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Abstract

In the domain of transfer learning for pre-
trained models, fine-tuning specific parame-
ters rather than the entire model has become a
prevalent trend. Sparse fine-tuning has proven
effective. Counterfactual Data Augmentation
have been shown to enhance the generalization
ability of models. This study proposes a fine-
tuning method that combines the advantages
of both approaches, which is called "Counter-
factual Augmented Sparse Tuning" (CAST).
Inspired by the Lottery Ticket Hypothesis, this
method identifies significant parameter changes
by comparing models trained on counterfactual
data with those trained on original data, thereby
constructing a mask table for model parame-
ters. To further enhance model sparsity, we
introduce a counterfactual data impact factor,
which adjusts the specific influence of counter-
factual data on the model training outcomes.
The CAST method achieved the best accuracy
rates of 90.2% and 76% in counterfactual data
augmentation tasks for sentiment analysis and
natural language inference tasks. It was ob-
served that CAST successfully resisted catas-
trophic shifts in dataset distribution. The CAST
model not only improves performance in spe-
cific NLP tasks but also reduces the risk of data
distribution shift and enhances the model’s abil-
ity to capture key features.

1 Introduction

Introducing transfer learning methods into the field
of deep neural network research represents a land-
mark advancement(Han et al., 2021). Transfer
learning has gradually evolved into a two-stage
learning framework: the first stage is pre-training,
where knowledge is acquired from large datasets;
the second stage is fine-tuning, where the pre-
trained network architecture is aligned with down-
stream tasks using a small amount of data. The
models derived from the pre-training phase are
commonly known as pre-trained models (PTMs).

PTMs, having been trained on a vast amount of
data, can quickly adapt to new tasks, reducing the
time and resources required to train models from
scratch. Since pre-trained models have learned gen-
eral features on a wide range of datasets, they typ-
ically offer better performance on specific tasks.
For tasks with limited data, pre-trained models
can significantly enhance model performance, as
they have already learned rich features from a large
amount of data.

The NLP community has recognized the poten-
tial of PTMs and has begun developing PTMs suit-
able for NLP tasks(Qiu et al., 2020). In the field of
NLP, PTMs are generally referred to as Pre-trained
Language Models(PLMs). These models are usu-
ally pre-trained on large-scale text data through
unsupervised learning. The fine-tuning stage is gen-
erally divided into two types: full-parameter fine-
tuning, where the entire model’s parameters are
adjusted during training; parameter-efficient fine-
tuning (PEFT), where only a subset of the model’s
parameters are adjusted during training. Sparse
fine-tuning (SFT) is a type of PEFT, which is in-
spired by the Lottery Ticket Hypothesis (LTH, Fran-
kle and Carbin 2019), which suggests that there are
redundant parameters in neural networks, allowing
for the pruning of some parameters during training
while maintaining the model’s performance.

Data Augmentation is a technique in machine
learning and deep learning used to increase the
quantity and diversity of available data by gener-
ating new variants from existing datasets. This
method is particularly suitable for tasks with lim-
ited data and can help improve the model’s gener-
alization ability and reduce the risk of overfitting.
For text data, diversity can be increased through
methods such as synonym replacement, random
insertion, deletion, or swapping of words. Introduc-
ing Counterfactual Data Augmentation (CDA) into
the fine-tuning stage is a promising research direc-
tion(Kaushik et al., 2020; Zmigrod et al., 2019).
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Figure 1: Framework of CAST Algorithm. Sparse fine-tuning: CAST trains the PTM with original data and
counterfactual data to obtain the parameter matrix A and matrix B. Based on matrices A and B, CAST calculates
matrix C with a specific method. Counterfactual fine-tuning: CAST integrates the sparse parameter matrix C with
the matrix D (which is the matrix A after rollback) to calculate the counterfactually fine-tuned sparse parameter
matrix E for downstream task computations. For detailed description, refer to the "Method" section.

The fundamental idea of CDA is to enhance the
diversity of training data by constructing hypothet-
ical counterfactual scenarios, thereby improving
the generalization capability and robustness of the
model.

In our study, we propose a method called "Coun-
terfactual Augmented Sparse Tuning" (CAST). We
provide a graphical representation of our method
in Figure 1, illustrating the key components and an
overview of the workflow in our research approach.
For more detailed information, please refer to the
’Method’ section.

CAST combines counterfactual data augmenta-
tion with sparse fine-tuning techniques, leverag-

ing the structural symmetry of counterfactually
augmented data to enhance model performance,
while using the selective parameter resistance of
the sparse fine-tuned model to counteract the data
distribution skew caused by counterfactual data
augmentation. The addition of counterfactual data
structurally enhances the dataset. By designing
a duality in the fine-tuning strategy, it improves
the model’s recognition of key features. Our re-
search indicates that simply augmenting the dataset
with counterfactual data can lead to severe data
distribution shifts, especially in complex scenar-
ios. However, the sparse processing method we
adopt effectively mitigates this risk. Experiments



demonstrate that our method achieves significant
performance improvements across various natural
language processing tasks, further proving its ef-
fectiveness in practical applications.

2 Background

PLMs The earliest PLMs in the field of natural
language processing can be traced back to shallow
networks pre-trained to capture the semantic mean-
ings of words, such as the Word2Vec(Mikolov et al.,
2013). The Transformer architecture(Vaswani
et al., 2017) made it possible to train deep net-
work models for NLP tasks. Representative deep
neural network models based on the Transformer
architecture, such as BERT(Devlin et al., 2019),
created a significant impact in the NLP commu-
nity in 2018. With the advancement of distributed
computing capabilities, the GPT-3 (Brown et al.,
2020), which has hundreds of billions of parame-
ters, emerged. This model is considered to have
the potential for few-shot learning. The approach
of fine-tuning PLMs for downstream tasks, rather
than training language models from scratch, has
gained increasing recognition(Dai and Le, 2015;
Howard and Ruder, 2018).

CDA  Existing research has demonstrated that
training models using counterfactually augmented
data (CAD) can significantly enhance model robust-
ness(Sen et al., 2022). Previous findings reveal that
training on CAD not only improves the model’s
generalization ability across different domains but
also that the performance gains primarily stem
from the model’s learning of core features rather
than merely relying on specific patterns within the
dataset(Kaushik et al., 2020; Samory et al., 2021).
However, it remains unclear how learning these
core features affects the model’s misclassification
issues when the role of these features changes in
specific contexts.

PEFT As models become increasingly large, full-
parameter fine-tuning on consumer-grade hardware
has become prohibitively expensive, drawing re-
searchers’ attention to PEFT(Treviso et al., 2022).
Peters et al. (2018) proposed a technique for adapt-
ing PTMs to downstream tasks by introducing a
new classification layer while keeping the other
model parameters fixed. Although this approach
is effective in certain cases, its generalization per-
formance across multiple tasks is suboptimal. An-
other approach, Adapters(Houlsby et al., 2019),

enhances model adaptability by injecting trainable
new layers into the PTM without altering the origi-
nal model parameters. While this method reduces
the number of parameters needed for training, it
also increases model complexity by introducing
new structures.To avoid changing the model struc-
ture, some studies have proposed methods that di-
rectly adjust the learned vectors, which are concep-
tually similar to our research.

If ¢ is a sparse vector, then we define F' =
F (-;0 + ¢) as the SFT of the pre-trained neural
network model F' (-;0)(Ansell et al., 2021). Cur-
rent SFT methods include DiffPruning(Guo et al.,
2021), BitFit(Ben Zaken et al., 2022), and LT-
SFT(Ansell et al., 2021). DiffPruning simulates
the sparsity of the difference vector during train-
ing by continuously relaxing a binary mask. BitFit
only allows non-zero differences in the bias param-
eters. LT-SFT combines the core ideas of adapters
and sparse fine-tuning. We believe that simply
concatenating(Liu et al., 2023; Li and Liang, 2021;
Lester et al., 2021), multiplying(Liu et al., 2022), or
adding(Ben Zaken et al., 2022) the learning vectors
is insufficient to fully exploit the inherent potential
and complexity of these vectors.

LTH LTH(Frankle and Carbin, 2019; Malach
et al., 2020) provides a possible explanation for
SFT: within a randomly initialized network, there
exists a subnetwork (the "winning ticket") that can
achieve performance comparable to the original
network after proper training. This theory has in-
spired extensive research(Ansell et al., 2021) into
how sparse techniques can be used to discover and
train these efficient subnetworks.

3 Method

The CAST method achieves refined adjustments
of model parameters by controlling the changes
in model parameters obtained from training on
the original dataset and the counterfactual dataset.
Referencing the algorithm proposed by LTH, The
CAST method is divided into two stages: the SFT
phase and the counterfactual fine-tuning phase.

3.1 SFT

Firstly, we use the same PLM and perform full pa-
rameter training on both the factual dataset and the
counterfactual dataset to complete the sentiment
analysis tasks. At the beginning of each training
epoch, the current model parameters are denoted
as 0°'. This process aims to obtain two sets of



model parameters, which we denote as #7%¢ and
geounter - Next, we compare these two sets of pa-
rameters by calculating their absolute differences
Af. The specific calculation formula is shown be-
low as Equation 1:

A = |9counter _ efa0| (1)

We have sorted the model parameters accord-
ing to the magnitude of their differential valuesAf
and selected the top K parameters, referred to as
6. These parameters are pivotal in discerning
the nuances within counterfactual datasets. Ad-
ditionally, we have formulated a parameter mask
matrix, represented as M K where the elements
corresponding to % are set to 1, indicating their
significance, while the remaining parameters are
assigned a value of 0.

We posit that #% is indispensable for capturing
the intrinsic features of counterfactual data and is
exceptionally responsive to counterfactual signals.
Drawing from the LTH, these parameters are poten-
tial candidates for the "winning ticket," suggesting
a greater probability of forming a robust and ef-
ficient subnetwork within the model architecture.
The parameters identified in 6% are slated for sub-
sequent fine-tuning stages to enhance their efficacy
further.

3.2 Rollback

To enhance the sparsity of the model, we have de-
vised a parameter rollback strategy. Our goal is to
retain the influence of parameter 6% on the model
while eliminating updates to other parameter values.
Based on M %, we calculate a sparsely updated pa-
rameter matrix 7 according to Equation 2.

erol — ot + (efac _ eori) . MK )

The significance of this formula is that the param-
eter corresponding to #% has undergone training
and updating with factual data, while the other pa-
rameters have been rolled back to their state before
the training began. The core objective of this strat-
egy is to mitigate any adverse effects that the coun-
terfactual dataset may have on the model, ensuring
the stability of the model’s performance when deal-
ing with the original tasks.

3.3 Counterfactual Fine-tuning

Based on a hyperparameter «, which represents the
model’s learning degree from the counterfactual
data, the changes in the model parameters after

CAST are calculated according to the following
formula, where 6 represents the parameters of the
PLM after fine-tuning :

6 = 97"0[ +a- (ecounter . efzm) . MK (3)

After the computation using Equation 3, we
obtain a set of parameters, which are combined
with those parameters rolled back during the train-
ing process to constitute the current state of the
model. Subsequently, through meticulous selec-
tion of learning rates and precise adjustments using
the backpropagation algorithm, the model’s perfor-
mance is further enhanced. The completion of this
series of steps signifies the successful conclusion
of one full iteration of the CAST algorithm.

4 Experiment

We designed two experiments for this study:

1) Sentiment Analysis Experiment: This experi-
ment aims to fine-tune the two hyperparameters of
the model to determine the optimal values for the
counterfactual data learning rate o and the model
sparsity parameter K. We will apply the CAST al-
gorithm on a sentiment analysis dataset to evaluate
its performance and identify the hyperparameter
combination that yields the best sparsity effect.

2) Transfer Learning Test: After determining
the optimal hyperparameter settings for sentiment
analysis tasks, we plan to apply these parameters to
natural language inference (NLI) tasks to examine
the generalization ability of the CAST algorithm.
Additionally, this test will explore the potential
issue of significant data distribution shift caused by
counterfactual data augmentation in different NLP
scenarios and seek effective strategies to maintain
the stability and performance of the model during
the transfer process.

4.1 Data Construction

The datasets used for the sentiment analysis exper-
iment and the transfer learning test in the CAST
model are the sentiment analysis dataset and the
NLI dataset proposed by Kaushik et al. (2020).
Each data record of the sentiment analysis
dataset consists of a piece of movie review text and
its corresponding sentiment label, categorized as
either negative or positive. The number of records
in the training set, validation set, and test set of
this dataset are 1707, 245, and 488. To better adapt
to the CAST model in this study, we integrated



Version Premise Hypothesis Label
RP, A man in a blue jacket riding a purple bike. A man is on his yellow bike. contradiction
RP, A man in a blue jacket riding a yellow bike. A man is on his yellow bike. entailment
RAW A man in a blue jacket riding a bike. A man is on his yellow bike. neutral
RH, A man in a blue jacket riding a bike. A man wearing blue is on a bike. entailment
RH> A man in a blue jacket riding a bike. A man wearing a red jacket is on his bike.  contradiction

Table 1: Example Table of NLI Dataset Division. The NLI dataset is divided into four sub-datasets based on
their origin and augmentation method: *Raw’ for the original data, and 'RP’ and "RH’ for counterfactual data
augmentation applied to the premise and hypothesis, respectively. Given that NLI is a three-class task, both 'RP’
and 'RH’ are differentiated by two subscripts. Combining "RAW" with the remaining four versions can yield four

sub-datasets.

the original movie review dataset with its corre-
sponding counterfactual version dataset. During
the merging process, we expanded each data record
to include not only the original movie review text
but also a counterfactual movie review text field.
Through this intrecordegration, we obtained a more
comprehensive dataset.

The NLI task involves classifying two sen-
tences—a premise and a hypothesis—to determine
the logical relationship between them, which may
include entailment, contradiction, and neutral. The
number of records in the training set, validation set,
and test set of this dataset are 1750, 250, and 500.
The version obtained by modifying the premise is
denoted as "Revised Premise" (RP), and the version
obtained by modifying the hypothesis is denoted
as "Revised Hypothesis" (RH). The improvements
made by us to the NLI dataset were similar to those
made to the sentiment analysis dataset.

It is worth noting that as the NLI dataset entails
annotating three relationships for two sentences,
merging the counterfactual data resulted in four
new datasets, denoted as RHy, RHy, RP;, and
RP5. Refer to Table 1 for the specific rules on
dataset division.

4.2 Model

In the sentiment analysis experiment, we employed
the BERT-base model as the pretraining foundation
for the CAST model. To better adapt the BERT
model to the sentiment analysis task, we introduced
a Dropout activation layer at the end of the BERT
model, followed by a linear classification layer, to
enhance the model’s capability for sentiment classi-
fication. In the data preparation phase before model
training, we set the maximum input length to 300
tokens and performed padding on texts with insuf-
ficient length to ensure consistent input data. For
training settings, we utilized the Adam(Kingma
and Ba, 2014) optimizer and trained all models for
a maximum of 100 epochs. We adopt the early stop-

ping strategy, with the patience parameter set to 10,
monitoring after each epoch, and a minimum im-
provement threshold of 0.001. During training, we
set the learning rate to le-5 and used a batch size of
128. To utilize the training process more efficiently,
we employed a linear learning rate scheduler.

In the next experiment, we employed the same
model settings as the first. We changed the linear
layer at the end of the BERT model , with its di-
mension modified to (768, 3), to adapt to the NLI
three-category classification task.

4.3 Baselines

For our study on sparse fine-tuning techniques, we
have chosen BitFit, Adapters, LoRA, and LT-SFT
as our comparative baselines, alongside the perfor-
mance of a BERT model in its unaltered state. To
tailor the BERT model for both binary and multi-
class classification tasks, we have introduced an
additional dropout layer followed by a linear layer
at the model’s output. Within the BitFit methodol-
ogy, we have opted to freeze all parameters except
for the bias terms. For the Adapters and LoRA ap-
proaches, we have strictly limited the fine-tuning to
around 1%(Since CAST performs best at a sparsity
level of 1%) of the model’s parameters. Despite
LT-SFT’s original intent to tackle Cross-Lingual
Transfer challenges, its structural similarity to our
model framework positions it as our primary point
of reference among the baselines.

4.4 Experimental Setup

In the sentiment analysis experiment, we set the K
value range between 10% and 107 and selected the
« value range between 0.01 and 0.15. To establish
a performance baseline, we employed two meth-
ods: one using the BERT directly on the original
dataset for sentiment analysis without any coun-
terfactual data augmentation (under the index "No
CAD" in the tables), and the other performing sen-
timent analysis on the counterfactually augmented
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Figure 2: CAST Algorithm Fine-tuning Results Line
Chart of Sentiment Analysis Experiment: In the legend
section, the index of the sparsity parameter K for N,
where K = 107,

Method No CAD(%) CAD (%)
BERT 87.2 88.4
CAST(0.05,107) - 90.2
BitFit 574 44.5
Adapters 68.5 60.8
LoRA 63.7 65.2
LT-SFT 80.6 77.6

Table 2: Sentiment Analysis Experiment Prediction Ac-
curacy Table. For each fine-tuning algorithm, predic-
tions were trained on both the original data and the
counterfactual data augmentation. CAST inherently in-
cludes counterfactual data, so there are no results for
training on the original data alone.

dataset(under the index "CAD" in the tables). We
selected accuracy as the main metrics to evaluate
model performance.

In the transfer learning test, to ensure the ratio-
nality of the transfer learning test and verify the
generalizability of the CAST model, we decided to
use the optimal parameter values determined in the
sentiment analysis experiment. Considering that
after merging the counterfactual data, we would
obtain four new counterfactual datasets.

All experiments were conducted with at least
five repetitions, and the average values were taken.

5 Results and Discussion

5.1 Sentiment Analysis Experiment

Based on the experimental results presented in Fig-
ure 2, we can conclude that the optimal choice
for K is 107, while the best choice for « is 0.05.
From the data presented in the graph, it becomes

evident that the parameter K, dictating the extent
of parameter involvement in numerical updates, ex-
erts a more pronounced influence on the model’s
accuracy. Notably, the peak performance across
the entire spectrum of « values was consistently
attained at X' = 107. When N takes the value of
8, the optimal point of model performance is as-
sociated with an alpha value of 0.07. In contrast,
for all other values assigned to IV, the peak model
performance aligns with an alpha value of 0.05.
Independent of N’s influence, the model perfor-
mance exhibits a consistent pattern of ascent to its
zenith with the increment of alpha, beyond which
it descends, indicating that an increase in alpha
value leads to a degradation in performance post
the point of optimality.

5.1.1 The Coordinate System of CAST

The variable N signifies the degree of sparsity con-
trol within the CAST method, where a smaller NV
value corresponds to a sparser model. In CAST,
model sparsity is intricately balanced by the dual
regulation of parameters o and K. Observations
from the provided graph illustrate that model per-
formance does not linearly correlate with changes
in sparsity, irrespective of whether NN is held con-
stant or « is fixed. The role of K in model training
is more nuanced; it operates on a horizontal axis,
determining the quantity of parameters that partic-
ipate in training during an epoch. In contrast, «
exerts a vertical influence, precisely modulating the
extent to which the top K parameters are affected
by counterfactual data augmentation. CAST has
thus established a sparse model parameter coordi-
nate system, with coordinates being directed and
finely tuned by o and K. However, the general-
izability of this conclusion is limited because the
values of « tested in the experiment are discrete,
whereas the theoretically optimal value might lie
within the continuous range between these discrete
values.

5.1.2 CAD-induced Data Distribution Shift

The research conducted by Sen et al. 2022 has
demonstrated that CAD can improve the general-
ization capabilities of models. This conclusion is
corroborated by the experimental outcomes associ-
ated with the BERT and LoRA methodologies. Yet,
the experimental outcomes for the BitFit, Adapters,
and LT-SFT methods presented in Table 2 indi-
cate lower predictive accuracies with CAD than in
the absence of CAD ("No CAD" condition). This



discrepancy can be attributed to the fact that the
incorporation of counterfactual data leads to a dis-
tributional shift within the dataset. Data augmenta-
tion carries the risk of skewing the model’s focus
excessively towards specific classes or characteris-
tics, which can lead to overfitting and a subsequent
decline in model performance. Counterfactual data
augmentation fundamentally involves the modifi-
cation of a subset of critical terms within the orig-
inal data, prompting a reversal of the associated
labels. Consequently, the augmented dataset expe-
riences a diminished occurrence of these pivotal
terms, thereby causing a distributional shift that can
impact the model’s ability to generalize effectively.

The resistance to data distribution shifts exhib-
ited by LoRA is particularly striking and merits
attention. This could be due to the symmetrical ma-
trix compression characteristic of the LoRA algo-
rithm, a feature that aligns with the CAST method’s
own countermeasures against the adverse effects
of data skew. The inherent symmetry in LoRA’s
approach may provide a structural basis for its ob-
served resilience, mirroring the protective mecha-
nisms employed by CAST to mitigate the impact
of data distribution shifts.

5.1.3 CAST and Baselines

The CAST method demonstrated a remarkable pre-
diction accuracy of 90.2% at the optimal parame-
ter values, outperforming all other approaches and
thereby highlighting its inherent advantages. Ad-
ditionally, the BERT model consistently secured
the top position in baseline comparisons, irrespec-
tive of the presence or absence of counterfactual
data augmentation. This observation implies that
existing fine-tuning methods may not be optimally
adapted to the nuances of counterfactually aug-
mented fine-tuning. It suggests a shortfall in ex-
ploiting the structural symmetry between counter-
factual and factual data, indicating a potential area
for further refinement in the fine-tuning strategies.

It is important to note that results may vary with
different datasets or experimental conditions, and
in some cases, they may even be completely op-
posite. Indeed, an experiment might show trends
entirely different from the current one, with signif-
icant declines in various metrics. This variability
emphasizes the importance of considering the ef-
fectiveness and applicability of data augmentation
methods, particularly counterfactual data augmen-
tation, in different contexts.

In summary, while the specific values of K and

CAD(%)

Method N.C(%)

RP, RP, RH; RH,
BERT 72.2 703 721 742 708
CAST - 720 718 76.0 735
BitFit 43.5 342 353 426 378
Adapters 68.2 592 60.1 648 60.7
LoRA 58.1 548 553 60.7 559
LT-SFT 70.3 634 62.6 66.1 635

Table 3: Results of the Transfer Learning Test. The two
parameters o and K for CAST are 0.05 and 107. 'N.C’
means 'No CAD’. ’RP’ stands for 'revised premise’, and
"RH’ stands for ’revised hypothesis’. Both '"RH’ and
"RP’ are branches of counterfactual data augmentation
in the NLI task.

a showed good results in this experiment, further
validation on a broader range of experimental set-
tings and different datasets is necessary. Addition-
ally, the variability in experimental results reminds
us to carefully consider the specific impact of data
augmentation techniques on model performance
and to flexibly adjust strategies according to the
actual situation.

5.2 Transfer Learning Test

The results of transfer learning test are shown in Ta-
ble 3. The CAST method once again demonstrated
its outstanding performance. While the inference
accuracy of the CAST method in RP; is lower
than that of the BERT model, ranking it second
among all methods, the CAST method achieves
the best inference performance on the other three
sub-datasets. Notably, the RH; model achieved an
accuracy of approximately 76%, the highest among
all models. These results indicate that the CAST
model not only possesses strong generalization ca-
pabilities but also that the optimal hyperparameter
choices derived from training on the sentiment anal-
ysis dataset effectively enhance performance in the
NLI task. Furthermore, this confirms the signif-
icant advantage of the sparse processing method
employed by the CAST model in the field of CAD.

5.2.1 Data Distribution Shift in NLI

In the first experiment, we discovered that training
directly with a combination of raw and counter-
factually augmented data, without any sparse pro-
cessing, could lead to a significant drop in model
performance. This discovery gained further valida-
tion in the follow-up experiment, which entailed an
assessment of various baseline models. Notably, a
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Figure 3: The Distribution of Label Pairs. In the NLI
task, the distribution of label pairs for CAD across the
four sub-datasets shows in this figure. "Neu-Con" rep-
resents the pair neutral and contradiction. "Cou-Ent"
represents the pair contradiction and entailment. "Ent-
Neu" represents the pair entailment and neutral.

decline in performance was also discernible within
the BERT model, underscoring the broad implica-
tions of the observed phenomenon. We believe this
decline in performance may be attributed to the
nature of the NLI task, which involves predicting
the relationship between a premise and a hypothe-
sis, typically classified into three categories. When
counterfactually augmenting the data, simply train-
ing with one set of counterfactual data can result in
a shift in data distribution.

To mitigate the risk of uneven distribution of
counterfactual data label pairs during the manual
subdivision of sub-datasets, we conducted a tally of
label pair counts across the four NLI sub-datasets,
as depicted in Figure 3. From the graph, it is evi-
dent that the largest disparity exists in task RHo,
with a difference of 46 pairs between Ent-Neu and
Neu-Con, comprising less than 3% of the total data
volume. Consequently, any potential data offset
stemming from uneven label pair distribution can
be disregarded.

5.2.2 Sparsity and CAD

Through sparse processing, we can leverage the en-
hanced knowledge provided by the counterfactual
data while minimizing the catastrophic shift in data
distribution. In experiments combining multiple
sparse fine-tuning methods with CAD, where a per-

formance decline was observed, CAST surpasses
the BERT model across multiple sub-datasets. This
superiority stems from its consideration of the struc-
tural symmetry inherent in the fine-tuning process,
specifically tailored to counterfactual enhancement
data. By combining and fine-tuning a set of mutu-
ally counterfactual data, CAST effectively screens
out winning ticket subnetworks, resulting in pa-
rameter updates solely based on these subnetworks.
This approach mitigates the data distribution shift
induced by counterfactual data enhancement. Fur-
ther maintenance of the original data distribution is
achieved through the introduction of an influential
factor, the alpha coefficient.

6 Conclusion

We propose a novel sparse fine-tuning method that
reinforces the duality structure of counterfactually
augmented data, aiming to gain a deeper under-
standing and utilization of the characteristics of
learning vectors. Our proposed CAST model offers
several advantages:

Enhanced Key Feature Identification: During
training, we use a strategy that strengthens key fea-
ture recognition by blending the absolute parame-
ter changes from counterfactual training with those
from the original data in each epoch. This approach
guides the model to focus more on crucial phrases
and features. This helps the model to more acutely
detect elements essential for understanding the full
text. Additionally, this method, which combines
counterfactual and original data, also improves the
model’s sensitivity to subtle linguistic details.

Reduced Risk of Data Shift: The CAST model
tackles the issue of data distribution shifts caused
by mixing counterfactual data with the original
dataset by introducing a control coefficient. We
also apply a sparse processing technique, keeping
only the top K most changed parameters and reset-
ting the rest to their original state. This minimizes
the risk of data shift and maximizes the benefits of
counterfactual data. As a result, the CAST model
can integrate new insights without losing the origi-
nal dataset’s characteristics, improving its compre-
hension and generalization of linguistic phenom-
ena. This approach boosts the model’s precision
in key feature detection and its sensitivity to lan-
guage nuances, leading to more stable and reliable
performance in complex NLP tasks.



7 Limitations

The CAST method has a few drawbacks: it adds
algorithmic complexity due to parameter sparsifica-
tion, requiring sorting and computation of changes,
which can be computationally intensive. However,
once the parameter mask is created, the fine-tuning
process becomes more efficient, somewhat mitigat-
ing the complexity. Additionally, handling large
PTMs demands substantial GPU memory, which
might necessitate model compression or enhanced
computing resources.

Despite these, CAST’s compatibility with exist-
ing algorithms is a significant advantage, allowing
for the integration of various techniques to improve
training efficiency and model optimization.
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