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Abstract— In many manipulation tasks, force feedback plays
an essential role in adapting the motion to the physical
properties of the manipulated object. The existing Learning
from Demonstration (LfD) approaches require a large number
of demonstrations to generalise the learned motor skills to
manipulate objects with unknown properties, however, collect-
ing demonstrations is expensive in time and human effort.
Therefore, we aim to learn to adapt motion according to
object properties from a small number of demonstrations by
utilising a large amount of unsupervised data, which is less
informative about the task but less expensive to collect. We
propose to decouple the haptic representation model from
the motion generation model and enable pre-training of the
haptic representation model through self-supervised learning
on unsupervised haptic data. We validated on the wiping task
using wiping tools with different stiffness and surface friction.
Our results suggest that pre-training of the haptic model leads
to force profiles that are closer to those demonstrated during
adaptive wiping using sponges with unseen stiffness and friction.
The sim2real transfer of the haptic representation model pre-
trained on simulation data in learning downstream tasks on a
real robot was also evaluated.

I. INTRODUCTION

One of the important capabilities of fully automated robots
is to adapt the motion to the physical properties of the
manipulated object using force feedback. In this work, we
use a wiping task as an instance of force-based manipulation
task because the wiping motion and the force that needs to
be applied depend on the stiffness of the wiping tool, the
surface friction, etc.

LfD is an intuitive and effective way of transferring such
motor skills from human to robot. However, it is often
challenging to generalise learnt motor skills to manipu-
late objects with different physical properties, as collecting
demonstrations of various objects is time-consuming and
involves extensive human effort.

One promising approach to improve the generalisability
and robustness when supervised data is limited is to pre-
train model using unsupervised data. However, pre-training
of the model has mostly been applied to learning visual and
haptic representations. They cannot be directly applied to
haptic representation learning through force interactions, as
obtaining haptic representations requires a series of force
observations rather than a snapshot of the force sensing at
each time step. We therefore propose pre-training a haptic
representation model using sequences of force observations
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Fig. 1: Proposed few-shot semi-supervised LfD framework.
First, the haptic encoder-decoder model is pre-trained using
unsupervised data collected in simulation. Then, the motion
decoder is trained to map from the haptic representation
obtained using the pre-trained haptic encoder to the desired
adaptive motion for the target task using demonstration data.

collected by performing exploratory actions in an unsuper-
vised manner.

The goal of this research is to learn to manipulate objects
with different physical properties from a small number of
demonstrations. To this end, we aim to learn to identify the
properties of the manipulated object using simulation and to
learn to generate the motion trajectory for the target task on
a real robot accordingly through few-shot LfD.

II. RELATED WORKS

A. Motor skill transfer across objects

Several studies proposed the approaches to identify object
properties by probing prior to the task and to adapt the
motion for the target task accordingly using manually defined
rules [1], [2]. Alternatively, it has also been shown that
liquids with different properties can be successfully poured
by obtaining simulated physical property parameters such
as viscosity and surface tension through matching visual
observations on the simulator and on the real robot, and
then replaying the target task motion optimised for the object
in the simulation on the real robot [3]. These studies have
shown that even when performing the same task, adapting the
motion according to the properties of the object is essential to
improve the performance of the task. However, it is unclear
how object properties need to be represented in order to



learn to adapt motions accordingly to the identified object
properties, rather than using manually defined rules.

There are some studies on LfD to adapt the target task
motion based on the characteristics of the object as identified
through interaction with the object [4], [5], [6]. These studies
suggest that motor skills can be transferred across objects
with different physical properties by identifying the proper-
ties of the object and adapting the motion accordingly. How-
ever, these approaches require more demonstration data to in-
crease generalisability, as models to identify object properties
and models to generate motion are coupled, and can only be
trained together. In contrast, our proposed approach to utilise
unsupervised data to improve the generalisability of the task
across different objects by decoupling the object property
identification model trained by self-supervised learning and
the motion generation model learnt from demonstrations.

B. Pre-training haptic representation model

While the amount of demonstration data tends to be
limited as it is expensive to collect, a larger amount of
unsupervised or unlabelled data tends to be available as it
can be collected without human intervention and is therefore
less expensive to collect. Although unsupervised data is less
informative about the target task than demonstration data,
prior work suggests that self-supervised learning on a large
amount of unsupervised data allows to obtain perceptual
representation that is useful to improve the generalisability
and robustness of the downstream task [7], [8]. These studies
learn visual and tactile representations of a snapshot of sensor
information at each time step. In contrast, our proposed work
considers acquiring haptic representations based on a series
of force feedback. This approach allows the identification
of object properties rather than only the current interaction
information. Our proposed self-supervised representation
learning approach is similar to the one employed to identify
object properties using a sequence of video frames [9].

III. PROBLEM FORMULATION

The task has two phases: the exploration phase, where
the properties of the object are identified by performing pre-
defined exploratory actions, and the motion generation phase,
where the robot adaptively performs the target task according
to the properties of the object identified in the exploration
phase.

Two types of data sets, unsupervised haptic data and
demonstration data, are available for learning. Unsuper-
vised haptic data is collected autonomously by repeatedly
performing pre-defined exploratory actions on objects with
different properties either in simulation or on a real robot and
recording the force feedback. Demonstration data consists
of pairs of force trajectories acquired by performing pre-
defined exploratory actions and the desired motion trajec-
tories for the object to perform the target task produced
by an expert demonstrator. Unsupervised haptic data is less
informative about the target task but cheaper to collect,
whereas demonstration data is highly informative about the
target task but more expensive to collect due to the time and

human effort required. Therefore, the number of available
unsupervised data M is much larger than the number of
available demonstration data N . The key is to utilise a large
amount of unsupervised data, which can be collected at
low cost, to enable generalisation of the task across unseen
objects with different properties, even when the number of
demonstrations is limited.

We do not assume that the robot knows the properties
of the real object, both at training and testing time. The
objective is to learn a model that generates a motion trajec-
tory for the target task, similar to a human demonstration,
which needs to be adapted according to the properties of
the object. Every time before executing the target task,
the robot performs pre-defined exploratory actions on the
manipulated object to identify its properties. It assumes that
the environment and the properties of the object do not
change during the task.

IV. METHOD

A. Semi-supervised LfD architecture

The proposed semi-supervsied LfD framework consists of
two steps: pre-training of haptic representation encoder using
a large amount of unsupervised haptic data and few-shot LfD
for motion generation decoder using demonstration data.

B. Pre-trained Haptic Encoder

Variational Auto-Encoder (VAE) [10] has been extensively
applied to the self-supervised learning of perceptual repre-
sentation models. First, VAE is adopted to train haptic rep-
resentation encoder-decoder models on unsupervised haptic
data by reconstructing the force trajectories τexp obtained
through pre-defined exploratory actions, thus by minimising
a loss function

θ̂, ϕ̂ = argmin
θ,ϕ

L (τexp) = βDKL (qϕ (z | τexp) ∥ pϕ (z))+

EMSE

(
τ̄exp, τ

∗
exp

)
(1)

consisting of two loss terms, Kullback–Leibler (KL) diver-
gence between the approximate posterior and prior distribu-
tions of the latent variables z and reconstruction loss. ϕ and
θ are the the encoder and decoder parameters respectively,
and β is the regularisation coefficient. Once the haptic
representation encoder has been trained, the weights of the
encoder are frozen to be used in the next step.

C. Motion Decoder

Next, the motion decoder that generates the desired motion
for the target task τtask according to the properties of the
object is trained on the demonstration data. From the demon-
stration data, the force trajectory obtained in the exploration
phase τexp is first passed to the pre-trained haptic encoder to
obtain the corresponding haptic representation of the object.
Next, a mapping from the haptic representation embedding
to the desired motion trajectory for the target task is trained
by minimising the loss function



(a) RMSE of generated motion (b) RMSE of force profile (c) Position and force trajectory during wiping

Fig. 2: Root Mean Squared Error (RMSE) and plots of motion trajectories and force profiles during wiping when motion is
generated by the LfD model, with and without pre-training of the haptic encoder.

(a) Baseline: demo only
(Stiffness Extrapolation)

(b) Baseline: demo only
(Friction Extrapolation)

(c) Proposed: pre-trained
trained and tested in sim

(d) Proposed: pre-trained
trained in sim & tested on real

Fig. 3: Principal Component Analysis (PCA) of latent space when the haptic encoder is pre-trained with simulated
unsupervised data and when the encoder-decoder model is trained only using demonstration data.

θ̂LfD = arg min
θLfD

L (τexp, τtask) = EMSE (τ̂task, τ
∗
task) .

(2)
where θLfD is the weights of the motion decoder.

D. Task Execution

At test time, the robot first performs pre-defined ex-
ploratory actions on the object to be manipulated. Using the
haptic encoder and motion decoder trained in the pre-training
and LfD steps respectively, the force trajectory obtained from
the exploration phase is compressed to represent the proper-
ties of the object and then the corresponding desired motion
trajectory for the target task is generated. The generated
motion trajectory for the target task is sent to the robot,
to perform the task by playing back the motion trajectory
without using the current sensor feedback (i.e., in an open
loop).

V. EXPERIMENTAL SETUP

A. Wiping task

The task is to wipe a table placed in front of the robot
with a sponge attached to the end-effector. The sponges with
different properties (e.g., stiffness and surface friction) are
prepared to evaluate the ability of the model to adapt wiping
motion according the sponge properties unseen at training
time.

B. Data collection

In the exploratory phase, the robot sequentially performs
two pre-defined exploratory actions: pressing and lateral
motion. Each exploratory motion lasts 2 seconds and the

force data in x, y and z directions are recorded at 100Hz. The
unsupervised data was collected using a high fedality physics
simulator, PyBullet by performing the exploratory actions
on 1000 objects by varying the simulated contact stiffness,
lateral friction and spinning friction parameters. Note that
this unsupervised data can be collected either in simulation
on a real robot by performing exploratory actions on variety
of objects.

For the robot experiment, we use a 7 DoF robotic arm,
KUKA iiwa, in position control. To sense the force from
the object, a six-axis force-torque sensor was mounted on
the wrist. We attached the sponge to the end-effector as
shown in Fig. 1. First, the exploration data is collected by
performing the pre-defined exploratory actions on the sponge
on the robot. Subsequently, demonstration was provided
kinaesthetically in gravity compensation mode by following
the circular wiping motion pattern. The task was to wipe with
as much force as possible in normal direction. Each wiping
motion lasts for 20 seconds and the end-effector position in
x, y and z is recorded at 100Hz. Demonstration data consists
of a list of pairs of force trajectory from the exploration the
corresponding motion trajectory from the demonstration for
12 objects (4 stiffness levels * 3 friction levels * 1 trial).

C. Model training

First, haptic representation model is pre-trained as de-
scribed in Section IV-B using simulated unsupervised data.
Then, the motion generation model is trained as described
in Section IV-C using demonstration data collected on a
real robot. A sample of demonstration data was used to test
four cases, stiffness interpolation, stiffness extrapolation and
friction interpolation, friction extrapolation cases.



D. Evaluation

We evaluated the wiping performance using 1) RMSE of
the wiping motion trajectory, and 2) RMSE of the wiping
force trajectory demonstrated by human and executed by
the robot. We compared the proposed semi-supervised LfD
approach which pre-trains the haptic encoder with simulated
unsupervised data and the baseline approach which learns
the haptic encoder and motion decoder together only using
demonstration data.

VI. RESULTS AND DISCUSSION
A. Analysis of motion generation

First, we generated the adaptive wiping motion for objects
with unseen properties using the model trained with and
without pre-training of the haptic encoder. The demonstrated
and generated wiping motions were played back on the
robot. We compare the RMSE of force profile during wiping
to evaluate the effectiveness of pre-trained haptic encoder
in generating motion closer to the demonstrated one and
applying force closer to the demonstrator.

We see that in all four cases, stiffness interpolation,
stiffness extrapolation, friction interpolation and friction ex-
trapolation, there are statistically significant improvement in
reducing RMSE of the motion trajectory and force profile
during adaptive wiping as shown in Fig. 2a and Fig. 2b
respectively. The plot of force profile during adaptive wiping
is shown in Fig. 2c. The results have shown that pre-training
of haptic representation model leads to learning of wiping
motion closer to the demonstrated one without increasing a
number of demonstrations.

B. Analysis of latent space of haptic encoder

Next, we apply the PCA to the latent space of the haptic
encoder to evaluate the haptic representation model when
trained together with the motion decoder using demonstration
data only (i.e., baseline) and when the haptic encoder is pre-
trained using unsupervised haptic data collected in simulation
(i.e., proposed).

Fig. 3a and Fig. 3b show the examples of PCA applied to
the latent space of the haptic encoder model when trained
only using demonstration data together with the motion
decoder model for the stiffness and surface friction extrapo-
lation cases respectively. In Fig. 3a, the objects with different
stiffness and friction are well separated and clustered, how-
ever, it performed poorly on generating motions for unseen
objects as it does not learn underlying distribution of object
properties unlike in the pre-trained model. In Fig. 3b, latent
space was not well separated as 8 data (4 stiffness levels × 2
friction levels) is not enough to learn to distinguish different
physical properties.

On the other hand, the latent space of the haptic encoder
pre-trained and evaluated on the simulated force trajectories
captures the distribution of the stiffness and friction as shown
in Fig. 3c. When the haptic encoder is trained purely on the
simulated data and evaluated on the real force trajectories,
the haptic encoder captures both stiffness and friction of
the real objects in the first principal component as shown

in Fig. 3d. We observe that the friction of the object was
not as clearly captured as the stiffness. One possible reasons
for this is because of a larger sim2real gap of the friction
model resulted in the mismatch between the simulator and
real world observations. The analysis on the latent space
suggested that haptic representation model pre-trained with
unsupervised data collected in simulation allows to obtain
haptic representation of real objects which successfully im-
proved the performance of the downstream task on real robot.

VII. CONCLUSIONS

In this paper, we proposed decoupling the haptic repre-
sentation model from the motor skill LfD model to utilise
a large amount of unsupervised data. The experiment has
shown that pre-training the haptic model with unsupervised
simulation data enables learning of generalisable motor skills
on a real robot from a small number of demonstrations.

One of the limitations of this work is that we did not ex-
amine how the sim2real gap can be reduced to obtain a better
haptic representation of the real object while maximising the
information available from the simulation. Also, while the
encoder and decoder structure to generate the desired full
motion trajectory was chosen in this study, it remains open
to consider how pre-trained haptic representations can be
effectively used when adapting the behaviour, for example,
using the current sensor feedback.
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