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ABSTRACT

Variational autoencoders (VAEs) are popular models for representation learning
but their encoders are susceptible to overfitting (Cremer et al., 2018) because they
are trained on a finite training set instead of the true (continuous) data distribu-
tion pdata(x). Diffusion models, on the other hand, avoid this issue by keeping
the encoder fixed. This makes their representations less interpretable, but it sim-
plifies training, enabling accurate and continuous approximations of pdata(x). In
this paper, we show that overfitting encoders in VAEs can be effectively mitigated
by training on samples from a pre-trained diffusion model. These results are some-
what unexpected as recent findings (Alemohammad et al., 2023; Shumailov et al.,
2023) observe a decay in generative performance when models are trained on data
generated by another generative model. We analyze generalization performance,
amortization gap, and robustness of VAEs trained with our proposed method on
three different data sets. We find improvements in all metrics compared to both
normal training and conventional data augmentation methods, and we show that a
modest amount of samples from the diffusion model suffices to obtain these gains.

1 INTRODUCTION

Variational autoencoders (VAEs, Kingma & Welling (2014); Rezende et al. (2014)) are a class of
deep probabilistic models. They model the underlying data distribution pdata(x) from which a given
training set Dtrain = {xi}Ni=1 was drawn. Beyond their generative modeling capabilities, VAEs
have many other favorable properties by design which lead to applications such as representation
learning (van den Oord et al., 2017) and compression (Yang et al., 2023). However, these properties
can be compromised if the VAE is overfitted. Specifically, the encoder fϕ(x) is more susceptible
to overfitting (Wu et al., 2017; Cremer et al., 2018; Shu et al., 2018) than the decoder since a finite
training set Dtrain is repeatedly fed into the encoder. By contrast, the decoder is trained on unique
samples from the approximate posterior distribution inferred by the encoder.

Overfitting in the encoder implies that the learned mapping fϕ(x) does not generalize well to unseen
data, which can negatively impact the performance of generative modeling, amortized inference,
and adversarial robustness. For generative modeling, as the number of training epochs increases,
an overfitted VAE will have a higher evidence lower bound (ELBO) on the training set but a lower
ELBO on the test set. For amortized inference, an overfitted encoder is more likely to map unseen
data to a suboptimal set of variational parameters. This results in a lower ELBO when compared to
the ELBO obtained by directly optimizing these parameters. For robustness, an overfitted encoder
often learns a less smooth fϕ(x), such that a small change in the input x can result in a large
difference in the latent space. This makes VAEs vulnerable to adversarial attacks, causing realistic
and hardly distinguishable inputs to yield semantically different outputs (Kuzina et al., 2022).

One major cause of overfitting in VAEs is the multiple iterations over the insufficient amount of
training data (more details in Section 5). Ideally, we aim to train VAEs with unique samples drawn
from pdata(x). But in practice, we only have access to the finite training set Dtrain. Hence, we
ask the question: “Can we have infinite training samples drawn from pdata(x)?” The answer is
likely to be “No”, unless we have access to the true data generating process. However, we do have
a class of models, known as diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021), that can estimate pdata(x) very well, and that can generate as many sample as we
want. Diffusion models achieve the state of the art performance at data generation, but they lack the
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Ideal:
L = Ex∼pdata(x) [ELBOΘ(x)] (1)

Normal Training:
L = Ex∼Dtrain

[ELBOΘ(x)] (2)
Augmentation:
L = Ex∼Dtrain

[
Epaug(x′ |x) [ELBOΘ(x

′)]
]

(3)

DMaaPx (proposed):
L = Ex′∼pDM(x′) [ELBOΘ(x

′)] (4)

Figure 1: Left: training distributions for the VAE. Note that paug(x′) = Ex∼Dtrain
[paug(x

′ |x)]
only extrapolates from individual data points x ∼ Dtrain and has density outside the support of
pdata(x) (e.g., when flipping the digit “2”). By contrast, the pre-trained diffusion model pDM(x′)
can interpolate between data x ∼ Dtrain. Right: corresponding VAE training objectives.

nice properties we want from VAEs, such as semantically meaningful representations. If diffusion
models are indeed close estimates for pdata(x), we should be able to alleviate the overfitting problem
in VAEs using samples from pre-trained diffusion models. In this work, we investigate the effect
of modifying the normal training procedure of VAEs by replacing the finite training set Dtrain with
unlimited samples generated by a pre-trained diffusion model pDM(x′). This idea can be considered
as cross-model-class distillation, i.e., distilling from a diffusion model to a VAE.

Data augmentation is another method that can generate unlimited data, and it is used to reduce over-
fitting. However, selecting appropriate augmentations requires human expertise, and the augmented
data might inaccurately represent pdata(x). Hence, augmentation might lead to training a wrong
probabilistic model, even though it can reduce overfitting. Figure 1, discussed further in Section 4,
illustrates the relation between the underlying data distribution pdata(x), the training set Dtrain, the
augmented training data distribution paug(x

′), and the pre-trained diffusion model pDM(x′).

We empirically show that the new method can indeed alleviate the overfitting issue in VAEs. Specif-
ically, VAEs trained with the new method have better test set performance on estimating the density,
on doing approximate inference, and on robustness against adversarial attacks. We also show that
we do not need infinite data to gain such generalization performance. As an additional contribution,
we publish all the samples we used to train our VAEs, so others do not need to spend compute to
train and sample from diffusion models again.

2 PERFORMANCE GAPS IN VAES

VAEs model the data distribution pdata(x) by assuming that its generative process first draws a latent
variable z from p(z) and then draws x from pθ(x | z) with model parameters θ. Given a training data
distribution p(x) that approximates pdata(x), naive maximum likelihood learning would maximize

max
θ

Ex∼p(x)

[
log pθ(x)

]
= max

θ
Ex∼p(x)

[
log

∫
pθ(x | z) p(z) dz

]
. (5)

Generally, maximizing this likelihood is difficult since we need to integrate over the latent variable z.
Hence, VAEs turn to an approximate inference method, called variational inference. This method
introduces an approximate posterior qϕ(z |x) within a tractable variational family, and maximizes
a lower bound of Eq. (5), known as the evidence lower bound (ELBO; Blei et al. (2017))

log pθ(x) ≥ Ez∼qϕ(z |x)
[
log pθ(x | z) + log p(z)− log qϕ(z |x)

]
=: ELBOΘ(x), (6)

where Θ = {θ, ϕ}. In VAEs, the approximate posterior qϕ(z |x) is usually a Gaussian distribu-
tion parameterized by the output of a neural network fϕ(x) with weights ϕ. We call pθ(x | z) the
conditional likelihood to distinguish it from the likelihood pθ(x). The distribution of pθ(x | z) is
also parameterized by the output of a network gθ(z) with weights θ. We often refer to fϕ(x) as the
inference network (or the encoder) and gθ(z) as the generative network (or the decoder).
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Combining Eq. (5) and Eq. (6), we have the training objective of VAEs, i.e., to maximize

L = Ex∼p(x) [ELBOΘ(x)] . (7)

Ideally, we would like to use pdata(x) for p(x), but in reality we only have access to Dtrain. We
now discuss three performance metrics for VAEs to evaluate the degree and the impact of overfitting.
These metrics are defined in term of gaps, and will be used in the experiment section below.

Generalization gap. One signal for overfitting is that a model performs better on the training set
Dtrain than on the test set Dtest, and the test set performance decreases over training epochs. For
VAEs, we refer to the difference between training and test set ELBO as the generalization gap

Gg = Ex∼Dtrain
[ELBOΘ(x)] − Ex∼Dtest

[ELBOΘ(x)] . (8)

Since Dtrain and Dtest both consist of samples from the same distribution pdata(x), and training
maximizes the ELBO on Dtrain, the ELBO on Dtrain is greater than or equal to the ELBO on Dtest.
Therefore, Gg ≥ 0. A smaller Gg corresponds to a better generalization performance of a VAE.

Remark (Test data entropy can also affect the ELBO value). Note that from Eqs. (6) and (7), we have

Ex∼p(x) [ELBOΘ(x)] ≤ Ex∼p(x) [log pθ(x)] = −H[p(x), pθ(x)] ≤ −H[p(x)], (9)

where H denotes the (cross) entropy. Therefore, the ELBO on Dtest can be higher than the ELBO on
Dtrain, if Dtrain and Dtest are not drawn from the same distribution, and Dtest has a lower entropy
than Dtrain. Indeed, this phenomenon has been observed in the out-of-distribution setting when testing
on a low-entropy data set (Nalisnick et al., 2018). We will refer back to this in Section 5.6.

Amortization gap. VAEs use amortized inference, i.e., they set the variational parameters of
qϕ(z |x) to the output of the encoder fϕ(x) for all given x. At test time, we can further maxi-
mize the ELBO over the individual variational parameters for each x, which is more expensive but
typically results in a better variational distribution q∗(z |x). We then study the amortization gap,

Ga = Ex∼Dtest
[ELBO∗

θ(x)] − Ex∼Dtest
[ELBOΘ(x)] (10)

where ELBO∗
θ(x) = Ez∼q∗(z |x) [log pθ(x | z) + log p(z)− log q∗(z |x)]. As mentioned before,

the encoder fϕ(x) is more susceptible to overfitting than the decoder in VAEs. When the encoder
overfits, its inference ability might not generalize to test data, which results in lower ELBO value
and larger amortization gap. The amortization gap Ga is non-negative and a smaller Ga corresponds
to better generalization performance of the inference model (or encoder).

Robustness gap. An overfitted encoder fϕ(x) often learns a less smooth function such that a small
change in the input space can lead to a huge difference in the output space. Hence, it is easier to
construct an adversarial sample xa = xr + ϵ (s.t. ∥ϵ∥ ≤ δ) from a real data point xr ∈ Dtest.
This is done by maximizing the symmetrized KL-divergence (Kullback & Leibler, 1951) between
qϕ(z |xr) and qϕ(z |xa) within a given attack radius δ (Kuzina et al., 2022). A successful attack
means that the attack reconstruction x̃a = gθ(z

a), za ∼ qϕ(z |xa), is very different from the real
data reconstruction x̃r = gθ(z

r), zr ∼ qϕ(z |xr), even though the inputs xa and xr are similar.
Using the image similarity metric MS-SSIM (Wang et al., 2003), we define the robustness gap as

Gr = Exa∼p(xa |xr) Exr∼Dtest

[
MS-SSIM [xr,xa] − MS-SSIM [x̃r, x̃a]

]
. (11)

Note that a higher MS-SSIM corresponds to a more similar data pair. Hence, MS-SSIM [xr,xa] is
greater than or equal to MS-SSIM[x̃r, x̃a], and the gap Gr is a non-negative value. A more robust
VAE has a higher MS-SSIM[x̃r, x̃a] than the less robust one. Therefore, a smaller Gr corresponds
to a more robust VAE. For more details on the attack see Appendix A.

3 RELATED WORK

We group related work into using diffusion models as data sources and attempts to closing the three
performance gaps. Work related to data augmentation and distillation is discussed in Section 4.
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Use samples from pre-trained diffusion models. There are many recent attempts to solve various
tasks with data generated by diffusion models. Azizi et al. (2023) fine-tuned a text-to-image diffu-
sion model on ImageNet, generated state-of-the-art samples with class labels, and trained a classifier
on the samples. Their result shows that the classifier trained on generated data does not outperform
the classifier trained on real data. In the adversarial training setting, using generated data by diffu-
sion models shows significant improvements on classification robustness (Croce et al., 2021; Wang
et al., 2023). Tian et al. (2023) found that the visual representations learned from samples generated
by text-to-image diffusion models outperform the representations learned by SimCLR and CLIP.
Alemohammad et al. (2023) trained new diffusion models with samples from previously trained dif-
fusion models, and they found that their sample quality and diversity progressively decrease. In this
work, we find that using diffusion models as data sources improves the performance of VAEs.

Improve generalization, amortized inference, and robustness in VAEs. Cremer et al. (2018)
study the amortization gap in VAEs, and they notice that overfitting in the encoder is one of the
contributing factors of the gap, and it hurts the generalization of VAEs. Many subsequent works
try to close the amortization gap by introducing new inference techniques or procedures (Marino
et al., 2018; Shu et al., 2018; Zhao et al., 2019). To close the generalization gap and reduce encoder
overfitting, Zhang et al. (2022) propose to freeze the decoder after a certain amount of training
steps, but further train the encoder by using reconstruction samples as part of the training data.
As for adversarial robustness in VAEs, Kuzina et al. (2022) propose to defend a pre-trained VAE
by running MCMC during inference to move z towards “safer” regions in the latent space. Our
proposed method can be used on top of these existing methods, since it does not require changing
the original inference procedure. It also takes into account all three gaps at the same time.

4 DIFFUSION MODEL AS A pdata(x)

In this section, we introduce a new method for reducing overfitting in VAEs (Section 4.1). We also
discuss how the new method is fundamentally different from naive data augmentation (Section 4.2),
and how it can be understood from a cross-model-class distillation perspective (Section 4.3).

4.1 PROPOSED METHOD

The ideal training objective for VAEs is to maximize Ex∼pdata(x) [ELBOΘ(x)] (see Eq. (1) in Fig-
ure 1). However, in practice, we only have Dtrain as a finite approximation of pdata(x). Hence, we
normally maximize Ex∼Dtrain

[ELBOΘ(x)] (see Eq. (2)) to train a VAE, which can lead to overfit-
ting. Rather than focusing on model architectures or training techniques as in prior works, we aim
to mitigate overfitting by seeking a better approximation for pdata(x) than Dtrain. Here, we make
two assumptions: first, the training data distribution should fulfill two criteria; it should be

(1) a continuous distribution, i.e., we can sample unlimited data to avoid overfitting; and
(2) an accurate approximation of pdata(x), i.e., we are indeed modeling pdata(x) rather than

some different distribution (in practice, it needs to be an accurate model of Dtrain).

Our second assumption is that a good diffusion model1 that has been pre-trained on Dtrain satisfies
these two criteria: (1) we can generate unlimited samples from it, and (2) its training objective is
designed to model pdata(x), allowing us to generate samples with state-of-the-art quality across vari-
ous data types. Therefore, we investigate training VAEs using a pre-trained diffusion model pDM(x′)
instead of Dtrain as an approximation of pdata(x), i.e., to maximize Ex∼pDM(x′) [ELBOΘ(x

′)] (see
Eq. (4)). We denote this method DMaaPx, short for “Diffusion Model as a pdata(x)”.

Figure 1 illustrates the intuition behind this idea. The blue dots represent the finite data set Dtrain.
They are i.i.d. samples from the underlying data distribution pdata(x) (shown by the dark-edged
region). The green regions represent the distribution learned by pDM(x′). We use areas, not dots, to
highlight that pDM(x′) models a continuous distribution that can generate infinitely many samples.

Note that diffusion models for data types other than images are less explored and might not accu-
rately approximate pdata(x). Hence, diffusion models might not satisfy criterion (2). Moreover,

1More precisely, an unconditional diffusion model, as opposed to a conditional one such as Stable Diffusion.
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due to the data processing inequality, information on pdata(x) captured by a diffusion model that
was trained on Dtrain cannot exceed the information contained in Dtrain. In reality, state-of-the-art
diffusion models are not able to fit Dtrain perfectly. Indeed, many recent works observe that in both
image and text settings, training generative models from generated data leads to worse performance
overall (Alemohammad et al., 2023; Shumailov et al., 2023). Hence, the continuity we gain by
replacing Dtrain with pDM(x′) is not for free, we lose a small amount of information about Dtrain.

4.2 DIFFERENCE BETWEEN DATA AUGMENTATION AND DMAAPX

Table 1: Training distributions for VAEs (see
Figure 1), and whether they are (1) continuous and
(2) an accurate approximation of pdata(x).

approx. by Dtrain paug(x
′) pDM(x′)

(1) continuous ✗ ✓ ✓

(2) accurate ✓ ✗ ✓

Data augmentation2 pursues a similar goal as the
proposed DMaaPx as both approaches aim to in-
crease the quantity and diversity of training data.
The primary distinction between them is in their ac-
curacy in approximating pdata(x), as shown in Ta-
ble 1. This can be attributed primarily to two key fac-
tors. Firstly, typical data augmentation techniques
generate new training points by conditioning on a
single original data point. Thus, paug(x′) = Ex∼Dtrain [paug(x

′ |x)] where paug(x
′ |x) generates a

training point x′ by applying one or more random transformations (e.g., padding, cropping, flipping
(He et al., 2016), translation or even learned rotation and cutout (Cubuk et al., 2019)) to a single
original data point x. By contrast, in the proposed DMaaPx, each training data point x′ ∼ pDM(x′)
is drawn from a diffusion model that was trained on the entire dataset Dtrain. As a consequence,
each training data point in DMaaPx is effectively conditioned on the full training set Dtrain.

Secondly, the random transformations used for paug(x
′ |x) in traditional data augmentation are

drawn from a manually curated catalog. This catalog is heavily based on prior assumptions regard-
ing invariances in the data type under consideration, which can introduce bias. In practice, one has
to make assumptions and decide whether the (unknown) true data distribution pdata(x) is invariant
under the considered transformations. For instance, with images, we assume invariance to minor
translations, hue shifts, and zooms. This may result in problems of (i) not modeling the full extend
of the distribution or (ii) modeling density outside the true data distribution. Figure 1 depicts both:
problem (i) corresponds to “empty” space between areas of paug(x′); problem (ii) corresponds to
density of paug(x′) outside of pdata(x). The proposed DMaaPx eliminates these explicit assump-
tions, which makes the method more resilient against human bias (but less interpretable).

In summary, while traditional data augmentation techniques introduce diversity based on invariances
about the data generative process, the proposed DMaaPx uses an expressive generative model to
extrapolate from the empirical diversity of the data.

4.3 A CROSS-MODEL-CLASS DISTILLATION PERSPECTIVE

The proposed DMaaPx can also be viewed from a distillation perspective (Hinton et al., 2015).
Distillation describes the process of transferring knowledge from a large model to a small one. In
practice, distillation is often used because a smaller model is less expensive to be deployed in pro-
duction. Here we consider a more subtle usage of distillation, i.e., transferring knowledge between
models designed with different modeling assumptions or structures. We refer to this as cross-model-
class distillation, and the conventional usage of distillation as within-model-class distillation. There
are models that have been designed with useful structures which cannot be fully exploited if trained
naively on Dtrain. Cross-model-class distillation creates auxiliary training data that helps us train
such models to achieve the desired performance. For instance, in the diffusion model literature, nu-
merous studies attempt to distill the multi-step diffusion process into a single-step generative model
(Salimans & Ho, 2021; Luhman & Luhman, 2021; Liu et al., 2023; Song et al., 2023). While both
types of distillation seek to transfer knowledge from a source to a target model, cross-model-class
distillation emphasizes more on enhancing functionalities that are unique to the target model rather
than mirroring the capabilities shared with the source model.

2Using samples from generative models for training is sometimes considered as a kind of data augmentation
in the context of supervised learning (Yang et al., 2022). In the present work, we deliberately separate generative
models from the broader sense of data augmentation, and we consider data augmentation in a narrow sense such
that the augmented data is an output of some transformation conditioned on an single x ∈ Dtrain.
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Our proposed DMaaPx belongs to cross-model-class distillation, i.e., it distills diffusion models to
VAEs. The goal of DMaaPx is not to rival diffusion models in sample quality, but rather to improve
the desirable functionalities of VAEs such as representation learning. From this viewpoint, DMaaPx
fundamentally differs from approaches that train VAEs on samples produced by VAEs, or diffusion
models on outputs of diffusion models (Alemohammad et al., 2023; Shumailov et al., 2023). Such
approaches can be categorized as within-model-class distillation.

5 EXPERIMENTS

In this section, we introduce the experimental setup and evaluate the three performance gaps (see
Section 2) of the proposed method. The exact gap values are provided in Appendix B. We further
investigate whether we need infinite training data in the proposed method.

5.1 EXPERIMENTAL SETUP

Training data. We evaluate our method on three popular datasets: MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009). As a preparation, we
train a diffusion model pDM(x′) which will be used to generate training data for VAEs on each
training set Dtrain. We use the implementation of diffusion models by Karras et al. (2022). Further
details and samples from the three pre-trained diffusion models can be found in Appendix C.

VAE architectures. We assume fixed standard Gaussian priors p(z) = N (0, I) for all datasets.
For the conditional likelihood pθ(x | z), we use a Bernoulli distribution for binarized MNIST, a
diagonal Gaussian distribution with a fixed variance for grayscale FashionMNIST, and a discretized
mixture of logistics (MoL; Salimans et al. (2017)) for CIFAR-10. For the inference model qϕ(z |x),
we use diagonal Gaussian distributions with means and variances output from the inference network
for all datasets. For more details on network architectures and hyperparameters see Appendix D.

Baselines. We compare VAEs trained with our proposed DMaaPx against three baseline mod-
els trained on: (i) repetitions of Dtrain (“Normal Training”); (ii) carefully tuned augmentation for
Dtrain (“Aug.Tuned”); and (iii) plausible augmentation for images in general (“Aug.Naive”). Note
that “Aug.Naive” is not tuned to a given Dtrain and can result in out-of-distribution data, e.g. a
horizontally flipped digit “2” for MNIST. This mimics situations that arise in augmenting other data
modalities, where the choice of transformation is not as obvious as for images. More details on
the applied augmentation can be found in Appendix E. Generally, when documenting the training
progress, the term “epoch” typically refers to one complete pass of Dtrain. For DMaaPx, this term
is not applicable since it can sample unlimited data from pDM(x′). Therefore, we measure train-
ing progress of DMaaPx in “effective epochs”. An “effective epoch” represents one pass through
sampled training data of size |Dtrain|. We train all models for 1000 (effective) epochs.

5.2 GENERALIZATION GAP

Figure 2 shows both ELBOs evaluated on Dtrain (dashed) and Dtest (solid) for all three datasets.
The difference between these two lines is the generalization gap Gg (Eq. (8)). We observe that
our proposed DMaaPx (green) has the highest ELBO on Dtest, and the smallest generalization gap
compared to both normal training and data augmentation. VAEs trained on the augmented data show
less improvements on test ELBO and generalization gap than DMaaPx. This implies that VAEs
trained with DMaaPx approximate the underlying distribution pdata(x) better than those trained on
Dtrain solely, or on augmented data. The small generalization gap of DMaaPx means that training
ELBOs can be used as accurate predictions for final performance. Given that data from pre-trained
diffusion models and augmentation is not an inherently more accurate representation of pdata(x)
than Dtrain, improvements in the test ELBOs suggest that overfitting in VAEs is more detrimental
than using a somewhat distorted, but larger and more diverse, dataset.

5.3 AMORTIZATION GAP

The amortization gap, defined in Eq. (10), evaluates the encoder’s inference performance by com-
paring test ELBOs of the amortized variational parameters of qϕ(z |x) to those from individually
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Figure 2: Generalization performance: ELBOs of models trained with Eqs. (2)-(4), evaluated on
Dtrain and Dtest. DMaaPx (proposed) consistently has the best test performance and smallest gap.
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Figure 3: Amortization gap: ELBOs with qϕ(z |x) from the inference network (solid) and with
iteratively optimized q∗(z |x) (dashdot), evaluated on Dtest. Left and center: DMaaPx significantly
reduces the amortization gap (Eq. (10)) compared to normal training and data augmentation. Among
the dashdot lines, DMaaPx has the highest performance, indicating that it also helps learning a better
decoder. Right: DMaaPx and augmentation are tied and outperform normal training.

optimized variational parameters of q∗(z |x). Figure 3 shows test set ELBOs from qϕ(z |x) and
q∗(z |x) for the three datasets with values reported every 100 effective epochs.

The figure illustrates that the ELBOs for normal training using qϕ(z |x) (solid blue) decline with
more training epochs, while those using q∗(z |x) (dashdot blue) remain stable or even increase. A
decline in test set performance across epochs signals overfitting. By using q∗(z |x) and exclud-
ing the encoder, test performance stabilizes across epochs, indicating that the primary source of
overfitting in VAEs is the encoder. This aligns with the findings of Cremer et al. (2018).

Figure 3 shows that DMaaPx outperforms normal training and data augmentation in both, the size
of the amortization gap and the ELBO value for BinaryMNIST and FashionMNIST. Additionally,
the increase of ELBOs with q∗(z |x) (dashdot) suggests that DMaaPx also improves the decoder.
On CIFAR-10, DMaaPx and augmentation similarly outperform normal training.

5.4 ROBUSTNESS OF REPRESENTATIONS (ROBUSTNESS GAP)

The robustness gap, defined in Eq. (11), looks at similarities between real and the cor-
responding adversarial samples (MS-SSIM[xr,xa]) and between their respective reconstruc-
tions (MS-SSIM[x̃r, x̃a]). A successful attack achieves low MS-SSIM[x̃r, x̃a] despite high
MS-SSIM[xr,xa]. See Appendix A for details on the attack construction in our experiments.

In Figure 4, we see that DMaaPx consistently matches or surpasses normal training across all three
datasets. It also exceeds augmentation on BinaryMNIST and CIFAR-10. Meanwhile, VAEs trained
with augmentation display inconsistent results: they outperform both DMaaPx and normal training
on FashionMNIST, but fall behind on BinaryMNIST and CIFAR-10, demonstrating that augmenta-
tion is more difficult to tune than DMaaPx (training the diffusion model requires less manual effort).
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Figure 4: Adversarial robustness: similarities of reconstructions (solid) for similar but adversarially
chosen inputs (see dashed line). DMaaPx is consistently either on par or better than normal training
whereas augmentation is significantly worse than normal training for BinaryMNIST and CIFAR-10.
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likelihood. We observe similar be-
havior to center panel in Figure 2,
which uses a Gaussian likelihood.

5.5 IS THE “UNLIMITED DATA PLAN” A RIPOFF?

With the pre-trained diffusion model in DMaaPx, we can train VAEs with unlimited samples from
pDM(x′), enhancing performance as demonstrated above. While generating a large amount of sam-
ples from diffusion models is feasible, it still requires substantial computation. Therefore, we further
explore: “Do we really need infinite number of samples?” The answer, reassuringly, is “No”.

Figure 5 shows the generalization performance of DMaaPx on BinaryMNIST and CIFAR-10 where
the training data for VAEs is restricted to k × |Dtrain|, with k ranging from 1 to 1000. After k
effective training epochs, samples start repeating. All models are trained on 1000 effective epochs.
Horizontal blue lines represent the generalization gap of normal VAE training (on Dtrain and k = 1)
at epoch 1000 from Figure 2. For k = 1, DMaaPx slightly underperforms on BinaryMNIST but
matches normal training on CIFAR-10. The ELBO plateaus for k ≥ 10, indicating samples roughly
10 times the size of Dtrain offer similar generalization to samples 1000 times larger.

5.6 ABLATION AND FURTHER DETAILS

In this section we present ablations on different conditional likelihoods, compare the two augmenta-
tion strategies considered, and discuss the difference between training ELBO and ELBO on Dtrain.
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Figure 7: ELBO evaluted on the distribution that is actually used for training (dotted, see
Eqs. (2)-(4)). For augmentations, the test ELBO (solid) is higher than the training ELBO (dot-
ted) in the left two panels, which is an artifact of different entropies of the distributions, see Remark.

Different conditional likelihoods. VAEs’ modeling assumptions for the conditional likelihood
pθ(x | z) often differ based on data or use case. While a Gaussian likelihood is used for applications
that focus on low reconstruction error (e.g., lossy data compression), an MoL likelihood is used
if the density of the data matters (e.g., generative modeling or lossless data compression). Our
experiments in Sections 5.2-5.4 cover three likelihoods: Bernoulli for BinaryMNIST, Gaussian for
FashionMNIST, and MoL for CIFAR-10. Figure 6 also evaluates MoL for FashionMNIST, and we
observe similar behaviour as in its Gaussian counterpart in Figure 2 (center). In summary, DMaaPx
is less prone to overfitting than normal training and augmentation, for all investigated likelihoods.

Tuned and naive augmentation. To fairly assess DMaaPx against augmentation, we design two
sets of augmentation: Aug.Tuned (tailored to each Dtrain) and Aug.Naive (general for images).
They perform similarly overall in Figures 2-4. However, Aug.Naive outperforms Aug.Tuned in
generalization on BinaryMNIST and FashionMNIST, and in robustness across all datasets. This is
surprising as naive augmentation might produce out-of-distribution data, like a horizontally flipped
digit “2”, potentially impairing performance. Thus, designing augmentation can be labor-intensive.

Training ELBO vs. ELBO on Dtrain. Figure 7 shows the ELBOs analogous to Figure 2, but the
dotted lines plot the ELBO on the actual training distribution (e.g., on samples from pDM(x′) for
DMaaPx). The point of this plot is to warn that comparisons between ELBOs under such different
distributions are not meaningful, and should not be used to calculate the generalization gap. For
example, note that the plot would suggest a negative generalization gap for data augmentation (pur-
ple) on BinaryMNIST. This is consistent with the remark on page 3: since the ELBO is bounded
by the negative entropy of the distributions on which it is evaluated, evaluating it on two different
distributions with different entropies exhibits differences unrelated to the generalization gap.

6 CONCLUSION

We investigate how overfitting of VAEs can be addressed by training them on samples from a diffu-
sion model that was pre-trained on the training dataset. Our assumption is that, unlike in supervised
learning, VAE training requires training data that accurately matches the data generative process. We
therefore contrasted our approach to traditional data augmentation methods, which might not accu-
rately model the data generative process. Our results show significant reduction in generalization
gaps, improved test ELBOs, and enhanced adversarial robustness. Future work should challenge the
above assumption and investigate whether one can further improve VAE performance by designing
a generative model that specifically for cross-model-class distillation.

In a broader sense, our work explores ways of increasing the quantity and diversity of training data in
situations where one cares about the underlying data distribution. Future work should also expand
this research beyond VAEs, in particular as prior work found that recursive distillation within a
diffusion model hurts performance (Alemohammad et al., 2023). Additional work should explore
applying our method to other data types, such as structured data like molecules or time series.
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Reproducibility Statement. All code necessary to reproduce the results in this paper is provided
in the supplementary materials. We will also publish the samples generated by our pre-trained
diffusion models for the DMaaPx experiments after the reviewing process.
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A DETAILS ON ADVERSARIAL ATTACK

We follow Kuzina et al. (2022) and construct an unsupervised encoder attack that optimizes the
pertubation ϵ to incur the largest possible change in qϕ(· |x),

ϵ = argmax
∥ϵ∥∞≤δ

SKL [qϕ(· |xr + ϵ) ∥ qϕ(· |xr)] (12)

where SKL denotes the symmetric Kullback-Leibler divergence (Kullback & Leibler, 1951). We
optimize ϵ for nϵ iterations with projected gradient descent utilizing a learning rate of η. The ro-
bustness gap (see Section 2) is computed over nr real images and na random seeds. The exact
hyperparameters can be found in Table 2.

Table 2: Hyperparameters for unsupervised encoder attack.

BinaryMNIST FashionMNIST CIFAR-10
nr 50 50 20

na 10 10 10

nϵ 50 50 100

η 1.0 1.0 1.0

δ 0.1 0.1 0.05

B QUANTITATIVE RESULTS ON PERFORMANCE GAPS

Table 3 assigns quantitative values to the visual evidence in Figure 2 (generalization gap), Figure 3
(amortization gap), and Figure 4 (adversarial robustness gap).

Table 3: Quantitative values of the performance gaps visualized in the main text (generalization gap:
Figure 2; amortization gap: Figure 3; robustness gap: Figure 4). Bold numbers indicate the smallest
gap within a dataset.

generalization gap amorization gap robustness gap
(Gg, Eq. (8)) (Ga , Eq. (10)) (Gr, Eq. (11))

Binary
MNIST

Normal Training 25.76 20.32 0.49

DMaaPx (ours) 0.78 7.01 0.50

Aug.Tuned 8.16 9.34 0.79

Aug.Naive 6.38 8.16 0.74

Fashion
MNIST

Normal Training 1234.50 1135.89 0.39

DMaaPx (ours) 136.57 593.39 0.31

Aug.Tuned 614.93 815.52 0.21

Aug.Naive 500.33 729.83 0.11

CIFAR-10

Normal Training 841.54 835.86 0.41

DMaaPx (ours) 5.44 288.82 0.30

Aug.Tuned 94.28 328.08 0.35

Aug.Naive 228.05 390.25 0.35

C DIFFUSION MODEL

We follow the setup of Karras et al. (2022) for the design and training of our diffusion model.
However, we do not use the proposed augmentation pipeline during training.
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We train the diffusion model on 200, 000, 000 images that are sampled randomly (with replacement)
from the training dataset. Each model is trained on 8 NVIDIA A100 40GB GPUs for approximately
2.5 days.

We utilized the deterministic second-order sampler as proposed by Karras et al. (2022) with 18
integration steps. Each sampled image utilizes a unique initial seed. We sample on a single NVIDIA
A100 40GB GPU. Sampling 50, 000 images takes approximately 25 to 30 minutes.

Figure 8 shows samples from the diffusion models trained. On CIFAR-10 we report a FID score of
3.9537. Scores on BinaryMNIST and FashionMNIST are ommited as those are not widely reported
and heavily depend on preprocessing (Song et al., 2021).

BinaryMNIST FahionMNIST CIFAR-10

Figure 8: Samples of the diffusion models trained on BinaryMNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009).

D DETAILS ON VAE ARCHITECTURES

This section provides a detailed description of the VAE models utilized throughout the paper. We
consider a fully-connected architecture and a residual architecture (He et al., 2016). Table 4 gives
more details on the likelihood model and architecture. For BinaryMNIST and FashionMNIST, we
chose the hyperparameters of the VAE models by consulting the literature. For CIFAR-10, we
manually tried out a few hyperparameters, and chose an architecture where overfitting occurs, as we
are investigating how to alleviate overfitting in VAEs only from the training data.

The fully-connected architecture maps from an input dimension of 322 to a hidden dimension of
512. After a hidden layer mapping from 512 to 512, the output is mapped to a latent variable of
dimension 16. The decoder mirrors the encoder and maps the latent variable of dimension 16 via
three layers to the original input size.

The residual architecture maps the input by two convolutional layers (kernel size: 4, stride: 2,
padding: 1), two residual layers, and another convolutional layer to a latent dimension of 64. The
residual connection is made up of two convolutional layers where the first one applies a kernel of
size 3 (kernel size: 3, stride: 1, padding: 1) and the second one applies a kernel of size 1 (kernel
size: 1, stride: 1, padding: 0) All convolutional layers do not use any biases and are followed by
BatchNorm (Ioffe & Szegedy, 2015). The decoder mirrors the architecture of the encoder.

Table 4: Details on VAE architectures ordered by dataset. MoL refers to the discretized mixture of
logistics likelihood model (Salimans et al., 2017).

dataset likelihood architecture
BinaryMNIST Bernoulli fully-connected
FashionMNIST fixed-variance Gaussian fully-connected
FashionMNIST MoL fully-connected
CIFAR-10 MoL residual network
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E AUGMENTATION

We use the augmentation pipeline originally proposed for GAN training following Karras et al.
(2020). Each specific augmentation is applied with a probability of b ∈ {0.1, 0.12}. For each
dataset we compare two sets of specific augmentations.

1. The hyperparameters for each specific augmentation are tuned by hand with the goal of
imitating the data generating distribution that produced the dataset.

2. We use a naive set of specific augmentations that is targeted to image datasets.

Table 5 lists naive augmentation for BinaryMNIST, FashionMNIST, and CIFAR-10. Table 6 lists
augmentation tuned to the BinaryMNIST and the FashionMNIST dataset. Table 7 lists augmentation
tuned to the CIFAR-10 datset.

Table 5: List of specific augmentations applied to BinaryMNIST, FashionMNIST and CIFAR-10.
We refer to this set as “naive” augmentation as it is targeted towards images in general (and not
towards specific datasets). Each specific augmentation is applied with probability b.

augmentation description and hyperparameters
horizontal flip flip an image horizontally
translation translate an image in x and y direction for t ∈ {0, 1, 2, 3} pixels
scaling scale an image by 2σscale with σscale ∈ [0, 0.2]

rotation rotate an image by d degrees with d ∈ [0, 10]

anisotropic scaling do anisotropic scaling with scale 2σaniso−scale (σaniso−scale ∈ [0, 0.2])
anisotropic rotation do anisotropic rotation with a probability of 0.5
brightness change the brightness of an image by σbrightness ∈ [0, 0.2]

contrast change the contrast of an image by 2σcontrast where σcontrast ∈ [0, 0.25]

hue change the hue by rotation of rhue with rhue ∈ [0, 0.25 · π]
saturation change the saturation of an image by 2σsaturation where σsaturation ∈ [0, 0.5]

Table 6: List of specific augmentations applied to BinaryMNIST and FashionMNIST. The set is
tuned towards BinaryMNIST and FashionMNIST. Each specific augmentation is applied with prob-
ability b.

augmentation description and hyperparameters
translation translate an image in x and y direction for t ∈ {0, 1, 2, 3} pixels
scaling scale an image by 2σscale with σscale ∈ [0, 0.15]

rotation rotate an image by d degrees with d ∈ [0, 10]

anisotropic scaling do anisotropic scaling with scale 2σaniso−scale (σaniso−scale ∈ [0, 0.15])
anisotropic rotation do anisotropic rotation with a probability of 0.4

Table 7: List of specific augmentations applied to CIFAR-10. The set is tuned towards CIFAR-10.
Each specific augmentation is applied with probability b.

augmentation description and hyperparameters
horizontal flip flip an image horizontally (applied with probability 1)
vertical flip flip an image vertically
scaling scale an image by 2σscale with σscale ∈ [0, 0.2]

rotation rotate an image by d degrees with d ∈ [0, 360]

anisotropic scaling do anisotropic scaling with scale 2σaniso−scale (σaniso−scale ∈ [0, 0.2])
anisotropic rotation do anisotropic rotation with a probability of 0.5
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F PRACTICAL EVALUATION OF VAES ON THREE TASKS

The improvements of generalization performance, amortized inference and robustness of VAEs have
direct impacts on their applications. In this section, we evaluate three popular tasks of VAEs based
on whether a task involves only the encoder, the decoder, or both as in (Xiao & Bamler, 2023): (a)
representation learning (i.e., using only the encoder); (b) data reconstruction (i.e., using both the
encoder and the decoder); and (c) sample generation (i.e., using only the decoder).

Representation learning (with classification as the downstream task). We evaluate the repre-
sentation learning performance by classification accuracies on the mean µ of qϕ(z |x) for each x.
First, we find the learned representations µ for all data points in the CIFAR-10 test set. Afterwards,
we split them into two separate subsets. We use one subset to train the classifier, and test it on the
other subset. Our experiments include four different classifiers: logistic regression, a support vector
machine (Boser et al., 1992) with radial basis function kernel (SVM-RBF), a SVM with linear kernel
(SVM-L), and k-nearest neighbors (kNN) with k = 5. Table 8 (representation learning; RL) shows
the resulting test accuracies across all models considered. We find that VAEs trained with DMaaPx
(in bold) outperform other models on average, which highlights that the task of representation learn-
ing benefits from the smaller gaps evaluated in Section 5.

Data reconstruction. Tasks such as lossy data compression (Ballé et al., 2017) rely on the recon-
struction performance of VAEs. We evaluate the reconstruction performance of VAEs trained on
CIFAR-10 using the peak signal-to-noise ratio (PSNR; higher is better). Table 8 (reconstruction;
RC) shows that DMaaPx outperforms others on average.

Sample generation. We evaluate the quality of samples generated by VAEs trained on CIFAR-10
with the methods explained in the main text (Normal Training, DMaaPx, Aug.Naive, Aug.Tuned).
We report Fréchet Inception Distance (Heusel et al., 2017) (FID; lower is better) and Inception Score
(Salimans et al., 2018) (IS; higher is better). Table 8 (sample quality; SQ) shows that DMaaPx
slightly outperforms the others when sample quality is measured in FID, but Normal Training per-
forms better when sample quality is measured in IS.

Overall, VAEs trained with DMaaPx show improvements for representation learning and data re-
construction, and perform similarly to normal training on sample quality. At the same time, VAEs
trained with both augmentations seem to have slightly worse performance for representation learning
and sample generation, and perform similarly on the reconstruction task when compared to normal
training. The results of DMaaPx in the table is consistent with our claim that the proposed method
mainly fixes the encoder, which affects representation learning and reconstruction but not sample
quality. Additionally, Theis et al. (2016) show that a generative model with good log-likelihood
(i.e., high test ELBO in the case of a VAE) does not necessarily produce great samples.

Table 8: Evaluation of downstream applications of VAEs on CIFAR-10: representation learning
with classification as the downstream task (RL), reconstruction (RC), and sample quality (SQ).
Results are averaged over 3 random seeds. Note that most differences are smaller than the standard
deviations. See Appendix F for a discussion of the results.

Normal Training DMaaPx (ours) Aug.Naive Aug.Tuned

RL

log. reg. (↑) 0.370± 0.018 0.383± 0.018 0.359± 0.004 0.361± 0.014

SVM-RBF (↑) 0.427± 0.014 0.438± 0.015 0.421± 0.004 0.420± 0.016

SVM-L (↑) 0.367± 0.015 0.380± 0.014 0.365± 0.005 0.366± 0.022

kNN (↑) 0.325± 0.006 0.327± 0.035 0.300± 0.004 0.299± 0.028

RC PSNR (↑) 16.087± 0.042 16.370± 0.195 16.105± 0.017 15.924± 0.205

SQ
FID (↓) 219.256± 16.124 219.081± 14.894 237.238± 43.218 240.898± 11.072

IS (↑) 1.818± 0.155 1.614± 0.076 1.656± 0.047 1.612± 0.083
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(a) Distribution of the ELBO on individual data points across the test set of CIFAR-10.
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(b) Distribution of the ELBO differences when compared to Normal Training, i.e., ∆ELBO :=
ELBOp[x]− ELBODtrain [x], where p is pDM(x′) if evaluated on the VAE trained with DMaaPx
or the corresponding paug(x

′) if evaluated on the VAE trained with Aug.Tuned and Aug.Naive.

Figure 9: Individual ELBO evaluated on CIFAR-10 test set. Left: histograms for ELBO and ELBO
differences (∆ELBO) on individual image. Right: ELBO and ∆ELBO values for individual image.
Data are ordered by ELBO values of Normal Training from high (index 1) to low (index 10000).

G ELBOS ON INDIVIDUAL TEST IMAGES

In this section, we investigate the distribution of the ELBO values on individual data points of
the CIFAR-10 test set (that has a size of 10, 000), as one might be curious whether DMaaPx or
augmentations only improve VAEs on a subset of the training data.

Figure 9 (a, left) shows a histogram of ELBO values for all methods. We find that the distribution of
ELBO values shifts to the right (i.e., ELBOs are larger) when comparing Normal Training to other
methods. We do not see any significant differences between DMaaPx, Aug.Tuned, and Aug.Naive.
Figure 9 (a, right) shows the ELBO evaluated on individual test images. The test images are ordered
and indexed based on their ELBO values with Normal Training from high (index 1) to low (index
10000). Both DMaaPx, Aug.Tuned, and Aug.Naive perform similarly better compared to the model
with Normal Training across all test images. We can verify the same finding when plotting the
differences between DMaaPx, Aug.Tuned, Aug.Naive and Normal Training. Figure 9 (b) shows the
distribution of differences in a histogram (left) and for individual test images (right). We find that
our method improves the ELBO on almost all (99.9 %) of the test points (see Figure 9 (b, right)).

Overall, the ELBO improvement by both DMaaPx and augmentations is observed across all test
images, and we could not identify a subset of test data points where the improvement is particularly
small or large when compared to Normal Training.
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