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Abstract
We study the problem of classification with selec-
tively labeled data, whose distribution may differ
from the full population due to historical decision-
making. We exploit the fact that in many appli-
cations historical decisions were made by multi-
ple decision-makers, each with different decision
rules. We analyze this setup under a principled
instrumental variable (IV) framework and rigor-
ously study the identification of classification risk.
We establish conditions for the exact identification
of classification risk and derive tight partial iden-
tification bounds when exact identification fails.
We further propose a unified cost-sensitive learn-
ing (UCL) approach to learn classifiers robust to
selection bias in both identification settings. Fi-
nally, we theoretically and numerically validate
the efficacy of our proposed method.

1. Introduction
The problem of selective labels is common in many decision-
making applications involving human subjects. In these
applications, each individual receives a certain decision,
which in turn determines whether the individual’s outcome
label is observed. For example, in judicial bail, the label
of interest is whether a defendant returns to court without
committing another crime if released. However, this label
cannot be observed if bail is denied. Similarly, in lending,
the default status of a loan applicant cannot be observed
if the loan is not approved. In hiring, a candidate’s job
performance cannot be observed if the candidate is not hired.

The selective label problem presents significant challenges
for developing effective machine learning (ML) algorithms
to support decision-making (Lakkaraju et al., 2017; Klein-
berg et al., 2018; De-Arteaga et al., 2021). Specifically,
labeled data may not be representative of the broader popu-
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lation to which decisions will be applied, creating a classic
selection bias issue. As a result, models trained on se-
lectively labeled data may perform well on the observed
subjects but fail to generalize to the full population when de-
ployed in real-world settings. This challenge becomes even
more critical when historical decisions relied on unobserv-
able factors not captured in the available data, as is common
when human decision-makers are involved. In such cases,
the labeled data can differ substantially from the broader
population due to unknown factors, further complicating the
development of reliable ML models.

Our paper addresses the selective label problem by lever-
aging the heterogeneity of decision-making processes in
many real-world applications. Specifically, we consider set-
tings where decisions are made by multiple decision-makers
with distinct decision rules, potentially leading to different
outcomes for the same subject. Furthermore, since decision-
makers often evaluate similar pools of subjects, each subject
can be viewed as being quasi-randomly assigned to a spe-
cific decision-maker. This structure offers a way to mitigate
the selective label problem: a subject who remains unla-
beled under one decision-maker might have been labeled
if assigned to another. For instance, judicial decisions are
typically made by different judges who vary in their leniency
when deciding whether to release the same defendant. The
heterogeneous decision-maker framework has also been ex-
plored in prior research to address selection bias in model
evaluation (e.g., Lakkaraju et al., 2017; Kleinberg et al.,
2018; Rambachan et al., 2021; Arnold et al., 2022).

Main Contributions In this paper, we leverage the instru-
mental variable framework in causal inference to formalize
the selective label problem with multiple heterogeneous
decision-makers. This enables principled identification anal-
yses to characterize the identifiability of classification risks
from the observed data, revealing fundamental power and
limits of the multiple decision-maker structure in tackling
the selective label problem. This provides valuable insights
beyond the heuristic approaches in the prior literature. More-
over, unlike the existing selective label literature that pri-
marily focus on evaluating fixed models, our work focuses
on learning a robust classification model from the selective
label data.

Specifically, we describe the problem setup and the IV
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framework in Section 3. Then in Section 4 we establish
identification conditions for the classification risk from the
observed data with multiple decision-makers and highlight
the identification assumptions are overly strong. In Sec-
tion 5, we further derive tight bounds on the plausible value
of classification risk when the exact identification fails. In
Section 6, we propose a Unified Cost-sensitive Learning
(UCL) algorithm to learn classifiers robust to selection bias
in both identification settings. We briefly demonstrate the
superior performance of our proposed method through nu-
merical experiments in Section 7, with the comprehensive
experiments in Appendix E. We defer theoretical guarantees
for our method to Appendix D.

Notations Define x+ = max{x, 0}, x ∧ y = min{x, y}
and x ∨ y = max{x, y} for x, y ∈ R. We use the symbol
[N ] as a shorthand for the set {1, 2, · · · , N} and | · | to
denote the absolute value of number or cardinality of set.

2. Related Work
Selective Label Problem The selective label problem
arises when labels are observed only for individuals receiv-
ing certain decisions. Kleinberg et al. (2018) and Lakkaraju
et al. (2017) study this in recidivism prediction using jail bail
data, leveraging quasi-random judge assignment and varia-
tion in leniency to compare algorithmic recommendations
with human decisions. By using a heuristic “contraction”
method, they show that algorithms can outperform some
judges in reducing recidivism. Bertsimas & Fazel-Zarandi
(2022) extend this approach to immigration enforcement,
using machine learning to assist detention decisions. They
exploit quasi-random prison assignments and variation in
release rates to enable credible counterfactual comparisons
between strict and lenient detention practices. De-Arteaga
et al. (2018; 2021) propose to leverage decision-maker con-
sistency to impute the missing labels. They impute missing
labels as negative when multiple decision-makers tend to
consistently reject a case, assuming that consistent rejec-
tion implies a negative outcome. Compared to these prior
works, we use an instrumental variable framework to ana-
lyze the selective label problem from a formal identification
perspective. Moreover, these prior works all focus on model
evaluation, while our work focuses on learning a robust
classification model from selectively labeled data.

Our work also connects to the literature on counterfactual
evaluation under unmeasured confounding. Rambachan
et al. (2022) derive IV-based partial identification bounds for
evaluating the predictive performance of given risk scores
and cite selective labels as an example. In contrast, we focus
on learning robust classification rules under both point and
partial identification (see Theorems 4.4 and 5.3).

Another line of work addresses selective labels via online

learning (Kilbertus et al., 2020; Wei, 2021; Yang et al.,
2022), where the decision-maker can control whether to
collect the true label of each unit by making appropriate
decisions. The goal is to effectively balance the exploration
and exploitation. In contrast, our work considers an offline
setting where the dataset is already given and the decision-
maker can no longer collect labels through exploration.

Identification Analysis with IV This work builds on
the instrumental variables (IV) literature in statistics and
econometrics. IV methods are widely used to address un-
measured confounding in causal inference (Angrist & Pis-
chke, 2009; Angrist & Imbens, 1995; Angrist et al., 1996).
Several empirical studies, such as Kling (2006) and Mueller-
Smith (2015), have already leveraged heterogeneity among
decision-makers—e.g., judge assignment—as an IV. How-
ever, these analyses typically rely on parametric linear mod-
els, whereas our identification strategy is fully nonparamet-
ric and does not impose parametric assumptions.

Our exact identification analysis builds on Wang & Tchet-
gen (2018) and Cui & Tchetgen Tchetgen (2021), who study
the identification of average treatment effects using binary-
valued instruments. We extend their results to multi-valued
IVs. Our partial identification results extend the classic
bounds introduced by Manski (Manski, 1990; Manski &
Pepper, 1998). We show that our bounds also reduce to
those of Balke & Pearl (1994) in the case of a binary instru-
ment and binary outcome. Furthermore, we establish the
sharpness of our IV partial bounds using techniques from
Kédagni & Mourifie (2017). For a broader overview of IV
partial identification, see also Swanson et al. (2018).

Individual Treatment Rule Learning with IV There is
a growing body of work on individualized treatment rule
(ITR) learning, which aims to determine the optimal treat-
ment for each individual based on observed features. While
early literature focuses on the unconfoundedness setting
(e.g., Qian & Murphy, 2011; Zhao et al., 2012; Athey &
Wager, 2021), recent literature also considers robust ITR
learning under unmeasured confounding. In particular, Cui
& Tchetgen Tchetgen (2021) and Pu & Zhang (2021) study
ITR learning with instrumental variables (IV) under point
and partial identification, respectively. Both are restricted
to a binary IV and a binary treatment, and Pu & Zhang
(2021) additionally focus on a binary outcome. Our work
differs from them in that we consider a multi-valued IV and
a multi-class outcome, aiming to learn a classifier that maps
features to one label class rather than one treatment arm.
Our work advances both works in several ways. Specifically,
our point identification extends the identification in Cui &
Tchetgen Tchetgen (2021) to a multi-valued IV. Our par-
tial identification bounds extend the bounds in Pu & Zhang
(2021) to a multi-valued IV and a multi-class outcome. Our
resulting minimax learning formulation for a multi-class
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Figure 1. Causal graph of selective label problem. The dashed
nodes U and Y ⋆ are unobserved. The dashed line from X to Z
means that Z is allowed but not required to be affected by X .

outcome is much more complicated than that in Pu & Zhang
(2021), but we give a closed-form formulation for the inner
maximization and provide a cost-sensitive learning refor-
mulation. Importantly, our work also provides a unified
cost-sensitive learning framework to tackle point and partial
identification simultaneously rather than separately.

3. Problem Formulation
We address the selective label problem within a multiclass
classification setting. Consider a dataset comprising N
units, indexed by i = 1, . . . , N . For each unit i, let Y ⋆

i ∈
[K] denote the true label of interest for K ≥ 2 classes.
Additionally, let Xi ∈ X and Ui ∈ U represent observable
and unobservable features, respectively, both of which may
be correlated with Y ⋆

i . Here, “observable” features are
those accessible to the ML practitioner, while “unobservable”
features are unavailable in the dataset.

In the selective label problem, the true label Y ⋆
i is not always

observed; its observability depends on a binary decision
Di ∈ {0, 1} made by a decision-maker based on the features
(Xi, Ui). Specifically, we consider J ≥ 2 different decision-
makers and let Zi ∈ [J ] denote the specific decision-maker
assigned to unit i. The observed label Yi is defined as:

Yi =

{
Y ⋆
i if Di = 1,

NaN if Di = 0.
(1)

When Di = 1 (e.g., bail, loan approval, hiring), the ob-
served label Yi is exactly the true label Y ⋆

i , and when
Di = 0, the observed label is recorded as Yi = NaN (Not
a Number), indicating that Y ⋆

i remains unobserved in this
case. Thus, each unit’s label is selectively observed accord-
ing to the decision Di made by decision-maker Zi.

We assume that {(Yi, Y
⋆
i , Di, Zi, Xi, Ui)}Ni=1 represents in-

dependent and identically distributed samples from a popu-
lation denoted by (Y, Y ⋆, D, Z,X,U). The causal structure
of these variables is plotted in Figure 1. However, we can-

not observe all variables but instead only observe the data
SN = {(Yi, Di, Xi, Zi)}Ni=1.

3.1. Learning under Selective Labels

Our goal is to learn a classifier t : X 7→ [K] that can accu-
rately predict the true label Y ⋆ based on observed features
X . This classifier will aid in future decision-making pro-
cesses through accurately predicting Y ⋆. The effectiveness
of the classifier upon deployment across the full population
is evaluated using the expected risk with the zero-one loss:

min
t:X→[K]

R(t) := E [I(Y ⋆ ̸= t(X))] . (2)

Here I(·) is an indicator function, which equals 1 if the event
inside occurs and 0 otherwise. The expectation is taken over
the unknown joint distribution of Y ⋆ and X . For a given
classifier t, the risk R(t) quantifies its misclassification error
rate P(Y ⋆ ̸= t(X)).

Conventionally, one can train a classifier through empiri-
cal risk minimization (ERM), i.e., minimizing an empirical
approximation for the classification risk R(t) based on the
sample data. However, this is challenging under selective
labels since the true label Y ⋆ is not fully observed. One nat-
ural alternative is to perform ERM on the labeled subsample
(subsample size denoted by N1):

min
t:X 7→[K]

R̂label(t) :=
1

N1

∑
i:Di=1

I{Yi ̸= t(Xi)}. (3)

However, the empirical risk R̂label(t) may not capture the
true risk even when total sample size N → ∞:

R̂select(t) → P(Y ⋆ ̸= t(X) | D = 1) ̸= R(t).

This is known as a selection bias problem, where the dis-
tribution of (Y ⋆, X) | D = 1 in the labeled subpopulation
and that of (Y ⋆, X) in the full population are different. The
selection bias arises because the historical decision D can
depend on the features X and U that are also correlated with
the true outcome Y ⋆. Hence, one has to adjust for both X
and U to eliminate the selection bias, as formalized below.

Assumption 3.1. Suppose (1) Selection-on-observables-
and-unobservables: D ⊥ Y ⋆ | X,U ; (2) Overlap:
P(D = 1 | X,U) > 0 almost surely.

The condition D ⊥ Y ⋆ | X,U in Assumption 3.1 means
that the labeled subpopulation and the full population would
have the same Y ⋆ distribution if properly adjusting for
(X,U). The overlap condition means that the subpopu-
lation with almost any X,U value has a positive chance
to be labeled. Both conditions are standard in the missing
data literature (Little & Rubin, 2019). If features X,U were
both observed, then one could correct for the selection bias
by adjusting for X,U via many methods in the literature
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(e.g., Rosenbaum & Rubin, 1983; Rubin, 2005; Imbens &
Rubin, 2015). However, adjusting for the unobservable U is
infeasible, so selection bias remains a significant problem
in our setting. This setting is referred to the missing-not-
at-random (MNAR) problem in the missing data literature
(Little & Rubin, 2019). Addressing MNAR is notoriously
difficult and typically requires additional information.

3.2. Multiple Decision-makers and IV

To address the selective label problem, we draw on recent
literature that leverage the fact that in many applications
the selective labels involve multiple decision-makers with
heterogeneous decision-making preference (Lakkaraju et al.,
2017; Kleinberg et al., 2018; De-Arteaga et al., 2018). The
rationale behind this idea is that, the unobserved true
label Y ⋆ for a unit in the missing group (D = 0) could
have been observed, if the unit had been assigned to a
different decision-maker. This is particularly useful when
the assignment of decision-makers Z is random, indepen-
dent of the unobserved featured U . For instance, Lakkaraju
et al. (2017); Kleinberg et al. (2018) consider that in the
judicial bail, a defendant is randomly assigned to a judge,
so a unit who is not granted bail (and thus unlabeled) could
have been assigned to a more lenient judge, received bail,
and consequently been labeled.

Although the previous works have already considered the
structure of multiple decision-makers, they largely rely
on some heuristic approaches. In fact, the assignment of
decision-makers can be formalized as an instrumental vari-
able (IV). As we will show shortly, this IV formalization
allows us to understand the role of multiple decision-makers
in a principled way. IV is a well-known concept in causal in-
ference. Following standard literature (Angrist et al., 1996;
Cui & Tchetgen Tchetgen, 2021; Wang & Tchetgen, 2018,
e.g.,), a valid IV has to satisfy the following conditions.

Assumption 3.2 (IV conditions). The assignment Z sat-
isfies the following three conditions: 1. IV relevance:
Z ̸⊥ D | X; 2. IV independence: Z ⊥ (U, Y ⋆) | X;
3. Exclusion restriction: Z ⊥ Y | D,Y ⋆.

The IV conditions above are particularly suitable for the
random assignment of decision-makers. The IV relevance
means that even after controlling for the observed features
X , different decision-makers could have systematically dif-
ferent decision rules so that the assignment Z is dependent
with the decision D. The IV independence trivially holds
when the decision-maker assignment is random. The exclu-
sion restriction automatically holds because the observed
label Y is completely determined by the decision D and true
label Y ⋆ so it is independent with any other variable given
D,Y ⋆. We note that these conditions are also explicitly or
implicitly assumed in the prior literature. Assumption 3.2
connects these conditions to the IV framework.

Based on the IV framework, we will next understand the
power and limits of the multiple decision-maker structure
in addressing the selective label problem. In particular, we
will analyze the identification of the classification risk R(t)
in Equation (2), studying under what conditions the risk can
be determined from the distribution of observed data with
multiple decision-makers.

4. Exact Identification of Classification Risk
In this section, we establish conditions under which the
classification risk R(t) can be exactly identified from the
observed data. This represents settings where consistently
evaluating the classification risk is possible, if one properly
leverage the multiple decision-maker structure.

Before delving into our detailed analysis, we define
η⋆k(X) := P(Y ⋆ = k | X) as the conditional probabil-
ity that Y ⋆ equals k, given the observable features X . The
Bayes optimal classifier, which minimizes the classification
risk R(t), is determined by s⋆(X) := argmaxk∈[K] η

⋆
k(X).

In fact, s⋆ also minimizes the excess risk, defined as:

R(t, s⋆) = P(Y ⋆ ̸= t(X))− P(Y ⋆ ̸= s⋆(X)). (4)

Minimizing R(t) over classifier t is equivalent to minimiz-
ing R(t, s⋆) over t as the Bayes optimal risk R(s⋆) is a
constant. Therefore, we can equivalently study the iden-
tification of excess risk R(t, s⋆). The following lemma
gives a weighted formulation of excess risk in terms of the
conditional probabilities.

Lemma 4.1. The excess risk R(t, s⋆) satisfies

R(t, s⋆) = E
[ K∑
k=1

η⋆k(X) ·
(
Is⋆(X)=k − It(X)=k

)]
.

Lemma 4.1 indicates to identify the excess risk we need
first identify the conditional probabilities η⋆k ∈ [0, 1] of the
latent Y ⋆ from the observed data. We therefore focus on the
identification of η⋆(x) = (η⋆1(x), . . . , η

⋆
K(x)) in the sequel.

Identification of Conditional Probabilities In Section 3.2,
we show that the assignment of decision-makers Z can be
viewed as an IV. By adapting the IV identification theory
in the causal inference literature (Wang & Tchetgen, 2018;
Cui & Tchetgen Tchetgen, 2021), we can identify the classi-
fication risk under the following No Unmeasured Common
Effect Modifiers (NUCEM) assumption.

Assumption 4.2 (NUCEM). We have, for each x ∈ X ,
Cov (Cov(D,Z | X,U),P(Y ⋆ = k | X,U) | x) = 0.

Theorem 4.3 (Point Identification). Define Yk := I{Y =
k}. Under Assumptions 3.1, 3.2 and 4.2, η⋆k(X) is identified,

η⋆k(X) = Cov(DYk, Z | X)/Cov(D,Z | X). (5)

Conversely, if (5) holds, Assumption 4.2 is also satisfied.
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Theorem 4.3 shows that Assumption 4.2 is sufficient and
necessary for identifying the conditional probability func-
tion η⋆k’s through Equation (5). This identification equation
connects the conditional probability of the latent true label
Y ⋆ with fully observed variables D,Y, Z,X . This lays the
foundation for learning η⋆k’s (and classification risk) from
the observed data using the decision-maker assignment IV.

Identification of Excess Classification Risk We can now
identify the excess classification risk from observed data.

Theorem 4.4. Based on Theorem 4.3, the excess classifica-
tion risk R(t, s⋆) in Equation (4) is also identified:

R(t, s⋆) = E
[ K∑
k=1

wk(X)I{t(X) = k}
]
, (6)

where wk(x) := maxp∈[K](η
⋆
p(x) − η⋆k(x)) denotes the

weight function and η⋆k(x) is identified in Equation (5). This
can be simplified for binary classification with K = 2:

R(t, s⋆) = E
[∣∣w(X)

∣∣I{t(X) ̸= sgn[w(X)]
}]
, (7)

where w(x) := Cov(DY,Z | x)/Cov(D,Z | x) − 1/2
denotes the weight and sgn : X → {±1} is a sign function.

Theorem 4.4 does not only establish the identification of
the excess classification risk under Assumption 4.2, but also
formulates the identification into a weighted classification
form. Specifically, minimizing the right hand side of Equa-
tion (6) corresponds to searching a cost-sensitive classifier,
while minimizing the right hand side of Equation (7) corre-
sponds to a weighted classification problem with the sign
of w(X) as the label and |w(X)| as the misclassification
cost. In Section 6, we will show that these formulations are
useful in the design of effective learning algorithms.

The NUCEM Identification Assumption The identifica-
tion results in Theorems 4.3 and 4.4 crucially rely on As-
sumption 4.2, which generalizes the NUCEM assumption in
Cui & Tchetgen Tchetgen (2021). Notably, their NUCEM
assumption involves the difference of certain conditional
expectations given the two different IV values, which heav-
ily relies on the binary nature of IV. We consider a more
general assumption that can tackle multi-valued and contin-
uous IV, which strictly generalizes their framework. These
identification analyses reveal that additional assumptions
are needed to fully identify the classification risk, even when
the decision-maker structure already satisfies the IV condi-
tions in Assumption 3.2. This fact is not shown in the prior
selective label literature without the formal IV framework.

To understand the NUCEM assumption, it is instructive to
consider examples where this assumption holds.
Example 1 (Full Information). If all features needed to
predict the true label Y ⋆ are recorded, then E[Y ⋆ | X,U ] =
E[Y ⋆ | X] almost surely and Assumption 4.2 holds.

Example 2 (Separable and Independent Unobservables).
Suppose unobservables U can be divided into two cate-
gories: U1 influences the decision D, and U2 affects the
outcome Y ⋆. Hence, we have Cov(D,Z | X,U) =
Cov(D,Z | X,U1) and E[Y ⋆ | X,U ] = E[Y ⋆ | X,U2]
almost surely. If U1 and U2 are (conditionally) independent,
then Assumption 4.2 holds.
Example 3 (Additive Decision Probability). Suppose that for
every decision-maker j ∈ [J ], the conditional decision prob-
ability satisfies P(D = 1 | U,X,Z = j) = gj(X) + q(U)
for a common function q and potentially different functions
gj . That is, all decision-makers use the unobservables U in
a common and additive way. Under this condition, we can
prove that Assumption 4.2 also holds (see Appendix A.2).

The examples above show that the NUCEM assumption
needs to impose restrictions on the impact of unobserved
features U on either the decision D or the true label Y ⋆

or both. However, these restrictions may be too strong in
practice so the NUCEM assumption may fail. As a result,
the identification formula in Theorems 4.3 and 4.4 are no
longer valid. In the next section, we will drop the NUCEM
assumption and only impose some mild conditions, leading
to weaker identification results accordingly.

5. Partial Identification of Classification Risk
The last section shows that the exact identification of classi-
fication risk often requires assumptions that are untenable in
practice (see Assumption 4.2). Hence it is desirable to avoid
such stringent assumptions and instead consider weaker and
more reasonable assumptions. Nevertheless, without the
stringent assumptions, it is generally impossible to exactly
identify the classification risk from the observed data. In-
stead, there may exist a range of plausible values of the
classification risk, all compatible with the observed data.
This plausible range is characterized by the so-called partial
identification bounds.

Below we impose a mild bound condition on the conditional
probability of the true label for the partial bound analysis.

Assumption 5.1. For each fixed x and k, there exist two
known functions ak(x) ∈ [0, 1] and bk(x) ∈ [0, 1] such that
ak(x) ≤ P(Y ⋆ = k | U,X = x) ≤ bk(x) almost surely.

Assumption 5.1 mandates known lower and partial bounds
on the conditional probability P(Y ⋆ = k | U,X = x),
while permitting arbitrary dependence on unobserved fea-
tures U . This assumption is mild—it is trivially satisfied by
setting ak(x) = 0 and bk(x) = 1. In all our experiments,
we adopt this default choice for all k ∈ [K]. With these
parameters, we derive explicit partial bound for η⋆k(X).

Partial Identification of Conditional Probabilities Based
on this condition, we can derive tight IV partial identi-
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fication bounds on the conditional probability η⋆k(X) =
P(Y ⋆ = k | X) for each k ∈ [K].

Theorem 5.2. Define Yk := I{Y = k} and assume As-
sumptions 3.1 and 3.2 and Assumption 5.1 hold. Then for
any x ∈ X and k ∈ [K], the value of η⋆k(x) must fall within
the interval [lk(x), uk(x)], where

lk(x) := max
z∈[J]

E[DYk + ak(x)(1−D) | X = x, Z = z],

uk(x) := min
z∈[J]

E[DYk + bk(x)(1−D) | X = x, Z = z].

Conversely, any value within the interval [lk(x), uk(x)] can
be a plausible value of η⋆k(x). Moreover, the interval end-
points satisfy that ak(x) ≤ lk(x) ≤ uk(x) ≤ bk(x).

Theorem 5.2 generalizes the well-known Balke and Pearl’s
bound and Manski’s bound in Balke & Pearl (1994); Man-
ski & Pepper (1998). Specifically, our bounds coincide
with Balke and Pearl’ bounds when applied to a binary IV
(see Appendix B.2). Furthermore, if a(X), b(X) are two
constants independent of X (such as 0, 1), our bounds re-
cover Manski’s bounds. Theorem 5.2 also demonstrates
the tightness of our IV partial bounds, in the sense that our
bounds tightly give the range of all plausible values of the
conditional probability η⋆k’s (see Appendix B.1).

Algorithm 1 Unified Cost-sensitive Learning
Require: function class H, mode ∈ {point,partial}, data

SN = {(Yi, Xi, Di, Zi)}Ni=1, cross-fitting folds L.
1: Randomly split the data into L (even) batches with

indices denoted by S1
N , . . . , SL

N respectively.
2: for each batch l ∈ [L] do
3: if mode = point then
4: For k ∈ [K], use dataset SN \ Sl

N to estimate the
weight ŵ[l]

k (x) = maxp∈[K]

(
η̂p(x)− η̂k(x)

)
.

5: else if mode = partial then
6: For k ∈ [K], use dataset SN \ Sl

N to estimate the
weight ŵ[l]

k (x) = maxp ̸=k

(
ûp(x)− l̂k(x)

)+
.

7: end if
8: end for
9: Construct the empirical risk for each batch l ∈ [L]:

R̂[l]
exp(h) =

1

|Il|
∑
i∈Il

K∑
k=1

ŵ
[l]
k (Xi)

exp(hk(Xi))∑K
p=1 exp(hp(Xi))

.

10: Return the score function ĥ by minimizing:

ĥ ∈ argmin
h∈H

1

L

L∑
l=1

R̂[l]
exp(h). (8)

Partial Identification of Excess Classification Risk When
{η⋆k}k∈[K] are only partially identified within [lk, uk] for

each k ∈ [K], the excess classification risk R(t, s⋆) is
also partially identified. Define the feasible region for the
conditional probability vector η⋆ = (η1, . . . , ηK) as

S :=
{
η : ∥η∥1 = 1, ηk ∈ [lk, uk], k ∈ [K]

}
, (9)

Then the range of plausible value of the excess risk R(t, s⋆)
is given by the interval [R(t),R(t)], where

R(t) := E
[
max
η∈S

K∑
k=1

ηk(X)
(
Is⋆(X)=k − It(X)=k

)]
(10)

and R(t) is symmetrically defined by changing the maxi-
mization over η ∈ S into minimization over the same set.
We are particularly interested in the upper bound R(t) as it
gives the worst-case risk of a classifier t. Minimizing this
upper bound, i.e., mint:X→[K] R(t), hence leads to a robust
classifier safeguarding the perfrmance in the worst case. Be-
low we further provide a reformulation of the worst-case
risk under a mild regularity condition.

Theorem 5.3. Suppose conditions in Theorem 5.2 hold and
the set S defined in eq. (9) is non-empty. Given the bounds
[lk, uk] in Theorem 5.2, we define the “realizable” partial
bounds for η⋆k as

l̃k(x) := [1−
∑
p ̸=k

up(x)] ∨ lk(x),

ũk(x) := [1−
∑
p ̸=k

lp(x)] ∧ uk(x).

We have

R(t) = E
[ K∑
k=1

wk(X)I{t(X) = k}
]
,

where wk(x) := maxp ̸=k,p∈[K]

(
ũp(x)− l̃k(x)

)+
denotes

the weight function. This can be simplified for binary classi-
fication problems:

R(t) = E
[
|w(X)|I{t(X) ̸= sgn[w(X)]

}]
+ C,

where C is a constant not relying on the classifier t and
w(x) := max{2u1(x)− 1, 0}+min{2l1(x)− 1, 0}.

The non-emptyness of set S defined in Equation (9) is a
mild regularity condition. It is easy to verify from The-
orem 5.2 that this condition is automatically satisfied for
ak(X) = 0 and bk(X) = 1 for all k ∈ [K]. Like Theo-
rem 4.4, here Theorem 5.3 formulates the worst-case risk
into a cost-sensitive form for general multi-class classifica-
tion problems and a weighted classification form for binary
classification problems. This reformulation will be handy
for the learning algorithm design in the next section.

Discussions Notably, the partial identification results in
this section are quite different than the exact identification
results in Section 4. Section 4 relies on a strong NUCEM
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identification assumption (Assumption 4.2). This strong
assumption has a strong implication: we can pinpoint the
exact value of classification risk from the observed data with
the decision-maker assignment as an IV. However, the key
NUCEM identification assumption is very strong and may
be often implausible in practice. In this section, we instead
consider a much weaker bound condition in Assumption 5.1.
This condition is arguably more plausible yet meanwhile it
also has weaker identification implication. Under this condi-
tion, even with the decision-maker assignment as a valid IV,
the classification risk is still intrinsically ambiguous, so we
can at most get a range of its values from the observed data.
In the next subsection, we will design algorithms to learn
robust classifiers by approximately minimizing the worst-
case classification risk. These analyses reveal the power
and limits of the multiple decision-maker data structure in
tackling the selective label problem, which highlights the
value of the principled IV framework adopted in our paper.

6. Unified Cost-sensitive Learning
In this section, we propose a unified cost-sensitive learning
(UCL) algorithm tailored to learn a classifier from selec-
tively labeled data. This algorithm accommodates both
the exact identification setting in Section 4 and the partial
identification setting in Section 5 in a unified manner.

Typically, a classifier t(x) is represented by some score func-
tion h : X → RK through t(x) = argmaxk∈[K] hk(x).
Here for any given x, hk(x) quantifies the score of class k.

According to Theorems 4.4 and 5.3, the excess classification
risk of a classifier t with score function h in the two identi-
fication settings can be written into the common weighted
form as follows:

R(h,w) = E
[ K∑
k=1

wk(X)I{argmax
p∈[K]

hp(x) = k}
]
. (11)

Specifically, for each k, we set wk(x) = maxp∈[K](η
⋆
p(x)−

η⋆k(x)) to recover the exact identification in Theorem 4.4
and set wk(x) = maxp ̸=k,p∈[K](ũp(x)− l̃k(x))

+ to recover
the worst-case excess risk R(t) in Theorem 5.3. In this
section, we aim to minimize these risk objectives to learn
effective classifiers. This corresponds to a cost-sensitive
multi-classification problem (Pires et al., 2013).

Theorems 4.4 and 5.3 also show that for binary classification
problems with K = 2, the risk function simplifies to:

R(h,w) = E
[∣∣w(X)

∣∣I{ sgn[h(x)] ̸= sgn[w(X)]
}]

.

By specifying w(x) = Cov(DY,Z|x)
Cov(D,Z|x) − 1/2, we recover the

classification risk in the exact identification setting. By spec-
ifying w(x) = max{2u1(x)− 1, 0}+min{2l1(x)− 1, 0},
we recover the worst-case risk (up to some constants) under
partial identification. Minimizing these risks correspond to

solving weighted binary classification with a pseudo label
sgn[w(X)] and misclassification cost |w(X)|.

6.1. Calibrated Surrogate Risk

The cost-sensitive classification risk R(h,w) in Equa-
tion (11) involves non-convex and non-smooth indicator
functions I{·}, making the optimization challenging. To
address this issue, we introduce a surrogate risk Rexp(h, w)
that replaces the indicator function with the softmax func-
tion. This substitution allows us to define the surrogate for
cost-sensitive classification risk:

Rexp(h,w) = E
[ K∑
k=1

wk(X)
exp(hk(X))∑K
p=1 exp(hp(X))

]
. (12)

For the binary case, we introduce the weighted ϕ-risk as

Rϕ(h,w) = E
[∣∣w(X)

∣∣ · ϕ(h(X) · sgn[w(X)]
)]
. (13)

There are many possible choices for the convex surrogate
loss ϕ, including the Hinge loss ϕ(α) = max{1 − α, 0},
the logistic loss ϕ(α) = log(1 + e−α), and the exponential
loss ϕ(α) = e−α, and so on (Bartlett et al., 2006).

Theorem 6.1 establishes a calibration bound linking the
cost-sensitive risk R(h,w) to its surrogate Rexp(h,w).

Theorem 6.1 (Calibration Bound for Cost-sensitive Risk).
For any given weight function w : X → RK , we have

R(h,w)−inf
h

R(h,w) ≤ K
[
Rexp(h,w)−inf

h
Rexp(h,w)

]
.

For binary case, calibration bound can also be established
for Rϕ(h,w) (Bartlett et al., 2006; Tewari & Bartlett, 2007).

Proposition 6.2 (Calibration Bound for Weighted Risk).
For any fixed weight function w : X → R, we have

R(h,w)− inf
h

R(h,w) ≤ Rϕ(h;w)− inf
h

Rϕ(h,w).

Theorem 6.1 and Proposition 6.2 show that the target risks
can be well-bounded by the excess surrogate risks. Hence
we can use sample data to approximately minimize the
surrogate risks, which can be efficiently solved.

6.2. Empirical Risk Minimization

We now propose Algorithm 1 to minimize the empirical
surrogate risk Rexp(h,w) in Equation (12) using observed
data SN . We also establish the finite-sample error bound for
the resulting score function h (see Appendix D).

Weights Estimation The weight functions {wk}Kk=1 dif-
fer between point-identified and partial-identified settings,
requiring separate estimation. For mode = point, we first
estimate Cov(D,Z | X) and Cov(DYk, Z | X) in eq. (5),

7



Learning with Selectively Labeled Data from Multiple Decision-makers

Figure 2. The testing accuracy of methods with α ∈ {0.5, 0.7, 0.9} for model NUCEM in FICO dataset.

then compute their ratio. For example, Cov(DYk, Z | x)
can be expressed as E[DZYk | x]− E[DYk | x] · E[Z | x],
with conditional expectations estimated via regression on
X = x. Alternatively, forest methods, such as General-
ized Random Forests, can directly estimate the conditional
covariance ratio in one step (Athey et al., 2019).

For mode = partial, we estimate the bounds lk and uk

for each k ∈ [K] as defined in Theorem 5.2, involving
conditional expectations E[DYk | x, z] and E[D | x, z] via
regression. These bounds are then used to construct wk(x).
The precision of weights estimation do affect the accuracy
of downstream classification task. To illustrate this, we
implement the ablation study by injecting the noise to the
weights estimation. See Appendix E.2 for the discussion.

Cross-fitting In Algorithm 1, we divide the dataset into
L folds and apply the cross-fitting to estimate these weight
functions. This approach has been widely used in statistical
inference and learning with ML nuisance function estima-
tors (e.g., Chernozhukov et al., 2018; Athey & Wager,
2021), which effectively alleviates the over-fitting bias by
avoiding using the same data to both train weight function
estimators and evaluate the weight function values.

The cross-fitting estimation entails some additional com-
putational costs, but this typically only involves a series of
standard regression/classification fitting, which is usually
manageable and can be accelerated by parallel computation.

Classifier Optimization The empirical surrogate risk in
Equation (8) defines a cost-sensitive classification problem.
Once the weight function {wk}Kk=1 are estimated, we can
then solve for the score function h , which can be imple-
mented using PyTorch by defining a cost-sensitive loss
function with softmax being the output layer. We can also

incorporate regularization in Equation (8) to reduce over-
fitting. In the binary setting, we can simply solve a weighted
classification problem with sgn[ŵ(X)]’s as the labels and
|ŵ(X)| as weights, and this can be easily implemented by
off-the-shelf ML packages that take additional weight inputs.
For example, considering the surrogate risk in Equation (13)
with ϕ as the logistic loss, we can simply run a logistic
regression with the aforementioned labels and weights.

7. Numeric Experiments
We conduct experiments on a synthetic dataset with a
multiclass label (K = 3) and a semi-synthetic dataset
with a binary label (K = 2). Below, we briefly sum-
marize our experiment on the semi-synthetic data, with
comprehensive results provided in Appendix E. Refers the
code and data to https://github.com/Zhehao97/
Learning-Selective-Labels.git.

Semi-synthetic Dataset This dataset consists of 10459 ob-
servations of approved home loan applications. The dataset
records whether the applicant repays the loan within 90 days
overdue, which we view as the true label Y ∗, and various
transaction information of the bank account. The dataset
also includes a variable called ExternalRisk, which is a
risk score assigned to each application by a proprietary algo-
rithm. We use ExternalRisk and all transaction features as
the observed features X . In this dataset, the label of interest
is fully observed, we synthetically create selective labels
on top of the dataset. Specifically, we simulate J = 10
decision-makers (e.g., bank officers who handle the loan
applications) and randomly assign one to each case. We
generate the decision D from a Bernoulli distribution with
a success rate pD := P(D = 1 | X,U) that depends on an
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Figure 3. The testing accuracy of methods with α ∈ {0.5, 0.7, 0.9} for model UC in FICO dataset.

“unobservable” variable U , the decision-maker identity Z,
and the ExternalRisk variable:

pNUCEM
D = ασ(U) + (1− α)σ((1 + Z) · ExternalRisk),

pUC
D = σ(αU + (1− α)(1 + Z) · ExternalRisk).

Here we define σ(t) = 1
1+exp(−t) . The parameter αD ∈

(0, 1) controls the impact of U on the labeling process and
thus the degree of selection bias. The unobservables U
is constructed as the residual of a HistGradientBoosting
regression of Y ⋆ with respect to X , which is naturally de-
pendent with Y ⋆. Finally, we blind the true label Y ⋆ for
observations with D = 0.

Methods and Evaluation We randomly split our data
into training and testing sets at 7 : 3 ratio. We compare
five methods: SelectedSample (training classifiers only on
the labeled sample), SelectedSample-IPW (using labeled
sample only but with additional inverse propensity weight-
ing to correct selection bias due to observed features X),
FullSample (ideal benchmark that observes all labels on
the full sample), PointLearning and PartialLearning (our
proposed methods based on the exact/point and partially
identified risks using decision-maker assignment as IV).
The first three methods serve as the benchmark of our meth-
ods. For each method, we try multiple algorithms including
AdaBoost, Gradient Boosting, Logistic Regression, Ran-
dom Forest, and SVM. All hyperparameters are chosen via
5-fold cross-validation, and we evaluate the classification
accuracy of classifiers on the full-labeled testing data.

Results and Discussions Figures 2 and 3 reports the testing
accuracy of each method in 50 replications of the experiment
when α ∈ {0.5, 0.7, 0.9} under both NUCEM and UC mod-
els. We find the performance of SelectedSample(IPW)

is comparable with the baseline method which run classi-
fication algorithms directly on the selective labeled data.
Moreover, we observe that as the degree of selection bias
α grows, the gains from using our proposed method rel-
ative to the SelectedSample baseline also grows, espe-
cially for the PartialLearning method. Interestingly, the
PartialLearning method has better performance even un-
der NUCEM model when the point identification condition
holds. This is perhaps because the PointLearning method
requires estimating a conditional variance ratio, which is
often difficult in practice. In contrast, the PartialLearning
method only requires estimating conditional expectations
and tends to be more stable.

In addition, we conduct experiments on a synthetic dataset
with a multiclass label in Appendix E. The results demon-
strate that our methods, particularly PartialLearning,
achieve higher classification accuracy than benchmark meth-
ods under varying degrees of selection bias.

8. Conclusion
We address multiclass classification with selectively labeled
data, where the label distribution deviates from the full
population due to historical decision-making. Leveraging
variations in decision rules across multiple decision-makers,
we analyze this problem using an instrumental variable (IV)
framework, providing conditions for exact classification risk
identification. When exact identification is unattainable, we
derive sharp partial risk bounds. To address label selection
bias, we propose a unified cost-sensitive learning (UCL)
approach, supported by theoretical guarantees, and demon-
strate its effectiveness through comprehensive numerical
experiments.
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A. Supplements for Point Identification
A.1. Proofs in Section 4

Proof of Lemma 4.1. By the definition of excess risk in Equation (4), we have

R(t, s⋆) = P(Y ⋆
i ̸= t(Xi))− P(Y ⋆

i ̸= s⋆(Xi))

= E
[
P(Y ⋆

i ̸= t(Xi) | Xi)− P(Y ⋆
i ̸= s⋆(Xi) | Xi)

]
= E

[
K∑

k=1

η⋆k(Xi) ·
(
P(k ̸= t(Xi) | Xi)− P(k ̸= s⋆(Xi) | Xi)

)]

= E

[
K∑

k=1

η⋆k(Xi) ·
(
P(s⋆(Xi) = k | Xi)− P(t(Xi) = k | Xi)

)]

= E

[
K∑

k=1

η⋆k(Xi) · E
[
I{s⋆(Xi) = k} − I{t(Xi) = k} | Xi

]]

= E

[
K∑

k=1

η⋆k(Xi) ·
(
I{s⋆(Xi) = k} − I{t(Xi) = k}

)]

= E

[
K∑

k=1

η⋆k(Xi) ·
(
I{argmax

p∈[K]

η⋆p(Xi) = k} − I{t(Xi) = k}
)]

.

We apply the iterated law of expectation in second equality, and the total law of expectation in third equality. The fourth
equality comes from the sum-to-one constraint of probability. The fifth equality is established from the definition of indicator
function and the sixth equality follows again from the iterated law of expectation. Finally we apply the definition of Bayes
optimal s⋆(Xi) = argmaxk∈[K] η

⋆
k(Xi).

Proof of Theorem 4.3. In this part, we prove that, under Assumptions 3.1 and 3.2, Assumption 4.2 is the necessary and
sufficient condition of the exact identification of P(Y ⋆ = k | X). To simplify the notation, we denote two new variables
Y ⋆
k := I{Y ⋆ = k} and Yk := I{Y = k}.

• Sufficiency: For any z ∈ Z , the conditional probability P(Y ⋆ = k | X,Z = z) = E[Y ⋆
k | X,Z = z] could be

expressed as

E[Y ⋆
k | X,Z = z] = E

[
E[Y ⋆

k | X,U,Z = z] | X,Z = z
]

= E
[
E[DY ⋆

k | X,U,Z = z] | X,Z = z
]
+ E

[
E[(1−D)Y ⋆

k | X,U,Z = z] | X,Z = z
]

= E
[
E[DYk | X,U,Z = z] | X,Z = z

]
+ E

[
E[(1−D)Y ⋆

k | X,U,Z = z] | X,Z = z
]

= E
[
E[DYk | X,U,Z = z] | X,Z = z

]
+ E

[
E[Y ⋆

k | X,U,Z = z] · E[(1−D) | X,U,Z = z] | X,Z = z
]

= E
[
E[DYk | X,U,Z = z] | X,Z = z

]
+ E

[
E[Y ⋆

k | X,U ] · E[(1−D) | X,U,Z = z] | X,Z = z
]

= E[DYk | X,Z = z] + E[Y ⋆
k | X,Z = z]− E

[
E[Y ⋆

k | X,U ] · E[D | X,U,Z = z]
]
.

(14)

In the first and second equalities, we use the iterated law of expectation and the linearity of expectation. The third
equality follows from the consistency between observed label and true label from Equation (1), that is, Yk = Y ⋆

k when
D = 1. The fourth equality follows from the unconfoundedness of Y ⋆

k and D given X and U , which is guaranteed by
the general unconfoundedness (Y ⋆ ⊥ D | X,U ) in Assumption 3.1. We use the IV independence (Z ⊥ Y ⋆

k | X) from
Assumption 3.2 in the fifth equality. The last equality follows again by the iterated law of expectation and linearity of
expectation.

By subtracting E[Y ⋆
k | X] on both sides of Equation (14), we have for any z ∈ Z ,

0 = E
[
DYk | X,Z = z

]
− E

[
E[Y ⋆

k | X,U ] · E[D | X,U,Z = z] | X,Z = z
]

= E
[
DYk | X,Z = z

]
− E

[
E[Y ⋆

k | X,U ] · E[D | X,U,Z = z] | X
]
,
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where the last equality follows from the IV independence (Z ⊥ U | X) from Assumption 3.2. Now, by multiplying the
weight z · P(Z = z | X) on both sides of equation above, we have

0 = E[DYk | X,Z = z]− E
[
E[Y ⋆

k | X,U ] · E[D | X,U,Z = z] | X
]

= E[zDYk | X,Z = z] · P(Z = z | X)− E
[
E[Y ⋆

k | X,U ] · E[zD | X,U,Z = z] · P(Z = z | X) | X
]

= E[zDYk | X,Z = z] · P(Z = z | X)− E
[
E[Y ⋆

k | X,U ] · E[zD | X,U,Z = z] · P(Z = z | X,U) | X
]
.

He we apply the IV independence (Z ⊥ U | X) again in the last equality above. Taking the summation (or integral) for
z over Z yields the following results:

0 = E[ZDYk | X]− E
[
E[Y ⋆

k | X,U ] · E[ZD | X,U ] | X
]
.

Moreover, observe that {
E[ZDYk | X] = Cov(DYk, Z | X) + E[DYk | X] · E[Z | X]

E[ZD | X,U ] = Cov(D,Z | X,U) + E[D | X,U ] · E[Z | X,U ],

we have

0 = Cov(DYk, Z | X)︸ ︷︷ ︸
I

+E[DY ⋆
k | X] · E[Z | X]︸ ︷︷ ︸

II

−E
[
E[Y ⋆

k | X,U ] · Cov(D,Z | X,U) | X
]︸ ︷︷ ︸

III

− E
[
E[Y ⋆

k | X,U ] · E[D | X,U ] · E[Z | X,U ] | X
]︸ ︷︷ ︸

IV

,
(15)

Here again we use the consistency that E[DYk | X] = E[DY ⋆
k | X]. By the unconfoundedness (Y ⋆ ⊥ D | X,U ) from

Assumption 3.1 and IV independence (Z ⊥ U | X) from Assumption 3.2, we have E[Z | X,U ] = E[Z | X] and

E[Y ⋆
k | X,U ] · E[D | X,U ] · E[Z | X,U ] = E[DY ⋆

k | X,U ] · E[Z | X].

Therefore the II and IV terms in Equation (15) cancel out, which lead us to the result

0 = Cov(DYk, Z | X)− E
[
E[Y ⋆

k | X,U ] · Cov(D,Z | X,U) | X
]
. (16)

Finally, by assuming Assumption 4.2 holds, that is,

Cov
(
Cov(D,Z | X,U), E[Y ⋆

k | X,U ] | X
)
= 0,

we have

E
[
E[Y ⋆

k | X,U ] · Cov(D,Z | X,U) | X
]
= E

[
E[Y ⋆

k | X,U ] | X
]
· E

[
Cov(D,Z | X,U) | X

]
= E[Y ⋆

k | X] · E
[
Cov(D,Z | X,U) | X

]
.

According to conditional covariance identity and IV independence (Z ⊥ U | X), we have

Cov(D,Z | X) = E
[
Cov(D,Z | X,U) | X

]
+ E

[
Cov(E[D | X,U ], E[Z | X,U ]) | X

]
= E

[
Cov

(
D,Z | X,U) | X

]
+ E

[
Cov(E[D | X,U ], E[Z | X]

)
| X

]
= E

[
Cov(D,Z | X,U) | X

]
.

(17)

Combining (17) with (16) leads us to the desired result, that is,

η⋆k(X) = E[Y ⋆
k | X] =

Cov(DYk, Z | X)

Cov(D,Z | X)
.

• Necessity: Given the identification result E[Y ⋆
k | X] = Cov(DYk,Z|X)

Cov(D,Z|X) and the Equation (17), we have

Cov(DYk, Z | X) = E[Y ⋆
k | X] · Cov(D,Z | X)

= E
[
E[Y ⋆

k | X,U ] | X
]
· E

[
Cov(D,Z | X,U) | X

]
.

13
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On the other hand, we have the identity (16) established when every Assumptions 3.1 and 3.2 hold, that is,

Cov(DYk, Z | X) = E
[
E[Y ⋆

k | X,U ] · Cov(D,Z | X,U) | X
]
.

Therefore, combining these results together, we have

E
[
E[Y ⋆

k | X,U ] · Cov(D,Z | X,U) | X
]
− E

[
E[Y ⋆

k | X,U ] | X
]
· E

[
Cov(D,Z | X,U) | X

]
= 0,

which then recovers condition (4.2).

Proof of Theorem 4.4. By the result in Lemma 4.1, we have

R(t, s⋆) = E

[
K∑

k=1

η⋆k(Xi) ·
(
I{argmax

p∈[K]

η⋆p(Xi) = k} − I{t(Xi) = k}
)]

= E
[ K∑
k=1

[
max
p∈[K]

η⋆p(Xi)− η⋆k(Xi)
]
· I{t(Xi) = k}

]
= E

[
K∑

k=1

wk(Xi) · I{t(Xi) = k}

]
.

For each k ∈ [K], we define wk(X) := maxp∈[K]{η⋆p(X)−η⋆k(X)}. According to Theorem 4.3, when NUCEM conditions
in Assumption 4.2 are satisfied for each k ∈ [K], the conditional probability η⋆k can be uniquely identified by Equation (5).
Therefore, the weight function can be further identified as

wk := max
p∈[K]

{
Cov(DYp, Z | X)

Cov(D,Z | X)
− Cov(DYk, Z | X)

Cov(D,Z | X)

}
, ∀ k ∈ [K].

Now, consider a binary classification with the true label Y ⋆ ∈ {−1, 1}. Let η⋆(x) := P(Y ⋆ = 1 | X = x) denote
the conditional probability of Y ⋆ = 1 given X = x. The Bayes optimal classifier is s⋆(x) = sgn[η⋆(x) − 1/2]. As a
consequence, the excess risk can be then written as

R(t, s⋆) = P
(
Y ⋆ ̸= t(X)

)
− P

(
Y ⋆ ̸= s⋆(X)

)
= E

[
I
{
Y ⋆ ̸= t(X)

}
− I

{
Y ⋆ ̸= s⋆(X)

}]
= E

[
η⋆(X) ·

(
I{1 ̸= t(X)} − I{1 ̸= s⋆(X)}

)
+ (1− η⋆(X)) ·

(
I{−1 ̸= t(X)} − I{−1 ̸= s⋆(X)}

)]
= E

[(
2η⋆(X)− 1

)
·
(s⋆(X)− t(X)

2

)]
= E

[∣∣η⋆(X)− 1/2
∣∣ · ∣∣s⋆(X)− t(X)

∣∣]
= E

[∣∣η⋆(X)− 1/2
∣∣ · I{t(X) ̸= sgn[η⋆(X)− 1/2]

}]
.

By defining the weight function wexact(X) := η⋆(X)− 1/2, we have

R(t, s⋆) = E
[∣∣wexact(X)

∣∣ · I{t(X) ̸= sgn[wexact(X)]
}]

:= R(t, wexact).

Applying the identification result from Theorem 4.3, we obtain

wexact(X) =
Cov(DY,Z | X)

Cov(D,Z | X)
− 1/2.

14
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A.2. Sufficient Condition for Point Identification

Proposition A.1 (A Sufficient Condition for Point Identification). Suppose Assumptions 3.1 and 3.2 hold. For any
z1, z2 ∈ [m], define ∆jl(X,U) := E[D | X,U,Z = j]− E[D | X,U,Z = l]. Assumption 4.2 holds if, for any j, l ∈ [J ],

Cov(∆jl(X,U),P(Y ⋆ = k | X,U) | X) = 0, a.s. (18)

Proposition A.1 outlines a sufficient condition for Assumption 4.2. This condition permits unobserved features U to
influence both the decision D and the true outcome Y ⋆, but constrains this influence to a specific form. Specifically, the
condition is met when E[D | U,X,Z = j] = gj(X) + q(U) almost surely, with functions gj and q reflecting the impact of
U is additive and consistent across all decision-makers.

Proof of Proposition A.1. Notice that the conditional covariance Cov(D,Z | X,U) could be decomposed as below:

Cov(D,Z | X,U) = E[DZ | X,U ]− E[D | X,U ] · E[Z | X,U ]

=

m∑
j=1

E[DZ | X,U,Z = j] · P(Z = j | X,U)− E[D | X,U ] ·
m∑
j=1

j · P(Z = j | X,U)

=

m∑
j=1

j · E[D | X,U,Z = j] · P(Z = j | X,U)−
m∑
l=1

E[D | X,U,Z = l] · P(Z = l | X,U) ·
m∑
j=1

j · P(Z = j | X,U)

=

m∑
j=1

m∑
l=1

j · P(Z = l | X,U) · P(Z = k | X,U) ·
[
E[D | X,U,Z = j]− E[D | X,U,Z = l]

]
.

Define ∆j,l(X,U) = E[D | X,U,Z = j]− E[D | X,U,Z = l]. If for any j, l ∈ [m], we have

Cov(∆jl(X,U), P(Y ⋆ = k | X,U) | X) = 0 almost surely,

Assumption 4.2 is then guaranteed.
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B. Supplements for Partial Identification
B.1. Tightness of IV Partial Bounds in Theorem 5.2

Theorem B.1 (Tightness of IV Partial Bound). Assume Assumption 3.1 is valid, and the conditional joint distribution of
observable variables (Yk, D, Z) | X = x is fixed. Consider a new set of random variables (Ỹ ⋆

k , D̃, Z̃, X̃, Ũ) where Ỹ ⋆
k and

D̃ are binary, and Z̃ = Z. Define the observed label Ỹk as D̃ · Ỹ ⋆
k + (1 − D̃) · NaN. If the expectation E[Ỹ ⋆

k | X̃ = x]
falls within the interval [lk(x), uk(x)] for all x ∈ X , then it is possible to establish a conditional joint distribution for
(Ỹ ⋆

k , D̃, Z̃, Ũ) given X̃ = x that satisfies:

1. The IV independence in Assumption 3.2 is met.

2. The conditional joint distribution of (Ỹk, D̃, Z̃) | X̃ = x matches the initial distribution (Yk, D, Z) | X = x.

3. The natural bounds in Assumption 5.1 are maintained.

Theorem B.1 along with Theorem 5.2 establish a two-way correspondence between the conditional mean outcome E[Ỹ ⋆
k |

X = x] and the IV partial bound [lk(x), uk(x)]. On one hand, any value of E[Ỹ ⋆
k | X = x] within this interval corresponds to

a feasible conditional joint distribution of (Ỹ ⋆
k , D̃, Z̃) | X̃ = x that is consistent with the observed data (Yk, D, Z) | X = x.

On the other hand, any conditional joint distribution of (Ỹ ⋆
k , D̃, Z̃) | X̃ = x consistent with the observed data must yield a

conditional mean outcome E[Ỹ ⋆
k | X̃ = x] within the interval [lk(x), uk(x)], as established in Theorem 5.2.

These results underscore the tightness of the IV partial bound in Theorem 5.2 and the necessity of the bounded label
assumption in Assumption 5.1 for the partial identification of the conditional probability η⋆k.

Proof of Theorem B.1. The proof is adapted from (Kédagni & Mourifie, 2017). Let (Ỹ ⋆
k , D̃, Z̃, X̃, Ũ) be a sequence of

random variables such that Z̃ = Z almost surely and lk(x) ≤ E[Ỹ ⋆
k | X̃ = x] ≤ uk(x) for every x ∈ X . Given that

Assumption 3.1 held and fix X̃ = x for some x ∈ X , we aim to prove that, for every possible value of E[Ỹ ⋆
k | X̃ = x] ∈

[lk(x), uk(x)], there exists a conditional joint distribution of (Ỹ ⋆
k , D̃, Z̃, Ũ) given X̃ = x such that: (1) IV independence in

Assumption 3.2 holds, that is, Z̃ ⊥ Ỹ ⋆
k | X̃ = x for every x ∈ X ; (2) the new observable variables (Ỹk, D̃, Z̃) | X̃ = x has

the same conditional joint distribution as the fixed observable variables (Yk, D, Z) | X = x; (3) Assumption 5.1 holds.

Without loss of generality, we first consider the case when E[Ỹ ⋆
k | X̃ = x] = lk(x). As a consequent, we let

P(Ỹ ⋆
k = 1 | X̃ = x) := lk(x) = max

z∈[m]

{
E[DYk | X = x, Z = z] + a(x) ·

(
1− E[D | X = x, Z = z]

)}
P(Ỹ ⋆

k = 0 | X = x) := 1− lk(x),
(19)

where the last expression follows by sum-to-one constraint of conditional probability. Note that we does not impose any
observable restrictions on the conditional joint distribution of (Ỹk, D̃) given X̃ = x and Z̃ = z, we define the following: for
all z ∈ Z ,

P(Ỹ ⋆
k = 1, D̃ = 1 | X̃ = x, Z̃ = z) := E[DYk | X = x, Z = z]

P(Ỹ ⋆
k = 1, D̃ = 0 | X̃ = x, Z̃ = z) := lk(x)− E[DYk | X = x, Z = z]

P(Ỹ ⋆
k = 0, D̃ = 1 | X̃ = x, Z̃ = z) := E[D | X = x, Z = z]− E[DYk | X = x, Z = z]

P(Ỹ ⋆
k = 0, D̃ = 0 | X̃ = x, Z̃ = z) :=

(
1− lk(x)

)
−
(
E[D | X = x, Z = z]− E[DYk | X = x, Z = z]

)
.

(20)

Notice that all of the conditional probabilities are well-established as they are all between 0 and 1, and the sum-to-one
constraint is established as follow:∑

i∈{0,1}

∑
j∈{0,1}

P(Ỹ ⋆
k = i, D̃ = j | X,Z = z) = 1, ∀ z ∈ [m].

We now prove the three statements mentioned above.
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1. IV Independence: To check whether we have Z̃ ⊥ Ỹ ⋆
k | X̃ = x, notice that for any z ∈ Z ,

P(Ỹ ⋆
k = 1 | X̃ = x, Z̃ = z) = P(Ỹ ⋆

k = 1, D̃ = 1 | X̃ =, Z̃ = z) + P(Ỹ ⋆
k = 1, D̃ = 0 | X̃ = x, Z̃ = z) = lk(x)

P(Ỹ ⋆
k = 0 | X̃ = x, Z̃ = z) = P(Ỹ ⋆

k = 0, D̃ = 1 | X̃ = x, Z̃ = z) + P(Ỹ ⋆
k = 0, D̃ = 0 | X̃ = x, Z̃ = z) = 1− lk(x).

We can see that the conditional distribution of Ỹ ⋆ given X̃ = x and Z̃ = z does not depends on z for any z ∈ [m], and
therefore we are able to claim that Z̃ is conditional independent with Ỹ ⋆

k given X̃ = x.

2. (Ỹk, D̃, Z̃) | X̃ = x has same conditional joint distribution as (Yk, D, Z) | X = x: Recall that the observed label is
defined as Ỹk = D̃Ỹ ⋆

k + (1− D̃) · NaN. By Equation (20), we have for any z ∈ Z ,

P(Ỹk = 1, D̃ = 1 | X̃ = x, Z̃ = z) = P(Ỹ ⋆
k = 1, D̃ = 1 | X̃ = x, Z̃ = z)

= E[DYk | X = x, Z = z]

= P(Yk = 1, D = 1 | X = x, Z = z)

P(Ỹk = 0, D̃ = 1 | X̃ = x, Z̃ = z) = P(Ỹ ⋆
k = 0, D̃ = 1 | X̃ = x, Z̃ = z)

= E[D | X = x, Z = z]− E[DYk | X = x, Z = z]

= P(Yk = 0, D = 1 | X = x, Z = z)

P(Ỹk = NaN, D̃ = 0 | X̃ = x, Z̃ = z) = P(D̃ = 0 | X̃ = x, Z̃ = z)

=
∑

k∈{0,1}

P(Ỹ ⋆
k = k, D̃ = 0 | X̃ = x, Z̃ = z)

= 1− E[D | X = x, Z = z] = P(D = 0 | X = x, Z = z)

= P(Yk = NA, D = 0 | X = x, Z = z).

(21)

As a result, we have shown that the observed variables (Ỹk, D̃, Z̃) | X̃ = x has exactly the same conditional joint
distribution with (Yk, D, Z) | X = x.

3. Finally, we show that when E[Ỹ ⋆
k | X̃ = x] = lk(x), there exists a joint distribution on (Ỹ ⋆

k , X̃, Ũ) such that
E[Ỹ ⋆

k | Ũ , X̃ = x] = a(x). Without the loss of generality, we assume

z0 := argmax
z∈[m]

{
E[DYk | X = x, Z = z] + ak(x) · E[(1−D) | X = x, Z = z]

}
and then we have

E[Ỹ ⋆
k | X̃ = x] = lk(x) = E[DYk | X = x, Z = z0] + ak(x) · E[(1−D) | X = x, Z = z0]. (22)

Meanwhile, by the statement of IV independence that Z̃ ⊥ Ỹ ⋆
k | X̃ = x, we have for Z = z0,

E[Ỹ ⋆
k | X̃ = x] = E[Ỹ ⋆

k | X̃ = x, Z̃ = z0]

= E[D̃Ỹ ⋆
k | X̃ = x, Z̃ = z0] + E[(1− D̃)Ỹ ⋆

k | X̃ = x, Z̃ = z0]

= E[D̃Ỹk | X̃ = x, Z̃ = z0] + E[E[(1− D̃)Ỹ ⋆
k | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0]

= E[D̃Ỹk | X̃ = x, Z̃ = z0] + E[E[Ỹ ⋆
k | Ũ , X̃ = x] · E[(1− D̃) | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0].

The first line and second line come from the IV independence and linearity of conditional expectation. The third line
follows by the consistency of observed outcome as well as the iterated law of expectation. The last line follows by
Assumption 3.1 (D̃ ⊥ Ỹ ⋆

k | X̃, Ũ ) and the IV independence.

From Equation (21), we have E[D̃Ỹk | X̃ = x, Z̃ = z0] = E[DYk | X = x, Z = z0), and therefore

E[Ỹ ⋆
k | X̃ = x] = E[DYk | X = x, Z = z0]

+ E[E[Ỹ ⋆
k | Ũ , X̃ = x] · E[(1− D̃) | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0].

(23)
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Now, suppose that there is not any conditional joint distribution of (Ỹ ⋆
k , D̃, Ũ) given X̃ = x such that E[Ỹ ⋆

k | Ũ , X̃ =

x] = ak(x) almost surely. Alternatively, we assume there is a conditional joint distribution for (Ỹ ⋆
k , D̃, Ũ) | X̃ = x

such that E[Ỹ ⋆
k | Ũ , X̃ = x] = ak(x) + ε(x, Ũ) almost surely. Substitute this condition into Equation (23), we have

E[Ỹ ⋆
k | X̃ = x] = E[DYk | X = x, Z = z0] + ak(x) · E

[
(1− D̃) | X̃ = x, Z̃ = z0

]
+ E

[
ε(X̃, Ũ) · E[(1− D̃) | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0

]
= lk(x) + E

[
ε(X̃, Ũ) · E[(1− D̃) | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0

]
.

(24)

In the first equality, we use the iterated law of expectation and fact that ak(x) is independent with unobserved variable
Ũ . The second equality follows from Equation (21) that P(D̃ = 0 | X̃ = x, Z̃ = z0) = P(D = 0 | X = x, Z = z) for
any fixed x ∈ X and z ∈ [m] along with the definition of lk(x).

As a consequence, if

E
[
ε(X̃, Ũ) · E[(1− D̃) | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0

]
̸= 0,

then Equation (24) contradicts with Equation (22), implying that there is indeed a conditional joint distribution for
(Ỹ ⋆, D̃, Ũ) | X̃ = x such that E[Ỹ ⋆ | Ũ , X̃ = x] = ak(x). On the other hand, if

E
[
ε(X̃, Ũ) · E[(1− D̃) | Ũ , X̃ = x, Z̃ = z0] | X̃ = x, Z̃ = z0

]
= 0, (25)

then the conditional joint distribution for (Ỹk, D̃, Ũ) | X̃ = x induced by the Equation (25) is exactly the “right”
distribution for the establishment of E[Ỹ ⋆

k | Ũ , X̃ = x] = ak(x).

Therefore, we have shown that when E[Ỹ ⋆
k | X̃ = x] = lk(x), there is always a conditional joint distribution for

(Ỹ ⋆
k , D̃, Ũ) | X̃ = x such that E[Ỹ ⋆

k | Ũ , X̃ = x] = ak(x) almost surely.

To wrap up, we can see that the establishment of statements 1 and 2 do not rely on the condition P(Ỹ ⋆ = 1 | X̃ = x) = lk(x)
in Equation (19). In fact, whenever we choose gk(x) ∈ [lk(x), uk(x)] for a fixed x ∈ X , we can simply choose
P(Ỹ ⋆

k = 1 | X̃ = x) = gk(x). As a result, the IV independence Z̃ ⊥ Ỹ ⋆
k | X̃ = x always holds, and the new observable

variables (Ỹk, D̃, Z̃) | X̃ = x still has the same conditional distribution as (Yk, D, Z) | X = x, which is fixed as a prior.

However, the value of P(Ỹ ⋆
k = 1 | X̃ = x) condition does affect the value of E[Ỹ ⋆

k | Ũ , X̃ = x]. If we let E[Ỹ ⋆
k | X̃ = x] =

uk(x), we can show in a similar way that E[Ỹ ⋆
k | Ũ , X̃ = x] = bk(x) almost surely. In fact, following the proof of statement

3, one can prove that, for any gk(x) ∈ [lk(x), uk(x)] such that E[Ỹ ⋆
k | X̃ = x] = gk(x), there is always a conditional joint

distribution for (Ỹk, D̃, Ũ) | X̃ = x such that E[Ỹ ⋆
k | Ũ , X̃ = x] = ck(x) almost surely and ck(x) ∈ [ak(x), bk(x)].

Therefore, we have shown that under Assumption 3.1, whenever we have E[Ỹ ⋆
k | X̃ = x] ∈ [lk(x), uk(x)], there is

always a conditional joint distribution for (Ỹ ⋆
k , D̃, Z̃, Ũ) | X̃ = x such that the three statements in Theorem B.1 hold. To

conclude, we claim that the IV partial bound [lk(x), uk(x)] introduced in Theorem 5.2 is sharp for E[Y ⋆
k | X = x] given

the establishment of Assumption 3.1, the IV independence in Assumption 3.2 and Assumption 5.1.

B.2. Balke and Pearl’s Bound

(Balke & Pearl, 1994) provides partial identification bounds for the average treatment effect of a binary treatment with a
binary instrumental variable. In this section, we adapt their bound to our setting with partially observed labels and a binary
IV (i.e., the assignment to one of two decision-makers). Under Assumption 3.2, we have following decomposition of joint
probability distribution of (Y,D,Z, U)

P(Y,D,Z, U) = P(Y | D,U) · P(D | Z,U) · P(Z) · P(U). (26)

Here we omit the observed covariates X for simplicity, or alternatively, all distributions can be considered as implicitly
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conditioning on X . Now we define three response functions which characterize the values of Z, D(0), D(1), and Y ⋆:

rZ =

{
0 if Z = 0

1 if Z = 1
, rD =


0 if D(0) = 0 and D(1) = 0

1 if D(0) = 0 and D(1) = 1

2 if D(0) = 1 and D(1) = 0

3 if D(0) = 1 and D(1) = 1

, rY =

{
0 if Y ⋆ = 0

1 if Y ⋆ = 1
.

Next, we specify the joint distribution of unobservable variables rD and rY as follows:

qkj = P(rD = k, rY = j) ∀ k ∈ {0, 1, 2, 3}, j ∈ {0, 1},

which satisfies the constraint
∑3

k=0(qk0 + qk1) = 1. Then the target mean parameter of the true outcome can be written as
a linear combinations of the q’s. Moreover, we note that the observable distribution P(Y,D | Z) is fully specified by the
following six variables

pna,0 = P(D = 0 | Z = 0) pna,1 = P(D = 0 | Z = 1)

p01,0 = P(Y = 0, D = 1 | Z = 0) p01,1 = P(Y = 0, D = 1 | Z = 1)

p11,0 = P(Y = 1, D = 1 | Z = 0) p11,1 = P(Y = 1, D = 1 | Z = 1),

with constraints p11,0 + p01,0 + pna,0 = 1 and p11,1 + p01,1 + pna,1 = 1. We also have the following relation between p’s
and q’s:

pna,0 = q00 + q01 + q10 + q11

p01,0 = q20 + q30

p11,0 = q21 + q31

pna,1 = q00 + q01 + q20 + q21

p01,1 = q10 + q30

p11,1 = q11 + q31.

Therefore, we have p = Pq where p = (pna,0, . . . , p11,1), q = (q00, . . . , q31), and

P =


1 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1

 .

Then the lower bound on P(Y ⋆ = 1) can be written as the optimal value of the following linear programming problem

min q01 + q11 + q21 + q31

subject to
3∑

k=0

1∑
j=0

qkj = 1

Pq = p

qkj ≥ 0 k ∈ {0, 1, 2, 3}, j ∈ {0, 1}.

. (27)

Similarly, the upper bound on P(Y ⋆ = 1) can be written as the optimal value of the following optimization problem:

max q01 + q11 + q21 + q31

subject to
3∑

k=0

1∑
j=0

qkj = 1

Pq = p

qkj ≥ 0 k ∈ {0, 1, 2, 3}, j ∈ {0, 1}.

(28)
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In fact, by simply comparing the variables in the objective function P(Y ⋆ = 1) = q01 + q11 + q21 + q31 and those in
constraints, one could find that

p11,0 = q21 + q31 ≤ P(Y ⋆ = 1)

p11,1 = q11 + q31 ≤ P(Y ⋆ = 1)

p11,0 + pna,0 = q00 + q10 + q01 + q11 + q21 + q31 ≥ P(Y ⋆ = 1)

p11,1 + pna,1 = q00 + q20 + q01 + q11 + q21 + q31 ≥ P(Y ⋆ = 1).

If we let

L = max{p11,0, p11,1} = max
z∈{0,1}

{P(Y = 1, D = 1 | Z = z)}

U = min{p11,0 + pna,0, p11,1 + pna,1} = min
z∈{0,1}

{P(Y = 1, D = 1 | Z = z) + P(D = 0 | Z = z)}.
(29)

We then have the following partial bounds of P(Y ⋆ = 1).

L ≤ P(Y ⋆ = 1) ≤ U.

According to (Balke & Pearl, 1994), the bounds above are tight for P(Y ⋆ = 1). We note that if we condition on X in these
bounds, then the corresponding bound on P(Y ⋆ = 1 | X) coincide with the bounds in Theorem 5.2 specialized to a binary
instrument.

B.3. Proofs in Section 5

Proof of Theorem 5.2. We first prove the construction of IV partial bound, and then show that the IV partial bound
[lk(x), uk(x)] is tighter than the natural bound [ak(x), bk(x)] for all k ∈ [K] when x is fixed.

1. Under Assumptions 3.1 and 3.2, Equation (14) gives that

P(Y ⋆ = k | X = x) = E[Y ⋆
k | X = x]

= E[DYk | X = x, Z = z] + E
[
E[Y ⋆

k | U,X = x] · E[(1−D) | U,X = x, Z = z] | X = x, Z = z
]
.

As we have assumed that E[Y ⋆
k | U,X = x] ∈ [ak(x), bk(x)] almost surely in Assumption 5.1, we then have

E[Y ⋆
k | X = x] ≥ E[DYk | X = x, Z = z] + ak(x) · E

[
E[(1−D) | U,X = x, Z = z] | X = x, Z = z

]
= E[DYk | X = x, Z = z] + ak(x) · E[(1−D) | X = x, Z = z]

and

E[Y ⋆
k | X = x] ≤ E[DYk | X = x, Z = z] + bk(x) · E

[
E[(1−D) | U,X = x, Z = z] | X = x, Z = z

]
= E[DYk | X = x, Z = z] + bk(x) · E[(1−D) | X = x, Z = z]

for every z ∈ [m]. Optimizing the lower and upper bounds of E[Y ⋆
k | X = x] over z ∈ Z yields the desired results:

max
z∈Z

{
E[DYk | X = x, Z = z] + ak(x) ·

(
1− E[D | X = x, Z = z]

)}
≤ E[Y ⋆

k | X = x] ≤

min
z∈Z

{
E[DYk | X = x, Z = z] + bk(x) ·

(
1− E[D | X = x, Z = z]

)}
.

2. By taking the conditional expectation on both sides of the inequality, a direct consequence of Assumption 5.1 induces a
natural bound for E[Y ⋆

k | X = x], that is,

ak(x) ≤ E[Y ⋆
k | X = x] ≤ bk(x).
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We now show that the IV partial bound [lk(x), uk(x)] is tighter than the natural bound [ak(x), bk(x)] for any x ∈ X .
Without loss of generality, let

z0 := argmax
z∈[m]

{
E[DYk | X = x, Z = z] + ak(x) · E[(1−D) | X = x, Z = z]

}
and then we have

lk(x) = E[DYk | X = x, Z = z0] + ak(x) · E[(1−D) | X = x, Z = z0]

= ak(x)− ak(x) · P(D = 1 | X = x, Z = z0)︸ ︷︷ ︸
(··· )

+E[DY ⋆
k | X = x, Z = z0]

= (· · · ) + E
[
E[DY ⋆

k | U,X = x, Z = z0] | X = x, Z = z0

]
= (· · · ) + E

[
E[D | U,X = x, Z = z0] · E[Y ⋆

k | U,X = x, Z = z0] | X = x, Z = z0

]
= (· · · ) + E

[
P(D = 1 | U,X = x, Z = z0) · E[Y ⋆

k | U,X = x] | X = x, Z = z0

]
= a(x) + E

[
P(D = 1 | U,X = x, Z = z0) ·

(
E[Y ⋆

k | U,X = x]− ak(x)
)
| X = x, Z = z0

]
.

(30)

The first line comes from the definition, while the second line holds by the consistency between the observed label
and the true label (DYk = DY ⋆

k ) and the linearity of conditional expectation. The third line holds by iterated law of
expectation, and the fourth line holds by Assumption 3.1 (D ⊥ Y ⋆

k | X,U ). The fifth line follows by Assumption 3.2
(Z ⊥ Y ⋆

k | X) and the fact that E[D | U,X = x, Z = z] = P(D = 1 | U,X = x, Z = z). The last line again follows
by the linearity and the iterated law of expectation.

Recall that Assumption 5.1 states that E[Y ⋆
k | U,X = x] ≥ ak(x) almost surely, along with Equation (30) and the fact

that P(D = 1 | U,X = x, Z = z0) ≥ 0, we have

lk(x) ≥ ak(x) ∀ x ∈ X .

Similarly, we can show that uk(x) ≤ bk(x) for every fixed x ∈ X . We therefore complete the proof.

Proof of Theorem 5.3. To simplify the notation, for any classifier t : X 7→ [K] and vector function η : X 7→ [0, 1]K , define
the function

A(t, η;x) =

K∑
k=1

ηk(x) ·
(
I{argmax

k∈[K]

ηk(x) = k} − I{t(x) = k}
)
≥ 0.

The worst-case risk function can then be written as

R(t) = E
[
max
η∈S

A(t, η;X)
]

with S = {η ∈ [0, 1]K : ∥η∥1 = 1, ηk ∈ [lk, uk], k = 1, . . . ,K}. The following proof will rely on computing the
maximization of A(t, η;x) over all possible values of t(x) ∈ [K] for any fixed x ∈ X .

• Step 1. We start with the case when t(x) = k0 for some k0 ∈ [K], we have

max
η∈S

{
A(t, η;x)

}
· I{t(x) = k0} = max

η∈S

{
A(t, η;x) · I{t(x) = k0}

}
= max

η∈S

{( ∑
k∈[K]

ηk(x) · I{argmax
p∈[K]

{ηp(x)} = k} −
∑

k∈[K]

ηk(x) · I{t(x) = k}
)
· I{t(x) = k0}

}
= max

η∈S

{( ∑
k∈[K]

ηk(x) · I{argmax
p∈[K]

{ηp(x)} = k} − ηk0
(X)

)
· I{t(x) = k0}

}
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Given any vector η(x) ∈ S, we denote p0 := argmaxp∈[K] ηp(x) as the label with maximal conditional probability.
We have

max
η∈S

{
A(t, η;x)

}
· I{t(x) = k0} = max

η∈S

{(
ηp0

(x)− ηk0
(x)

)}
· I{t(x) = k0}

= max
p0 ̸=k0,η∈S

{(
ηp0

(x)− ηk0
(x)

)+}
· I{t(x) = k0} ≥ 0,

(31)

where (z)+ := max(z, 0) for any real-valued z. In the second equality of Equation (31), we exclude the case when
p0 = k0 from the maximization, as this situation only occurs when the lower bound of ηk0(x) exceeds the upper bound
of ηp(x) for all p ̸= k0. Consequently, we have p0 = argmaxp∈[K] ηp(x) = k0, which implies that

max
p0=k0,η∈S

{A(t, η;x)} · I{t(x) = k0} = max
p0=k0,η∈S

{(ηk0
(x)− ηk0

(x))} · I{t(x) = k0} = 0.

Therefore, we expect the maximization of A(t, η;x) · I{t(x) = k0} over η ∈ S to be non-negative. We exclude the
case p0 = k0 from the maximization to facilitate further analysis.

• Step 2. As shown in Equation (31), for any fixed x ∈ X and p0 ̸= k0, the term (ηp0
(x)− ηk0

(x))+ is a non-decreasing
(↑) function of ηp0

(x) and a non-increasing (↓) function of ηk0
(x). Therefore, one may expect that the maximization of

(ηp0
(x)−ηk0

(x))+ over η(x) ∈ S(x) is realized when ηp0
(x) and ηk0

(x) achieving their upper-bound and lower-bound
respectively. However, due to the constraint ∥η(x)∥1 = 1 for any x ∈ X , the orginal upper-bound up0(x) for ηp0(x)
may not be reached, and similar concern arises when treating ηk0(x). To fix these issues, we define a “realizable”
upper-bound for ηp0

(x) as

ũp0(x) :=
[
1−

∑
j ̸=p0

lj(x)
]
∧ up0(x), (32)

which is the maximal value that ηp0(x) can realize under the constraint
∑

k∈[K] ηk(x) = 1. Meanwhile, we define a
“realizable” lower-bound for ηk0

(x) as

l̃k0
(x) :=

[
1− ũp0

(x)−
∑

j ̸=p0,k0

uj(x)
]
∨ lk0

(x)

=
{[

1−
(
1−

∑
j ̸=p0

lj(x)
)
−

∑
j ̸=p0,k0

uj(x)
]
∨
[
1− up0(x)−

∑
j ̸=p0,k0

uj(x)
]}

∨ lk0(x)

=
{[

lk0
(x) +

∑
j ̸=p0,k0

(
lj(x)− uj(x)

)]
∨
[
1−

∑
j ̸=k0

uj(x)
]}

∨ lk0
(x)

=
[
1−

∑
j ̸=k0

uj(x)
]
∨ lk0

(x).

(33)

The last equality is established as lj(x)−uj(x) ≤ 0 for any j ∈ [K], leading to the fact that lk0
(x)+

∑
j ̸=p0,k0

[lj(x)−
uj(x)] ≤ lk0(x). In Equation (33), we replace the upper-bound up0(x) with ũp0(x) in the definition of l̃k0(x), because
in Equation (31), the lowest possible values of ηk0

(x) depends on the “realizable” maximal value of ηp0
(x). However,

notice that l̃k0
(x) does not depend on the label p0 involved in the definition, indicating that the “realizable” lower-bound

is an intrinsic property for the conditional probability for each k0 ∈ [K]. Similar statement can be applied for the
“realizable” upper-bound ũk0(x) for each k0 ∈ [K].

• Step 3. Back to the maximization of A(t, η;x) · I{t(x) = k0} in Equation (31), we have

max
η∈S

{
A(t, η;x)

}
· I{t(x) = k0} = max

p0 ̸=k0η∈S

(
ηp0(x)− ηk0(x)

)+

· I{t(x) = k0}

= max
p0 ̸=k0,p0∈[K]

(
ũp0(x)− l̃k0

(x)
)+

· I{t(x) = k0}.
(34)

By defining

wk0(x) = max
p0 ̸=k0,p0∈[K]

(
ũp0(x)− l̃k0(x)

)+
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as the weight function corresponding to the event {t(x) = k0}, the Equation (34) can be written as

max
η(x)∈S(x)

{
A(t, η;x)

}
· I{t(x) = k0} = wk0

(x) · I{t(x) = k0}.

The worst-case excess risk R(t) can then be written as

R(t) = E

max
η∈S

∑
k0∈[K]

A(t, η;X) · I{t(X) = k0}


= E

 ∑
k0∈[K]

max
η∈S

A(t, η;X) · I{t(X) = k0}


= E

 ∑
k0∈[K]

wk0
(X) · I{t(X) = k0}

 .

The second inequality holds because {t(x) = k0}, k0 ∈ [K] defines a sequence of disjoint events for every fixed
x ∈ X . By replacing the subscript k0 with k, we complete the proof.

• Step 4. We are now left to check whether there exists a vector η ∈ S such that the second equality in Equation (34)
is guaranteed, that is, there is indeed a feasible solution of η(x) with ηp0

(x) = ũp0
(x), ηk0

(x) = l̃k0
(x) such that

∥η(x)∥1 = 1 and ηj(x) ∈ [lj(x), uj(x)] for every j ∈ [K]. Before we go deep into the details, the non-emptyness of
set S reminds us that, for every x ∈ X , ∑

j∈[K]

lj(x) ≤ 1 ≤
∑
j∈[K]

uj(x). (35)

In the following, we check the feasibility of η ∈ S for a fixed x ∈ X in three aspects.

1. For ηp0(x) = ũp0(x), check ηp0(x) ∈ [lp0(x), up0(x)].
For the upper-bound, by the definition of ũp0

(x) in Equation (32), ηp0
(x) ≤ up(x) is guaranteed.

For the lower-bound, on one hand, if ũp0(x) = up0(x), then up0(x) ≥ lp0(x) naturally holds. On the other
hand, suppose ũp0(x) = [1−

∑
j ̸=p0

lj(x)]. By Equation (35), we have 1 ≥
∑

k∈[K] lk(x), which suggests that
ũp0

(x) ≥ lp0
(x). Hence, ũp0

(x) ≥ lp0
(x) always holds.

2. For ηk0
(x) = l̃k0

(x), check ηk0
(x) ∈ [lk0

(x), uk0
(x)].

For the lower-bound, by the definition of l̃k0
(x) in Equation (33), ηk0

(x) ≥ lk0
(x) always holds.

For the upper-bound, by Equation (33), we have

l̃k0
(x) =

[
1−

∑
j ̸=k0

uj(x)
]
∨ lk0

(x).

Equation (35) ensures that 1 −
∑

j ̸=k0
uj(x) ≤ uk0

(x), and on the other hand lk0
(x) ≤ uk0

(x) simply holds.
Therefore, we establish the upper-bound ηk0

(x) ≤ uk0
(x).

3. Check ∥η(x)∥1 = 1. We start with computing the summation

ηp0(x) + ηk0(x) = ũp0(x) + l̃k0(x).

If the summation stays with in the capacity region
[
1 −

∑
j ̸=p0,k0

uj(x), 1 −
∑

j ̸=p0,k0
lj(x)

]
, we can always

find a series of feasible solutions ηj(x) ∈ [lj(x), uj(x)] for j ̸= p0, k0 such that
∑

j∈[K] ηj(x) = 1 is satisfied.
The discussions are summarized below.
(a) Suppose up0(x) ≤ 1−

∑
j ̸=p0

lj(x), by the definition of ũp0(x) in Equation (32), we have ũp0(x) = up0(x)

and l̃k0(x) = [1−
∑

j ̸=k0
uj(x)] ∨ lk0(x). We then have

ũp0
(x) + l̃k0

(x) =


1−

∑
j ̸=k0,p0

uj(x), if lk0
(x) ≤ 1−

∑
j ̸=k0

uj(x) (Case 1)

up0
(x) + lk0

(x), if lk0
(x) ≥ 1−

∑
j ̸=k0

uj(x) (Case 2).
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For the Case 1, we can simply let ηj(x) = uj(x) for j ̸= p0, k0, and this arrangement fulfills the requirement∑
j∈[K] ηj(x) = 1.

For the Case 2, we have

1−
∑

j ̸=k0,p0

uj(x) ≤ up0
(x) + lk0

(x) ≤ 1−
∑

j ̸=k0,p0

lj(x).

As a result, there exists a sequence of {ηj(x)}j ̸=p0,k0 such that ηj(x) ∈ [lj(x), uj(x)] for all j ̸= p0, k0 that
satisifes up0

(x) + lk0
(x) +

∑
j ̸=p0,k0

ηj(x) = 1.
(b) Suppose up0

(x) ≥ 1−
∑

j ̸=p0
lj(x), we then have ũp0

(x) = 1−
∑

j ̸=p0
lj(x) and

l̃k0
(x) =

[
1− ũp0

(x)−
∑

j ̸=k0,p0

uj(x)
]
∨ lk0

(x)

=
[
lk0

(x) +
∑

j ̸=k0,p0

[lj(x)− uj(x)]
]
∨ lk0

(x)

= lk0
(x),

where the last equality holds because lj(x) ≤ uj(x) for all j ∈ [K]. Therefore, we have

ũp0
(x) + l̃k0

(x) = 1−
∑

j ̸=k0,p0

lj(x).

As a result, we can simply let ηj(x) = lj(x) for j ̸= p0, k0, and this arrangement agains fullfills the
requirement

∑
j∈[K] ηj(x) = 1.

The above analysis show that validity of the second equality in Equation (34).

Proof of Theorem 5.3 (Binary Classification Setting). Recall from the first part of Theorem 5.3 that

R(t) = E

[
K∑

k=1

wk(X) · I{t(X) = k}

]
, where

wk(X) = max
p ̸=k,p∈[K]

{(
ũp(x)− l̃k(x)

)+}
.

Consider the binary case when Y ⋆ ∈ {−1, 1} and t : X 7→ {−1, 1}. Recall that in Theorem 5.2, we derive the partial bound
for η⋆1(x) = P(Y ⋆ = 1 | X = x) as [l1(x), u1(x)]. By the constraint η⋆1(x) + η⋆0(x) = 1 for each x ∈ X , we define the
partial bound [l−1(x), u−1(x)] for η⋆−1(x) as l−1(x) = 1− u1(x) and u−1(x) = 1− l1(x).

We can then compute the “realizable” upper- and lower-bounds for both η⋆1(x) and η⋆−1(x) as below:

ũ1(x) = (1− l−1(x)) ∧ u1(x) = u1(x) and ũ−1(x) = (1− l1(x)) ∧ u−1(x) = 1− l1(x),

l̃1(x) = (1− u−1(x)) ∨ l1(x) = l1(x) and l̃−1(x) = (1− u1(x)) ∨ l1(x) = 1− u1(x).

The weight functions wk(x) for k = ±1 are therefore

w1(x) =
(
ũ0(x)− l̃1(x)

)+
=

(
1− 2l1(x)

)+
=

(
1− 2l1(x)

)
· I{l1(x) ≤ 1/2}

w0(x) =
(
ũ1(x)− l̃0(x)

)+
=

(
2u1(x)− 1

)+
=

(
2u1(x)− 1

)
· I{u1(x) ≥ 1/2}.

Hence, in binary outcome case, the risk function R(t) takes the form

R(t) = E
[
|1− 2l1(X)| · Il1(X)≤1/2 · I{t(X) = 1}+ |2u1(X)− 1| · Iu1(X)≥1/2 · I{t(X) = 0}

]
= E

[
|1− 2l1(X)| · Il1(X)≤1/2 ·

(
1− I{t(X) = 0}

)
+ |2u1(X)− 1| · Iu1(X)≥1/2 · I{t(X) = 0}

]
= E

[∣∣1− 2l1(X)
∣∣ · Il1(X)≤1/2

]
+ E

[
I{t(X) ̸= 1} ·

(∣∣2u1(X)− 1
∣∣ · Iu1(X)≥1/2 −

∣∣1− 2l1(X)
∣∣ · Il1(X)≤1/2

)]
= E

[∣∣1− 2l1(X)
∣∣ · Il1(X)≤1/2

]
+ E

[
1− t(X)

2
·
(∣∣2u1(X)− 1

∣∣ · Iu1(X)≥1/2 −
∣∣1− 2l1(X)

∣∣ · Il1(X)≤1/2

)]
.

24



Learning with Selectively Labeled Data from Multiple Decision-makers

For every fixed x ∈ X , define a weight function

w(x) :=
∣∣u1(x)− 1/2

∣∣ · I{u1(x) ≥ 1/2} −
∣∣l1(x)− 1/2

∣∣ · I{l1(x) < 1/2}
= max

(
u1(X)− 1/2, 0

)
+min

(
l1(X)− 1/2, 0

)
,

we then have
R(t) = E

[∣∣1− 2l1(X)
∣∣ · I{l1(X) < 1/2}

]
︸ ︷︷ ︸

(∗∗)

+E
[
w(X) ·

(
1− t(X)

)]
= (∗∗) + E

[
w(X)

]
+ E

[
− w(X) · t(X)

]
= (∗∗) + E

[
w(X)

]
+ E

[
|w(X)| · sgn[−w(X)] · t(X)

]
= (∗∗) + E

[
w(X)

]
+ E

[
|w(X)| ·

(
2I
{
sgn[w(X)] ̸= t(X)

}
− 1

)]
= (∗∗) + E

[
w(X)− |w(X)|

]
+ 2E

[
|w(X)| · I(sgn[w(X)] ̸= sgn[h(X)])

]
.

(36)

For any fixed x, notice that w(x)− |w(x)| = 0 when w(x) ≥ 0 and w(x)− |w(x)| = 2w(x) when w(x) < 0, we then have

E
[
w(X)− |w(X)|

]
= E

[
2w(X) · I{w(X) < 0}

]
= E

[(∣∣2u1(x)− 1
∣∣ · I{u1(X) ≥ 1} − |1− 2l1(X)| · I{l1(X) < 1/2}

)
· I{w(X) < 0}

]
.

Consequently, by observing the establishment of the event

w(X) < 0 ⇔ |2u1(X)− 1| · I{u1(X) ≥ 1/2} ≤ |l1(X)− 1/2| · I{l1(X) < 1/2},

the first two term in Equation (36) can be further organized as

E
[∣∣1− 2l1(X)

∣∣ · I{l1(X) < 1/2}
]
+ E

[
w(X)− |w(X)|

]
=


E
[
|2u1(X)− 1| · I{u1(X) ≥ 1/2}

]
, if w(X) < 0

E
[
|1− 2l1(X)| · I{l1(X) < 1/2}

]
, if w(X) ≥ 0

= min
(
E
[∣∣1− 2l1(X)

∣∣ · I{l1(X) < 1/2}
]
,E

[∣∣2u1(X)− 1
∣∣ · I{u(X) ≥ 1/2}

])
.

(37)

Finally, we define
wpartial(x) = 2w(x) = max

(
2u1(X)− 1, 0

)
+min

(
2l1(X)− 1, 0

)
for every x ∈ X . Combining Equations (36) and (37) together, we have

R(h) = E
[
|wpartial(X)| · I{sgn[wpartial(X)] ̸= t(X)}

]
+min

(
E
[∣∣1− 2l1(X)

∣∣ · I{l1(X) < 1/2}
]
,E

[∣∣2u1(X)− 1
∣∣ · I{u1(X) ≥ 1/2}

])

B.4. Comparisons of Point and Partial Identification

Point identification hinges on decision-makers’ homogeneity in their use of unobservables, as defined by the generalized
NUCEM assumption in Theorem 4.3. Concretely, the conditional irrelevant of Cov(D,Z | X,U) and E[Y ⋆

k | X,U ]
given X reflects the uniformity of decision-makers’ reliance on unobserved information. Conversely, partial identification
benefits from the heterogeneity of decision-makers’ use of observables X , not requiring the homogeneity of selection on
unobservables U . This approach uses IV partial bounds that consider variations in the decision rules P(D = 1 | X,Z) and
the labeled probabilities P(Y = k,D = 1 | X,Z) across decision-makers Z. Such heterogeneity helps construct tighter
bounds for η⋆k(x) Moreover, we having the following claims.
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Theorem B.2. The partial bounds lk(x) and uk(x) in Theorem 5.2 are achieved by the most lenient and most stringent
decision-makers, respectively.

Proof of Theorem B.2. We claim that for any fixed X and U , the lower-bound is achieved by the most lenient decision-maker,
and the upper-bound is achieved by the most stringent decision-maker. To see this, notice that the lower-bound for η⋆k with
respect to decision-maker Z = j in Theorem 5.2 satisfies

lk(x, z) := E
[
DYk + ak(X) · (1−D) | X = x, Z = z

]
= E

[
DY ⋆

k + ak(X) · (1−D) | X = x, Z = z
]

= E
[
E
[
DY ⋆

k + ak(X) · (1−D) | U,X,Z = z
]
| X = x, Z = z

]
= E

[
P(D = 1 | U,X,Z) · E

[
Y ⋆
k | U,X,Z

]
+ ak(X) ·

(
1− P(D = 1 | U,X,Z)

)
| X = x, Z = z

]
= ak(x) + E

[
P(D = 1 | U,X,Z) ·

(
E[Y ⋆

k | X,U ]− ak(X)
)
| X = x, Z = z

]
.

The second equality holds consistency, and the third equality follows by iterated law of expectation. The fourth equality holds
by Assumption 3.1 and the final equality is established by the IV independence in Assumption 3.2 (Z ⊥ (U, Y ⋆) | X). Note
that the Assumption 5.1 states ak(X) ≤ E[Y ⋆

k | X,U ] ≤ bk(X) almost surely, the lower bound lk(x, z) is an increasing
function of decision rule P(D = 1 | U,X,Z = z). Therefore, for any fixed X and U , the maximization over lower bounds
maxz∈[m] lk(x, z) is achieved by the most lenient decision-maker with the highest decision rule P(D = 1 | X,U,Z = z),
that is,

lk(x) = max
z∈Z

lk(x, z)

= max
z∈Z

ak(x) + E
[
P(D = 1 | U,X,Z = z) ·

(
E[Y ⋆

k | X,U ]− ak(X)
)
| X = x

]
= ak(x) + E

[{
max
z∈Z

P(D = 1 | U,X,Z = z)
}
·
(
E[Y ⋆

k | X,U ]− ak(X)
)
| X = x

]
Similarly, for the upper-bound, the minimization minz∈[m] uk(x, z) is achieved by the most stringent decision-maker when
X and U are fixed.
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C. Supplements for Unified Cost-sensitive Learning
Proof of Theorem 6.1. To facilitate the analysis, for fixed weight function w : X → R and score function h : X → RK , we
define the class labels

k0 := argmin
k∈[K]

wk(x) and kh := argmax
k∈[K]

hk(x).

Namely, when x ∈ X is fixed, k0 denotes the class label with the minimal weight wk0(x), while kh corresponds to the class
label with the highest score hkh

(x). According to the definition of cost-sensitive classification risk R(h,w) in Equation (11),
we define the cost-sensitive classification loss as

l(h,w;x) =

K∑
k=1

wk(x)I{argmax
p∈[K]

hp(x) = k}.

Obviously, the excess classification risk can be written as

R(h,w)− inf
h

R(h,w) = E
[
l(h,w;X)− inf

h
l(h,w;X)

]
= E

[
wkh

(X)− wk0
(X)

]
.

Correspondingly, we define the cost-sensitive surrogate loss for Rexp(h,w) in Equation (12) as

lexp(h,w;x) =

K∑
k=1

wk(x)
exp(hk(x))∑K
p=1 exp(hp(x))

.

As a result, the excess surrogate risk can be written as

Rexp(h,w)− inf
h

Rexp(h,w) = E
[
lexp(h,w;X)− inf

h
lexp(h,w;X)

]
.

Therefore, we are left to analyze the excess surrogate loss lexp(h,w;x)− infh lexp(h,w;x) for every fixed x ∈ X .

Following the idea of (Mao et al., 2023), for every fixed scored function h : X → Rk, we define a new function hµ induced
by some real-valued parameter µ as follow: for fixed x ∈ X ,

hµ
k(x) = hk(x), k ̸= k0, kh

hµ
k0
(x) = log

(
exp(hkh

(x))− µ
)
, k = k0

hµ
kh
(x) = log

(
exp(hk0(x)) + µ

)
, k = kh.

Since the domain of log function is (0,+∞), we should restrict the value of µ to ensure that exp(hkh
(x)) + µ > 0 and

exp(hk0(x))− µ > 0. Therefore, for fixed x ∈ X , we define the feasible region of µ as

M(µ) :=
{
µ ∈ R : − exp(hkh

(x)) < µ < exp(hk0
(x))

}
.

A direct consequence of above definition is that
∑K

k=1 exp(hk(x)) =
∑K

k=1 exp(h
µ
k(x)) for every fixed x. Consequently,

the surrogate loss l(hµ, w;x) takes the form

lexp(h
µ, w;x) =

∑
k ̸=k0,kh

wk(x)
exp(hk(x))∑K
p=1 exp(hp(x))

+ wk0
(x)

exp(hkh
(x))− µ∑K

p=1 exp(hp(x))
+ wkh

(x)
exp(hk0

(x)) + µ∑K
p=1 exp(hp(x))

.

Now, the excess surrogate loss lexp(h,w;x)− infh lexp(h,w;x) can be lower-bounded by

lexp(h,w;x)− inf
h

lexp(h,w;x)

≥ lexp(h,w;x)− inf
µ∈M(µ)

lexp(h
µ, w;x)

= sup
µ∈M(µ)

{
wkh

(x)
exp(hkh

(x))− exp(hk0(x))− µ∑K
p=1 exp(hp(x))

+ wk0
(x)

exp(hk0(x))− exp(hkh
(x)) + µ∑K

p=1 exp(hp(x))

}

= sup
µ∈M(µ)

{(
wkh

(x)− wk0(x)
)exp(hkh

(x))− exp(hk0(x))− µ∑K
p=1 exp(hp(x))

}
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The first inequality holds by the fact that the infimum of µ over set M(µ) is always greater then the infimum of h over all
measurable functions. Notice that k0 is the class label with the minimal weight, we have wkh

(x)− wk0(x) ≥ 0 for any x.
Consequently, the supremum of the above expression is achieved when µ = − exp(hk0(x)), and the excess surrogate loss is
therefore lower-bounded by

lexp(h,w;x)− inf
h

lexp(h,w;x) ≥
(
wkh

(x)− wk0
(x)

) exp(hkh
(x))∑K

p=1 exp(hp(x))

≥ 1

K

[
wkh

(x)− wk0(x)
]

=
1

K

[
l(h,w;x)− inf

h
l(h,w;x)

]
.

The last inequality follows by the definition that kh is the class label with the highest score hkh
, and therefore we must have

exp(hkh
(x))∑K

p=1 exp(hp(x))
≥ 1

K for any fixed x ∈ X . By taking the expectation over X on the both sides, we completes the proof.

Proof of Proposition 6.2. For the weighted classification risk R(h,w), if we choose h̃(x) = w(x) for x ∈ X , we simply
have R(h̃, w) = 0, and this suggests the Bayes optimal risk equals to zero, that is, infh R(h,w) = 0. Therefore, the excess
weighted classification risk can be written as

R(h,w)− inf
h

R(h,w) = R(h,w)− 0 = E
[
|w(X)| · I{sgn[h(X)] ̸= sgn[w(X)]}

]
.

Here we use the fact that h∗(x) has the same sign as weight function w(x) for any fixed x ∈ X .

For the ϕ-risk introduce in Equation (13), we consider the following surrogate loss functions:

Hinge loss : ϕ(α) = max{1− α, 0}
logistic loss : ϕ(α) = log(1 + e−α)

exponential loss : ϕ(α) = e−α

.

Notice that for any ϕ ∈ {Hinge, logistic, exponential}, the surrogate loss ϕ(α) is lower-bounded (in fact, infα ϕ(α) = 0),
then we have infα E[ϕ(α(X))] = E[infα ϕ(α(X))] = 0. Therefore, the excess ϕ-risk takes the form

Rϕ(h,w)− inf
h

R(h,w) = Rϕ(h,w)− 0 = E
[
|w(X)| · ϕ

(
h(X) · sgn[w(X)]

)]
.

In the sequel, we only need to check if the surrogate loss ϕ(h(x) · w(x)) provides an upper-bound for the 0 − 1 loss
I{sgn[h(x)] ̸= sgn[w(x)]} for each ϕ in the set {Hinge, logistic, exponential}. We fix the weight function w and the
observed features x ∈ X in the following discussion.

• Consider the case when sgn[h(x)] ̸= sgn[w(x)], we then have I{sgnh(x) ̸= sgn[w(x)]} = 1. For the ϕ-risk, we have

ϕ
(
h(x) · sgn[w(x)]

)
= ϕ(−|h(x)|)

for any ϕ ∈ {Hinge, logistic, exponential}. Concretely, we have

ϕHinge(−|h(x)|) = (1 + |h(x)|)+ ≥ 1,

ϕlogistic(−|h(x)|) = log2(1 + e|h(x)|) ≥ 1,

ϕexponential(−|h(x)|) = e|h(x)| ≥ 1.

Therefore, we have
ϕ(h(x) · sgn[w(x)]) ≥ I{sgn[h(x)] ̸= sgn[w(x)]}

for any ϕ ∈ {Hinge, logistic, exponential}.
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• Consider the case when sgn[h(x)] = sgn[w(x)], we then have I{sgnh(x) ̸= sgn[w(x)]} = 0. For the ϕ-risk, we have

ϕ
(
h(x) · sgn[w(x)]

)
= ϕ(|h(x)|)

for any ϕ ∈ {Hinge, logistic, exponential}. Concretely, we have

ϕHinge(|h(x)|) = (1− |h(x)|)+ ≥ 0,

ϕlogistic(|h(x)|) = log2(1 + e−|h(x)|) ≥ 0,

ϕexponential(|h(x)|) = e−|h(x)| ≥ 0.

Hence, we have
ϕ(h(x) · sgn[w(x)]) ≥ I{sgn[h(x)] ̸= sgn[w(x)]}

for any ϕ ∈ {Hinge, logistic, exponential}.

Finally, by multiplying the common weight |w(X)| and taking the expectation over X , we conclude that when
the weight function w is fixed, the excess ϕ-risk is always an upper-bound for the excess weighted risk for any
ϕ ∈ {Hinge, logistic, exponential}:

Rϕ(h,w)− inf
h

Rϕ(h,w) ≥ R(h,w)− inf
h

R(h,w).
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D. Generalization Error Bound
In this section, we theoretically analyze the performance of the UCL algorithm in Algorithm 1 by deriving a generalization
error bound for the output score function ĥ. Specifically, Theorem 6.1 establishes a calibration bound for the cost-sensitive
excess risk R(ĥ)−infh∈H R(h) induced by the output score function. To leverage this result, we first derive a generalization
error bound for the excess surrogate risk Rexp(ĥ)− infh∈H Rexp(h).

To facilitate the analysis, we define the surrogate risk induced by the estimated weight functions w[l] from batch l ∈ [K]:

Rexp(h, ŵ
[l]) := E

[ K∑
k=1

ŵ
[l]
k (X) · exp(hk(X))∑K

p=1 exp(hp(X))

]
.

The below lemma provides a decomposition of the upper-bound of the excess surrogate risk into two components: the
estimation error of the nuisance functions {wk}Kk=1 and the empirical process error.

Lemma D.1. The excess surrogate risk E(H) := Rexp(ĥ)− infh∈H Rexp(h) satisfies

E(H) ≤ 2

L

L∑
l=1

sup
h∈H

∣∣∣Rexp(h, ŵ
[l])−Rexp(h,w)

∣∣∣︸ ︷︷ ︸
Nuisance Estimation Error

+
2

L

L∑
l=1

sup
h∈H

∣∣∣R̂exp(h, ŵ
[l])−Rexp(h, ŵ

[l])
∣∣∣︸ ︷︷ ︸

Empirical Process Error

.

The first term in Lemma D.1 captures the error arising from the estimation of the unknown weight function w, which is
evaluated on the true excess surrogate risk with the supremum over all h ∈ H. The second term reflects the error incurred
by the estimated score function ĥ, evaluated as the supremum of an empirical process. To bound these two terms, we need
to further specify the estimation errors of the nuisance estimators, as we will do in Assumptions D.2 and D.3.

Assumption D.2 (Nuisances Estimation). We assume that the true weight functions {wk}[K]
k=1 and their estimates

{ŵ[1]
k , . . . , ŵ

[L]
k }Kk=1 satisfy the following conditions:

1. they are uniformly bounded by some constant Cw over X , namely, ∥wk∥∞ < Cw, ∥ŵ[l]
k ∥∞ < Cw for all k ∈ [K] and

l ∈ [L];

2. there exists γ > 0 such that
E
[
∥ŵ[l](X)−w(X)∥1

]
= O(N−γ), ∀ l ∈ [L].

Assumption D.2 requires that the nuisance functions {wk}Kk=1 and their estimates {ŵ[l]
k }Kk=1 are uniformly bounded over

the feature space X and that the estimation error of the nuisance functions decays at a rate of O(N−γ) for some γ > 0.

Assumption D.3 (Function Class Complexity). Let Ch > 0 and τ > 0 be some constants. For any score function candidate
h ∈ H, we assume ∥hk∥∞ < Ch for any k ∈ [K]. Moreover, assume that the ϵ-bracketing number of H with respect to the
metric ρ, denoted as N (ϵ,H, ρ), satisfies logN (ϵ,H, ρ) ≤ ϵ−τ for any ϵ ∈ (0, 1) and some τ < 2.

In Assumption D.3, we further restrict the complexity of the hypothesis class H by imposing the boundedness on each
component of score function h, and limiting the growth rate of its covering number. The boundedness condition is reasonable,
as if any component of score function, say hk, goes to infinity, then we cannot get reasonable classifier by the argmin
operations. At the same time, limiting the growth rate of covering number is a common way to quantify the complexity of a
function class in statistical learning theory (Massart & Nédélec, 2006; Shalev-Shwartz & Ben-David, 2014; Wainwright,
2019).

Nuisance Estimation Error To provide a finite-sample error bound for the estimation error, we start with bounding the
nuisance estimation error introduced in Lemma D.1.

Proposition D.4 (Nuisance Estimation Error). Suppose Assumption D.2 and Assumption D.3 hold. We have, for any l ∈ [L],

sup
h∈H

∣∣∣Rexp(h, ŵ
[l])−Rexp(h,w)

∣∣∣ = O(N−γ).
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Empirical Process Error We now consider bounding the supremum of empirical process introduced in Lemma D.1. We
focus on analyzing the empirical process define on the l-th batch, that is,

R̂exp(h, ŵ
[l])−Rexp(h, ŵ

[l]) =
1

|Il|
∑
i∈Il

K∑
k=1

ŵ
[l]
k (Xi)

exp(hk(Xi))∑K
p=1 exp(hp(Xi))

− E

[
K∑

k=1

ŵ
[l]
k (X)

exp(hk(X))∑K
p=1 exp(hp(X))

]
.

As the cross-fitting batch size L involved in Algorithm 1 is usually smaller than the sample size N , here we simply
assume |Im| ≈ N . Note that, the estimated weight function in the l-th batch ŵ[l] is a random variable which relies on
observed variables (Y,D,X,Z). To facilitate our analysis, we denote a new variable V = (Y,D,X,Z) over the domain
V = Y × D × X × Z with some joint distribution PV . We will omit the superscript [l] for simplicity in the sequel. For
every given estimates {ŵ}Kk=1, we define a excess surrogate risk class FH as

FH :=

{
fh : v 7→

K∑
k=1

ŵk(x)
exp(hk(x))∑K
p=1 exp(hp(x))

∣∣∣ h ∈ H

}
(38)

To simplify our analysis, we use shorthand notation Pf = E[f(V )] and PNf = 1
N

∑N
i=1 f(Vi), where PN is the empirical

measured associated with the i.i.d. sample of size N . Then the supermom of empirical process can be written as

∥PNf − Pf∥FH := sup
f∈FH

PNf − Pf = sup
h∈H

R̂Φ(h, ŵ)−RΦ(h, ŵ). (39)

Therefore, our goal is now provide a uniform bound for the empirical process PNf −Pf over function class FH. To realize
this target, we shall notice that FH is a uniformly bounded class, that is, for any f ∈ FH, we have ∥f∥∞ := supv∈V f(v)
being bounded. To see this, notice that in Assumption D.2, we assume ∥ŵk∥∞ = supx∈X ŵk(x) < Cw for any k ∈ [K].
Consequently, we have

|f(v)| =

∣∣∣∣∣
K∑

k=1

ŵk(x)
exp(hk(x))∑K
p=1 exp(hp(x))

∣∣∣∣∣ ≤
K∑

k=1

∣∣∣∣∣ŵk(x)
exp(hk(x))∑K
p=1 exp(hp(x))

∣∣∣∣∣
≤

K∑
k=1

∣∣∣ŵk(x)
∣∣∣ · ∣∣∣∣∣ exp(hk(x))∑K

p=1 exp(hp(x))

∣∣∣∣∣
≤ KCw := Cf .

Now, given a sequence of i.i.d. sample {W1, . . . ,WN}, we define the empirical Rademacher complexity with respect to
class FH as

R̂N (FH) := Eσ

[
sup

f∈FH

∣∣∣∣∣ 1N
N∑
i=1

σif(Wi)

∣∣∣∣∣
]
, (40)

where (σ1, . . . , σN ) is a vector of i.i.d. Rademacher variables takin values in {−1,+1} with equal probability. The
empirical Rademacher complexity provides an upper bound for the supremum of empirical process in Equation (39). See
the lemma below.
Lemma D.5 (Symmetrization Bound, Wainwright (2019) Theorem 4.10). For the Cf -uniformly bounded class of function
FH , with probability at least 1− δ, we have

∥PNf − Pf∥FH ≤ 2R̂N (FH) + Cf

√
2 log(1/δ)

N
.

Define the norm L2(PN ) for the function f ∈ FH such that ∥f − g∥L2(PN ) :=

√
1
N

∑N
i=1

(
f(Vi)− g(Vi)

)2
for any

function f, g ∈ FH. As the function class FH is Cf -uniformly bounded, we then have

sup
f,g∈FH

∥f − g∥L2(PN ) ≤ 2Cf .

Moreover, let N
(
ϵ,FH, L2(PN )

)
be the covering number of class FH with respect to the metric induced by the L2(PN )

norm. According to the definition of FH in Equation (38), we have N
(
ϵ,FH, L2(PN )

)
≤ N

(
ϵ,H, L2(PN )

)
. Along with

the limitation of the growing rate of N
(
ϵ,H, L2(PN )

)
in Assumption D.3, we establish the following Dudley’s entropy

integral for the empirical Rademacher complexity defined in Equation (40)
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Lemma D.6 (Dudley’s Entropy Integral). Assume Assumption D.3 holds. Given that supf,g∈FH
∥f − g∥L2(PN ) ≤ 2Cf ,

there exists a constant C0 > 0 such that the empirical Rademacher complexity is almost surely upper-bounded by the
Dudely’s integral: 0 < τ < 2,

R̂N (FH) ≤ C0√
N

∫ 2Cf

0

dϵ
√
logN (ϵ,FH, L2(PN )) ≤ C0√

N

∫ 2Cf

0

ϵ−τ/2dϵ =
2C0(2Cf )

1−τ/2

2− τ
N−1/2.

Given the establishment of Assumption D.3, we can now provide a generalization error bound for the empirical process
error in Lemma D.1 by combining Lemma D.5 and Lemma D.6: with probability at least 1− δ, we have

sup
h∈H

{
R̂exp(h, ŵ)−Rexp(h, ŵ)

}
= ∥Pnf − Pf∥FH = O

(
N−1/2

√
2 log(1/δ)

)
. (41)

Generalization Error Bound for Excess Cost-sensitive Risk Combining with the calibration bound in Theorem 6.1,
the decomposition error of the excess surrogate risk in Lemma D.1, the nuisance estimation error in Proposition D.4, and
the empirical process error in Equation (41), we can now provide a generalization error bound for original the excess
cost-sensitive risk R(ĥ)− infh∈H R(h) induced by the output score function ĥ in Algorithm 1. Formally speaking, we
probability at least 1− δ, we have

R(ĥ, w)− inf
h∈H

R(h,w) = O
(
K ·max

{
N−γ , N−1/2

√
log(1/δ)

})
. (42)

This result shows that the excess cost-sensitive risk of the output score function ĥ converges to the optimal risk at a rate of
K ·N−1/2, which is the standard rate for the multiclass classification risk in statistical learning theory (Massart & Nédélec,
2006; Shalev-Shwartz & Ben-David, 2014; Wainwright, 2019).

D.1. Remaining Proofs

Proof of Lemma D.1. Let h⋆
H ∈ H denote the best-in-class score function that minimizes the excess surrogate risk

Rexp(h,w). We use w denote the true weight function and ŵ[l] representes its estiamte from batch l ∈ [L]. By defi-
nition, we have

E(H) = Rexp(ĥ, w)−Rexp(h
⋆
H, w)

= Rexp(ĥ, w)−
1

L

L∑
l=1

Rexp(ĥ, ŵ
[l]) +

1

L

L∑
l=1

Rexp(ĥ, ŵ
[l])− 1

L

L∑
l=1

R̂exp(ĥ, ŵ
[l])

+
1

L

L∑
l=1

R̂exp(ĥ, ŵ
[l])− 1

L

L∑
l=1

Rexp(h
⋆
H, ŵ[l]) +

1

L

L∑
l=1

Rexp(h
⋆
H, ŵ[l])−Rexp(h

⋆
H, w)

≤ 2

L

L∑
l=1

sup
h∈H

∣∣∣Rexp(h, ŵ
[l])−Rexp(h,w)

∣∣∣︸ ︷︷ ︸
Nuisance Estimation Error

+
2

L

L∑
l=1

sup
h∈H

∣∣∣R̂exp(h, ŵ
[l])−Rexp(h, ŵ

[l])
∣∣∣︸ ︷︷ ︸

Empirical Process Error

.
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Proof of Proposition D.4. Notice that for any function h ∈ H and batch l ∈ [L],

∣∣∣Rexp(h, ŵ
[l])−Rexp(h,w)

∣∣∣ = ∣∣∣∣∣E
[

K∑
k=1

(
ŵ

[l]
k (X)− wk(X)

)
· exp(hk(X))∑K

p=1 exp(hp(X))

]∣∣∣∣∣
≤ E

[
K∑

k=1

∣∣∣∣∣(ŵ[l]
k (X)− wk(X)

)
· exp(hk(X))∑K

p=1 exp(hp(X))

∣∣∣∣∣
]

≤ E

[
K∑

k=1

∣∣∣ŵk(X)− wk(X)
∣∣∣ · ∣∣∣∣∣ exp(hk(X))∑K

p=1 exp(hp(X))

∣∣∣∣∣
]

≤ E
[ K∑
k=1

∣∣∣ŵk(X)− wk(X)
∣∣∣] = E

∥∥∥ŵ(X)− w(X)
∥∥∥
1
.

The first inequality comes from the fact that the absolute value function | · | is convex and we use Jensen’s inequality. The
second inequality follows from Cauchy-Schwarz inequality, and the third inequality follows from the fact that the softmax
function is uniformly bounded by 1 for all x ∈ X and h ∈ H. Finally, combining with Assumption D.2 and the results
above, we have for every batch l ∈ [L]

sup
h∈H

∣∣∣Rexp(h, ŵ
[l])−Rexp(h,w)

∣∣∣ = O(N−γ).
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E. Supplement to Numeric Experiments
E.1. Synthetic Dataset

In this section, we construct a synthetic dataset with multi-valued selective labels. The experiment results are illustrated in
Figures 4 and 5, which show that our unified cost-sensitive learning (UCL) can achieve superior performance under various
strength of selection bias.

Data Generating Process Consider a dataset consisting of observable variables X = (X1, X2, . . . , Xp), and an unob-
servable variable U = (U1, U2, . . . , Uq), following the joint Gaussian distribution. We also introduce the variable Z that
represents the random assignment of decision-makers, which is uniformly drawn from the set Z = {1, 2, . . . , J}. The
missingness decision D ∈ {0, 1} is modeled as Bernoulli distributed variables with parameters pD := P(D = 1 | X,U,Z),
and the true label Y ⋆ ∈ {1, . . . ,K} is modeled as a categorical variable with parameters pk := P(Y = k | X,U,Z) for
k ∈ [K]. The complete data generating process is summarized in Equation (43).

Observed variables: X = (X1, . . . , Xp) ∼ 2 · N (0, Ip), Z ∼ Uniform({1, . . . , J})
Unobserved variables: U = (U1, . . . , Uq) ∼ 2 · N (0, Iq)

Coefficients: WX→Y =
[
i+ k

]
p×K

i ∈ {1, . . . , p}, k ∈ {1, . . . ,K}

WU→Y =
[
i+ k

]
q×K

i ∈ {1, . . . , q}, k ∈ {1, . . . ,K}

WX→D =
[
2− i

]
p×1

i ∈ {1, . . . , p},

WU→D =
[
1 + i

]
q×1

i ∈ {1, . . . , q}.

Decision (NUCEM): pD = (1− αD) · expit
{
Z · 2XWX→D

}
+ αD · expit

{
3UWU→D

}
,

Decision (UC): pD = expit
{
(1− αD) · Z · 2XWX→D + αD · 3UWU→D

}
.

Outcome: pk = softmax
{
(1− αY ) ·XWX→Y + αY · 4UWU→Y

}
, k ∈ {1, . . . ,K}

Y = Categorical(p1, . . . , pK).

(43)

Here we define the functions expit : v 7→ 1/(1 + exp(−v)) and softmax : v 7→ exp(v)/
∑K

k=1 exp(vk) for any vector
v ∈ RK . In both UC and NUCEM models, the parameter αD ∈ (0, 1) controls the impact of unobservable variables U on
the probability of missingness pD, while the parameter αY ∈ (0, 1) adjust the magnitude of U affecting the distribution of
outcome Y ∗. Overall, the pair of (αD, αY ) jointly determine the degree of selection bias in our data generating process.

In this experiment, we simulate a full dataset with sample size N = 10000, feature dimensions p = q = 5, the number of
instruments level J = 5, and the label classes K = 3. Each data point in the dataset is a tuple {(Xi, Ui, Zi, Di, Y

∗
i )}Ni=1.

The observed dataset consists of a tuple of variables {(Xi, Zi, Di, Yi)}Ni=1 with Yi := Y ⋆
i if Di = 1 and Yi := NaN if

Di = 0 for each i ∈ [N ].

Model UC and NUCEM The missingness model NUCEM captures one of the setting of No Unmeasured Common
Effect Modifier, and this ensures the satisfaction of sufficient condition in Proposition A.1, and therefore the conditional
probabilities {pk}Kk=1 can be exactly identified according to Theorem 4.3. Meanwhile, the model UC captures a general
setting of Unmeasured Confounding in which the point-identification condition cannot be realized in this situation.

Baseline Methods and Our Proposed Methods We divide our dataset into two parts: a training set and a testing set,
using a 7:3 split ratio, denoted as Strain and Stest. In the training set, five different meta-learning methods are trained on
selectively labeled data, using a simple neural network classifer with softmax output layer. We then evaluate the performance
of these methods on the testing set with fully labeled data. The five methods under consideration are as follows:

• The first two methods act as baselines. The SelectedSample method involves running multiclass classification algorithm
solely on the labeled portion of the training set {i ∈ Strain : Di = 1}. For the second method, SelectedSample(IPW),
we firstly estimate the inverse propensity weighting (IPW) for the labeled subset, and then implement the weighted
multiclass classification for the labeled training set. These baseline methods establish a “lower bound” for any
other meta learning algorithm, as any enhanced method with the use of selectively labeled data should least beat the
performance of these two methods.
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Figure 4. The testing accuracy of different methods with αY ∈ {0.3, 0.5, 0.7} and αD ∈ {0.3, 0.5, 0.7} of Model NUCEM in synthetic
dataset.
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• The third method, FullSample, runs a multiclass classification algorithm on the entire training set. This represents an
ideal but impractical scenario since we cannot actually observe the true label Y ∗

i for the missing data (where Di = 0).
This method serves as an ’upper bound’ for learning performance, indicating the highest possible effectiveness if full
information were available.

• Finally, our two proposed methods correspond to the point- and partial- identification settings, named PointLearning
and PartialLearning respectively. We anticipate that the performance of these methods will fall between the established
“lower” and “upper” bounds, representing a realistic estimation of effectiveness under selective label conditions. Similar
to the method SelectedSample(IPW), our method involve estimating a series of weight functions wk, k = 1, . . . ,K to
correct for selection bias (refers to the details in Section 6). In this experiment, we estimate these weght functions
using Histogram Gradient Boosting with a 5-fold cross-fitted approach. We selected all hyperparameter through 5-fold
cross-validation. The cost-sensitive classification problem is solved by a simple neural network with a softmax output
layer.

The Role of Observed Variable Z It’s important to note the random assignment of decision-maker, denoted as Z, play
different roles in these methods. In our proposed method, Z is treated as an instrumental variable, aiding in correcting for
selection bias, while in the baseline methods (SelectedSample, SelectedSample(IPW), and FullSample), Z is only one of
the observed features.

Experiment Results Figures 4 and 5 report the testing accuracy of each method on the data generated by the NUCEM
and UC models in Equation (43) respectively. All the experiments are repeated 100 times with confounding strengths
αD, αY ∈ {0.3, 0.5, 0.7}. Each boxplot then shows the distribution of the testing accuracy for distinct methods under
different combinations of confounding strength αD and αY .

Transition from the top to the bottom panel, αY increases from 0.3 to 0.7, indicating a stronger influence of the unobservable
variable U on the true label Y ⋆. As we can see from Figures 4 and 5, the accuracy of each of five methods decreases as
αY increases, reflecting the growing challenge in accurately predicting outcomes as the influence of unobservable factors
intensifies. Moreover, transition from the left to the right panel, αD rises from 0.3 to 0.7, indicating an enhanced role
of the unobservable variable U in determining the missingness decision D. A larger value of αD within the range (0, 1)
suggests that the missingness decision D is predominantly influenced by the unobservable U , hinting at a potential larger
difference of the distribution among selected group and missing group. This is visually corroborated in Figures 4 and 5,
where the performance disparity between the SelectedSample and FullSample methods widens as αD increases, illustrating
the growing challenge in correcting the selection bias.

The results in Figures 4 and 5 demonstrate the effectiveness of our proposed methods in handling selection bias in the data
generating process. In each combinations of (αY , αD), our PartialLearning method consistently outperforms the baseline
methods, including the SelectedSample and SelectedSample(IPW) methods. Moreover, the perforamnce of PartialLearning
is close to the FullSample method, which is the upper bound of the performance. The performance of the PointLearning
method is also competitive, although it is slightly less robust than the PartialLearning method. The results in Figure 4 are
consistent with those in Figure 5, except that under this setting, the point identification requirement in Theorem 4.3 is not
satisfied, and the PointLearning method is therefore less effective than the PartialLearning method.

Below we provide a detailed analysis of the performance of each method.

• SelectedSample(IPW): As we see from Figures 4 and 5, the performance of the SelectiveSample(IPW) approach
is close to the baseline of naively running multiclass classification algorithms on the selected subsample (named
SelectedSample), and it is outperformed by our proposed algorithms. This is not surprising since the propensity score
P (D = 1 | X,Z) cannot correct selection bias due to the existence of unobserved variables U .

• PointLearning: Our proposed PointLearning method shows promising results in the bottom right panel of Figure 4
with parameter (αY , αD) = (0.7, 0.7), in which case the unobserved confounding strength is large. Although the
NUCEM model in Equation (43) satisfies Proposition A.1, which enables the point identification of the conditional
probabilities and therefore the classification risk R(h,w), PointLearning does not outperform the baseline methods
when the unmeasured confounding strength is not so large. This limitation is attributed to the complexities involved in
accurately estimating the weight function {wk}Kk=1 as outlined in Equation (6).
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Figure 5. The testing accuracy of different methods with αY ∈ {0.3, 0.5, 0.7} and αD ∈ {0.3, 0.5, 0.7} under Model UC of synthetic
dataset.
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The crux of the challenge lies in estimating the ratio of two conditional covariances, Cov(DYk, Z | X) and Cov(D,Z |
X) for each k ∈ [K]. Estimating conditional covariances is inherently more difficult than estimating conditional
expectations, primarily because the process of calculating the ratio of these estimates is fraught with potential
inaccuracies. If the denominator is not precisely estimated, the resultant ratio can become unstable, leading to
exaggerated or diminished values. Such inaccuracies can severely impact the effectiveness of the downstream cost-
sensitive classification, undermining the robustness of Point Learning under these conditions.

• PartialLearning: The cornerstone of our learning framework is PartialLearning. As evidenced by the graphs in
Figures 4 and 5, PartialLearning significantly enhances the accuracy of performance predictions while maintaining low
variance, showcasing its potential for real-world applications. Remarkably, this improvement in prediction accuracy is
consistent across almost all combinations of confounding strengths (αY , αD), as well as the decision models NUCEM
and UC.

Reflecting on the conditions outlined in Theorem 5.2, PartialLearning only requires the conditional mean function
E[Y ⋆

k | U,X = x], k = 1, . . . ,K to be almost surely bounded, aside from the basic instrumental variable (IV)
conditions. This requirement is generally more feasible in real-world scenarios than the point-identification assumptions
detailed in Theorem (referenced as Theorem 4.3). The success of PartialLearning can be attributed to two key strategies:
Firstly, we adopt a robust optimization approach to develop a prediction rule that remains effective under the least
favorable conditions of η⋆(X), as detailed in our minimax risk function formulation (see Equation (10)). Secondly,
the weighting functions {wk}Kk=1 are based on the summation of several conditional expectations, which is inherently
more stable than the ratio of conditional covariances required for point identification.

Overall, the compelling performance of PartialLearning demonstrated in Figures 4 and 5 convinces us of its practical
viability. It stands as a reliable method that consistently outperforms baseline approaches, even in situations where the
presence of selection bias (missing not at random) in the data generating process is uncertain.

E.2. Sensitivity Analysis of Weight Function Estimation

The accuracy of weight estimation can directly impact the performance of our method. In fact, our learning guarantee in
Appendix D already captures this. The excess risk bound in Equation (42) involves a term capturing the weight estimation
error. Notably, the weights to be estimated are different for the point and partial identification settings. Estimating the weight
for point identification involves estimating two nuisances and their ratio. In contrast, the weight in the partial identification
only involves the sum of a series of nuisance functions and does not involve any ratio. The latter is generally more insensitive
to the nuisance estimation error.

To illustrate the impact of weight estimation accuracy, we implement additional experiments using synthetic data with
confounding strength αD = 0.5 and αY = 0.7 on both the NUCEM and UC settings (see details in Equation (43)). To
introduce controlled errors into the nuisance function estimates, we inject Gaussian noise as follows:

η̃(Xi) = η̂(Xi)[1 + σ2N (0, 1)].

We vary the noise level σ across the values [0.0, 3.0, 5.0, 7.0] and repeat each experiment 50 times. Based on the perturbed
nuisance estimates—specifically, the conditional probability η⋆k(x) in the point identification setting, and the bounds
lk(x) and uk(x) in the partial identification setting—we compute corresponding weights and analyze their influence on
downstream classification accuracy.

Our results in Table 1 show that inaccuracies in weight estimation degrade classification performance for both PointLearning
and PartialLearning. Nevertheless, the performance of both methods remains stable under small perturbations (σ < 0.3)
in both the NUCEM and UC settings. Notably, PartialLearning achieves higher accuracy across most of noise levels,
demonstrating greater robustness to errors in nuisance estimation.

E.3. Semi-synthetic Dataset: FICO

In this section, we evaluate the performance of our proposed algorithm in a semi-synthetic experiment based on the home
loans dataset from (FICO, 2018). This dataset consists of 10459 observations of approved home loan applications. The
dataset records whether the applicant repays the loan within 90 days overdue, which we view as the true label Y ⋆ ∈ {0, 1},
and various transaction information of the bank account. The dataset also includes a variable called ExternalRisk, which is a
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Settings Methods σ = 0.0 σ = 0.3 σ = 0.5 σ = 0.7

NUCEM Point Learning 0.601 (0.0124) 0.592 (0.0161) 0.586 (0.0212) 0.534 (0.0381)
Partial Learning 0.607 (0.0121) 0.592 (0.0196) 0.564 (0.0277) 0.549 (0.0343)

UC Point Learning 0.553 (0.0241) 0.561 (0.0232) 0.559 (0.0235) 0.439 (0.0604)
Partial Learning 0.602 (0.0136) 0.586 (0.0188) 0.559 (0.0300) 0.533 (0.0370)

Table 1. The testing accuracy of point learning and partial learning under NUCEM and UC settings with different noise level σ =
[0.0, 0.3, 0.5, 0.7].

Figure 6. The testing accuracy of methods with α ∈ {0.5, 0.7, 0.9} for model NUCEM in FICO dataset.

risk score assigned to each application by a proprietary algorithm. We consider ExternalRisk and all transaction features as
the observed features X .

Semi-synthetic Dataset with Selective Labels In this dataset the label of interest is fully observed, so we choose to
synthetically create selective labels on top of the dataset. Specifically, we simulate 10 decision-makers (e.g., bank officers
who handle the loan applications) and randomly assign one to each case. We simulate the decision D from a Bernoulli
distribution with a success rate pD that depends on an “unobservable” variable U , the decision-maker identity Z, and the
ExternalRisk variable (which serves as an algorithmic assistance to human decision-making). We blind the true label Y ⋆ for
observations with D = 0. Specifically, we construct U as the residual from a random forest regression of Y ⋆ with respect to
X over the whole dataset, which is naturally dependent with Y ⋆. We then specify pD := P(D = 1 | X,U) according to

Decision (NUCEM): pD = α · expit
{
U
}
+ (1− α) · expit

{
(1 + Z) · ExternalRisk

}
,

(UC): pD = expit
{
α · U + (1− α) · (1 + Z) · ExternalRisk

}
.

(44)

Here the expit function is given by expit(t) = 1/(1 + exp(−t)). The parameter αD ∈ (0, 1) controls the impact of U on
the labeling process and thus the degree of selection bias. We can easily verify that the sufficient condition in Proposition A.1
is guaranteed and therefore the point-identification of classification risk R(h,w) is realizable under the NUCEM model in
Equation (44).

Baseline Methods and Our Proposed Methods We randomly split our data into training and and testing sets at a 7 : 3 ratio.
Similar to what we discuss in Appendix E.1, on the training set, we apply five types of different methods: Selected Sample,
SelectedSample(IPW), FullSample, PointLearning and PartialLearning. The first three methods serve as the benchmark of
the last two methods. For each type of method, we try multiple classification algorithms including AdaBoost, Gradient
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Figure 7. The testing accuracy of methods with α ∈ {0.5, 0.7, 0.9} for model UC in FICO dataset.

Boosting, Logistic Regression, Random Forest, and SVM. Our proposed method also need to estimate some unknown
weight functions, which we implement by K = 5 fold cross-fitted Gradient Boosting. Again, all hyperparameters are chosen
via 5-fold cross-validation, and we evaluate the classification accuracy of the resulting classifiers on the testing data.

Similarly, we remark that the decision-maker assignment Z plays different roles in different methods. Our proposed
methods (PointLearning and PartialLearning) treatment the decision-maker assignment Z as an instrumental variable to
correct for selection bias. In contrast, the baseline methods (SelectedSample, SelectiveSample(IPW) and FullSample) do
not necessarily need Z. However, for a fair comparison between our proposals and the baselines, we still incorporate Z as a
classification feature in the baseline methods, so they also use the information of Z.

Results and Discussions Figures 6 and 7 presents the testing accuracy of each method over 50 experiment replications for
α ∈ {0.5, 0.7, 0.9} under both the NUCEM and UC models defined in Equation (44). First, we observe that the performance
of SelectedSample(IPW) is comparable to the baseline SelectedSample, which applies binary classification algorithms
directly to selectively labeled data. Notably, as the strength of unmeasured confounding (αD) increases, the gains from using
our proposed methods—especially PartialLearning—over the baseline methods (SelectedSample and SelectedSample(IPW))
become more pronounced. Interestingly, the PartialLearning method outperforms even under the NUCEM model, where the
point-identification condition is satisfied. As discussed in Appendix E.1, this may be because the PointLearning method
relies on estimating a conditional variance ratio, which is challenging to estimate accurately in practice. In contrast, the
PartialLearning method requires only the estimation of conditional expectations, making it more stable and robust. This
highlights the advantage of the PartialLearning method: it is robust to violations of the point-identification assumption and
achieves more stable performance even when point-identification holds.

To summarize, among all the methods we evaluated, PartialLearning emerges as a reliable approach that consistently
outperforms baseline methods, even in scenarios where the unobsreved confounding is strong.
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