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Abstract

In the domain of transfer learning for pre-001
trained models, fine-tuning specific parame-002
ters rather than the entire model has become a003
prevalent trend. Sparse fine-tuning has proven004
effective. Counterfactual Data Augmentation005
have been shown to enhance the generalization006
ability of models. This study proposes a fine-007
tuning method that combines the advantages008
of both approaches, which is called "Counter-009
factual Augmented Sparse Tuning" (CAST).010
Inspired by the Lottery Ticket Hypothesis, this011
method identifies significant parameter changes012
by comparing models trained on counterfactual013
data with those trained on original data, thereby014
constructing a mask table for model parame-015
ters. To further enhance model sparsity, we016
introduce a counterfactual data impact factor,017
which adjusts the specific influence of counter-018
factual data on the model training outcomes.019
The CAST method achieved the best accuracy020
rates of 90.2% and 76% in counterfactual data021
augmentation tasks for sentiment analysis and022
natural language inference tasks. It was ob-023
served that CAST successfully resisted catas-024
trophic shifts in dataset distribution. The CAST025
model not only improves performance in spe-026
cific NLP tasks but also reduces the risk of data027
distribution shift and enhances the model’s abil-028
ity to capture key features.029

1 Introduction030

Introducing transfer learning methods into the field031

of deep neural network research represents a land-032

mark advancement(Han et al., 2021). Transfer033

learning has gradually evolved into a two-stage034

learning framework: the first stage is pre-training,035

where knowledge is acquired from large datasets;036

the second stage is fine-tuning, where the pre-037

trained network architecture is aligned with down-038

stream tasks using a small amount of data. The039

models derived from the pre-training phase are040

commonly known as pre-trained models (PTMs).041

PTMs, having been trained on a vast amount of 042

data, can quickly adapt to new tasks, reducing the 043

time and resources required to train models from 044

scratch. Since pre-trained models have learned gen- 045

eral features on a wide range of datasets, they typ- 046

ically offer better performance on specific tasks. 047

For tasks with limited data, pre-trained models 048

can significantly enhance model performance, as 049

they have already learned rich features from a large 050

amount of data. 051

The NLP community has recognized the poten- 052

tial of PTMs and has begun developing PTMs suit- 053

able for NLP tasks(Qiu et al., 2020). In the field of 054

NLP, PTMs are generally referred to as Pre-trained 055

Language Models(PLMs). These models are usu- 056

ally pre-trained on large-scale text data through 057

unsupervised learning. The fine-tuning stage is gen- 058

erally divided into two types: full-parameter fine- 059

tuning, where the entire model’s parameters are 060

adjusted during training; parameter-efficient fine- 061

tuning (PEFT), where only a subset of the model’s 062

parameters are adjusted during training. Sparse 063

fine-tuning (SFT) is a type of PEFT, which is in- 064

spired by the Lottery Ticket Hypothesis (LTH, Fran- 065

kle and Carbin 2019), which suggests that there are 066

redundant parameters in neural networks, allowing 067

for the pruning of some parameters during training 068

while maintaining the model’s performance. 069

Data Augmentation is a technique in machine 070

learning and deep learning used to increase the 071

quantity and diversity of available data by gener- 072

ating new variants from existing datasets. This 073

method is particularly suitable for tasks with lim- 074

ited data and can help improve the model’s gener- 075

alization ability and reduce the risk of overfitting. 076

For text data, diversity can be increased through 077

methods such as synonym replacement, random 078

insertion, deletion, or swapping of words. Introduc- 079

ing Counterfactual Data Augmentation (CDA) into 080

the fine-tuning stage is a promising research direc- 081

tion(Kaushik et al., 2020; Zmigrod et al., 2019). 082
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Figure 1: Framework of CAST Algorithm. Sparse fine-tuning: CAST trains the PTM with original data and
counterfactual data to obtain the parameter matrix A and matrix B. Based on matrices A and B, CAST calculates
matrix C with a specific method. Counterfactual fine-tuning: CAST integrates the sparse parameter matrix C with
the matrix D (which is the matrix A after rollback) to calculate the counterfactually fine-tuned sparse parameter
matrix E for downstream task computations. For detailed description, refer to the "Method" section.

The fundamental idea of CDA is to enhance the083

diversity of training data by constructing hypothet-084

ical counterfactual scenarios, thereby improving085

the generalization capability and robustness of the086

model.087

In our study, we propose a method called "Coun-088

terfactual Augmented Sparse Tuning" (CAST). We089

provide a graphical representation of our method090

in Figure 1, illustrating the key components and an091

overview of the workflow in our research approach.092

For more detailed information, please refer to the093

’Method’ section.094

CAST combines counterfactual data augmenta-095

tion with sparse fine-tuning techniques, leverag-096

ing the structural symmetry of counterfactually 097

augmented data to enhance model performance, 098

while using the selective parameter resistance of 099

the sparse fine-tuned model to counteract the data 100

distribution skew caused by counterfactual data 101

augmentation. The addition of counterfactual data 102

structurally enhances the dataset. By designing 103

a duality in the fine-tuning strategy, it improves 104

the model’s recognition of key features. Our re- 105

search indicates that simply augmenting the dataset 106

with counterfactual data can lead to severe data 107

distribution shifts, especially in complex scenar- 108

ios. However, the sparse processing method we 109

adopt effectively mitigates this risk. Experiments 110
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demonstrate that our method achieves significant111

performance improvements across various natural112

language processing tasks, further proving its ef-113

fectiveness in practical applications.114

2 Background115

PLMs The earliest PLMs in the field of natural116

language processing can be traced back to shallow117

networks pre-trained to capture the semantic mean-118

ings of words, such as the Word2Vec(Mikolov et al.,119

2013). The Transformer architecture(Vaswani120

et al., 2017) made it possible to train deep net-121

work models for NLP tasks. Representative deep122

neural network models based on the Transformer123

architecture, such as BERT(Devlin et al., 2019),124

created a significant impact in the NLP commu-125

nity in 2018. With the advancement of distributed126

computing capabilities, the GPT-3 (Brown et al.,127

2020), which has hundreds of billions of parame-128

ters, emerged. This model is considered to have129

the potential for few-shot learning. The approach130

of fine-tuning PLMs for downstream tasks, rather131

than training language models from scratch, has132

gained increasing recognition(Dai and Le, 2015;133

Howard and Ruder, 2018).134

CDA Existing research has demonstrated that135

training models using counterfactually augmented136

data (CAD) can significantly enhance model robust-137

ness(Sen et al., 2022). Previous findings reveal that138

training on CAD not only improves the model’s139

generalization ability across different domains but140

also that the performance gains primarily stem141

from the model’s learning of core features rather142

than merely relying on specific patterns within the143

dataset(Kaushik et al., 2020; Samory et al., 2021).144

However, it remains unclear how learning these145

core features affects the model’s misclassification146

issues when the role of these features changes in147

specific contexts.148

PEFT As models become increasingly large, full-149

parameter fine-tuning on consumer-grade hardware150

has become prohibitively expensive, drawing re-151

searchers’ attention to PEFT(Treviso et al., 2022).152

Peters et al. (2018) proposed a technique for adapt-153

ing PTMs to downstream tasks by introducing a154

new classification layer while keeping the other155

model parameters fixed. Although this approach156

is effective in certain cases, its generalization per-157

formance across multiple tasks is suboptimal. An-158

other approach, Adapters(Houlsby et al., 2019),159

enhances model adaptability by injecting trainable 160

new layers into the PTM without altering the origi- 161

nal model parameters. While this method reduces 162

the number of parameters needed for training, it 163

also increases model complexity by introducing 164

new structures.To avoid changing the model struc- 165

ture, some studies have proposed methods that di- 166

rectly adjust the learned vectors, which are concep- 167

tually similar to our research. 168

If ϕ is a sparse vector, then we define F ′ = 169

F (·; θ + ϕ) as the SFT of the pre-trained neural 170

network model F (·; θ)(Ansell et al., 2021). Cur- 171

rent SFT methods include DiffPruning(Guo et al., 172

2021), BitFit(Ben Zaken et al., 2022), and LT- 173

SFT(Ansell et al., 2021). DiffPruning simulates 174

the sparsity of the difference vector during train- 175

ing by continuously relaxing a binary mask. BitFit 176

only allows non-zero differences in the bias param- 177

eters. LT-SFT combines the core ideas of adapters 178

and sparse fine-tuning. We believe that simply 179

concatenating(Liu et al., 2023; Li and Liang, 2021; 180

Lester et al., 2021), multiplying(Liu et al., 2022), or 181

adding(Ben Zaken et al., 2022) the learning vectors 182

is insufficient to fully exploit the inherent potential 183

and complexity of these vectors. 184

LTH LTH(Frankle and Carbin, 2019; Malach 185

et al., 2020) provides a possible explanation for 186

SFT: within a randomly initialized network, there 187

exists a subnetwork (the "winning ticket") that can 188

achieve performance comparable to the original 189

network after proper training. This theory has in- 190

spired extensive research(Ansell et al., 2021) into 191

how sparse techniques can be used to discover and 192

train these efficient subnetworks. 193

3 Method 194

The CAST method achieves refined adjustments 195

of model parameters by controlling the changes 196

in model parameters obtained from training on 197

the original dataset and the counterfactual dataset. 198

Referencing the algorithm proposed by LTH, The 199

CAST method is divided into two stages: the SFT 200

phase and the counterfactual fine-tuning phase. 201

3.1 SFT 202

Firstly, we use the same PLM and perform full pa- 203

rameter training on both the factual dataset and the 204

counterfactual dataset to complete the sentiment 205

analysis tasks. At the beginning of each training 206

epoch, the current model parameters are denoted 207

as θori. This process aims to obtain two sets of 208
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model parameters, which we denote as θfac and209

θcounter. Next, we compare these two sets of pa-210

rameters by calculating their absolute differences211

∆θ. The specific calculation formula is shown be-212

low as Equation 1:213

∆θ = |θcounter − θfac| (1)214

We have sorted the model parameters accord-215

ing to the magnitude of their differential values∆θ216

and selected the top Kparameters, referred to as217

θK . These parameters are pivotal in discerning218

the nuances within counterfactual datasets. Ad-219

ditionally, we have formulated a parameter mask220

matrix, represented as MK , where the elements221

corresponding to θK are set to 1, indicating their222

significance, while the remaining parameters are223

assigned a value of 0.224

We posit that θK is indispensable for capturing225

the intrinsic features of counterfactual data and is226

exceptionally responsive to counterfactual signals.227

Drawing from the LTH, these parameters are poten-228

tial candidates for the "winning ticket," suggesting229

a greater probability of forming a robust and ef-230

ficient subnetwork within the model architecture.231

The parameters identified in θK are slated for sub-232

sequent fine-tuning stages to enhance their efficacy233

further.234

3.2 Rollback235

To enhance the sparsity of the model, we have de-236

vised a parameter rollback strategy. Our goal is to237

retain the influence of parameter θK on the model238

while eliminating updates to other parameter values.239

Based on MK , we calculate a sparsely updated pa-240

rameter matrix θrol according to Equation 2.241

θrol = θori + (θfac − θori) ·MK (2)242

The significance of this formula is that the param-243

eter corresponding to θK has undergone training244

and updating with factual data, while the other pa-245

rameters have been rolled back to their state before246

the training began. The core objective of this strat-247

egy is to mitigate any adverse effects that the coun-248

terfactual dataset may have on the model, ensuring249

the stability of the model’s performance when deal-250

ing with the original tasks.251

3.3 Counterfactual Fine-tuning252

Based on a hyperparameter α, which represents the253

model’s learning degree from the counterfactual254

data, the changes in the model parameters after255

CAST are calculated according to the following 256

formula, where θ represents the parameters of the 257

PLM after fine-tuning : 258

θ = θrol + α · (θcounter − θfac) ·MK (3) 259

After the computation using Equation 3, we 260

obtain a set of parameters, which are combined 261

with those parameters rolled back during the train- 262

ing process to constitute the current state of the 263

model. Subsequently, through meticulous selec- 264

tion of learning rates and precise adjustments using 265

the backpropagation algorithm, the model’s perfor- 266

mance is further enhanced. The completion of this 267

series of steps signifies the successful conclusion 268

of one full iteration of the CAST algorithm. 269

4 Experiment 270

We designed two experiments for this study: 271

1) Sentiment Analysis Experiment: This experi- 272

ment aims to fine-tune the two hyperparameters of 273

the model to determine the optimal values for the 274

counterfactual data learning rate α and the model 275

sparsity parameter K. We will apply the CAST al- 276

gorithm on a sentiment analysis dataset to evaluate 277

its performance and identify the hyperparameter 278

combination that yields the best sparsity effect. 279

2) Transfer Learning Test: After determining 280

the optimal hyperparameter settings for sentiment 281

analysis tasks, we plan to apply these parameters to 282

natural language inference (NLI) tasks to examine 283

the generalization ability of the CAST algorithm. 284

Additionally, this test will explore the potential 285

issue of significant data distribution shift caused by 286

counterfactual data augmentation in different NLP 287

scenarios and seek effective strategies to maintain 288

the stability and performance of the model during 289

the transfer process. 290

4.1 Data Construction 291

The datasets used for the sentiment analysis exper- 292

iment and the transfer learning test in the CAST 293

model are the sentiment analysis dataset and the 294

NLI dataset proposed by Kaushik et al. (2020). 295

Each data record of the sentiment analysis 296

dataset consists of a piece of movie review text and 297

its corresponding sentiment label, categorized as 298

either negative or positive. The number of records 299

in the training set, validation set, and test set of 300

this dataset are 1707, 245, and 488. To better adapt 301

to the CAST model in this study, we integrated 302
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Version Premise Hypothesis Label
RP1 A man in a blue jacket riding a purple bike. A man is on his yellow bike. contradiction
RP2 A man in a blue jacket riding a yellow bike. A man is on his yellow bike. entailment
RAW A man in a blue jacket riding a bike. A man is on his yellow bike. neutral
RH1 A man in a blue jacket riding a bike. A man wearing blue is on a bike. entailment
RH2 A man in a blue jacket riding a bike. A man wearing a red jacket is on his bike. contradiction

Table 1: Example Table of NLI Dataset Division. The NLI dataset is divided into four sub-datasets based on
their origin and augmentation method: ’Raw’ for the original data, and ’RP’ and ’RH’ for counterfactual data
augmentation applied to the premise and hypothesis, respectively. Given that NLI is a three-class task, both ’RP’
and ’RH’ are differentiated by two subscripts. Combining "RAW" with the remaining four versions can yield four
sub-datasets.

the original movie review dataset with its corre-303

sponding counterfactual version dataset. During304

the merging process, we expanded each data record305

to include not only the original movie review text306

but also a counterfactual movie review text field.307

Through this intrecordegration, we obtained a more308

comprehensive dataset.309

The NLI task involves classifying two sen-310

tences—a premise and a hypothesis—to determine311

the logical relationship between them, which may312

include entailment, contradiction, and neutral. The313

number of records in the training set, validation set,314

and test set of this dataset are 1750, 250, and 500.315

The version obtained by modifying the premise is316

denoted as "Revised Premise" (RP), and the version317

obtained by modifying the hypothesis is denoted318

as "Revised Hypothesis" (RH). The improvements319

made by us to the NLI dataset were similar to those320

made to the sentiment analysis dataset.321

It is worth noting that as the NLI dataset entails322

annotating three relationships for two sentences,323

merging the counterfactual data resulted in four324

new datasets, denoted as RH1, RH2, RP1, and325

RP2. Refer to Table 1 for the specific rules on326

dataset division.327

4.2 Model328

In the sentiment analysis experiment, we employed329

the BERT-base model as the pretraining foundation330

for the CAST model. To better adapt the BERT331

model to the sentiment analysis task, we introduced332

a Dropout activation layer at the end of the BERT333

model, followed by a linear classification layer, to334

enhance the model’s capability for sentiment classi-335

fication. In the data preparation phase before model336

training, we set the maximum input length to 300337

tokens and performed padding on texts with insuf-338

ficient length to ensure consistent input data. For339

training settings, we utilized the Adam(Kingma340

and Ba, 2014) optimizer and trained all models for341

a maximum of 100 epochs. We adopt the early stop-342

ping strategy, with the patience parameter set to 10, 343

monitoring after each epoch, and a minimum im- 344

provement threshold of 0.001. During training, we 345

set the learning rate to 1e-5 and used a batch size of 346

128. To utilize the training process more efficiently, 347

we employed a linear learning rate scheduler. 348

In the next experiment, we employed the same 349

model settings as the first. We changed the linear 350

layer at the end of the BERT model , with its di- 351

mension modified to (768, 3), to adapt to the NLI 352

three-category classification task. 353

4.3 Baselines 354

For our study on sparse fine-tuning techniques, we 355

have chosen BitFit, Adapters, LoRA, and LT-SFT 356

as our comparative baselines, alongside the perfor- 357

mance of a BERT model in its unaltered state. To 358

tailor the BERT model for both binary and multi- 359

class classification tasks, we have introduced an 360

additional dropout layer followed by a linear layer 361

at the model’s output. Within the BitFit methodol- 362

ogy, we have opted to freeze all parameters except 363

for the bias terms. For the Adapters and LoRA ap- 364

proaches, we have strictly limited the fine-tuning to 365

around 1%(Since CAST performs best at a sparsity 366

level of 1%) of the model’s parameters. Despite 367

LT-SFT’s original intent to tackle Cross-Lingual 368

Transfer challenges, its structural similarity to our 369

model framework positions it as our primary point 370

of reference among the baselines. 371

4.4 Experimental Setup 372

In the sentiment analysis experiment, we set the K 373

value range between 104 and 107 and selected the 374

α value range between 0.01 and 0.15. To establish 375

a performance baseline, we employed two meth- 376

ods: one using the BERT directly on the original 377

dataset for sentiment analysis without any coun- 378

terfactual data augmentation (under the index "No 379

CAD" in the tables), and the other performing sen- 380

timent analysis on the counterfactually augmented 381
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Figure 2: CAST Algorithm Fine-tuning Results Line
Chart of Sentiment Analysis Experiment: In the legend
section, the index of the sparsity parameter K for N ,
where K = 10N .

Method No CAD(%) CAD (%)
BERT 87.2 88.4
CAST(0.05, 107) - 90.2
BitFit 57.4 44.5
Adapters 68.5 60.8
LoRA 63.7 65.2
LT-SFT 80.6 77.6

Table 2: Sentiment Analysis Experiment Prediction Ac-
curacy Table. For each fine-tuning algorithm, predic-
tions were trained on both the original data and the
counterfactual data augmentation. CAST inherently in-
cludes counterfactual data, so there are no results for
training on the original data alone.

dataset(under the index "CAD" in the tables). We382

selected accuracy as the main metrics to evaluate383

model performance.384

In the transfer learning test, to ensure the ratio-385

nality of the transfer learning test and verify the386

generalizability of the CAST model, we decided to387

use the optimal parameter values determined in the388

sentiment analysis experiment. Considering that389

after merging the counterfactual data, we would390

obtain four new counterfactual datasets.391

All experiments were conducted with at least392

five repetitions, and the average values were taken.393

5 Results and Discussion394

5.1 Sentiment Analysis Experiment395

Based on the experimental results presented in Fig-396

ure 2, we can conclude that the optimal choice397

for K is 107, while the best choice for α is 0.05.398

From the data presented in the graph, it becomes399

evident that the parameter K, dictating the extent 400

of parameter involvement in numerical updates, ex- 401

erts a more pronounced influence on the model’s 402

accuracy. Notably, the peak performance across 403

the entire spectrum of α values was consistently 404

attained at K = 107. When N takes the value of 405

8, the optimal point of model performance is as- 406

sociated with an alpha value of 0.07. In contrast, 407

for all other values assigned to N , the peak model 408

performance aligns with an alpha value of 0.05. 409

Independent of N ’s influence, the model perfor- 410

mance exhibits a consistent pattern of ascent to its 411

zenith with the increment of alpha, beyond which 412

it descends, indicating that an increase in alpha 413

value leads to a degradation in performance post 414

the point of optimality. 415

5.1.1 The Coordinate System of CAST 416

The variable N signifies the degree of sparsity con- 417

trol within the CAST method, where a smaller N 418

value corresponds to a sparser model. In CAST, 419

model sparsity is intricately balanced by the dual 420

regulation of parameters α and K. Observations 421

from the provided graph illustrate that model per- 422

formance does not linearly correlate with changes 423

in sparsity, irrespective of whether N is held con- 424

stant or α is fixed. The role of K in model training 425

is more nuanced; it operates on a horizontal axis, 426

determining the quantity of parameters that partic- 427

ipate in training during an epoch. In contrast, α 428

exerts a vertical influence, precisely modulating the 429

extent to which the top K parameters are affected 430

by counterfactual data augmentation. CAST has 431

thus established a sparse model parameter coordi- 432

nate system, with coordinates being directed and 433

finely tuned by α and K. However, the general- 434

izability of this conclusion is limited because the 435

values of α tested in the experiment are discrete, 436

whereas the theoretically optimal value might lie 437

within the continuous range between these discrete 438

values. 439

5.1.2 CAD-induced Data Distribution Shift 440

The research conducted by Sen et al. 2022 has 441

demonstrated that CAD can improve the general- 442

ization capabilities of models. This conclusion is 443

corroborated by the experimental outcomes associ- 444

ated with the BERT and LoRA methodologies. Yet, 445

the experimental outcomes for the BitFit, Adapters, 446

and LT-SFT methods presented in Table 2 indi- 447

cate lower predictive accuracies with CAD than in 448

the absence of CAD ("No CAD" condition). This 449
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discrepancy can be attributed to the fact that the450

incorporation of counterfactual data leads to a dis-451

tributional shift within the dataset. Data augmenta-452

tion carries the risk of skewing the model’s focus453

excessively towards specific classes or characteris-454

tics, which can lead to overfitting and a subsequent455

decline in model performance. Counterfactual data456

augmentation fundamentally involves the modifi-457

cation of a subset of critical terms within the orig-458

inal data, prompting a reversal of the associated459

labels. Consequently, the augmented dataset expe-460

riences a diminished occurrence of these pivotal461

terms, thereby causing a distributional shift that can462

impact the model’s ability to generalize effectively.463

The resistance to data distribution shifts exhib-464

ited by LoRA is particularly striking and merits465

attention. This could be due to the symmetrical ma-466

trix compression characteristic of the LoRA algo-467

rithm, a feature that aligns with the CAST method’s468

own countermeasures against the adverse effects469

of data skew. The inherent symmetry in LoRA’s470

approach may provide a structural basis for its ob-471

served resilience, mirroring the protective mecha-472

nisms employed by CAST to mitigate the impact473

of data distribution shifts.474

5.1.3 CAST and Baselines475

The CAST method demonstrated a remarkable pre-476

diction accuracy of 90.2% at the optimal parame-477

ter values, outperforming all other approaches and478

thereby highlighting its inherent advantages. Ad-479

ditionally, the BERT model consistently secured480

the top position in baseline comparisons, irrespec-481

tive of the presence or absence of counterfactual482

data augmentation. This observation implies that483

existing fine-tuning methods may not be optimally484

adapted to the nuances of counterfactually aug-485

mented fine-tuning. It suggests a shortfall in ex-486

ploiting the structural symmetry between counter-487

factual and factual data, indicating a potential area488

for further refinement in the fine-tuning strategies.489

It is important to note that results may vary with490

different datasets or experimental conditions, and491

in some cases, they may even be completely op-492

posite. Indeed, an experiment might show trends493

entirely different from the current one, with signif-494

icant declines in various metrics. This variability495

emphasizes the importance of considering the ef-496

fectiveness and applicability of data augmentation497

methods, particularly counterfactual data augmen-498

tation, in different contexts.499

In summary, while the specific values of K and500

Method N.C(%) CAD(%)
RP1 RP2 RH1 RH2

BERT 72.2 70.3 72.1 74.2 70.8
CAST - 72.0 71.8 76.0 73.5
BitFit 43.5 34.2 35.3 42.6 37.8
Adapters 68.2 59.2 60.1 64.8 60.7
LoRA 58.1 54.8 55.3 60.7 55.9
LT-SFT 70.3 63.4 62.6 66.1 63.5

Table 3: Results of the Transfer Learning Test. The two
parameters α and K for CAST are 0.05 and 107. ’N.C’
means ’No CAD’. ’RP’ stands for ’revised premise’, and
’RH’ stands for ’revised hypothesis’. Both ’RH’ and
’RP’ are branches of counterfactual data augmentation
in the NLI task.

α showed good results in this experiment, further 501

validation on a broader range of experimental set- 502

tings and different datasets is necessary. Addition- 503

ally, the variability in experimental results reminds 504

us to carefully consider the specific impact of data 505

augmentation techniques on model performance 506

and to flexibly adjust strategies according to the 507

actual situation. 508

5.2 Transfer Learning Test 509

The results of transfer learning test are shown in Ta- 510

ble 3. The CAST method once again demonstrated 511

its outstanding performance. While the inference 512

accuracy of the CAST method in RP2 is lower 513

than that of the BERT model, ranking it second 514

among all methods, the CAST method achieves 515

the best inference performance on the other three 516

sub-datasets. Notably, the RH1 model achieved an 517

accuracy of approximately 76%, the highest among 518

all models. These results indicate that the CAST 519

model not only possesses strong generalization ca- 520

pabilities but also that the optimal hyperparameter 521

choices derived from training on the sentiment anal- 522

ysis dataset effectively enhance performance in the 523

NLI task. Furthermore, this confirms the signif- 524

icant advantage of the sparse processing method 525

employed by the CAST model in the field of CAD. 526

5.2.1 Data Distribution Shift in NLI 527

In the first experiment, we discovered that training 528

directly with a combination of raw and counter- 529

factually augmented data, without any sparse pro- 530

cessing, could lead to a significant drop in model 531

performance. This discovery gained further valida- 532

tion in the follow-up experiment, which entailed an 533

assessment of various baseline models. Notably, a 534
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Figure 3: The Distribution of Label Pairs. In the NLI
task, the distribution of label pairs for CAD across the
four sub-datasets shows in this figure. "Neu-Con" rep-
resents the pair neutral and contradiction. "Cou-Ent"
represents the pair contradiction and entailment. "Ent-
Neu" represents the pair entailment and neutral.

decline in performance was also discernible within535

the BERT model, underscoring the broad implica-536

tions of the observed phenomenon. We believe this537

decline in performance may be attributed to the538

nature of the NLI task, which involves predicting539

the relationship between a premise and a hypothe-540

sis, typically classified into three categories. When541

counterfactually augmenting the data, simply train-542

ing with one set of counterfactual data can result in543

a shift in data distribution.544

To mitigate the risk of uneven distribution of545

counterfactual data label pairs during the manual546

subdivision of sub-datasets, we conducted a tally of547

label pair counts across the four NLI sub-datasets,548

as depicted in Figure 3. From the graph, it is evi-549

dent that the largest disparity exists in task RH2,550

with a difference of 46 pairs between Ent-Neu and551

Neu-Con, comprising less than 3% of the total data552

volume. Consequently, any potential data offset553

stemming from uneven label pair distribution can554

be disregarded.555

5.2.2 Sparsity and CAD556

Through sparse processing, we can leverage the en-557

hanced knowledge provided by the counterfactual558

data while minimizing the catastrophic shift in data559

distribution. In experiments combining multiple560

sparse fine-tuning methods with CAD, where a per-561

formance decline was observed, CAST surpasses 562

the BERT model across multiple sub-datasets. This 563

superiority stems from its consideration of the struc- 564

tural symmetry inherent in the fine-tuning process, 565

specifically tailored to counterfactual enhancement 566

data. By combining and fine-tuning a set of mutu- 567

ally counterfactual data, CAST effectively screens 568

out winning ticket subnetworks, resulting in pa- 569

rameter updates solely based on these subnetworks. 570

This approach mitigates the data distribution shift 571

induced by counterfactual data enhancement. Fur- 572

ther maintenance of the original data distribution is 573

achieved through the introduction of an influential 574

factor, the alpha coefficient. 575

6 Conclusion 576

We propose a novel sparse fine-tuning method that 577

reinforces the duality structure of counterfactually 578

augmented data, aiming to gain a deeper under- 579

standing and utilization of the characteristics of 580

learning vectors. Our proposed CAST model offers 581

several advantages: 582

Enhanced Key Feature Identification: During 583

training, we use a strategy that strengthens key fea- 584

ture recognition by blending the absolute parame- 585

ter changes from counterfactual training with those 586

from the original data in each epoch. This approach 587

guides the model to focus more on crucial phrases 588

and features. This helps the model to more acutely 589

detect elements essential for understanding the full 590

text. Additionally, this method, which combines 591

counterfactual and original data, also improves the 592

model’s sensitivity to subtle linguistic details. 593

Reduced Risk of Data Shift: The CAST model 594

tackles the issue of data distribution shifts caused 595

by mixing counterfactual data with the original 596

dataset by introducing a control coefficient. We 597

also apply a sparse processing technique, keeping 598

only the top K most changed parameters and reset- 599

ting the rest to their original state. This minimizes 600

the risk of data shift and maximizes the benefits of 601

counterfactual data. As a result, the CAST model 602

can integrate new insights without losing the origi- 603

nal dataset’s characteristics, improving its compre- 604

hension and generalization of linguistic phenom- 605

ena. This approach boosts the model’s precision 606

in key feature detection and its sensitivity to lan- 607

guage nuances, leading to more stable and reliable 608

performance in complex NLP tasks. 609
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7 Limitations610

The CAST method has a few drawbacks: it adds611

algorithmic complexity due to parameter sparsifica-612

tion, requiring sorting and computation of changes,613

which can be computationally intensive. However,614

once the parameter mask is created, the fine-tuning615

process becomes more efficient, somewhat mitigat-616

ing the complexity. Additionally, handling large617

PTMs demands substantial GPU memory, which618

might necessitate model compression or enhanced619

computing resources.620

Despite these, CAST’s compatibility with exist-621

ing algorithms is a significant advantage, allowing622

for the integration of various techniques to improve623

training efficiency and model optimization.624
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