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Abstract

Recent advances in Vision-Language-Action (VLA) models have established a1

two-component architecture, where a pre-trained Vision-Language Model (VLM)2

encodes visual observations and task descriptions, and an action decoder maps3

these representations to continuous actions. Diffusion models have been widely4

adopted as action decoders due to their ability to model complex, multimodal5

action distributions. However, they require multiple iterative denoising steps at6

inference time or downstream techniques to speed up sampling, limiting their7

practicality in real-world settings where high-frequency control is crucial. In this8

work, we present NinA (Normalizing Flows in Action), a fast and expressive alter-9

native to diffusion-based decoders for VLAs. NinA replaces the diffusion action10

decoder with a Normalizing Flow (NF) that enables one-shot sampling through an11

invertible transformation, significantly reducing inference time. We integrate NinA12

into the FLOWER VLA architecture and fine-tune on the LIBERO benchmark.13

Our experiments show that NinA matches the performance of its diffusion-based14

counterpart under the same training regime, while achieving substantially faster15

inference. These results suggest that NinA offers a promising path toward efficient,16

high-frequency VLA control without compromising performance.17

1 Introduction18

The field of general-purpose robotics has recently seen rapid progress driven by Vision-Language-19

Action (VLA) models (Brohan et al., 2022; Zitkovich et al., 2023; Wu et al., 2023; Team et al., 2024;20

Kim et al., 2024; Black et al.; Reuss et al.). These models combine pre-trained Vision-Language21

Models (VLMs) – leveraging large-scale multimodal pretraining with an action prediction module22

that outputs low-level robot commands given a textual goal description and visual observations of the23

environment. One particularly effective architectural pattern, first successfully demonstrated in π024

(Black et al.) and subsequently adopted in more advanced systems such as π0.5 (Intelligence et al.,25

2025) and FLOWER (Reuss et al.), involves splitting the VLA into two components: a frozen or26

fine-tuned VLM encoder and an action expert that maps VLM embeddings into continuous actions.27

In prior work, the action expert is almost always implemented using diffusion-based generative28

models. These models are well-regarded for their ability to capture complex, multi-modal action29

distributions and have achieved dominant status in many other generative domains such as image and30

audio synthesis (Yang et al., 2023). However, their autoregressive denoising process requires multiple31

forward passes during inference (or specialized acceleration methods that still incur additional32

computation), leading to latency bottlenecks, a critical concern for fine-grained, real-time robotic33

control (Zhao et al., 2023).34

We argue that Normalizing Flows (NFs) (Dinh et al., 2014; Rezende & Mohamed, 2015) offer a35

compelling alternative for the action expert. Like diffusion models, NFs can represent complex36
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Figure 1: Comparison of model performance, size, and inference time on the LIBERO benchmark.
Our NinA models (Transformer and MLP) achieve inference speeds up to 10x faster and require
significantly fewer parameters compared to diffusion models, while maintaining comparable perfor-
mance.

probability distributions, but they require only a single forward pass to generate an action. In addition,37

NFs natively provide exact likelihood estimation and support variational inference, features that could38

be valuable for downstream tasks such as reinforcement learning (RL), uncertainty estimation, or39

interpretability (Zhai et al., 2024). Recent works have also demonstrated the potential of NFs in40

imitation learning and RL (Akimov et al., 2022; Ghugare & Eysenbach, 2025).41

In this preliminary work, we introduce Normalizing Flows in Action (NinA) – a VLA variant that42

replaces the diffusion-based action expert with a normalizing flow model. Using the FLOWER43

VLA (Reuss et al.) as our base architecture, we fine-tune NinA and the original diffusion-based44

FLOWER on the LIBERO benchmark, finding that NFs can match the performance of state-of-the-art45

diffusion experts while being significantly faster at inference and requiring fewer parameters. We46

also investigate key design choices for NinA, including backbone architecture (MLP vs. Transformer47

(Vaswani et al., 2017)) and the impact of various hyperparameters, to better understand the trade-offs48

involved in adopting flows for robotic control.49

2 Preliminaries50

2.1 Normalizing Flows51

Normalizing Flows (NFs) (Dinh et al., 2014; Rezende & Mohamed, 2015) are a family of genera-52

tive models that represent a complex probability distribution by applying a sequence of invertible53

transformations to a simple base distribution (e.g., a Gaussian). Let z0 ∼ p0(z0) denote a sample54

from the base distribution and fθ = fK ◦ · · · ◦ f1 be a composition of K invertible mappings with55

tractable Jacobian determinants. The transformed variable zK = fθ(z0) follows the distribution56

log pθ(zK) = log p0(z0)−
K∑

k=1

log

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ . (1)

The exact likelihood calculation enables direct maximum likelihood training and facilitates uncertainty57

estimation, variational inference, and probabilistic reasoning. Inference is efficient, requiring only a58

single forward pass through the sequence of transformations to produce a sample.59

2.2 Vision-Language-Action Models Objective60

Vision-Language-Action (VLA) models extend vision-language models by adding an action expert61

that maps multimodal representations to continuous control commands. Given a visual observation62

ot and a textual instruction g, a VLA model first encodes these inputs into a joint embedding ht63

using a pre-trained or fine-tuned vision-language backbone:64

ht = VLM(ot,g). (2)

The action expert πθ then generates an action or a chunk of actions at ∼ πθ(· | ht) in the robot65

action space. For imitation learning, the objective is to maximize the log-likelihood of expert actions:66

LVLA(θ) = E(ot,g,at)∼D [log πθ(at | VLM(ot,g))] , (3)
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where D is a dataset of demonstration trajectories. This modular design enables one to swap different67

action experts, such as diffusion models or normalizing flows, while reusing the same vision-language68

backbone.69

3 Methodology70

NinA implements Normalizing Flows (NFs) similar to RealNVP (Dinh et al., 2016) in two variants:71

an MLP-based architecture inspired by Ghugare & Eysenbach (2025) and a Transformer-based72

architecture inspired by Jet (Kolesnikov et al., 2024). The MLP variant enables faster inference73

and reduced memory consumption, while the Transformer variant offers better performance and74

scalability.75

During training, state–goal–action chunks (ot,g,at) are sampled from the dataset D. The state ot76

and goal g are passed through a pretrained VLM to obtain embeddings ht.77

We add Gaussian noise N (0, σ2
noise) to the action chunks, following the beneficial practice for NFs78

proposed by Zhai et al. (2024). While this technique has not been nicely ablated in the context of79

continuous control (Ghugare & Eysenbach, 2025), our experiments confirm its utility. We also find80

that the noise amplitude is a critical hyperparameter and report an ablation study on its effect.81

The noised actions ât (treated as zK) are passed through a sequence of flow layers fk. In each layer,82

at is randomly split into two equal parts, x1 and x2. For the MLP-based approach, ât is treated as a83

single real-valued vector and split element-wise. For the Transformer-based model, ât is treated as a84

sequence, and the split is performed sequence-wise, meaning that each action appears fully in either85

x1 or x2.86

Next, x1 is passed through a trainable network gϕk
(x1,ht) to produce scale and bias terms (s, b),87

conditioned on the VLM output. In the MLP variant, gϕk
is an MLP, with conditioning achieved by88

concatenating x1 and ht into a single input vector. In the Transformer variant, gϕk
consists of stacked89

self- and cross-attention layers, with conditioning performed via the cross-attention mechanism.90

Following Kolesnikov et al. (2024), we apply a tanh activation to s to stabilize training. The second91

part, x2, is then transformed as:92

y2 = exp(s) · x2 + b. (4)

Finally, y2 is concatenated with x1 to produce the output z′k of the coupling layer.93

Following Ghugare & Eysenbach (2025), we also include the trainable invertible linear layer PLUk94

from Kingma & Dhariwal (2018), applied to z′k to produce the final output zk of the k-th flow layer.95

While the integration was straightforward for the MLP variant, applying PLUk action-wise in the96

Transformer variant caused divergence. This was resolved by applying PLUk to the entire chunk,97

treating it as a single vector.98

The final latent variable z0 is used to compute the log-probability under p0, which in our experiments99

is set to the standard normal distribution N (0, I), a common choice in NF literature. The design of100

the transformations allows efficient computation of the Jacobian determinant det ∂fk
∂zk−1

, enabling101

direct computation of the loss in Equation 1.102

At inference time, z0 is sampled from p0 and passed in reverse through the flow layers using the103

inverse transformations, producing a chunk of actions. All other components remain identical to104

FLOWER (Reuss et al.), with NinA replacing the original diffusion-based action expert. A visual105

illustration of the architecture is shown in section A.106

4 Experimental Results107

We evaluate NinA on the LIBERO benchmark (Liu et al., 2023), following the fine-tuning protocol of108

FLOWER (Reuss et al.). As our primary baseline, we use FLOWER with its original diffusion-based109

policy. For fairness, we reinitialize the action expert in all experiments, as reproducing the full110

pretraining of FLOWER is computationally prohibitive. To identify the best hyperparameters for111

NinA, we tuned exclusively on the LIBERO 10 task suite and applied the selected configuration112

to all other LIBERO tasks. While this choice limits task-specific optimization, it provides a fairer113

comparison and avoids overfitting to individual benchmarks. Additional training details are provided114
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Table 1: Performance of NinA compared to diffusion-based experts on the LIBERO benchmark.
We report success rates across all LIBERO variants and their average. While the original large
diffusion policy achieves the highest average score, NinA models achieve comparable performance
with drastically fewer parameters (2M–38M vs. 31M–330M) and much faster inference.

Model LIBERO Spatial LIBERO Object LIBERO Goal LIBERO 10 LIBERO 90 Avg.

Diffusion (330M, Original) 0.982 0.976 0.942 0.906 0.954 0.952
– No robotic VLM pretrain 0.986 0.924 0.980 0.896 0.941 0.945

Diffusion (31M) 0.890 0.984 0.952 0.864 0.894 0.916

NinA MLP (2M) 0.878 0.982 0.902 0.928 0.856 0.909
– No robotic VLM pretrain 0.940 0.982 0.938 0.894 0.857 0.922
– No PLU 0.872 0.992 0.960 0.880 0.852 0.911
– No noise 0.846 0.968 0.902 0.898 0.790 0.880

NinA Transformer (38M) 0.970 0.978 0.938 0.920 0.887 0.938
– No robotic VLM pretrain 0.960 0.976 0.926 0.908 0.895 0.933
– No PLU 0.948 0.972 0.944 0.920 0.887 0.934
– No noise 0.960 0.980 0.888 0.850 0.803 0.896

in Appendix A. To disentangle the effect of model capacity, we further downscaled the diffusion115

baseline to approximately match the size of our best NinA Transformer (38M parameters), resulting116

in a 31M-parameter diffusion expert. We did not attempt to reduce diffusion models to the scale of117

NinA MLP (2M parameters), as even the 31M variant already suffered a substantial performance118

drop.119

Table 1 summarizes the results across all LIBERO variants. The original diffusion policy achieves the120

highest average success rate, but NinA delivers competitive performance while being significantly121

more efficient. In particular, NinA Transformer nearly matches the diffusion baseline (0.938 vs. 0.952122

average score), while requiring an order of magnitude fewer parameters and offering up much faster123

inference (Figure 1). Even the extremely compact NinA MLP (2M parameters) attains strong results124

(0.909 average score). These findings highlight a key advantage of NinA: high efficiency without125

sacrificing task success, an essential property for real-world robotic deployment where both latency126

and memory constraints are critical.127

We next test whether NinA benefits disproportionately from FLOWER’s robotic VLM pretraining.128

Replacing the robotics-pretrained VLM with a generic one slightly reduces performance in both cases,129

but differences remain small. Interestingly, NinA MLP improves here (0.922 vs. 0.909), suggesting its130

inductive bias reduces reliance on robotics-specific VLM features. Thus, NinA generalizes effectively131

to different VLMs.132

We also ablate the effect of removing noise injection. As shown in Table 1, both NinA MLP and133

Transformer see clear performance drops (0.880 vs. 0.909 and 0.896 vs. 0.938). This confirms noise134

injection is an important regularizer.135

Finally, we investigate PLU augmentations (Kingma & Dhariwal, 2018). Removing PLU slightly136

lowers NinA Transformer (0.934 vs. 0.938), while NinA MLP shows mixed results. Thus, PLU137

provides modest but non-essential gains, whose utility may depend on NF architecture. Prior work138

(Ghugare & Eysenbach, 2025) did not explore this ablation, leaving open when such augmentations139

are most useful. More ablations are provided in Appendix D.140

5 Conclusion141

We presented NinA, a Normalizing Flow-based action expert for VLA models, as an efficient142

alternative to diffusion-based policies. NinA achieves competitive performance on the LIBERO143

benchmark while being substantially faster and more parameter-efficient. Beyond efficiency, the exact144

likelihood estimation provided by NFs opens up opportunities for integration with reinforcement145

learning, uncertainty modeling, and interpretability. Future work should explore scaling NinA to full146

VLA pretraining across diverse datasets, domains, and VLM backbones, as well as investigating its147

benefits for real-world robotic control.148
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A Additional Details208

Hardware. All training experiments were conducted on NVIDIA H100 GPUs. For inference-time209

measurements reported in Figure 1 and Appendix C, we additionally used a personal NVIDIA RTX210

3060 Mobile GPU to provide a perspective on performance under more resource-limited settings.211

Codebase and Modifications. Our implementation builds on the FLOWER framework (Reuss212

et al.), available at https://github.com/intuitive-robots/flower_vla_calvin. Beyond213

incorporating Normalizing Flows, we introduced only two modifications: (i) the number of training214

epochs was increased to 100 to account for training action experts from scratch, and (ii) the batch215

size was set to 80 to accelerate training. For all experiments, we used Florence-2 Large (Xiao et al.,216

2024), which was finetuned in the original FLOWER work, as the VLM.217

Hyperparameter Selection and Evaluation. Hyperparameter choices were determined using218

the LIBERO-10 benchmark, selecting the configuration with the highest success rate at the final219

checkpoint after 100 epochs. For evaluations on other LIBERO tasks, we consistently report the220

success rate of the final checkpoint as well, without additional tuning.221

In Figure 2 and Figure 3 we present schematic illustration of our approach described in section 3.222

VLM

Normalizing Flow BlockK times

Compute Loss 

Forward Pass (Training)

Inverse 
Normalizing Flow Block K times

Inverse Pass (Inference)

Figure 2: NinA training and inference passes, see Figure 3 for Normalizing Flow blocks variants.
See section 3 for textual description.
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FFN

MLP
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Figure 3: NinA Normalizing Flow variants schemes. See section 3 for textual description.

B Hyperparameters223

In this section we report the hyperparameters used for training NinA with both Transformer and MLP224

backbones. The reported values correspond to the configurations that achieved the best performance225

on LIBERO-10 and were therefore used for all main experiments. We include the flow depth (K),226

hidden dimensionality of the flow layers, noise amplitude applied to reference actions during training,227

and the number of layers per non-linear transformation inside each flow block N (number of layers228

for MLP and number of stacked pairs of self- and cross-attention for Transformer). Table 2 summarize229

the settings.230

Table 2: Hyperparameters for NinA with Transformer backbone.
Model Flow depth (K) Flow hidden dim Noise amplitude N (depth per flow)
NinA MLP 28 64 0.03 3
NinA Transformer 18 256 0.03 3
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C Inference Time Details231

We report the inference time per sample (in seconds) for NinA and baseline diffusion models on two232

hardware setups: NVIDIA H100 (server-grade) and NVIDIA RTX 3060 Mobile (consumer-grade).233

All models were implemented in PyTorch. Note that we only measure the action generation module,234

excluding the VLM forward pass, to provide a fair comparison of the generative component itself.235

Interestingly, the diffusion model with 32M parameters runs slightly slower than its 330M counterpart.236

We attribute this to changes in hidden dimensionality that likely resulted in suboptimal kernel fusion237

and reduced GPU utilization.238

As shown in Table 3, NinA achieves an order of magnitude faster inference compared to diffusion239

models. This efficiency gain is consistent across both the high-end H100 GPU and the consumer-grade240

RTX 3060 Mobile, demonstrating that our approach is not only lightweight but also substantially241

more practical for real-time deployment.242

Table 3: Inference time per sample (seconds) for different models on H100 and RTX 3060 GPUs.
Only the action generation module is measured (VLM inference excluded). NinA significantly
outperforms diffusion baselines in inference speed.

Model H100 RTX 3060
Diffusion (330M) 0.110 0.163
Diffusion (32M) 0.120 0.181
NinA Transformer (38M) 0.021 0.023
NinA MLP (2M) 0.015 0.019

D Ablations243

We further investigate the design choices of NinA by varying the flow depth, hidden dimensionality244

of the flow networks, and the amount of noise added to reference actions during training. Results are245

reported on the LIBERO-10 benchmark.246

Flow Depth. Figure 4 compares NinA with Transformer and MLP backbones across different flow247

depths. The Transformer variant demonstrates stable performance even as the depth scales to larger248

values, peaking at depth 18 (0.92) and maintaining competitive results up to depth 30. In contrast, the249

MLP variant shows stronger fluctuations, with a peak at depth 28 (0.928) but noticeable degradation250

for deeper architectures. These results suggest that Transformers provide a more scalable backbone251

for NinA, motivating their use when considering larger models.252
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Figure 4: Ablation on the number of flows (depth) for NinA Transformer and NinA MLP on LIBERO-
10.

Hidden Dimensionality. As shown in Figure 5, Transformer-based NinA achieves its best perfor-253

mance with a hidden dimension of 256 (0.920), while the MLP variant performs well for smaller254
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hidden sizes, peaking at 16 and 64 (0.928). This indicates that Transformers benefit from moderately255

larger hidden sizes, whereas MLPs perform strongly even with compact representations.256
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Figure 5: Ablation on the hidden dimensionality of flows for NinA Transformer and NinA MLP on
LIBERO-10.

Noise Injection. In Figure 6, we study the effect of adding Gaussian noise to the reference actions.257

For both Transformer and MLP backbones, performance improves with small amounts of noise258

and peaks at σ = 0.03 (0.920 for Transformer, 0.928 for MLP), after which it decreases as noise259

grows larger. Interestingly, the MLP variant shows slightly higher robustness across the noise range,260

maintaining strong performance even at σ = 0.05. These results suggest that moderate stochasticity261

during training serves as a useful regularizer and that MLPs may benefit more consistently from this262

effect.263
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Figure 6: Ablation on Gaussian noise injected into reference actions for NinA Transformer and NinA
MLP on LIBERO-10.
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