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Abstract

Non-stationarity poses significant challenges for
multivariate time series forecasting due to the
inherent short-term fluctuations and long-term
trends that can lead to spurious regressions or
obscure essential long-term relationships. Most
existing methods either eliminate or retain non-
stationarity without adequately addressing its dis-
tinct impacts on short-term and long-term mod-
eling. Eliminating non-stationarity is essential
for avoiding spurious regressions and capturing
local dependencies in short-term modeling, while
preserving it is crucial for revealing long-term
cointegration across variates. In this paper, we
propose TimeBridge, a novel framework designed
to bridge the gap between non-stationarity and
dependency modeling in long-term time series
forecasting. By segmenting input series into
smaller patches, TimeBridge applies Integrated
Attention to mitigate short-term non-stationarity
and capture stable dependencies within each
variate, while Cointegrated Attention preserves
non-stationarity to model long-term cointegration
across variates. Extensive experiments show that
TimeBridge consistently achieves state-of-the-art
performance in both short-term and long-term
forecasting. Additionally, TimeBridge demon-
strates exceptional performance in financial fore-
casting on the CSI 500 and S&P 500 indices, fur-
ther validating its robustness and effectiveness.
Code is available at https://github.com/
Hank0626/TimeBridge.

1. Introduction
Multivariate time series forecasting aims to predict future
changes based on historical observations of time series data,
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Figure 1. Visualization of the impact of non-stationarity on short-
term and long-term modeling. The goal is to forecast two coin-
tegrated sequences, Xt and Yt, where Xt exhibits two random
fluctuations. (a) Retaining non-stationarity preserves long-term
cointegration between variates but leads to spurious regressions in
short-term modeling (orange line). (b) Removing non-stationarity
avoids short-term spurious regressions but disrupts long-term simi-
lar trends (green line).

which holds significant applications in fields such as finan-
cial investment (Sezer et al., 2020), weather forecasting
(Karevan & Suykens, 2020), and traffic flow prediction (Shu
et al., 2021; Miao et al., 2024b). However, the inherent non-
stationarity of time series (Kim et al., 2022), characterized
by short-term fluctuations and long-term trends, introduces
challenges such as spurious regressions, making time series
forecasting a particularly complex task.

Recently, many methods have emerged to utilize a
normalization-and-denormalization paradigm to address
non-stationarity in time series (Kim et al., 2022; Fan et al.,
2023; Liu et al., 2023; 2024b). For instance, RevIN (Kim
et al., 2022) normalizes the input data and subsequently
applies its distributional characteristics to denormalize the
output predictions. Building on this approach, other meth-
ods have designed distributional prediction networks (Fan
et al., 2023) and more refined normalization techniques (Liu
et al., 2023) to further mitigate non-stationarity. On the
other hand, some studies (Liu et al., 2022b; Ma et al., 2024;
Fan et al., 2024) argue that over-stabilizing time series may
actually reduce the richness of embedded features, leading
to a decline in model performance. Existing methods for
addressing non-stationarity in time series face a dilemma:
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some prioritize eliminating non-stationary factors to reduce
overfitting, while others attempt to incorporate these factors
but lack comprehensive theoretical frameworks. Further-
more, they do not adequately explain the trade-offs between
removing non-stationarity and leveraging it for modeling.

It is notable that non-stationary characteristics have dis-
tinct impacts on modeling short-term and long-term de-
pendencies. Non-stationarity can lead to spurious regres-
sions in short-term modeling due to the high randomness
and unpredictability of short-term fluctuations (Noriega &
Ventosa-Santaulària, 2007) (see Figure 1a). For example, a
sudden drop in temperature could be caused by a typhoon
or cold front, both of which have no intrinsic connection.
Retaining non-stationarity can result in false correlations
between such unrelated events. However, non-stationarity
is crucial for capturing long-term cointegration relation-
ships among variates, reflecting their co-movement or syn-
chronized changes over time (Fanchon & Wendel, 1992).
Removing non-stationarity may also eliminate these essen-
tial long-term dependencies (see Figure 1b). Therefore,
while non-stationarity can cause spurious regressions in
short-term modeling, it is essential for modeling long-term
dependencies between variates. Conversely, eliminating
non-stationarity benefits short-term modeling but erases
long-term cointegration.

In this paper, to address the dual challenges posed by non-
stationarity in short-term and long-term modeling, we pro-
pose distinct strategies tailored to each scenario. For short-
term modeling, we eliminate non-stationarity to capture the
strong temporal dependencies within each variate, as short-
term causal relationships mainly exist between consecutive
time points within a single variate rather than across variates.
This strategy reduces the risk of spurious regressions from
non-stationary fluctuations, enabling the model to better
capture the local causal dynamics. For long-term model-
ing, we utilize the preserved non-stationarity to uncover
long-term cointegration relationships between different vari-
ates, thereby enabling more accurate and reliable long-term
forecasting.

Technically, based on the above motivations, we propose
TimeBridge as a novel framework to bridge the gap between
non-stationarity and dependency modeling in long-term
time series forecasting. TimeBridge first captures short-
term fluctuations by partitioning the input sequence into
small-length patches, followed by utilizing Integrated At-
tention to model these stabilized sub-sequences within each
variate. Here, “Integrated” reflects the non-stationary na-
ture of the short-term series, also referred to as integrated
series (Park & Phillips, 2001). Subsequently, we downsam-
ple the patches to reduce their quantity, thereby enriching
each patch with more long-term information. Cointegrated
Attention retains the non-stationary characteristics of the

sequences to effectively capture the long-term cointegration
relationships among variates. Experiments across multiple
datasets demonstrate that TimeBridge achieves consistent
state-of-the-art performance in both long-term and short-
term forecasting. Furthermore, we validate the effectiveness
of TimeBridge on two financial datasets, the CSI 500 and
S&P 500, which exhibit significant short-term volatility and
strong long-term cointegration relationships among sectors.

In a nutshell, our contributions are summarized in three
folds:

1. Going beyond previous methods, we establish a novel
connection between non-stationarity and dependency
modeling, highlighting the importance of eliminating
non-stationarity in short-term variations while preserv-
ing it for long-term cointegration.

2. We propose TimeBridge, a novel framework that em-
ploys Integrated Attention to model temporal depen-
dencies by mitigating short-term non-stationarity, and
Cointegrated Attention to capture long-term cointegra-
tion across variates while retaining non-stationarity.

3. Comprehensive experiments demonstrate that Time-
Bridge achieves state-of-the-art performance in both
long-term and short-term forecasting across various
datasets. Moreover, we further validate its robustness
and effectiveness on the CSI 500 and S&P 500 indices,
which pose additional challenges due to their complex
volatility and cointegration characteristics.

2. Related Works
As shown in Figure 2, recent advancements in multivariate
time series forecasting have predominantly focused on two
core directions: Normalization and Dependecy Modeling.

Normalization can be divided into stationary and non-
stationary methods. Stationary methods (Kim et al., 2022;
Fan et al., 2023; Liu et al., 2024b; 2023) aim to eliminate
non-stationarity through model-agnostic normalization tech-
niques, thereby preventing spurious regressions and enhanc-
ing model performance. For example, RevIN (Kim et al.,
2022) applies Z-normalization to the input sequence and
then reverses the normalization on the output using the
distributional characteristics of the input, assuming that
both share similar distributional properties. Dish-TS (Fan
et al., 2023) takes this further by predicting the statistical
characteristics of the output with a distribution prediction
model. Additionally, SAN (Liu et al., 2023) offers a more
granular patch-level prediction method. Conversely, some
approaches (Liu et al., 2022b; Ma et al., 2024; Fan et al.,
2024) advocate preserving non-stationarity, as excessive
normalization can eliminate inherent diverse sequence char-
acteristics and limit predictive accuracy.
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Figure 2. Time series forecasting methods categorized by normal-
ization and dependency modeling.

Dependency Modeling focuses on designing methods to
capture the relationships within multivariate time series,
which can be classified into Channel Independent (CI) and
Channel Dependent (CD) methods. CI methods (Zeng et al.,
2023; Das et al., 2023; Nie et al., 2023; Dai et al., 2024;
Lin et al., 2024; Miao et al., 2025) rely exclusively on the
historical values of each individual channel for prediction,
deliberately avoiding cross-channel interactions. This strat-
egy not only stabilizes the training process but also excels
at capturing rapid temporal dynamics unique to each vari-
ate. In contrast, CD methods (Wu et al., 2021; Zhou et al.,
2022; Wu et al., 2023; Zhang & Yan, 2023; Liu et al., 2024a;
Hu et al., 2025b;a) leverage the interrelationships between
variates for modeling. While these methods utilize more
information, they struggle with spurious regressions when
modeling short-term dependencies, failing to capture rapid
changes effectively.

The challenge with previous methods lies in their isolated
treatment of non-stationarity and dependency model-
ing, overlooking their intrinsic connection. Due to non-
stationarity, time series often exhibit significant short-term
fluctuations, leading to severe spurious regressions when
modeling short-term dependencies. However, capturing
long-term cointegration requires preserving this underlying
variability. Therefore, short-term random fluctuations need
to be addressed by eliminating non-stationarity and mod-
eling intra-variate temporal dependencies, while long-term
cointegration demands preserving non-stationarity for inter-
variate modeling. Our proposed TimeBridge addresses these
issues by employing Integrated Attention and Cointegrated
Attention, respectively.

3. Method
In the task of multivariate time series forecasting,
the objective is to predict future sequences Y =
[xI+1, · · · ,xI+O] ∈ RC×O given historical input se-
quences X = [x1, · · · ,xI ] ∈ RC×I . Here, I and O denote
the lengths of the input and output sequences, respectively,

and C represents the number of time variates. It is important
to recognize that real-world time series data often exhibit
high short-term uncertainty, while long-term dynamics may
reveal cointegration relationships among different time vari-
ates.

3.1. Structure Overview

As illustrated in Figure 3, our proposed TimeBridge con-
sists of four key components: (a) Patch Embedding seg-
ments the input sequence into non-overlapping patches and
transforms each patch into a patch token; (b) Integrated
Attention models the dependencies among all patch tokens
of the same variates. By eliminating non-stationarity within
each patch token, it mitigates the risk of spurious regres-
sions that could arise from abrupt short-term changes; (c)
Patch Downsampling aggregates global information and re-
duces the number of patches to encapsulate richer long-term
features within each patch, while simultaneously lowering
computational complexity; (d) Cointegrated Attention pre-
serves the non-stationary characteristics of the sequence
and models the long-term cointegration relationships across
different variates within the same temporal window.

3.2. Patch Embedding

In this stage, each variate of the input sequence X is first
divided into non-overlapping patches, and each patch is then
mapped to an embedded patch token. Since the process is
identical for each variate, we use X to represent a single
variate and later restore the dimensionality of the variates.
Formally, this process can formulated as follows:

{p1, · · · ,pN} = Patching(X), (1)
P = Embedding(p1, · · · ,pN ) (2)

Here, each patch pi has a length of S, and the number of
patches N =

⌊
I
S

⌋
. The Embedding(·) operation transforms

each patch from its original length S to a hidden dimension
D through a trainable linear layer. This results in embedded
patch tokens P ∈ RC×N×D, where each of the C vari-
ates contains N patches, capturing local information that
is typically subject to rapid short-term fluctuations. For
convenience, we denote Pc,: as the set of all patches within
a single variate and P:,n as the patches across all variates at
the same time position in the following sections.

3.3. Integrated Attention

The embedded patch tokens P represent short-term non-
stationary sequences, also referred to as integrated series
of order k (k > 0) (Park & Phillips, 2001; Mushtaq, 2011).
This non-stationarity makes it challenging to model depen-
dencies across different variates, as short-term fluctuations
are highly susceptible to external shocks. Furthermore,
modeling temporal dependencies within the same variate
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Figure 3. Overall architecture of TimeBridge: (a) Patch Embedding divides the input sequence into non-overlapping patches and embeds
each as a token; (b) Integrated Attention models temporal dependencies within each variate by mitigating short-term non-stationarity; (c)
Patch Downsampling reduce patches to aggregates long-term information and lower complexity; (d) Cointegrated Attention captures
long-term relationships across variates while keeping non-stationarity.

can lead to spurious regression due to the inherent non-
stationarity of the patches. To address this, we first apply a
patch-wise normalization to all patches within a variate:

pTrend
i = AvgPool(Padding(pi)),p

′
i = pi − pTrend

i (3)
P′

c,: = {p′
1, · · · ,p′

N}, (4)

where the AvgPool(·) operation is moving average with the
Padding(·) operation to keep the series length unchanged.
We then employ the proposed Integrated Attention mech-
anism to capture temporal dependencies within the same
variate:

P̂c,: = LayerNorm
(
Pc,: + Attention(P′

c,:,P
′
c,:,Pc,:)

)
,

(5)

Pc,: = LayerNorm
(
P̂c,: + MLP(P̂c,:)

)
, (6)

where MLP(·) represents a multi-layer feedforward network,
and LayerNorm(·) denotes layer normalization. The atten-
tion mechanism uses the normalized P′

c,: as both Query and
Key, while the original Pc,: serves as the Value. This design
generates a stationary attention map, which is then directly
multiplied by the Value, removing the need for subsequent
denormalization. By leveraging Integrated Attention in this
way, we effectively model the temporal dependencies with-
out being affected by the short-term non-stationary nature
of the sequences.

3.4. Patch Downsampling

Long-term equilibrium relationships between sequences,
or cointegration among different variates, often require
sequences to contain sufficient long-term information to
emerge. Therefore, before modeling the cointegration be-
tween variates, it is crucial to increase the amount of global
information represented by each patch. This is achieved
by reducing the number of patches and aggregating global
information through the attention mechanism:

P′
c,: = Downsample(Pc,:) (7)

Pc,: = Attention(P′
c,:,Pc,:,Pc,:). (8)

Here, Downsample(·) reduces the N patches in Pc,: to
M patches (M < N ) using an MLP. By employing the
downsampled P′

c,: ∈ RM×D as the Query and the original
Pc,: ∈ RN×D as the Key and Value in the attention mech-
anism, we leverage the long-range modeling capability of
attention to dynamically aggregate global information. This
allows each patch to encapsulate richer long-term informa-
tion, making it possible to capture the intricate cointegration
relationships that emerge only over sufficiently extended
temporal horizons.

3.5. Cointegrated Attention

Although short-term relationships between integrated series
are susceptible to spurious regressions, accurately modeling
long-term cointegration between sequences necessitates re-
taining their inherent non-stationary characteristics. Since
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each downsampled patch now encapsulates more extensive
long-term information, we leverage Cointegrated Attention
to directly model the cointegration relationships among all
variates at the same time interval P:,n ∈ RC×D:

P̂:,n = LayerNorm(P:,n + Attention(P:,n,P:,n,P:,n)),
(9)

P:,n = LayerNorm(P̂:,n + MLP(P̂:,n)). (10)

This attention mechanism not only captures the global coin-
tegration relationships across variates but also adaptively
assesses the strength of these relationships: stronger coin-
tegration is reflected by higher attention weights, while
weaker connections receive lower weights. Finally, the em-
bedded patch tokens P ∈ RC×M×D are unpatched and
projected to the final output Y ∈ RC×O.

4. Experiment
To validate the effectiveness of the proposed TimeBridge,
we conduct extensive experiments on a variety of time series
forecasting tasks, including both long-term and short-term
forecasting. Additionally, we evaluate TimeBridge on finan-
cial forecasting tasks characterized by significant short-term
volatility and strong long-term cointegration relationships
among sectors.

Baselines. For long-term forecasting, we select a diverse set
of state-of-the-art baselines representative of recent advance-
ments in time series forecasting, including the Transformer-
based DeformableTST (Luo & Wang, 2024), the CNN-
based ModernTCN (Donghao & Xue, 2024), the MLP-
based TimeMixer (Wang et al., 2024b), as well as other com-
petitive methods such as iTransformer (Liu et al., 2024a),
PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan,
2023), Leddam (Yu et al., 2024), MICN (Wang et al., 2022),
TimesNet (Wu et al., 2023), and DLinear (Zeng et al., 2023).
For short-term forecasting, we add two well-performing
baselines SCINet (Liu et al., 2022a) and DUET (Qiu et al.,
2025). For financial forecasting, we also incorporate the mo-
mentum strategy CSM (Jegadeesh & Titman, 1993) and the
reversal strategy BLSW (Poterba & Summers, 1988), along
with two classic deep learning models, LSTM (Hochreiter
& Schmidhuber, 1997) and Transformer (Vaswani et al.,
2017a), to provide a comprehensive evaluation.

Implementation Details. All experiments are implemented
in PyTorch (Paszke et al., 2019) and conducted on two
NVIDIA RTX 3090 24GB GPUs. We use the Adam opti-
mizer (Kingma, 2014) with a learning rate selected from
{1e-3, 1e-4, 5e-4}. The number of patches N is set accord-
ingly to different datasets. We adopt a hybrid MAE loss
that operates in both the time and frequency domains for
stable training (Wang et al., 2024a). For additional details
on hyperparameter settings and loss function, please refer

to the Appendix E.

4.1. Long-term Forecasting

Setups. We conduct long-term forecasting experiments on
several widely-used real-world datasets, including the Elec-
tricity Transformer Temperature (ETT) dataset with its four
subsets (ETTh1, ETTh2, ETTm1, ETTm2) (Wu et al., 2021;
Miao et al., 2024a), as well as Weather, Electricity, Traffic,
and Solar (Liu et al., 2025a;b). These datasets exhibit strong
non-stationary characteristics, detailed in Appendix D. Fol-
lowing previous works (Zhou et al., 2021; Wu et al., 2021),
we use Mean Square Error (MSE) and Mean Absolute Error
(MAE) as evaluation metrics. We set the input length I
to 720 for our method. For other baselines, we adopt the
setting that searches for the optimal input length I and other
hyperparameters. Details of the metric and the searching
process can be found in Appendix C.1 and Appendix F.1.

Results. As shown in Tab. 1, TimeBridge consistently
achieves the best overall performance. Notably, the large-
scale Traffic dataset, with its 862 channels, presents sub-
stantial challenges due to its high dimensionality and in-
tricate temporal dependencies. TimeBridge adeptly bal-
ances non-stationarity and dependency modeling, achiev-
ing consistently strong predictive performance. Quantita-
tively, compared to state-of-the-art methods—Transformer-
based DeformableTST (Luo & Wang, 2024), CNN-based
ModernTCN (Donghao & Xue, 2024), and MLP-based
TimeMixer (Wang et al., 2024b)—TimeBridge reduces
MSE and MAE by 1.85%/2.49%, 5.56%/4.12%, and
13.66%/7.58%, respectively.

4.2. Short-term Forecasting

Setups. For short-term forecasting, we conduct experiments
on the PeMS datasets (Wang et al., 2024b), which capture
complex spatiotemporal correlations among multiple vari-
ates across city-wide traffic networks. We use mean absolute
error (MAE), mean absolute percentage error (MAPE), and
root mean squared error (RMSE) as evaluation metrics. The
input length I is set to 96 and the output length O to 12
for all baselines. Details of datasets and metrics are in
Appendix D and Appendix C.2.

Results. As shown in Tab. 2, methods that perform well in
long-term forecasting with channel-independent approaches,
such as PatchTST (Nie et al., 2023) and DLinear (Zeng
et al., 2023), suffer from significant performance degrada-
tion on the PeMS dataset due to its strong inter-variable
dependencies. In contrast, TimeBridge demonstrates ro-
bust performance on this challenging task, outperforming
even the recent state-of-the-art method TimeMixer (Wang
et al., 2024b), which highlights its effectiveness in capturing
complex spatiotemporal relationships.
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Models TimeBridge iTransformer DeformableTST TimeMixer PatchTST Crossformer Leddam ModernTCN MICN TimesNet DLinear
(Ours) (2024a) (2024) (2024b) (2023) (2023) (2024) (2024) (2022) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.344 0.379 0.362 0.391 0.348 0.383 0.355 0.380 0.353 0.382 0.420 0.435 0.354 0.381 0.351 0.381 0.383 0.406 0.400 0.406 0.357 0.379

ETTm2 0.246 0.310 0.269 0.329 0.257 0.319 0.257 0.318 0.256 0.317 0.518 0.501 0.265 0.320 0.253 0.314 0.277 0.336 0.291 0.333 0.267 0.332

ETTh1 0.397 0.424 0.439 0.448 0.404 0.423 0.427 0.441 0.413 0.434 0.440 0.463 0.415 0.430 0.404 0.420 0.433 0.462 0.458 0.450 0.423 0.437

ETTh2 0.341 0.382 0.374 0.406 0.328 0.377 0.349 0.397 0.324 0.381 0.809 0.658 0.345 0.391 0.322 0.379 0.385 0.430 0.414 0.427 0.431 0.447

Weather 0.219 0.249 0.233 0.271 0.222 0.262 0.226 0.264 0.226 0.264 0.228 0.287 0.226 0.264 0.224 0.264 0.242 0.298 0.259 0.287 0.240 0.300

Electricity 0.149 0.245 0.164 0.261 0.161 0.261 0.185 0.284 0.159 0.253 0.181 0.279 0.162 0.256 0.156 0.253 0.182 0.292 0.192 0.295 0.166 0.264

Traffic 0.360 0.255 0.397 0.282 0.391 0.278 0.409 0.279 0.391 0.264 0.523 0.284 0.452 0.283 0.396 0.270 0.535 0.312 0.620 0.336 0.434 0.295

Solar 0.181 0.239 0.200 0.260 0.185 0.254 0.193 0.252 0.194 0.245 0.191 0.242 0.223 0.264 0.228 0.282 0.213 0.266 0.244 0.334 0.247 0.309

Table 1. Long-term forecasting hyperparameter search results. All results are averaged across four different prediction lengths:
O ∈ {96, 192, 336, 720}. See Tab. 9 for full results.

Models TimeBridge TimeMixer SCINet Crossformer PatchTST TimesNet MICN DLinear DUET Stationary Autoformer Informer
(Ours) (2024b) (2022a) (2023) (2023) (2023) (2022) (2023) (2025) (2022b) (2021) (2021)

PeMS03
MAE 14.52 14.63 15.97 15.64 18.95 16.41 15.71 19.70 15.57 17.64 18.08 19.19

MAPE 14.21 14.54 15.89 15.74 17.29 15.17 15.67 18.35 15.27 17.56 18.75 19.58
RMSE 23.10 23.28 25.20 25.56 30.15 26.72 24.55 32.35 22.99 28.37 27.82 32.70

PeMS04
MAE 19.24 19.21 20.35 20.38 24.86 21.63 21.62 24.62 20.84 22.34 25.00 22.05

MAPE 12.42 12.53 12.84 12.84 16.65 13.15 13.53 16.12 14.88 14.85 16.70 14.88
RMSE 31.12 30.92 32.31 32.41 40.46 34.90 34.39 39.51 31.41 35.47 38.02 36.20

PeMS07
MAE 20.43 20.57 22.79 22.54 27.87 25.12 22.28 28.65 22.34 26.02 26.92 27.26

MAPE 8.42 8.62 9.41 9.38 12.69 10.60 9.57 12.15 9.92 11.75 11.83 11.63
RMSE 33.44 33.59 35.61 35.49 42.56 40.71 35.40 45.02 34.97 42.34 40.60 45.81

PeMS08
MAE 14.98 15.22 17.38 17.56 20.35 19.01 17.76 20.26 15.54 19.29 20.47 20.96

MAPE 9.56 9.67 10.80 10.92 13.15 11.83 10.76 12.09 9.87 12.21 12.27 13.20
RMSE 23.77 24.26 27.34 27.21 31.04 30.65 27.26 32.38 24.04 38.62 31.52 30.61

Table 2. Short-term forecasting results in the PeMS datasets.

Models CSI 500 S&P 500

ARR↑ AVol↓ MDD↓ ASR↑ CR↑ IR↑ ARR↑ AVol↓ MDD↓ ASR↑ CR↑ IR↑

BLSW (1988) 0.110 0.227 -0.155 0.485 0.710 0.446 0.199 0.318 -0.223 0.626 0.892 0.774
CSM (1993) 0.015 0.229 -0.179 0.066 0.084 0.001 0.099 0.250 -0.139 0.396 0.712 0.584

LSTM (1997) -0.008 0.159 -0.172 -0.047 -0.044 -0.128 0.142 0.162 -0.178 0.877 0.798 0.929
Transformer (2017a) 0.154 0.156 -0.135 0.986 1.143 0.867 0.135 0.159 -0.140 0.852 0.968 0.908

PatchTST (2023) 0.118 0.152 -0.127 0.776 0.923 0.735 0.146 0.167 -0.140 0.877 1.042 0.949
Crossformer (2023) -0.039 0.163 -0.217 -0.238 -0.179 -0.350 0.284 0.159 -0.114 1.786 2.491 1.646

iTransformer (2024a) 0.214 0.168 -0.164 1.276 1.309 1.173 0.159 0.170 -0.139 0.941 1.150 0.955
TimeMixer (2024b) 0.078 0.153 -0.114 0.511 0.685 0.385 0.254 0.162 -0.131 1.568 1.938 1.448

TSMixer (2023) 0.086 0.156 -0.143 0.551 0.601 0.456 0.187 0.173 -0.156 1.081 1.199 1.188

TimeBridge (Ours) 0.285 0.203 -0.196 1.405 1.453 1.317 0.326 0.169 -0.142 1.927 2.298 1.842

Table 3. Results for financial time series forecasting in CSI 500 and S&P 500 datasets. See Tab. 10 for full results.

4.3. Financial Forecasting

Setups. We conduct experiments on both the U.S. and Chi-
nese stock markets, including the S&P 500 and CSI 500
indices. Stock price movements are influenced by vari-
ous factors such as economic indicators, market sentiment,
geopolitical events, and company-specific news, leading
to high non-stationarity. We predict next-day returns us-
ing historical data and generate investment portfolios with
a buy-hold-sell strategy (Sanderson & Lumpkin-Sowers,
2018). At day t + 1 open, traders sell day t stocks and
buy top-ranked ones based on predicted returns. Following
previous work (Lin et al., 2021), we evaluate performance
using Annual Return Ratio (ARR), Annual Volatility (AVol),
Maximum Drawdown (MDD), Annual Sharpe Ratio (ASR),

Calmar Ratio (CR), and Information Ratio (IR). Details of
datasets and metrics are in Appendix D and Appendix C.3.

Results. As shown in Tab. 3, the inherent non-stationarity
and intricate dependencies within financial markets make
it difficult for baseline methods to consistently identify op-
timal portfolios across different markets. While financial
market fluctuations are notoriously unpredictable, Time-
Bridge adapts well to these challenges. By capturing short-
term volatility within financial time series and preserving
long-term cointegration across sectors, it achieves consis-
tently strong performance, outperforming existing methods
in overall market efficiency.

6



TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting

5. Ablation Studies
To validate the effectiveness of the proposed TimeBridge,
we conduct a comprehensive ablation study on its archi-
tectural design. In Tab. 4, Tab. 5, and Tab. 6, the rows
highlighted in gray correspond to the original TimeBridge
configuration, serving as a baseline for comparison with
various modified versions.

Ablation on removing or keeping non-stationarity. We
conduct the following experiments: ① Non-stationarity re-
tained in both Integrated and Cointegrated Attention. ②
Retained in Integrated, removed from Cointegrated. ③ Re-
moved from Integrated, retained in Cointegrated. ④ Re-
moved from both. Results in Tab. 4 show that the best per-
formance is achieved when non-stationarity is removed in
Integrated Attention, which models short-term intra-variate
fluctuations, and retained in Cointegrated Attention, which
captures long-term inter-variate dependencies. Conversely,
retaining non-stationarity in Integrated Attention while re-
moving it from Cointegrated Attention yields the worst
results.

Case
Integrated Cointegrated Weather Solar Electricity TrafficAttention Attention

+ Norm? + Norm? MSE MAE MSE MAE MSE MAE MSE MAE

① × × 0.220 0.260 0.183 0.242 0.153 0.249 0.371 0.260

② × ✓ 0.220 0.260 0.183 0.252 0.155 0.251 0.381 0.263

③ ✓ × 0.219 0.249 0.181 0.239 0.149 0.245 0.360 0.255

④ ✓ ✓ 0.219 0.259 0.183 0.242 0.153 0.250 0.374 0.289

Table 4. Ablation on the effect of removing non-stationarity in
Integrated Attention and Cointegrated Attention. ✓ indicates the
use of patch normalization to eliminate non-stationarity, while ×
means non-stationarity is retained.

Ablation on Integrated and Cointegrated Attention im-
pact and order. We conduct the following experiments: ①
Integrated Attention only, ② Cointegrated Attention only,
③ Integrated Attention followed by Cointegrated Attention,
and ④ Cointegrated Attention followed by Integrated Atten-
tion, with patch downsampling replaced by upsampling in
this case. The results in Tab. 5 show that both ① and ② un-
derperform compared to ③, indicating that both components
are beneficial. Additionally, ④ shows the weakest perfor-
mance, possibly because modeling long-term cointegrated

Case
Integrated Cointegrated Weather Solar Electricity TrafficAttention Attention

Order Order MSE MAE MSE MAE MSE MAE MSE MAE

① 1 × 0.220 0.262 0.184 0.244 0.158 0.252 0.388 0.264

② × 1 0.222 0.264 0.191 0.260 0.165 0.263 0.369 0.265

③ 1 2 0.219 0.249 0.181 0.239 0.149 0.245 0.360 0.255

④ 2 1 0.227 0.266 0.190 0.252 0.160 0.255 0.396 0.281

Table 5. Ablation on the impact and order of Integrated Attention
and Cointegrated Attention. “Order” specifies the sequence, with
lower numbers indicating earlier placement. × indicates the com-
ponent is removed.

relationships first leads to a loss of important short-term
temporal features (Wang et al., 2022; Han et al., 2024).

Ablation on modeling approaches for Integrated Atten-
tion and Cointegrated Attention. We conduct the fol-
lowing experiments: ① both Integrated and Cointegrated
Attention use channel-independent (CI) modeling, ② Inte-
grated Attention uses channel-dependent (CD) modeling
while Cointegrated Attention uses CI, ③ Integrated Atten-
tion uses CI while Cointegrated Attention uses CD, and
④ both use CD modeling. The results in Tab. 6 show that
modeling short-term inter-variates relationships can lead to
severe spurious regression. CI modeling generally outper-
forms CD in scenarios with fewer channels (e.g., Weather),
while CD excels when the number of channels is large (e.g.,
Traffic). This aligns with recent findings that inter-channel
dependencies become increasingly important as the number
of channels grows. We attribute this to the model’s abil-
ity to extract potential long-term stable relationships from
non-stationary sequences when more channels are present,
thereby improving both forecasting accuracy and robust-
ness.

Case
Integrated Cointegrated Weather Solar Electricity TrafficAttention Attention

CI or CD CI or CD MSE MAE MSE MAE MSE MAE MSE MAE

① CI CI 0.218 0.259 0.183 0.243 0.157 0.252 0.387 0.276

② CD CI 0.222 0.262 0.184 0.247 0.160 0.255 0.387 0.280

③ CI CD 0.219 0.249 0.181 0.239 0.149 0.245 0.360 0.255

④ CD CD 0.222 0.263 0.183 0.247 0.156 0.254 0.376 0.269

Table 6. Ablation on modeling approaches for Integrated Attention
and Cointegrated Attention. “CI” denotes channel independent
and “CD” denotes channel-dependent modeling.

6. Non-stationarity and Dependency Modeling
Analysis

Intra-variate Modeling. As shown in Figure 4a, when non-
stationarity is retained, the attention map in the temporal
dimension diverges, with the model focusing on multiple
patches across a broader time span. However, after remov-
ing non-stationarity, the attention map becomes more con-
centrated on adjacent time steps, aligning with the causal
nature of time series, where closer time steps are usually
more correlated. Non-stationarity may cause the model to
mistake distant similarities for causality. By eliminating
non-stationarity, the model better captures short-term varia-
tions and local dependencies, enhancing its robustness and
interpretability in handling complex time series data.

Inter-variate Modeling. Figure 4b shows that removing
non-stationarity narrows the model’s attention to a few inter-
variate dependencies, while retaining non-stationarity en-
ables the capture of more diverse and richer relationships.
Non-stationary sequences help the model identify cointe-
gration, revealing hidden equilibrium mechanisms in multi-
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Figure 4. (a) Comparison of intra-variate attention maps under stationary and non-stationary conditions for different patches in the
Electricity dataset. (b) Comparison of inter-variate attention maps between different variates under stationary and non-stationary
conditions in the Solar dataset. (c) Impact of varying the number of downsampled patches M on forecasting performance across different
datasets. See Tab. 14 for full results.

(a) (b) (c) (d)

Integrated Attention: Non-stationary
Cointegrated Attention : Non-stationary

Integrated Attention: Stationary
Cointegrated Attention : Stationary

Integrated Attention: Non-stationary
Cointegrated Attention : Stationary

Integrated Attention: Stationary
Cointegrated Attention : Non-stationary

Figure 5. Visualization of the effect of retaining or removing non-stationarity in Integrated Attention and Cointegrated Attention on
the Weather dataset for temperature (T ) and dew point temperature (Tdew). (a) Both Integrated and Cointegrated Attention retain
non-stationarity. (b) Both remove non-stationarity. (c) Only Integrated Attention retains non-stationarity. (d) Only Cointegrated Attention
retains non-stationarity.

variate time series. Preserving non-stationarity enhances the
model’s ability to express complex inter-variate dependen-
cies. Additionally, Figure 4c shows the impact of different
patch downsampling rates on performance. For datasets
with more channels and stronger cointegration (e.g., Solar
and Traffic), increasing downsampled patches initially im-
proves predictions by preserving long-term features. How-
ever, too much downsampling adds computational cost and
negatively affects smaller-channel datasets (e.g., Weather),
so we carefully balanced downsampling rates based on
dataset characteristics, as detailed in Tab. 8.

Real Case of Weather Forecast. Given the strong interre-
lationships between weather variables, we analyze temper-
ature T and dew point temperature Tdew from the Weather
dataset. Dew point measures atmospheric moisture and is
typically closely linked to temperature. Without external in-
fluences, such as water vapor or heat sources, the difference
between temperature and dew point is minimal, showing
long-term cointegration. However, temperature tends to ex-
hibit more short-term fluctuations due to external factors
like sunlight and weather systems. As shown in Figure 5,
the results demonstrate that spurious regressions can only be
avoided by eliminating non-stationarity during short-term
modeling, while preserving it during long-term dependency

modeling to capture the underlying cointegration between
variables.

7. Conclusion
In this paper, we address the dual challenges of non-
stationarity in multivariate time series forecasting, specifi-
cally focusing on its distinct impacts on short-term and long-
term modeling. To this end, we propose TimeBridge, a novel
framework that bridges the gap between non-stationarity and
dependency modeling. By employing Integrated Attention
to mitigate short-term non-stationarity and Cointegrated At-
tention to preserve long-term dependencies, TimeBridge ef-
fectively captures both local dynamics and long-term cointe-
gration. Comprehensive experiments across diverse datasets
demonstrate that TimeBridge consistently achieves state-
of-the-art performance in both short-term and long-term
forecasting tasks. Moreover, its exceptional performance on
the CSI 500 and S&P 500 indices underscores its robustness
and adaptability to complex real-world financial scenarios.
Our work paves the way for further exploration of models
that balance the nuanced effects of non-stationarity, offering
a promising direction for advancing multivariate time series
forecasting.
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A. Time Series Integration and Cointegration Analysis
A.1. Integration and ADF Test

A time series is said to be integrated of order k, denoted as I(k), if it becomes stationary after differencing k times. For
instance, a series Xt is I(1) if its first difference ∆Xt = Xt−Xt−1 is stationary. To test for non-stationarity, the Augmented
Dickey-Fuller (ADF) test (Mushtaq, 2011) is commonly used. It examines the null hypothesis that a unit root is present,
indicating non-stationarity:

∆Xt = α+ βt+ γXt−1 +

p∑
i=1

δi∆Xt−i + ϵt

Here, ∆Xt is the differenced series, γ is the coefficient on the lagged series, and ϵt is the error term. Rejecting the null
hypothesis (γ = 0) indicates stationarity, while failing to reject it implies non-stationarity. Non-stationary data can lead to
spurious regressions, where unrelated temporal intervals appear to be correlated due to common trends. We report the ADF
test results in Tab. 7.

A.2. Cointegration and EG Test

Cointegration occurs when two or more non-stationary series move together over time, maintaining a stable, long-term
relationship. For example, if Xt and Yt are both I(1), they are cointegrated if there exists a stationary linear combination,
Zt = Xt − βYt. This indicates a shared stochastic trend. The Engle-Granger (EG) test (Bilgili, 1998) for cointegration
involves two steps:

1. Estimate Long-term Relationship. Regress Xt on Yt using Ordinary Least Squares (OLS):

Xt = α+ βYt + ϵt,

where ϵt are the residuals.

2. ADF Test on Residuals. Apply the ADF test to ϵt:

∆ϵt = γϵt−1 +

p∑
i=1

δi∆ϵt−i + νt

If the residuals are stationary, Xt and Yt are cointegrated.

Cointegration is vital for capturing long-term relationships between variables, providing a robust foundation for multivariate
time series modeling. Ignoring cointegration can result in models that miss significant underlying connections, reducing
forecasting accuracy and reliability. We report the EG test results in Tab. 7.

B. Theoretical Analysis of Integrated and Cointegrated Attention
In this section, we provide a more detailed theoretical analysis to justify the design choices behind Integrated Attention and
Cointegrated Attention in non-stationary time series modeling. Our approach is grounded in classical stochastic processes,
specifically Brownian motion, to explain the rationale behind these mechanisms.

Proposition 1: Spurious Attention from Non-Stationary Inputs

Consider a standard Brownian motion Xt ∼ I(1), which is a commonly used model for non-stationary processes. We define
the process as follows:

Xt = Xt−1 + ut, ut ∼ N (0, σ2)

From this, we know that:
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Mean(Xt) = 0, Var(Xt) = tσ2, Cov(Xt1 , Xt2) = min(t1, t2)σ
2

Let two input patches of length S be:

pi = [Xt+i+1, . . . , Xt+i+S ], pj = [Xt+j+1, . . . , Xt+j+S ]

The attention score between these patches pi and pj , based on the dot product between the two vectors, can be approximated
as:

score(pi, pj) ∝ pip
T
j ∝

S∑
s=1

Xt+i+sXt+j+s ∝
S∑

s=1

(Xt+i+s − 0)(Xt+j+s − 0) ∝
S∑

s=1

Cov(Xt+i+s, Xt+j+s)

Substituting the covariance expression, we get:

score(pi, pj) ∝
S∑

s=1

Cov(Xt+i+s, Xt+j+s) ∝
S∑

s=1

min(t+ i+ s, t+ j + s)σ2 ∝ σ2

(
Smin(i, j) +

S2 + 2St+ S

2

)

This score grows quadratically with both the time index t and the patch length S. As t increases, the score is dominated by
long-term trends, leading to spurious attention due to the influence of global trends, rather than capturing genuine short-term
dependencies between patches. Figure 8 demonstrates this phenomenon, where many patches show high attention scores
due to the accumulation of long-term variance, even though they do not represent meaningful short-term dependencies.

To mitigate this effect, we propose a patch-wise detrending strategy:

p′i = Detrend(pi) = [∆Xt+i, . . . ,∆Xt+i+S ] ∼ I(0), ∆Xt = Xt −Xt−1

This operation removes the non-stationary trend from the input series, leading to a more stable variance:

Var(∆Xt) = σ2

Now, the attention score between the detrended patches p′i and p′j becomes:

score(p′i, p
′
j) ∝ Sσ2

This ensures that the attention mechanism focuses on the genuine short-term dependencies between the patches, unaffected
by long-term drift.

Proposition 2: Importance of Non-Stationarity in Capturing Cointegration

Cointegration is a statistical property of a collection of time series variables, where a linear combination of non-stationary
series can result in a stationary process. Let us consider two non-stationary time series Xt and Yt, both following a unit root
process I(1):

Xt ∼ I(1), Yt ∼ I(1)

If these series are cointegrated, there exists a linear combination of Xt and Yt that is stationary:

Zt = Xt − βYt ∼ I(0)

13
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where β is a constant coefficient that defines the relationship between the two series.

However, if we remove the non-stationarity by detrending the series, we get:

∆Xt = Detrend(Xt), ∆Yt = Detrend(Yt)

This leads to the following change in Zt:

Zt = ∆Xt − β∆Yt = ϵt

where ϵt represents a random noise sequence, which destroys the cointegration signal. Removing non-stationary components
eliminates the vast majority of cointegration information, as shown in Figure 9.

Thus, to capture long-term dependencies accurately, we must preserve the non-stationarity between the variables. In our
framework, Cointegrated Attention (CD) is designed to maintain these long-term dependencies, ensuring that the model can
recognize and capture the cointegration between variables across time.

Summary of Propositions

These two propositions explain the necessity of Integrated Attention and Cointegrated Attention:

• For short-term modeling, we eliminate non-stationarity to avoid spurious regressions and focus on stable, local
dependencies within the data.

• For long-term modeling, we preserve non-stationarity to capture meaningful cointegration relationships between
variables, which are crucial for modeling long-term equilibrium dynamics.

C. Metrics
C.1. Long-term Forecasting

We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. Given the ground truth values
Xi and the predicted values X̂i, these metrics are defined as follows:

MSE =
1

N

N∑
i=1

(Xi − X̂i)
2, MAE =

1

N

N∑
i=1

|Xi − X̂i|,

where N is the total number of predictions.

C.2. Short-term Forecasting

We use MAE (the same as defined above), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE)
to evaluate the performance. These metrics are defined as follows:

MAPE =
1

N

N∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣× 100, RMSE =

√√√√ 1

N

N∑
i=1

(Xi − X̂i)2.

C.3. Financial Forecasting

We use six widely recognized metrics to assess the overall performance of each method: Annual Return Ratio (ARR),
Annual Volatility (AVol), Maximum Drawdown (MDD), Annual Sharpe Ratio (ASR), Calmar Ratio (CR), and Information
Ratio (IR). Lower absolute values of AVol and MDD, coupled with higher values of ARR, ASR, CR, and IR, indicate better
performance.
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• ARR quantifies the percentage increase or decrease in the value of an investment over a year.

ARR = (1 + Total Return)
1
n − 1.

• AVol measures the volatility of an investment’s returns over the course of a year. Rp denotes the daily return of the
portfolio.

AVol =
√

Var(Rp).

• MDD indicates the maximum decline from a peak to a trough in the value of an investment.

MDD = −max
(
ppeak − ptrough

ppeak

)
.

• ASR reflects the risk-adjusted return of an investment over a year.

ASR =
ARR
AVol

.

• CR compares the average annual return of an investment to its maximum drawdown.

CR =
ARR
|MDD|

.

• IR evaluates the excess return of an investment relative to a benchmark, adjusted for its volatility. Rb is the daily return
of the market index.

IR =
mean(Rp −Rb)

std(Rp −Rb)
.

D. Datasets
We conduct extensive experiments on several widely-used time series datasets for long-term forecasting. Additionally, we
use the PeMS datasets for short-term forecasting and the CSI 500 and S&P 500 indices for financial forecasting. We report
the statistics in Tab. 7. Detailed descriptions of these datasets are as follows:

(1) ETT (Electricity Transformer Temperature) dataset (Zhou et al., 2021) encompasses temperature and power load data
from electricity transformers in two regions of China, spanning from 2016 to 2018. This dataset has two granularity
levels: ETTh (hourly) and ETTm (15 minutes).

(2) Weather dataset (Wu et al., 2023) captures 21 distinct meteorological indicators in Germany, meticulously recorded at
10-minute intervals throughout 2020. Key indicators in this dataset include air temperature, visibility, among others,
offering a comprehensive view of the weather dynamics.

(3) Electricity dataset (Wu et al., 2023) features hourly electricity consumption records in kilowatt-hours (kWh) for
321 clients. Sourced from the UCL Machine Learning Repository, this dataset covers the period from 2012 to 2014,
providing valuable insights into consumer electricity usage patterns.

(4) Traffic dataset (Wu et al., 2023) includes data on hourly road occupancy rates, gathered by 862 detectors across the
freeways of the San Francisco Bay area. This dataset, covering the years 2015 to 2016, offers a detailed snapshot of
traffic flow and congestion.

(5) Solar-Energy dataset (Liu et al., 2024a) contains solar power production data recorded every 10 minutes throughout
2006 from 137 photovoltaic (PV) plants in Alabama.

(6) PeMS dataset (Liu et al., 2022a) comprises four public traffic network datasets (PeMS03, PeMS04, PeMS07, and
PeMS08), constructed from the Caltrans Performance Measurement System (PeMS) across four districts in California.
The data is aggregated into 5-minute intervals, resulting in 12 data points per hour and 288 data points per day.
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(7) CSI 5001 contains 502 stocks listed on the Shanghai and Shenzhen stock exchanges in China from 2018 to 2023,
including close, open, high, low, volume and turnover data.

(8) S&P 5002 contains 487 stocks representing diverse sectors within the U.S. economy from 2018 to 2023, including
close, open, high, low and volume data.

Tasks Dataset Dim Prediction Length Dataset Size Frequency ADF† EG‡

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min −14.98 20

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min −5.66 17

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour −5.91 11

Long-term ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour −4.13 10

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour −8.44 39567

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour −15.02 354627

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min −26.68 77

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min −37.23 8373

PeMS03 358 12 (15617, 5135, 5135) 5 min −19.05 -

Short-term PeMS04 307 12 (10172, 3375, 3375) 5 min −15.66 -

Forecasting PeMS07 883 12 (16911, 5622, 5622) 5 min −20.60 -

PeMS08 170 12 (10690, 3548, 265) 5 min −16.04 -

Financial CSI 500 502 1 (943, 242, 242) 1 day −3.06 -

Forecasting S&P 500 487 1 (1008, 251, 249) 1 day −2.80 -

† Augmented Dickey-Fuller (ADF) Test: A smaller ADF test result indicates a more stationary time series
data.
‡ Engle-Granger (EG) Test: A bigger EG test result indicates the data contains more cointegration relationships.

Table 7. Dataset detailed descriptions. “Dataset Size” denotes the total number of time points in (Train, Validation, Test) split respectively.
“Prediction Length” denotes the future time points to be predicted. “Frequency” denotes the sampling interval of time points.

To further illustrate the degree of non-stationarity in the datasets, we conduct additional experiments using a Random Walk
series (representing maximum non-stationarity) and Gaussian white noise (representing near-stationarity). The Random
Walk series is generated using the formula Xt = Xt−1 + ϵt with ϵt ∼ N (0, 1), where we set t = 10, 000 and simulate 100
iterations. The average ADF value for the Random Walk series is -1.53, indicating a high degree of non-stationarity. In
contrast, for the Gaussian white noise series, generated as Xt ∼ N (0, 1) with the same settings, the average ADF value is
-97.54, indicating strong stationarity. Comparing these results with those in Tab. 7, we can see that most datasets exhibit
significant non-stationarity, especially the ETT, CSI 500, and S&P 500 datasets.

To analyze cointegration, we conducted the Engle-Granger (EG) test on all eight datasets of long-term forecasting. The results
indicate that datasets with more channels tend to exhibit more extensive cointegration relationships. This is particularly
evident in datasets like Electricity and Traffic, which show significantly higher EG test values, reflecting a greater abundance
of long-term equilibrium relationships among variates. For these high-dimensional datasets, effectively modeling the
intricate cointegration structures is crucial, as neglecting these long-term dependencies can result in suboptimal predictions.

1https://cn.investing.com/indices/china-securities-500
2https://hk.finance.yahoo.com/quote/%5EGSPC/history/
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E. Implementation Details
All experiments are implemented in PyTorch (Paszke et al., 2019) and conducted on two NVIDIA RTX 3090 24GB GPUs.
We use the Adam optimizer (Kingma, 2014). All models are trained for 100 epochs. Following the protocol outlined in
the comprehensive benchmark TFB (Qiu et al., 2024), the drop-last trick is disabled during the test phase. Tab. 8 provides
detailed hyperparameter settings for each dataset. For the four ETT datasets, the relatively small number of channels results
in less pronounced long-term cointegration relationships, as evidenced by the low EG test results in Tab. 7. Therefore, we
focus on modeling short-term intra-variate variations only. To improve training stability, we adopt a hybrid MAE loss that
operates in both the time and frequency domains. Compared to MSE, which amplifies differences, MAE provides a more
stable optimization process. Additionally, the frequency-domain loss mitigates label autocorrelation, making training more
effective. The loss function is defined as:

Lt =
1

N

N∑
i=1

|Xi − X̂i|, Lf =
1

N

N∑
i=1

|FFT(Xi)− FFT(X̂i)|,

L = (1− α)× Lt + α× Lf ,

where FFT denotes the Fast Fourier Transform. α is the hyperparameter. We conduct additional experiments where
TimeBridge was trained using the MSE loss and compare the results with the best baseline, DeformableTST in Tab. 15. The
results show that the hybrid MAE loss improves TimeBridge’s performance on four ETT datasets. The ETT datasets have
relatively few channels (C = 7), which limits TimeBridge ’s ability to utilize the Cointegrated Attention module to capture
cointegration information. We only use the Integrated Attention to model ETT datasets (see Tab. 8). Additionally, the ETT
data exhibits a high degree of random fluctuation, which is better modeled using a loss function that weighs both time and
frequency components. Hence, the hybrid MAE loss strengthens the modeling of short-term dependencies in such datasets.
On datasets with more channels (e.g., Electricity, Traffic, Solar), the choice of loss function has minimal impact, as both
losses yield similar results.

Num. of Integrated Num. of Cointegrated N M lr d model d ff α

ETTh1 3 0 30 30 2e-4 128 128 0.35

ETTh2 3 0 15 15 1e-4 128 128 0.35

ETTm1 3 0 15 15 2e-4 64 128 0.35

ETTm2 3 0 15 15 2e-4 64 64 0.35

Weather 1 1 30 12 1e-4 128 128 0.1

Solar 1 1 30 12 5e-4 128 128 0.05

Electricity 1 2 30 4 5e-4 512 512 0.2

Traffic 1 3 30 8 5e-4 512 512 0.35

Table 8. Hyperparameter settings for different datasets. “N” denotes the number of patches. “M” denotes the number of patches after the
patch downsampling block. “lr” denotes the learning rate. “d model” and “d ff” denote the model dimension of attention layers and
feed-forward layers, respectively.

F. Full Results
F.1. Main Experiments

Tab. 9 present the full results for long-term forecasting through hyperparameter search. The hyperparameter search process
involved exploring input lengths I ∈ {96, 192, 336, 512, 720}, learning rates from 10−5 to 0.05, encoder layers from 1 to 5,
dmodel values from 16 to 512, and training epochs from 10 to 100. In both settings, TimeBridge consistently achieved the
best performance, demonstrating its effectiveness and robustness.

Additionally, for financial forecasting, we included three additional strong baselines: ALSTM (Qin et al., 2017), GRU
(Chung et al., 2014), and TRA (Lin et al., 2021). The results in Tab. 10 show that TimeBridge continues to outperform these
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methods, further validating its superiority.

F.2. Ablation Studies

We present the full results of the ablation studies discussed in the main text. Tab. 11 provides the complete results of the
ablation on removing non-stationarity in both Integrated and Cointegrated Attention. Tab. 12 reports the full results on

Models TimeBridge iTransformer DeformableTST TimeMixer PatchTST Crossformer Leddam ModernTCN MICN TimesNet DLinear
(Ours) (2024a) (2024) (2024b) (2023) (2023) (2024) (2024) (2022) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.284 0.337 0.300 0.353 0.291 0.347 0.293 0.345 0.293 0.346 0.310 0.361 0.294 0.347 0.292 0.346 0.314 0.360 0.338 0.375 0.299 0.343
192 0.317 0.367 0.345 0.382 0.325 0.372 0.335 0.372 0.333 0.370 0.363 0.402 0.334 0.370 0.332 0.368 0.359 0.387 0.371 0.387 0.335 0.365
336 0.361 0.394 0.374 0.398 0.359 0.390 0.368 0.386 0.369 0.369 0.389 0.430 0.392 0.425 0.365 0.391 0.398 0.413 0.410 0.411 0.369 0.386
720 0.413 0.418 0.429 0.430 0.418 0.423 0.426 0.417 0.416 0.420 0.600 0.547 0.421 0.419 0.416 0.417 0.459 0.464 0.478 0.450 0.425 0.421

Avg. 0.344 0.379 0.362 0.391 0.348 0.383 0.355 0.380 0.353 0.382 0.420 0.435 0.354 0.381 0.351 0.381 0.383 0.406 0.400 0.406 0.357 0.379

E
T

T
m

2

96 0.157 0.243 0.175 0.266 0.169 0.258 0.165 0.256 0.166 0.256 0.263 0.359 0.174 0.260 0.166 0.256 0.178 0.273 0.187 0.267 0.167 0.260
192 0.217 0.285 0.242 0.312 0.229 0.299 0.225 0.298 0.223 0.296 0.345 0.400 0.231 0.301 0.222 0.293 0.245 0.316 0.249 0.309 0.224 0.303
336 0.269 0.321 0.282 0.340 0.280 0.333 0.277 0.332 0.274 0.329 0.469 0.496 0.288 0.336 0.272 0.324 0.295 0.350 0.321 0.351 0.281 0.342
720 0.348 0.378 0.378 0.398 0.349 0.384 0.360 0.387 0.362 0.385 0.996 0.750 0.368 0.386 0.351 0.381 0.389 0.406 0.497 0.403 0.397 0.421

Avg. 0.246 0.310 0.269 0.329 0.257 0.319 0.257 0.318 0.256 0.317 0.518 0.501 0.265 0.320 0.253 0.314 0.277 0.336 0.291 0.333 0.267 0.332

E
T

T
h1

96 0.350 0.389 0.386 0.405 0.369 0.396 0.372 0.401 0.370 0.400 0.386 0.426 0.377 0.394 0.368 0.394 0.396 0.427 0.384 0.402 0.375 0.399
192 0.388 0.414 0.424 0.440 0.410 0.417 0.413 0.430 0.413 0.429 0.413 0.442 0.408 0.427 0.405 0.413 0.430 0.453 0.557 0.436 0.405 0.416
336 0.408 0.430 0.449 0.460 0.391 0.414 0.438 0.450 0.422 0.440 0.440 0.461 0.424 0.437 0.391 0.412 0.433 0.458 0.491 0.469 0.439 0.443
720 0.443 0.463 0.495 0.487 0.447 0.464 0.486 0.484 0.447 0.468 0.519 0.524 0.451 0.465 0.450 0.461 0.474 0.508 0.521 0.500 0.472 0.490

Avg. 0.397 0.424 0.439 0.448 0.404 0.423 0.427 0.441 0.413 0.434 0.440 0.463 0.415 0.430 0.404 0.420 0.433 0.462 0.458 0.450 0.423 0.437

E
T

T
h2

96 0.271 0.331 0.297 0.348 0.272 0.334 0.281 0.351 0.274 0.337 0.611 0.557 0.283 0.345 0.263 0.332 0.289 0.357 0.340 0.374 0.289 0.353
192 0.335 0.370 0.371 0.403 0.325 0.369 0.349 0.387 0.314 0.382 0.703 0.624 0.339 0.381 0.320 0.374 0.409 0.438 0.402 0.414 0.383 0.418
336 0.371 0.402 0.404 0.428 0.319 0.373 0.366 0.413 0.329 0.384 0.827 0.675 0.366 0.405 0.313 0.376 0.417 0.452 0.452 0.452 0.448 0.465
720 0.387 0.425 0.424 0.444 0.395 0.433 0.401 0.436 0.379 0.422 1.094 0.775 0.395 0.436 0.392 0.433 0.426 0.473 0.462 0.468 0.605 0.551

Avg. 0.341 0.382 0.374 0.406 0.328 0.377 0.349 0.397 0.324 0.381 0.809 0.658 0.345 0.391 0.322 0.379 0.385 0.430 0.414 0.427 0.431 0.447

W
ea

th
er

96 0.144 0.184 0.159 0.208 0.146 0.198 0.147 0.198 0.149 0.198 0.146 0.212 0.149 0.200 0.149 0.200 0.161 0.226 0.172 0.220 0.152 0.237
192 0.186 0.225 0.200 0.248 0.191 0.239 0.192 0.243 0.194 0.241 0.195 0.261 0.193 0.240 0.196 0.245 0.220 0.283 0.219 0.261 0.220 0.282
336 0.237 0.267 0.253 0.289 0.241 0.280 0.247 0.284 0.245 0.282 0.252 0.311 0.241 0.279 0.238 0.277 0.275 0.328 0.280 0.306 0.265 0.319
720 0.307 0.320 0.321 0.338 0.310 0.331 0.318 0.330 0.314 0.334 0.318 0.363 0.324 0.338 0.314 0.334 0.311 0.356 0.365 0.359 0.323 0.362

Avg. 0.219 0.249 0.233 0.271 0.222 0.262 0.226 0.264 0.226 0.264 0.228 0.287 0.226 0.264 0.224 0.264 0.242 0.298 0.259 0.287 0.240 0.300

E
le

ct
ri

ci
ty

96 0.120 0.214 0.138 0.237 0.132 0.234 0.153 0.256 0.129 0.222 0.135 0.237 0.134 0.228 0.129 0.226 0.159 0.267 0.168 0.272 0.140 0.237
192 0.142 0.237 0.157 0.256 0.148 0.248 0.168 0.269 0.147 0.240 0.160 0.262 0.155 0.248 0.143 0.239 0.168 0.279 0.184 0.289 0.152 0.249
336 0.156 0.252 0.167 0.264 0.165 0.266 0.189 0.291 0.163 0.259 0.182 0.282 0.173 0.268 0.161 0.259 0.196 0.308 0.198 0.300 0.169 0.267
720 0.179 0.278 0.194 0.286 0.197 0.296 0.228 0.320 0.197 0.290 0.246 0.337 0.186 0.282 0.191 0.286 0.203 0.312 0.220 0.320 0.203 0.301

Avg. 0.149 0.245 0.164 0.261 0.161 0.261 0.185 0.284 0.159 0.253 0.181 0.279 0.162 0.256 0.156 0.253 0.182 0.292 0.192 0.295 0.166 0.264

Tr
af

fic

96 0.340 0.240 0.363 0.265 0.355 0.261 0.369 0.257 0.360 0.249 0.512 0.282 0.415 0.264 0.368 0.253 0.508 0.301 0.593 0.321 0.410 0.282
192 0.343 0.250 0.385 0.273 0.380 0.271 0.400 0.272 0.379 0.256 0.501 0.273 0.445 0.277 0.379 0.261 0.536 0.315 0.617 0.336 0.423 0.287
336 0.363 0.257 0.396 0.277 0.393 0.281 0.407 0.272 0.392 0.264 0.507 0.279 0.461 0.286 0.397 0.270 0.525 0.310 0.629 0.336 0.436 0.296
720 0.393 0.271 0.445 0.312 0.434 0.300 0.461 0.316 0.432 0.286 0.571 0.301 0.489 0.305 0.440 0.296 0.571 0.323 0.640 0.350 0.466 0.315

Avg. 0.360 0.255 0.397 0.282 0.391 0.278 0.409 0.279 0.391 0.264 0.523 0.284 0.452 0.283 0.396 0.270 0.535 0.312 0.620 0.336 0.434 0.295

So
la

r

96 0.161 0.224 0.188 0.242 0.165 0.238 0.179 0.232 0.178 0.229 0.166 0.230 0.197 0.241 0.202 0.263 0.188 0.252 0.219 0.314 0.216 0.287
192 0.177 0.237 0.193 0.258 0.184 0.254 0.201 0.259 0.189 0.246 0.186 0.237 0.231 0.264 0.223 0.279 0.215 0.280 0.231 0.322 0.244 0.305
336 0.188 0.244 0.195 0.259 0.191 0.263 0.190 0.256 0.198 0.249 0.203 0.243 0.216 0.272 0.241 0.292 0.222 0.267 0.246 0.337 0.263 0.319
720 0.197 0.252 0.223 0.281 0.199 0.262 0.203 0.261 0.209 0.256 0.210 0.256 0.250 0.281 0.247 0.292 0.226 0.264 0.280 0.363 0.264 0.324

Avg. 0.181 0.239 0.200 0.260 0.185 0.254 0.193 0.252 0.194 0.245 0.191 0.242 0.223 0.264 0.228 0.282 0.213 0.266 0.244 0.334 0.247 0.309

Table 9. Full results of long-term forecasting of hyperparameter searching. All results are averaged across four different prediction lengths:
O ∈ {96, 192, 336, 720}. The best and second-best results are highlighted in bold and underlined, respectively.
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the impact and order of Integrated and Cointegrated Attention, with an illustrative visualization in Figure 6. Additionally,
Tab. 13 shows the results of ablation on different modeling approaches for these attention mechanisms. Finally, Tab. 14
presents the results of varying the number of downsampled patches M and its effect on forecasting performance.

G. Statistical Analysis
We repeat all experiments three times and report the standard deviations for both our model and the second-best baseline,
along with the results of statistical significance tests. Tab. 16, Tab. 17, and Tab. 18 present the results for long-term
forecasting, short-term forecasting, and financial forecasting, respectively.

Models
CSI 500 S&P 500

ARR↑ AVol↓ MDD↓ ASR↑ CR↑ IR↑ ARR↑ AVol↓ MDD↓ ASR↑ CR↑ IR↑

BLSW (1988) 0.110 0.227 -0.155 0.485 0.710 0.446 0.199 0.318 -0.223 0.626 0.892 0.774
CSM (1993) 0.015 0.229 -0.179 0.066 0.084 0.001 0.099 0.250 -0.139 0.396 0.712 0.584

LSTM (1997) -0.008 0.159 -0.172 -0.047 -0.044 -0.128 0.142 0.162 -0.178 0.877 0.798 0.929
ALSTM (2017) 0.016 0.162 -0.192 0.101 0.086 0.014 0.191 0.161 -0.150 1.186 1.273 1.115

GRU (2014) -0.004 0.159 -0.193 -0.028 -0.023 -0.118 0.124 0.169 -0.139 0.734 0.829 1.023
Transformer (2017b) 0.154 0.156 -0.135 0.986 1.143 0.867 0.135 0.159 -0.140 0.852 0.968 0.908

TRA (2021) 0.125 0.162 -0.145 0.776 0.866 0.657 0.184 0.166 -0.158 1.114 1.172 1.106

PatchTST (2023) 0.118 0.152 -0.127 0.776 0.923 0.735 0.146 0.167 -0.140 0.877 1.042 0.949
iTransformer (2024a) 0.214 0.168 -0.164 1.276 1.309 1.173 0.159 0.170 -0.139 0.941 1.150 0.955
TimeMixer (2024b) 0.078 0.153 -0.114 0.511 0.685 0.385 0.254 0.162 -0.131 1.568 1.938 1.448
Crossformer (2023) -0.039 0.163 -0.217 -0.238 -0.179 -0.350 0.284 0.159 -0.114 1.786 2.491 1.646

TSMixer (2023) 0.086 0.156 -0.143 0.551 0.601 0.456 0.187 0.173 -0.156 1.081 1.199 1.188

TimeBridge 0.285 0.203 -0.196 1.405 1.453 1.317 0.326 0.169 -0.142 1.927 2.298 1.842

Table 10. Full results for financial time series forecasting in CSI 500 and S&P 500 datasets.
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Figure 6. Illustration of the impact and order of Integrated Attention and Cointegrated Attention in Tab. 12: ① Integrated Attention only,
② Cointegrated Attention only, ③ Integrated Attention followed by Cointegrated Attention, and ④ Cointegrated Attention followed by
Integrated Attention, with patch downsampling replaced by upsampling.
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Integrated Attention Cointegrated Attention Weather Solar Electricity Traffic

+ Norm? + Norm? Length MSE MAE MSE MAE MSE MAE MSE MAE

× ×

96 0.144 0.193 0.163 0.227 0.124 0.221 0.342 0.241
192 0.186 0.235 0.180 0.240 0.144 0.240 0.351 0.255
336 0.239 0.279 0.191 0.248 0.158 0.254 0.374 0.261
720 0.311 0.333 0.197 0.253 0.184 0.282 0.418 0.284
Avg. 0.220 0.260 0.183 0.242 0.153 0.249 0.371 0.260

× ✓

96 0.144 0.193 0.164 0.227 0.124 0.220 0.348 0.247
192 0.188 0.237 0.180 0.240 0.146 0.240 0.370 0.257
336 0.239 0.279 0.191 0.248 0.161 0.258 0.382 0.264
720 0.308 0.331 0.197 0.293 0.189 0.285 0.422 0.283
Avg. 0.220 0.260 0.183 0.252 0.155 0.251 0.381 0.263

✓ ×

96 0.144 0.184 0.161 0.224 0.120 0.214 0.340 0.240
192 0.186 0.225 0.177 0.237 0.142 0.237 0.343 0.250

✓ × 336 0.237 0.267 0.188 0.244 0.156 0.252 0.363 0.257
720 0.307 0.320 0.197 0.252 0.179 0.278 0.393 0.271
Avg. 0.219 0.249 0.181 0.239 0.149 0.245 0.360 0.255

✓ ✓

96 0.143 0.193 0.163 0.227 0.123 0.219 0.343 0.241
192 0.186 0.236 0.180 0.239 0.144 0.239 0.367 0.254
336 0.238 0.278 0.191 0.247 0.159 0.256 0.379 0.262
720 0.307 0.330 0.197 0.253 0.185 0.284 0.405 0.277
Avg. 0.219 0.259 0.183 0.242 0.153 0.250 0.374 0.289

Table 11. Full results of ablation on the effect of removing non-stationarity in Integrated Attention and Cointegrated Attention. ✓ indicates
the use of patch normalization to eliminate non-stationarity, while × means non-stationarity is retained.

Integrated Attention Cointegrated Attention Weather Solar Electricity Traffic

Order Order Length MSE MAE MSE MAE MSE MAE MSE MAE

1 ×

96 0.144 0.196 0.163 0.227 0.127 0.221 0.356 0.245
192 0.186 0.238 0.182 0.242 0.145 0.239 0.377 0.259
336 0.241 0.283 0.192 0.246 0.162 0.257 0.390 0.265
720 0.310 0.332 0.199 0.260 0.197 0.289 0.427 0.286
Avg. 0.220 0.262 0.184 0.244 0.158 0.252 0.388 0.264

× 1

96 0.147 0.200 0.161 0.240 0.127 0.227 0.348 0.252
192 0.191 0.242 0.195 0.259 0.155 0.254 0.358 0.262
336 0.242 0.283 0.198 0.268 0.173 0.273 0.367 0.267
720 0.308 0.331 0.209 0.273 0.203 0.299 0.401 0.278
Avg. 0.222 0.264 0.191 0.260 0.165 0.263 0.369 0.265

1 2

96 0.144 0.184 0.161 0.224 0.120 0.214 0.340 0.240
192 0.186 0.225 0.177 0.237 0.142 0.237 0.343 0.250

1 2 336 0.237 0.267 0.188 0.244 0.156 0.252 0.363 0.257
720 0.307 0.320 0.197 0.252 0.179 0.278 0.393 0.271
Avg. 0.219 0.249 0.181 0.239 0.149 0.245 0.360 0.255

2 1

96 0.148 0.199 0.174 0.237 0.130 0.225 0.370 0.274
192 0.193 0.243 0.187 0.251 0.147 0.240 0.386 0.279
336 0.245 0.284 0.195 0.258 0.165 0.262 0.394 0.276
720 0.320 0.336 0.203 0.262 0.199 0.291 0.432 0.295
Avg. 0.227 0.266 0.190 0.252 0.160 0.255 0.396 0.281

Table 12. Full results of ablation on the impact and order of Integrated Attention and Cointegrated Attention. “Order” specifies the
sequence, with lower numbers indicating earlier placement. × indicates the component is removed.
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Integrated Attention Cointegrated Attention Weather Solar Electricity Traffic

CI or CD CI or CD Length MSE MAE MSE MAE MSE MAE MSE MAE

CI CI

96 0.144 0.192 0.163 0.227 0.125 0.221 0.358 0.260
192 0.185 0.236 0.180 0.240 0.144 0.242 0.373 0.271
336 0.237 0.278 0.191 0.247 0.161 0.255 0.391 0.282
720 0.307 0.330 0.197 0.258 0.196 0.288 0.425 0.292
Avg. 0.218 0.259 0.183 0.243 0.157 0.252 0.387 0.276

CD CI

96 0.146 0.195 0.165 0.229 0.125 0.222 0.362 0.266
192 0.188 0.239 0.178 0.245 0.145 0.241 0.374 0.274
336 0.242 0.284 0.191 0.252 0.166 0.263 0.388 0.282
720 0.310 0.331 0.201 0.261 0.205 0.293 0.423 0.296
Avg. 0.222 0.262 0.184 0.247 0.160 0.255 0.387 0.280

CI CD

96 0.144 0.184 0.161 0.224 0.120 0.214 0.340 0.240
192 0.186 0.225 0.177 0.237 0.142 0.237 0.343 0.250

CI CD 336 0.237 0.267 0.188 0.244 0.156 0.252 0.363 0.257
720 0.307 0.320 0.197 0.252 0.179 0.278 0.393 0.271
Avg. 0.219 0.249 0.181 0.239 0.149 0.245 0.360 0.255

CD CD

96 0.146 0.197 0.162 0.229 0.125 0.221 0.352 0.254
192 0.188 0.238 0.178 0.245 0.148 0.246 0.361 0.266
336 0.241 0.282 0.191 0.254 0.161 0.261 0.377 0.267
720 0.313 0.333 0.199 0.260 0.189 0.289 0.412 0.288
Avg. 0.222 0.263 0.183 0.247 0.156 0.254 0.376 0.269

Table 13. Full results of ablation on modeling approaches for Integrated Attention and Cointegrated Attention. “CI” denotes channel
independent and “CD” denotes channel-dependent modeling.

Downsampled Weather Solar Electricity Traffic
Patch Number M Length MSE MAE MSE MAE MSE MAE MSE MAE

1

96 0.171 0.231 0.172 0.234 0.135 0.231 0.349 0.252
192 0.207 0.261 0.187 0.252 0.158 0.255 0.358 0.259
336 0.257 0.298 0.196 0.257 0.182 0.278 0.382 0.269
720 0.323 0.344 0.203 0.258 0.191 0.290 0.414 0.282
Avg. 0.239 0.284 0.189 0.250 0.166 0.264 0.375 0.266

4

96 0.147 0.201 0.168 0.231 0.120 0.214 0.340 0.240
192 0.189 0.241 0.183 0.245 0.142 0.237 0.343 0.250
336 0.240 0.282 0.195 0.251 0.156 0.252 0.363 0.257
720 0.309 0.332 0.200 0.255 0.179 0.278 0.393 0.271
Avg. 0.221 0.264 0.186 0.246 0.149 0.245 0.360 0.255

8

96 0.144 0.195 0.163 0.225 0.119 0.219 0.338 0.240
192 0.186 0.237 0.183 0.243 0.146 0.244 0.341 0.249
336 0.238 0.280 0.195 0.251 0.161 0.260 0.379 0.264
720 0.308 0.330 0.196 0.250 0.177 0.277 0.400 0.280
Avg. 0.219 0.261 0.184 0.242 0.151 0.250 0.365 0.258

12

96 0.143 0.184 0.161 0.224 0.120 0.220 0.334 0.238
192 0.186 0.225 0.177 0.237 0.148 0.247 0.337 0.250
336 0.237 0.267 0.188 0.244 0.163 0.264 0.363 0.256
720 0.307 0.320 0.197 0.252 0.176 0.286 0.387 0.268
Avg. 0.219 0.249 0.181 0.239 0.151 0.254 0.355 0.253

16

96 0.145 0.195 0.149 0.223 0.122 0.223 0.333 0.235
192 0.187 0.238 0.175 0.236 0.149 0.249 0.343 0.254
336 0.241 0.282 0.187 0.244 0.165 0.265 0.354 0.256
720 0.312 0.328 0.196 0.250 0.179 0.276 0.386 0.269
Avg. 0.222 0.261 0.177 0.238 0.152 0.253 0.354 0.254

Table 14. Full results of varying the number of downsampled patches M on forecasting performance.
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Model TimeBridge (Hybrid MAE) TimeBridge (MSE) DeformableTST (2024)

Dataset MSE MAE MSE MAE MSE MAE

ETTm1 0.344 0.379 0.353 0.388 0.348 0.383
ETTm2 0.246 0.310 0.246 0.310 0.257 0.319
ETTh1 0.397 0.424 0.399 0.420 0.404 0.423
ETTh2 0.341 0.382 0.346 0.394 0.328 0.377
Weather 0.219 0.249 0.218 0.250 0.222 0.262

Electricity 0.149 0.245 0.149 0.246 0.161 0.261
Traffic 0.360 0.255 0.360 0.252 0.391 0.278
Solar 0.181 0.239 0.181 0.238 0.185 0.254

Table 15. Average results of different prediction length O ∈ {96, 192, 336, 720} with Hybrid MAE loss and MSE loss.

Model TimeBridge DeformableTST (2024) Confidence

Dataset MSE MAE MSE MAE Interval

ETTm1 0.344± 0.014 0.379± 0.010 0.348± 0.008 0.383± 0.006 99%
ETTm2 0.246± 0.004 0.310± 0.012 0.257± 0.003 0.319± 0.003 99%
ETTh1 0.397± 0.010 0.424± 0.008 0.404± 0.015 0.423± 0.006 99%
ETTh2 0.341± 0.018 0.382± 0.015 0.328± 0.009 0.377± 0.010 99%
Weather 0.219± 0.006 0.249± 0.004 0.222± 0.009 0.262± 0.006 99%

Electricity 0.149± 0.011 0.245± 0.007 0.161± 0.010 0.261± 0.015 99%
Traffic 0.360± 0.008 0.255± 0.013 0.391± 0.016 0.278± 0.010 99%
Solar 0.181± 0.002 0.239± 0.003 0.185± 0.008 0.254± 0.005 99%

Table 16. Standard deviation and statistical tests for TimeBridge and second-best method (DeformableTST) on ETT, Weather, Electricity,
Traffic and Solar datasets.

Model TimeBridge TimeMixer (2024b) Confidence

Dataset MAE MAPE RMSE MAE MAPE RMSE Interval

PeMS03 14.63± 0.164 14.21± 0.133 23.10± 0.186 14.63± 0.112 14.54± 0.105 23.28± 0.128 99%
PeMS04 19.24± 0.131 12.42± 0.108 31.12± 0.112 19.21± 0.217 12.53± 0.154 30.92± 0.143 99%
PeMS07 20.43± 0.173 8.42± 0.155 33.44± 0.190 20.57± 0.158 8.62± 0.112 33.59± 0.273 99%
PeMS08 14.98± 0.278 9.56± 0.126 23.77± 0.142 15.22± 0.311 9.67± 0.101 24.26± 0.212 99%

Table 17. Standard deviation and statistical tests for TimeBridge and second-best method (TimeMixer) on the PeMS dataset.

Model TimeBridge Crossformer (2023) Confidence

Dataset ARR AVol MDD ARR AVol MDD Interval

CSI 500 0.285± 0.033 0.203± 0.012 −0.196± 0.010 −0.039± 0.027 0.163± 0.009 −0.217± 0.011 95%
S&P 500 0.326± 0.022 0.169± 0.009 −0.142± 0.010 0.284± 0.024 0.159± 0.011 −0.114± 0.014 95%

Table 18. Standard deviation and statistical tests for TimeBridge and second-best method (Crossformer) on the CSI 500 and S&P 500
dataset.
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H. Visualization
Figure 7 visualizes short-term fluctuations and long-term cointegration across stock sectors. Figure 8 provides additional
examples of intra-variate attention maps comparing stationary and non-stationary conditions for different patches in the
Electricity dataset. Figure 9 shows further examples of inter-variate attention maps in the Solar dataset under both stationary
and non-stationary conditions. Figure 10, Figure 11, Figure 12, and Figure 13 present long-term forecasting visualizations
for Weather, Solar, Electricity, and Traffic datasets, respectively. We display the last 96 input steps based on each model’s
optimal input length, along with the corresponding 96 predicted steps. Finally, Figure 14 illustrates short-term forecasting
for the PeMS03 dataset, where each model predicts 12 steps from a 96-step input.
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Figure 7. Visualization of short-term fluctuations and long-term cointegration across stock sectors. ”NBFIs” represents Non-Bank
Financial Institutions. The figure highlights how sectors experience short-term price volatility while maintaining long-term cointegration.
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Figure 8. Additional examples comparing intra-variate attention maps under stationary and non-stationary conditions for different patches
in the Electricity dataset.
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Figure 9. Additional examples comparing inter-variate attention maps between different variates under stationary and non-stationary
conditions in the Solar dataset.
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(a) TimeBridge (b) iTransformer (c) PatchTST

(g) DLinear

(d) TimeMixer

(e) TimesNet (f) ModernTCN (h) PDF

Figure 10. Visualization of predictions from different models on the Weather dataset.

(a) TimeBridge (b) iTransformer (c) PatchTST

(g) DLinear(f) ModernTCN (h) PDF

(d) TimeMixer

(e) TimesNet

Figure 11. Visualization of predictions from different models on the Solar dataset.

24



TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting

(a) TimeBridge (b) iTransformer

(g) DLinear

(c) PatchTST (d) TimeMixer

(e) TimesNet (f) ModernTCN (h) PDF

Figure 12. Visualization of predictions from different models on the Electricity dataset.

(a) TimeBridge

(g) DLinear

(b) iTransformer (c) PatchTST (d) TimeMixer

(f) ModernTCN (h) PDF(e) TimesNet

Figure 13. Visualization of predictions from different models on the Traffic dataset.
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(a) TimeBridge (b) TimeMixer (c) Crossformer (d) TimesNet

(e) PatchTST (f) SCINet (g) DLinear (h) MICN

Figure 14. Visualization of predictions from different models on the PeMS03 dataset.
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