Better Counterfactual Model Reasoning with
Submodular Quadratic Component Models

Abstract

In this work, we propose a new heuristic for component modeling—the task of
building a model that estimates the effect of model components on model behavior.
Empirically, we show that even at scale, actively learning a quadratic model instead
of a linear model increases accuracy and decreases sample complexity. Prior work
has favored a linear model, because outside of accuracy, interpretability is a key
desiderata for a component model. By exploiting properties of the degree 2 Fourier
representation, we derive an individual influence for each point, that strictly gener-
alizes the coefficient in a linear data model. This notion corresponds to the discrete
derivative of the function at a given point, and has the benefit that it incorporates
information about the rest of the dataset into the individual influence estimate. We
also introduce the idea of enforcing submodularity, which theoretically can allow
for better and nontrivial optimization for interesting counterfactual reasoning tasks
with set cardinality constraints.

1 Introduction

Large ML models such as deep neural networks (DNNs) can be black-boxes. Component attribution
aims to distill DNNs into a collection of common sense parts, each equipped with a score or attribution
that represents the importance of that part as it pertains to a specific task. For instance, component
attribution systems can assign scores to individual components which correspond to how much they
contribute to a model’s prediction. The components themselves are meant to represent different
aspects of a model’s architecture depending on the desired granularity (e.g., convolutional filters in
an image classification model or attention heads in a language model).

Beyond scientific interest in cracking open black-box DNNs, component attributions have been
shown to be effective in a variety of downstream model editing tasks. For example, Shah et al.
(2024) show how to use good component attributions to correct individual vision model predictions,
selectively “forget” entire classes of images, and improve against typographic attacks. Component
attribution is also related to a separate line of work in ML interpretability which essentially asks how
individual components affect model behavior. More generally, there is a highly active line of work
called mechanistic interperatability that aims to understand different model compononents or even
individual neurons in order to ultimately make models more safe and steerable — see |Bereska and
Gavves|(2024)) for a survey.

Linear component models for attribution. A recent and successful approach (Shah et al.,2024)) to
component attribution takes a predictive modeling perspective. Here, towards component attribution,
one learns a function (a component model), that accurately predicts the counterfactual effect of
ablating a subset of components when running a forward pass of the model on a given input[] For a
certain ML model M, the specific approach taken by |Shah et al.[(2024) is to:

'In this case, ablating a component essentially means setting it’s output to 0. In the rest of the paper, we will
use the definition of ablation. However, this is not necessarily the only way to define ablation.

Preprint. Under review.

* Construct a dataset of component counterfactuals by sampling a set .S of m ablated models
of n components, each represented by a vector = € {0, 1}", where z; = 0 indicates that the
ith component is ablated out. Each x; is sampled i.i.d. from a random variable with mean .

 For any given test point z, compute m forward passes on the model indicated by the set
of vectors S. Given the model output M, (z) (denoting the output of the ablated model
indicated by x on z), compute the correct class margin f (Mz(x))E]

* Using the “dataset” D = [z, f(M.(2?))]icm. compute linear regression to find a linear
model 4, : {0,1}" — R that minimizes squared loss on D.

Shah et al.[(2024) call their method Component Attribution via Regression (COAR).

Evaluation of component models. To evaluate the predictive performance of a learned component
model, [Shah et al.|(2024) suggest the general idea (borrowed from Datamodels of [Ilyas et al.| (2022))
of computing the Linear Data Score (LDS) on a holdout set S;.s¢ sampled in the same way as S (note,
performance can also be evaluated out-of-distribution by sampling Sies; With p” #). The LDS score
is essentially the Spearman rank correlation between the predicted values [0 (y), f (M. (y))]yeSies -
Additionally, component models can be evaluated directly on their performance on downstream tasks.

Why linear models? A trilemma. We could achieve optimal LDS by merely computing ablated
forward passes on counterfactuals of interest, so why learn a linear component model? The benefit
lies in the way linear models attack a trilemma involving efficiency, interpretability, and usefulness.

e Fast. For large ML models, computing ablated forward passes every time we want to peek at
some counterfactual x, f (M, (x)) is computationally expensive. Thus, we want to estimate
f(M.(x)) given x using a much more lightweight model, such as a linear model.

Interpretable. Learning a linear model gives us actual insight into the value of each com-
ponent, by “reading off” attributions from the coefficients. Due to linearity, the learned
coefficient 6; attached to x; essentially models the individual contribution of component ¢
towards increasing correct class margin. This coefficient can thus be used as a proxy for the
“importance” of a specific component to a correct prediction of model M on input z.

* Useful. Linear component models already achieve surprisingly high LDS with reasonable
sample size m (see Figure[I), and are useful for downstream tasks in model editing (e.g.
naive optimization over groups of components).

1.1 Our Contribution in a Nutshell

Linear component models do well on the trilemma by being fast, interpretable, and useful. In this
work, we study whether linear models are really the best we can do. Or, does there exist another
model class—perhaps nonlinear—that increases predictive power (LDS) and/or decreases sample
complexity (less forward passes)? Indeed, we must not compromise speed, interpretability and
usefulness when studying this question.

In a nutshell, we propose learning a quadratic polynomial as a component model. However, merely
increasing the complexity of the component model to quadratic or even cubic size (i.e., number of
parameters) is computationally and statistically prohibitive in large scale ML settings, where the
number of components is on the order of thousands or even tens-of-thousands. Hence, it is not a priori
clear that increasing component model complexity would remain fast and interpretable, nevermind
useful—we would need to compute possibly millions of forward passes to satisfy a large data-hungry
component model.

Due to these bottlenecks, we design a method for efficiently learning a quadratic polynomial, which,
all at once, is potentially:

* More predictive than previous linear methods (higher LDS).

* Requires less data to train than previous linear methods (fewer forward passes needed).

* Atleast as interpretable as previous linear methods (can still “read-off” individual component
attributions).

’The function f can also be another function of interest but Shah et al.| (2024) use correct class margin.

* More useful on a certain counterfactual reasoning task, which asks for the least & such that
there are £ components that would change the model’s prediction (and what components
they are). This is a combinatorial optimization task over sets of components.

The design of our method is guided by techniques and ideas from Boolean harmonic analysis and
combinatorial optimization. In particular, we introduce the idea of encouraging supermodularity in
the learned component model. We give a brief overview of how our method achieves each bullet
above.

* Our method has greater capacity for predictive modeling compared to linear methods, since
the supermodular polynomial class generalizes the linear model class.

* Our method requires less data because it adaptively introduces stronger inductive bias
despite having more parameters.

* Our method is at least as interpretable, since we use ideas from Boolean harmonic analysis
to show that we can still “read off” individual component influences from the parameters of
our component model.

* Our method is more useful, since a supermodular component model allows for better
optimization over sets of ablations for counterfactual reasoning tasks.

We present preliminary experimental results in the setting of a ResNet-50 trained on Imagenet in
section[3]

2 The New Method

2.1 Preliminaries

To describe our new method in more detail, we start by formalizing our setting. Recall that for a
model M and example point z, the counterfactual x, f(M,(z)) € {0,1}™ x R represents the correct
class margin on example point z of the model M with component ¢ ablated if and only if z; = 0.

In this case, note that the composed function f(M,(-)) takes as input a binary vector = and outputs a
real number. Denote this composed function by ¢ : {0,1}"™ — R (let M, z be treated as fixed for
now. It should be clear from the context). Learning a component model € essentially amounts to
approximating ¢ w.r.t. to a loss function such as squared loss and a distribution over x.

2.2 Useful ideas

Optimal least squares are Fourier coefficients. A recent work by Saunshi et al.|(2022)) illuminates
a connection between studying a function like ¢ and Boolean harmonic analysis In Boolean
harmonic analysis, a function g : {0,1}"™ — R is viewed as a linear combination of basis functions
which are Boolean parity functions ys : {0,1}" — {—1,1}, where x5(z) = (—1)2=ies Timod2,
Every g has a unique representation in terms of the coefficients of this linear combination, also known
as the Fourier coefficients. We use §(.5) to denote the Fourier coefficient on xg.

Among other results,|Saunshi et al.{(2022) show that the optimal parameters of a linear data/component
model for the function ¢, when the model is trained on minimizing mean squared error are the degree-
1 Fourier coefficients of f. The degree d Fourier coefficients are those that are attached to the parity
functions x s for d = |\S|. Hence, learning a good linear model 6 for ¢ is equivalent to estimating the
n degree 1 Fourier coefficients.

Supermodular and submodular functions have few large Fourier coefficients. It is well known
that one can learn a function by estimating all the Fourier coefficients. Since in general there are 2™
Fourier coefficients, this is not computationally practical. In large scale settings where the number
of components n is very large, even O(n?) coefficients is very problematic. However, when the
function is known to have certain bias in the distribution of the coefficients, efficient learning can be

3Saunshi et al.| (2022) do this in the context of datamodels (Ilyas et al., 2022), which is basically “dual” to
our setting.

possible. For example, the success of COAR demonstrates that a large amount of the total weight of
the Fourier coefficients of the ground truth component model is on just degree 1.

We now highlight the following theorem from [Feldman and Vondrak|(2016).

Theorem 2.1 (Feldman and Vondrak! (2016)) Let g : {0,1}" — [0, 1] be a submodular function
and o, 8 > 0. Let

I'={ie][lg{ih)] = apud{iec(n] |35 |9({i,5})] = B}
Then |I| < m

This theorem very nontrivially bounds the number of large coefficients of submodular functions,
on degree 1 and degree 2, in terms of their minimum size. Since the theorem only deals with
the magnitiude of coefficients, it also holds for supermodular functions, since negating all Fourier
coefficients of a supermodular function yields a submodular function.

Additionally, we observe a straightforward way to find large (i.e., important) coefficients on without
needing to estimate all n? degree 2 coefficients: first, find k large degree 1 coefficients, and then
check the degree 2 coefficients that involve the k largest variables x; only. All in all this estimates kn
coefficients for k << n, as opposed to n? coefficients. This can be further optimized to the heuristic
of only estimating all degree 2 coefficients on parity functions that contain only the top k variables.
This means estimating n + k2 < kn coefficients.

Supermodular functions and positive degree 2 coefficients. Finally, we define supermodularity
and submodularity.

Definition 2.1 (Submodular functions) A set function g : 2% — R is called submodular if it
satisfies the diminishing returns property. Formally, for every A C B C N and every x ¢ B, the
following inequality holds:

9(Au{z}) — g(A) = g(BU{z}) — g(B)

One can think of sets A C B as indicator vectors, and the union operation as flipping a bit from 0 to
1.

Definition 2.2 (Supermodular functions) A set function g : 2 — R is supermodular if and only
if —g is submodular.

When a function has negative degree 2 coefficients, that makes it more likely to be submodular
(conversely, positive degree 2 coefficients make it more likely to be supermodular). Observe that
this is the case because degree 2 coefficients measure the effect of setting a certain variable x; from
0 to 1 (adding i to the set), in the presence of another variable x; already being set to 1. Hence,
a negative coefficient implements a diminishing return, since it subtracts from the naive value of

9{i}) +9({s})-
2.3 Description of new method

We now give a full description of our proposed heuristic. In brief, we will describe a heuristic that
leverages all of the useful facts above to efficiently learn a supermodular quadratic polynomial as a
component model for ¢, for any fixed M and z.

1. Apply COAR to learn a linear model 6, for ¢. Use mini-batch SGD to implement
regression.

e From|Saunshi et al.|(2022)), we know that the learned coefficients of 0y;,, are estimates
for the degree 1 Fourier coefficients of ¢.

2. Select the top k coefficients from 6;;,,. Let the set of indices be K C [n]. Augment the
linear model with interaction terms for all K (K — 1)/2 pairwise combinations of indices in
K.

* From the theorem of |[Feldman and Vondrak| (2016)), looking at the top k coefficients
and the pairwise interactions is a reasonable heuristic for finding all the important
coefficients and skipping unimportant ones (i.e., those very close to 0 in magnitude.).

3. Continue projected mini-batch SGD on the augmented model ,,. At each SGD step, project
all negative interaction term coefficients 0.

* The projection to nonnegative coefficents encourages supermodularity because reason-
ing outlined in the previous section.

3 Imagenet: Preliminary Results for LDS by Sample Complexity

We conduct preliminary empirical studies on the predictive performance of our designed heuristic,
with respect to various samples sizes. We compare our results to an implementation of COAR.

Specifically, we work in the setting of learning a component model for a ResNet-50 network trained
on ImageNet. The ResNet-50 has 22,720 components, which each correspond to one convolutional
filter. We generate counterfactual component ablations as our training dataset by sampling 50,000
randomly ablated ResNet-50 models, and computing forward passes on a set of 16 random images
from the Imagenet test set. We use a test set of 5,000 held out random ablations to test our own
component model. The random ablations are sampled by ablating each component with probability
0.1. Linear Data Score (LDS) is used as the primary metric to compare the predicted margins against
the actual values.

To instantiate our heuristic, we set k& = 16; so we use the top 16 features, as determined by preliminary
coefficient magnitudes from the learned linear model, to derive 120 interaction terms. We train all
models for the same number of gradient steps (at each sample size). In particular, the COAR
implementation is trained for 300 epochs with mini-batch size of 64. Our method uses 200 epochs to
learn the linear coefficients (step 1), and then continues training using projected SGD for another 100
epochs in step 3.

Our results are summarized by Figure|l] where we compare LDS by sample size for our method vs.
COAR.

Mean Bootstrapped LDS vs. Sample Size

Feature Mapping
k=0 (COAR)
*— k=16

0.3

0.2

Mean Bootstrapped LDS

0.1

0.0

20000 25000 30000 35000 40000 45000 50000
Sample Size

Figure 1: This lineplot gives the mean LDS of executing our method on various sample size, versus the COAR
method, on 16 random test images from Imagenet. We see that our method effectively reduces sample size by
20%—itrom 50,000 to 40,000, in order to achieve the same LDS near 0.4. Our method can also marginally
increase LDS when holding sample size constant. We plot 95% confidence intervals by the shaded areas, which
are computed using 1000 bootstrapped simulations.

4 Applications

In this section, we discuss ways that our submodular quadratic component models still retains the
interpretability of previous linear methods. We also discuss how we can apply more nontrivial
optimization methods despite nonlinearity, in the appendix, section[A] The current section should be
read prior to section

Distribution of Coefficients

Figure 2: Showing the effect of projected gradient descent on the learned interaction coefficients.

4.1 Individual influence estimates

Let P be a p-biased distribution over x (where each bit of z is sampled from a Bernoulli random
variable with mean p). The ! discrete derivative of a function g : {0,1}" — Ratapointz € {0,1}"
is defined as

=0y _

2

z’—)l)

g(z g(

D[g(z)] =0 - (1)

Here, o is the standard deviation of P.

While discrete derivatives are a hallmark of Boolean Fourier analysis, DY [¢(x)] is a quantity of high
interest when attempting to understand the role of the i*” component towards a prediction or correct
class margin of a (possibly ablated) model M (x) on example point z. In this setting it is referred to
as the individual influence of component <.

Context-aware individual influence estimates. It turns out that E, [D¥[g(z)]] = g({z})ﬂ Hence,
what linear methods for component models optimize for is learning estimates for D¥ [¢(z)] for each
i, where z is distributed the same way the training distribution is (p-biased distribution). The 7*"
learned coefficient in COAR is the estimate for D?[¢(z)].

However, we would really like to be able to directly estimate D?[¢(z)] for any 2. We call this the
context-aware setting. For downstream applications, we may be sitting on a model trained on a
certain dataset z, so we want D?[¢(x)] instead of the average over P.

In this setting, we can use a direct identity for D?[g(z)].

Dl[g(x)] = > 9(S)xs\ (i3 () 2

Sues

Now, this identity demonstrates not only that computing individual influence estimates from quadratic
models is possible, but that it leads to better estimated discrete derivatives in the context-aware setting.
With a quadratic model, we can now estimate D¥[g(x)] by using the direct identity , as follows:

J#i
Here 0;; denotes the learned interaction coefficient for term X{i,j}(x)- It follows from the same
general idea that learning these coefficients is equivalent to estimating Fourier coefficients of ¢. We

thus observe that in this way, our estimates for individual influence actually depend on the current
ablation x. We note that however that our heuristic does not estimate every 0;; for all ¢, j.

A Top-k Counterfactual Reasoning and Group Influence via Submodular
Maximization

An interesting application of a component model is for solving the top k counterfactual problem: find
a set of at most k components such that, when ablated, most reduce the correct class margin of the

“Here, © ~ P, and § is the p-biased Fourier transform. We do not define p-biased Fourier transform in the
present work, and refer the reader to a text such as/O’Donnell| (2014).

model M on example point z. This would correspond to the largest group influence of groups of size
k. Questions like this are combinatorial optimization problems that can be written as follows.
1) —¢p(1\S 4

sz, (1) —9(1\ 5) ©)
Here 1 denotes the complete set. Given a component model 6, we can try to approximately solve
by computing:

0(1)—6(1\S 5

S, 00 =01\ 5))
Now, since 6(S) has only positive quadratic coefficients, this means that 6(1 \ S) also exhibits
a compounding returns property and is indeed supermodular as well. Then, when considering
¢ —0(1\ S) for a constant ¢, we can see that (5] is a submodular maximization problem.

Greedy submodular maximization. Submodular maximization with cardinality constraints is en
extremely active area of research. We can import known algorithms that achieve good approximation
guarantees for (3).

For instance, if we assume that for a certain k, (1) — (1 \ S) is monotone (i.e., growing the
argument set only increases the function value), then a simple greedy optimization algorithm achieves
a (1 — 1/e)-approximation guarantee. This was proved by Nemhauser et al.|(1978)).

Our quadratic model 6 allows for nontrivial implementation of the greedy algorithm. Note that the
greedy algorithm is inherently context-aware, in that the choice at each stage of the algorithm depends
on the previous choices. In the previous section, we showed exactly that our quadratic model allows
us to actually re-estimate individual influence at each stage, because our individual influence estimate
takes into account the current ablation set.

In contrast, applying a greedy method to a linear model is trivial. This is because the individual
influence estimate is independent of the current ablation set. Hence, the greedy algorithm reduces
to using the sum of the top k individual estimates (i.e., the largest k coefficients in 6;;,,). Thus the
greedy algorithm is trivialized when the component model is linear, but not when it is quadratic.

If we cannot assume that for a certain k, (1) —60(1\.5) is monotoneE] then we can used unconstrained
submodular maximization algorithms. For example, in the unconstrained case, |Buchbinder and
Feldman| (2018]) show that:

Theorem A.1 (Buchbinder and Feldman| (2018)) Let f be a non-negative submodular function.
There exists a deterministic algorithm that has an approximation ratio of % for the problem

sff?}’ékf(s)'

The algorithm makes O(k3n) queries to f.

This algorithm can be applied in linear time for the unconstrained case to solve the top k counterfactual
problem. We can assume that §(1) — 6(1 \ S) is nonnegative up to our k of interest. In this case,
k 4+ 1 would correspond to the fewest ablations needed to make the model’s prediction incorrect.

References

Bereska, L. and Gavves, E. (2024). Mechanistic interpretability for ai safety — a review.

Buchbinder, N. and Feldman, M. (2018). Deterministic algorithms for submodular maximization
problems. ACM Transactions on Algorithms (TALG), 14(3):1-20.

Feldman, V. and Vondrak, J. (2016). Optimal bounds on approximation of submodular and xos
functions by juntas. SIAM Journal on Computing, 45(3):1129-1170.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry, A. (2022). Datamodels: Predicting
predictions from training data. arXiv preprint arXiv:2202.00622.

5This is definitely not always a good assumption, since |Shah et al.|(2024) show that ablations can be used to
increase correct class margin.

Nembhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14:265-294.

O’Donnell, R. (2014). Analysis of boolean functions. Cambridge University Press.

Saunshi, N., Gupta, A., Braverman, M., and Arora, S. (2022). Understanding influence functions
and datamodels via harmonic analysis. In The Eleventh International Conference on Learning
Representations.

Shah, H., Ilyas, A., and Madry, A. (2024). Decomposing and editing predictions by modeling model
computation. arXiv preprint arXiv:2404.11534.

	Introduction
	Our Contribution in a Nutshell

	The New Method
	Preliminaries
	Useful ideas
	Description of new method

	Imagenet: Preliminary Results for LDS by Sample Complexity
	Applications
	Individual influence estimates

	Top-k Counterfactual Reasoning and Group Influence via Submodular Maximization

