (line 13). Third, the computation of x0|t is changed to a multi-step denoising (line
11).

Comparisons to SDS Variants. DreamTime (Huang et al., 2023) suggested decreasing the timestep
instead of random sampling. In addition to that, we find that additionally replacing gradient descent with
solving a minimization leads to significant improvements. SDI (Lukoianov et al., 2024) takes the opposite
approach from ours, reducing the stochasticity of SDS to zero while requiring ϵt. Since ϵt cannot be
maintained when views are randomly sampled, it is computed by performing DDIM inversion (Mokady
et al., 2023) on x0|t at every timestep. ISM (Liang et al., 2024) also discusses the idea of solving an ODE
for x0|t (multi-step computation) at every timestep, but it does not change gradient descent to solving the
minimization.

7 EXPERIMENT RESULTS

7.1 360◦ PANORAMA GENERATION

In the 360◦ panorama generation, the projection operation f is equirectangular projection, which maps a
360◦ panoramic image to perspective view images. We specifically use ‘Stable Diffusion 2.1 Base’ as
the pretrained diffusion model for all methods, except for the baselines that require finetuned models or
inpainting models. We evaluate StochSync on sets of prompts provided by the previous works: 121
out-of-distribution prompts from PanFusion (Zhang et al., 2024a) and 20 ChatGPT-generated prompts
from L-MAGIC (Cai et al., 2024). The results in the rest of this section are for PanFusion prompts,
while the results for L-MAGIC prompts are provided in Appendix (Sec. G). For evaluation, we randomly
sample 10 perspective view images from each panorama and generate the same number of images using
the pretrained diffusion model, which serves as the reference set for the evaluation metrics.

7.1.1 COMPARISON TO PREVIOUS WORKS

Quantitative and qualitative comparisons with the baseline methods using PanFusion (Zhang et al.,
2024a) prompts are presented in Tab. 1 and Fig. 3, respectively. For quantitative evaluations, we report
FID (Heusel et al., 2018), IS (Salimans et al., 2016), GIQA (Gu et al., 2020), and CLIP score (Radford
et al., 2021).

As shown in Tab. 1, StochSync outperforms SDS (Poole et al., 2023) and its variants, SDI (Lukoianov
et al., 2024) and ISM (Liang et al., 2024), by significant margins in all metrics, except for the CLIP score,
where ours is still close to the best. Notably, SDI and ISM are not robust and often generate poor outputs,
as examples are shown on the left in rows 2-3 of Fig. 3.

We also compare StochSync with finetuning-based methods such as MVDiffusion (Tang et al., 2023)
and PanFusion (Zhang et al., 2024a), which finetune a pretrained image diffusion model using panoramic
images. Due to the lack of large-scale datasets for panoramic images, these finetuning-based methods tend
to overfit to the prompts and images used during training, reducing realism for unseen prompts. Hence,
our zero-shot method outperforms these methods quantitatively across all metrics. Qualitatively, our
method also demonstrates superior performance compared to theirs, as shown in Fig. 3 (rows 4–5, left).

Lastly, we compare StochSync with the state-of-the-art zero-shot 360◦ panorama generation method,
L-MAGIC (Cai et al., 2024), which uses an inpainting diffusion model to sequentially fill a panoramic
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images. Quantitatively, StochSync outperforms this method across all metrics. Qualitatively, we
observe that L-MAGIC often exhibits a "wavy effect" (Brown & Lowe, 2007) causing the horizon to
appear curved, as shown at the bottom left of Fig. 3. For further evaluation, we conducted a user study
comparing StochSync and L-MAGIC under various conditions. The details and results of this study are
provided in the Appendix (Sec. C).

7.1.2 ABLATION STUDY RESULTS

Tab. 2 and Fig. 3 (right) demonstrate the effectiveness of each component of StochSync discussed in
Sec. 6: maximum stochasticity (Max σt), multi-step denoising for x0|t (Impr. x0|t), and non-overlapping
view sampling (N.O. Views). As discussed in Sec. 5, DS, represented by SyncTweedies (Kim et al.,
2024a), generates plausible local images but lacks global coherence across views and thus produces visible
seams (row 1 of Fig. 3). With maximum stochasticity, global coherence improves but at the cost of realism
(row 2 of Fig. 3), which is also reflected in the poor quantitative results (row 2 of Tab. 2). Noticeable
improvements occur when the computation of x0|t is also replaced with multi-step denoising, G(xt) (row
4 of Fig. 3 and Tab. 2). Finally, the full version of StochSync, using sets of non-overlapping views,
produces the most realistic and coherent panoramic images both qualitatively and quantitatively (row 6 of
Fig. 3 and Tab. 2). Refer to the other rows for additional ablation cases.

Metric
Sync-

Tweedies Paint-it Paint3D TEXTure Text2Tex Sync-
Stoch

FID ↓ 21.76 28.23 31.66 34.98 26.10 22.29
KID ↓ 1.46 2.30 5.69 6.83 2.51 1.31
CLIP ↑ 28.89 28.55 28.04 28.63 27.94 28.57

Table 3: Quantitative results of 3D
mesh texturing. KID is scaled by 103.
The best result in each row is high-
lighted in bold, and the runner-up is
underlined.

7.2 3D MESH TEXTURING

3D mesh texturing is a task where a depth map from each view can be used as a condition for image
generation, allowing the use of conditional diffusion models (e.g., ControlNet (Zhang et al., 2023)). While
previous DS-based methods perform well when strong conditions are provided, we demonstrate that
StochSync, designed to focus on the unconditional case, provides results comparable to previous DS
methods and outperforms other state-of-the-art texture generation methods.

In our experiments, we follow the experiment setup of SyncTweedies (Kim et al., 2024a) while using
the same 429 mesh and prompt pairs. The quantitative and qualitative results are presented in Tab. 3
and Fig. 4, respectively. Note that the results from other baseline methods are sourced from Kim et al.
(2024a). In Tab. 3, StochSync outperforms all other baselines across all metrics, with the exception of
SyncTweedies, our base synchronization framework, which shows comparable results. This demonstrates
the versatility of our method, as it can be adapted to applications regardless of whether strong conditional
inputs are present. In Fig. 4, StochSync generates texture images with fine details, whereas SDS-based
and finetuning-based approaches, Paint-it(Youwang et al., 2023) and Paint3D (Zeng et al., 2024), fail to
capture these details. Lastly, outpainting-based methods, TEXTure and Text2Tex (Richardson et al., 2023;
Chen et al., 2023a), generate texture images with visible seams due to error accumulation.

Fig. 5 also showcases 3D mesh textures on spheres and tori generated by StochSync without depth
conditioning, showing the potential for various visual content generation (e.g.,game maps).

8 CONCLUSION AND FUTURE WORK

We have introduced StochSync, a novel zero-shot method for data generation in arbitrary spaces that
fuses Diffusion Synchronization (DS) and Score Distillation Sampling (SDS) into the best form for
achieving superior performance in cases where strong conditioning is not provided. Our key insights,
based on analyses of the differences between DS and SDS, were to maximize stochasticity in the denoising
process to achieve coherence across views, while enhancing realism through multi-step denoising for clean
sample predictions at each step and sampling non-overlapping views. We demonstrated state-of-the-art
performance in depth-free 360◦ panorama generation and depth-based mesh texture generation. As a
promising direction for future work, we plan to extend our approach by jointly updating both geometry
and texture.
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“Desert sunrise silhouettes.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

Figure 3: Qualitative results of panorama generation using PanFusion (Zhang et al., 2024a) prompts.
Comparisons to previous works are presented in the left column, while the ablation cases are shown in the
right column along with StochSync.

A white bunny Crate Cup Globe Pancake Pumpkin Goldfish Television set

SyncTweedies
(Kim et al., 2024a)

Paint-it
(Youwang et al., 2023)

Paint3D
(Zeng et al., 2024)

TEXTure
(Richardson et al., 2023)

Text2Tex
(Chen et al., 2023a)

StochSync

Figure 4: Qualitative result of 3D mesh texturing. StochSync generates realistic texture images,
demonstrating its applicability even in the conditional generation case.

Figure 5: 3D mesh textures on spheres and tori generated by StochSync.
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ETHICS STATEMENT

StochSync leverages a diffusion model (Rombach et al., 2022) trained on the LAION-5B dataset (Schuh-
mann et al., 2022), which has been preprocessed to remove unethical content. However, despite these
efforts, the pretrained diffusion model may still generate undesirable content when presented with mis-
leading or harmful prompts, a limitation that our method also inherits. It is important to acknowledge this
risk, as models like StochSync could inadvertently produce biased or inappropriate outputs and should
be used with caution. Additionally, StochSync may impact the creative industry by automating parts of
the generative process. However, it also offers opportunities to enhance productivity and accessibility to
generative tools.

REPRODUCIBILITY STATEMENT

StochSync uses the ‘Stable Diffusion 2.1 Base’ (Rombach et al., 2022) and the depth-conditioned
ControlNet (Zhang et al., 2023), both of which are publicly available. We also provide the pseudocode of
StochSync in Alg. 4 and the implementation details including hyperparameters in Sec. B. We will also
release our code publicly.
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APPENDIX

A REFORMULATION OF SDS LOSS

Here, we show that the SDS loss introduced in Sec. 5.2 of the main paper is equivalent to the original loss
presented in DreamFusion (Poole et al., 2023) up to a scale. In Sec. 5.2, the SDS loss is presented from
the perspective of clean samples:∥∥fc(z)− x0|t−1

∥∥2 =

∥∥∥∥xt−1 −√
1− αt−1ϵ√
αt−1

− xt−1 −
√
1− αt−1ϵθ(xt−1, y)√

αt−1

∥∥∥∥2 (7)

=
1− αt−1
αt−1

∥ϵ− ϵθ(xt−1, y)∥2 , (8)

where the equality in the first line holds from Eq. 4 and ϵ is sampled from a standard Gaussian, N (0, I).
Previous works (Kim et al., 2024b; Lukoianov et al., 2024) have also made a similar observation.

B IMPLEMENTATION DETAILS

Panorama Generation. We set the resolution of the perspective view images to 512 × 512, and the
panorama to 2, 048× 4, 096. A linearly decreasing timestep schedule is employed, starting from T = 900
and decreasing to Tstop = 270, with a total of 25 denoising steps. For multi-step x0|t computation,
the total number of steps is initially set to 50, decreasing linearly as the denoising process progresses.
For view sampling, we alternate between two sets containing five views each, with azimuth angles of
[0◦, 72◦, 144◦, 216◦, 288◦] and [36◦, 108◦, 180◦, 252◦, 324◦]. The elevation angle is set to 0◦, and the
field of view (FoV) is set to 72◦.

For methods utilizing multi-step x0|t predictions, computing x0|t−1 = G(xt−1) as in line 11 of Alg. 4,
only for the last two steps in the loop of line 7, we leverage the previous x0|t to better preserve the
boundary regions. We perform the denoising process while blending the noisy data point as foreground
and the previous x0|t as background, as done in RePaint (Lugmayr et al., 2022). For the background mask,
we start from the entire region and gradually decrease the regions over time to be close to the boundaries.

3D Mesh Texturing. For 3D mesh texturing, we follow the approach in SyncTweedies (Kim et al.,
2024a) and use the same image and texture resolutions. We use the same number of steps as in the 360◦

panorama generation task with a linearly decreasing time schedule from T = 1, 000 to Tstop = 270. We
use 4 views to minimize overlaps between the views. For multi-step x0|t predictions, we use the same
refinement mentioned above.

C USER STUDY DETAILS

In this section, we provide details of the user study described in Sec.7.1.1 of the main paper. We evaluated
user preferences across two prompt sets: PanFusion(Zhang et al., 2024a) prompts and a new set of 20
prompts generated by ChatGPT, specifically including the word “horizon.” The study was conducted via
Amazon Mechanical Turk (AMT).

Screenshots of the user study are shown in Fig.6. Participants were presented with two panoramic images
(in random order) generated using the same text prompt: one by L-MAGIC(Cai et al., 2024) and the other
by StochSync. They were asked to answer the following question: “Which image has better quality,
fewer seams, fewer distortions, and better alignment with the given text prompt across the panoramic
view?”

Each user study included 25 panoramic images presented in a shuffled order, with five vigilance tests
incorporated. For the vigilance tests, participants were shown a wide image composed of concatenated 2D
square images alongside a ground truth 360◦ panorama, with the same resolution and question format.
To ensure reliability, only responses from participants who passed at least three vigilance tests were
considered. In total, we collected responses from 50 out of 96 participants for the PanFusion set and 59
out of 100 participants for the horizon-specific set. Participants were required to be AMT Masters and
have an approval rate of over 95%.

Quantitatively, StochSync was preferred over L-MAGIC by 56.20% for the PanFusion prompts, with
the preference increasing to 64.75% for the horizon-specific prompts, demonstrating StochSync’s
superior ability to avoid producing curved horizons.
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(a) Main problem

(b) Vigilance test

Figure 6: Screenshots of the user study. The main test is shown in (a), and the vigilance test in (b).

D ANALYSIS OF MAXIMUM STOCHASTICITY

D.1 ANALYSIS

Here, we provide an analysis of maximum stochasticity σt =
√
1− αt−1 in achieving view consistency

at the cost of quality degradation. To provide clarity in the analysis, we consider a simplified setup where:
(1) the instance space consists of a single image (N = 1, line 8, Alg. 4), (2) the projection operation
is replaced with an identity function (line 9, Alg. 4), and (3) the objective function is modified to a
composition of masked l2 losses (lines 6 and 13 of Alg. 4).

Impact of Stochasticity on Consistency. An example of the simplified setup is image inpainting task,
where the objective is to generate a realistic image x0 that aligns with the partial observation y = M⊙x0,
where M ∈ {0, 1} represents a binary mask. To guide the sampling process, the generation is conditioned
by replacing M⊙ x0|t with y.

Under these simplifications, the update rule for z becomes:

z = argmin
z

[
∥(1−M)⊙ (z− x0|t−1)∥2 + ∥M⊙ (z− y)∥2

]
. (9)

To analyze the effectiveness of the level of stochasticity on synchronization, we examine the convergence
rate of measurement error, L(x0|t) = ∥M⊙x0|t−y∥2, for two cases: σt = 0 and σt =

√
1− αt−1 (Max.

σt), respectively. As discussed in Sec. 4, when σt = 0, the sampling process becomes fully deterministic.
To better illustrate our intuitions, we make two reasonable and straightforward assumptions:

• The initial sample xT ∼ N (0, I) satisfies L(x0|T ) ≫ 0 and L(G(xT )) ≫ 0.

• The pretrained noise prediction network ϵθ(·, ·) is K-Lipschitz, satisfying |ϵθ(xt, t) −
ϵθ(xt−∆t, t−∆t)| < K|xt − xt−∆t| for some constant K.

Under these assumptions, the reformulation of a one-step denoising process from the perspective of x0|t
yields the following.

x0|t−∆t = x0|t +

√
1− αt−∆t
αt−∆t

(ϵt − ϵt−∆t) . (10)

∴ |x0|t−∆t − x0|t| =

√
1− αt−∆t
αt−∆t

|ϵt − ϵt−∆t| <

√
1− αt−∆t
αt−∆t

K|xt − xt−∆t| ≈ 0, (11)
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where the approximation equality holds when ∆t ≈ 0. This implies that x0|t−∆t is largely dependent by
the previous sample x0|t, and as a result, the measurement error L(x0|t) can remain large even after a few
steps of the denoising process, thereby slowing down the convergence of x0|t to y.

On the other hand, when setting σt =
√
1− αt−1 (Max. σt), x0|t−∆t is no longer dependent on x0|t,

allowing xt and xt−∆t to differ significantly, even for small ∆t.

This process can be interpreted as resetting the denoising trajectory based on x0|t, allowing the exploration
of xt−∆t that minimizes the measurement error. While it is also true that the newly sampled xt−∆t could
potentially deviate from the desired trajectory and increase L(x0|t−∆t), our empirical observations show
that, in most cases, it converges to the measurement within a few denoising steps.

Impact of Stochasticity on Quality. However, we also observed that sampling with Max. σt degrades
the quality of the sample x0. To address this, we examine the process of sampling xt−∆t using Max. σt,
which is described as xt−∆t =

√
αtx0|t +

√
1− αtϵ, where ϵ ∼ N (0, I).

Note that this equation is equivalent to the forward diffusion process described in Eq. 2 except the
approximation of x0 to x0|t. Unfortunately, as the one-step prediction x0|t computed using Tweedie’s
formula (Robbins, 1956) often deviate from the clean data manifold, sampling process using Max. σt
leads to xt−∆t being placed in low-density regions of the noisy data distribution, ultimately degrading the
quality of x0. Inspired by this observation, we note that x0|t should be well-aligned with the clean data
x0 to ensure x0|t−∆t to be placed in high-density regions.

This motivates us to incorporate Impr. x0|t, which replaces the one-step predicted x0|t with a more realistic,
multi-step predicted x0|t. Additionally, averaging multiple x0|t can introduce blurriness, potentially
causing the sample to deviate from the clean data manifold, which leads to the adoption of N.O. Views.

Effect of Increasing the Number of Steps. One might question the validity of Impr. x0|t compared
to using a larger number of steps, as suggested in DDIM (Song et al., 2021a), which demonstrates that
increasing the number of sampling steps can improve the quality of generated samples when stochasticity
is introduced. However, it is important to note that this claim does not apply to our method, as the
DDIM framework focuses on cases where the level of stochasticity falls within the range of σt = 0 to

σt =

√
1−αt−1

1−αt

(
1− αt

αt−1

)
(DDPM).

StochSync sets σt =
√
1− αt−1, utilizing the maximum level of stochasticity. Under this setting, the

trend observed in DDIM no longer applies. Specifically, increasing the number of sampling steps does not
consistently lead to improved generation quality. In the following, we present an informal proof to explain
the underlying reason for this divergence.

Statement. Under maximum stochasticity, the diffusion forward process diverges and cannot be approxi-
mated by a Stochastic Differential Equation (SDE) as the timestep interval approaches zero.

Proof. Consider the generalized forward diffusion process proposed in DDIM (Song et al., 2021a):

xt+∆t =

(
√
αt+∆t −

√
1− αt+∆t

√
αt

1− αt

√
1− αt − σ2

t+∆t

)
x0|t

+

√
1− αt+∆t

√
1− αt − σ2

t+∆t

1− αt
xt

+

√
1− αt+∆t

1− αt
σt+∆tϵ, (12)

where ϵ ∼ N (0, I). For this process to converge to a SDE as ∆t→ 0, Lipschitz continuity requires both
sides of the equation to approach xt. A necessary condition for this is lim∆t→0 σt = 0. However, under
the maximum level of stochasticity, where σt =

√
1− αt−1, this condition is violated. Consequently,

increasing the number of timesteps does not refine the distribution but instead causes it to deviate further,
leading to lower-quality or unrealistic images.
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D.2 EXPERIMENTS

Experiment 1: Image Inpainting. Qualitative results of image inpainting using σt = 0, Max. σt, and
StochSync are presented in Fig. 7 and Fig. 8. The images are obtained by solving the ODE, G(xt),
initialized from the same random noise xT . Red boxes are used to highlight the convergence of x0|t to y.
As illustrated, methods with maximum stochasticity (Max. σt and StochSync) converge significantly
faster than σt = 0, a trend also reflected in the measurement error plot (Fig. 9). Additionally, StochSync
improves Max. σt by mitigating quality degradation in unobserved regions.

“A bowl of cereal with a spoon on a kitchen counter”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

“A simple kitchen with a wooden dining table”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

Figure 7: Qualitative result of image inpainting.
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“A suburban street with houses and a clear blue sky”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

“An elderly man sitting on a bench”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

Figure 8: Qualitative results of image inpainting.
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Figure 9: Measurement error plotted against de-
noising timesteps. For σt = 0, the error remains
larger than for cases with maximum stochastic-
ity (Max. σt and StochSync).

“A DSLR photo of a dog”

Number of Steps
= 10

Number of Steps
= 100

Number of Steps
= 1, 000

Number of Steps
= 10, 000

Figure 10: Qualitative results of image genera-
tion with Max. σt. Each image is obtained by
running different numbers of steps. Sampling
images with Max. σt for a large number of steps
fails to generate plausible images.

Experiment 2: Effect of Increasing the Number of Steps. To validate the theoretical insight on
maximum stochasticity diverging for large timesteps, we conduct experiments on image generation under
maximum stochasticity with varying number of timesteps. We present qualitative results in Fig. 10, which
demonstrate that increasing the number of timesteps eventually results in unrealistic images.

E INFERENCE TIME COMPARISON

A potential concern about StochSync could be its computational efficiency, particularly the multi-step
computation of x0|t, which might seem to introduce significant overhead. However, we show that this is
not the case as our method with optimized hyperparameters achieves a runtime comparable to L-MAGIC
Cai et al. (2024) and even outperforms MVDiffusion Tang et al. (2023). Notably, when integrated with
a more efficient ODE solver, our method achieves the fastest runtime for 360◦ panorama generation,
highlighting its computational efficiency.

Experiment Setup. Since StochSync can be interpreted as an iterative application of SDEdit Meng
et al. (2021) across views, the denoising process does not need to run fully to t = 0. Instead, it can stop at
t = Tstop ≫ 0, effectively reducing the number of denoising steps. The optimal configuration was found
to be Tstop = 700 with 8 denoising steps, which we denote as StochSync∗.

Further improvements in efficiency were achieved by incorporating advanced ODE solvers, such as
DPM-Solver (DPM-S) Lu et al. (2022a;b). This integration, referred to as StochSync∗ + DPM-S,
enables efficient computation of multi-step x0|t with fewer ODE steps, reducing the total from 50 to 20
while maintaining comparable output quality.

Experiment Results. In Tab. 4 and Tab. 5, we present a runtime comparison of StochSync with
the baselines for 360◦ panorama generation and 3D mesh texturing, respectively. For the runtime
comparison, the vanilla StochSync was evaluated using the setup described in 7, while baseline
methods were tested with their default parameters: 50 denoising steps for MVDiffusion (Tang et al.,
2023) and PanFusion (Zhang et al., 2024a), 30 steps for SyncTweedies (Kim et al., 2024a), and 25 steps
for L-MAGIC (Cai et al., 2024). For 3D mesh texturing, the running time results are sourced from
SyncTweedies (Kim et al., 2024a).

As shown in Tab. 4, StochSync∗ achieves a runtime comparable to the baselines in 360◦

panorama generation thanks to early stopping. When combined with DPM-Solver (Lu et al., 2022b)
(StochSync+DPM-S), as noted in Tab. 4 and Tab. 5, the computation becomes even faster
with only a small amount of quality loss. For instance, in 360◦ panoramas, StochSync achieves
FID/IS/GIQA/CLIP scores of 57.88/10.02/20.30/31.01, while StochSync∗ and StochSync+DPM-S
obtain 47.24/10.80/21.41/31.07 and 47.59/10.43/21.27/31.03, respectively. Similarly, for mesh tex-
turing, the FID/KID/CLIP scores change only slightly—from 22.29/1.31/28.57 for StochSync to
25.22/2.41/28.60 for StochSync+DPM-S.
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Table 4: Quantitative results of panorama genera-
tion using the out-of-distribution prompts provided
in PanFusion (Zhang et al. (2024a)). The best re-
sult in each column is highlighted in bold, and the
runner-up is underlined.

Method Runtime (seconds) ↓

SyncTweedies 46.84

SDS >1K
SDI 920.49
ISM >1K

MVDiffusion 75.57
PanFusion 38.33

L-MAGIC 58.59

StochSync 149.32
StochSync∗ 57.80

StochSync∗+DPM-S 28.05

Table 5: Quantitative results of 3D mesh texturing.
The best result in each column is highlighted in
bold, and the runner-up is underlined.

Method Runtime (minutes) ↓

SyncTweedies 1.83

Paint-it 21.95

Paint3D 2.65

TEXTure 1.54
Text2Tex 13.10

StochSync 7.61

StochSync+DPM-S. 3.36

F ADDITIONAL APPLICATIONS

In this section, we provide qualitative results of additional applications of StochSync including high
resolution panorama generation (Fig. 11) and texturing 3D Gaussians (Kerbl et al., 2023) (Fig. 12).

High Resolution Panorama Generation. To extend StochSync to high-resolution panorama gener-
ation, we modify the original panorama generation setup by narrowing the field of view for individual
views and increasing the number of samples, resulting in a higher-resolution canonical space sample.
However, increasing the number of views introduces the risk of repetitive objects appearing in the scene.
To mitigate this, we employed the refinement technique inspired by SDEdit Meng et al. (2021). Specifi-
cally, the panorama is first generated using the original setup described in Sec. B. The resulting image is
perturbed with noise to a specific timestep and then refined through the sampling process restarted from
this point. This approach effectively addresses repetitive patterns while maintaining high-fidelity details.
The qualitative results of 8K panorama generation are presented in Fig. 11, demonstrating sharp and
visually consistent outputs.

3D Gaussians Texturing We further demonstrate the capability of StochSync in applications involv-
ing complex non-linear projection operations through texturing 3D Gaussians Kerbl et al. (2023). In this
experiment, we used Gaussians reconstructed from the Synthetic NeRF dataset Park et al. (2023), updating
only their color parameters while keeping their positions and covariances fixed. The results, shown in
Fig. 12, demonstrate that StochSync can successfully generate textures of 3D Gaussians.
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“Quirky steampunk workshop filled with gears and gadgets”

StochSync

StochSync w/ 8K Res.

“Rocky desert landscape with towering saguaro cacti”

StochSync

StochSync w/ 8K Res.

“Elegant ballroom with crystal chandeliers and marble floors”

StochSync

StochSync w/ 8K Res.

Figure 11: Qualitative results of high resolution panorama generation using StochSync.
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“A luxury chair” “A microphone made of ruby”

“An excavator covered with moss” “A drum kit made of ruby”

Figure 12: Qualitative results of texturing 3D Gaussians (Kerbl et al., 2023) using StochSync.

Table 6: Quantitative results of panorama genera-
tion using the prompts provided in L-MAGIC (Cai
et al. (2024)). GIQA is scaled by 103. The best
result in each column is highlighted in bold, and
the runner-up is underlined.

Method FID ↓ IS ↑ GIQA ↑ CLIP ↑

SDS 163.23 5.60 17.41 30.37
SDI 171.69 5.93 16.42 29.33
ISM 197.10 4.92 16.52 29.44

MVDiffusion 111.12 6.17 20.71 31.07
PanFusion 151.60 5.48 18.19 28.46
L-MAGIC 112.72 5.94 19.73 30.39

StochSync 109.41 6.20 20.31 31.22

Table 7: Effectiveness of each components us-
ing the prompts provided in L-MAGIC (Cai et al.
(2024)). GIQA is scaled by 103. The best result in
each column is highlighted in bold, and the runner-
up is underlined.

Id Max
σt

Impr.
x0|t

N.O.
Views

FID ↓ IS ↑ GIQA ↑ CLIP ↑

1 ✗ ✗ ✗ 120.19 5.58 19.68 29.34
2 ✔ ✗ ✗ 178.03 4.76 17.43 28.02
3 ✗ ✔ ✗ 139.34 4.83 18.94 30.08
4 ✔ ✔ ✗ 126.58 5.41 19.34 30.04
5 ✔ ✗ ✔ 169.32 4.74 16.67 28.53

6 ✔ ✔ ✔ 109.41 6.20 20.31 31.22

G ADDITIONAL RESULTS

Quantitative Results of 360◦ Panorama Generation Using L-MAGIC Prompts. The quantitative
results of panorama generation using the prompts from L-MAGIC (Cai et al., 2024), as well as the ablation
study results, are presented in Tab. 6 and Tab. 7, respectively. We observe the same trend as discussed in
Sec. 7.1, where the results with PanFusion (Zhang et al., 2024a) prompts are discussed. StochSync
generates high-fidelity panoramic images, while L-MAGIC tends to produce panoramas with curved
horizons. Refer to Sec. G.2 for qualitative results.

Additional Results of 360◦ Panorama Generation Using Horizon Prompts. Qualitative comparisons
of StochSync and L-MAGIC (Cai et al., 2024) on the horizon-specific prompt set discussed in Sec. 7.1.1
are shown in Fig. 13. As discussed in Sec. 7.1.1, L-MAGIC tends to generate wavy panoramas with global
distortions, while StochSync produces more realistic panoramic images. This aligns with the results of
the user preference test presented in Sec. 7.1.1, where StochSync outperforms L-MAGIC on both the
PanFusion and horizon-specific prompts.

Additional Results of 3D Mesh Texturing. Extending the qualitative results presented in Fig. 4, we
provide more qualitative results of 3D mesh texturing in Fig. 14.
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“A photo of a savanna in Tanzania with horizon.”

“A photo of a sunflower field in Kansas with horizon.”

“A photo of a tropical island in the Philippines with horizon.”

“A photo of a vineyard in Tuscany with horizon.”

“A photo of Patagonia with horizon.”

“A photo of the salt flats in Bolivia with horizon.”

L-MAGIC (Cai et al., 2024) StochSync

Figure 13: Qualitative comparisons between L-MAGIC (Cai et al., 2024) and StochSync on the horizon-
specific prompts.

Apricot Bookcase Pistol Polar Bear Rifle Shoe Dumpster Key

SyncTweedies

Paint-it

Paint3D

TEXTure

Text2Tex

StochSync

Figure 14: Additional qualitative results of 3D mesh texturing.

More qualitative results of 360◦ panorama generation are presented in the following pages.
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G.1 ADDITIONAL 360◦ PANORAMA GENERATION RESULTS USING PANFUSION PROMPTS
“Desert canyon, sculpted sandstone.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Beneath a star-studded sky, an ancient oak stands sentinel in a meadow.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Desert dunes, endless golden waves.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Redwood forest, towering tranquility.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Moonlit beach, waves whispering secrets.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“On a distant planet surface, towering crystalline structures rise against an alien sky.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Nestled in a canyon, a pueblo village stands against the red earth.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“On the surface of a distant planet, a landscape of alien rock formations and swirling, multicolored gases.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“The interior of a historic library, filled with rows of antique books, leather-bound and dust-covered.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Hidden waterfall, cascading down moss-covered rocks in a tranquil glade.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Surreal desert, mirage of shimmering heat, dunes stretching endlessly.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Alpine meadow, wildflowers swaying in a mountain breeze, snow-capped peaks embracing a serene panorama—a high-altitude sanctuary.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Alpine village, snow-covered rooftops, nestled between majestic peaks—a picture-perfect scene of winter tranquility.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Inside a floating city above the clouds, suspended by levitating platforms and connected by intricate sky bridges.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Desert canyon, ancient rock formations sculpted by time, a vast expanse of terracotta hues—an arid symphony of textures.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Standing on the edge of a cliff, overlooking a vast desert landscape with towering sand dunes and a distant oasis.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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G.2 MORE 360◦ PANORAMA GENERATION RESULTS USING L-MAGIC PROMPTS
“Desert under starlit sky”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Snowy mountain peak view”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Japanese Zen meditation room”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Sakura blossom park Kyoto”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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