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FedMobile: Enabling Knowledge Contribution-aware
Multi-modal Federated Learning with Incomplete Modalities

Anonymous Author(s)

Abstract
The Web of Things (WoT) facilitates interoperability across web-
based mobile and ubiquitous computing platforms and application
domains, aiming to complement and preserve existing IoT standards
and solutions. In this context, the multimodal federated learning
(FL) paradigm has been introduced to enhance WoT by enabling the
fusion of multi-source mobile sensing data while preserving privacy.
However, a critical challenge in web-based mobile sensing systems
employing multimodal FL is modality incompleteness, where cer-
tain modalities may be unavailable or partially captured, which can
adversely impact the performance and reliability of these systems.
Current multimodal FL frameworks typically train multiple uni-
modal FL subsystems or apply interpolation techniques on the node
side to approximate missing modalities. However, these approaches
overlook the shared latent feature space among incomplete modal-
ities across different nodes and fail to discriminate against low-
quality nodes. To address this gap, we present FedMobile, a new
knowledge contribution-aware multimodal FL framework designed
for robust learning despite missing modalities. FedMobile prior-
itizes local-to-global knowledge transfer, leveraging cross-node
multimodal feature information to reconstruct missing features.
It also enhances system performance and resilience to modality
heterogeneity through rigorous node contribution assessments and
knowledge contribution-aware aggregation rules. Empirical evalu-
ations on five widely recognized multimodal benchmark datasets
demonstrate that FedMobile maintains robust learning even when
up to 90% of modality information is missing or when data from
two modalities is randomly missing, outperforming state-of-the-art
baselines. Our datasets and code are available at the link.

CCS Concepts
• Computing methodologies → Distributed algorithms; Dis-
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1 Introduction
In the Web of Things (WoT) [8, 28, 43], multimodal mobile sensing
systems enhance the interoperability and usability of web-basedmo-
bile platforms by integrating data from multiple sources [6, 36, 42].
In this context, these systems boast a diverse array of real-world
applications [25], frequently deployed to address complex tasks
within domains such as autonomous driving [48], mobile health-
care [9], and the Internet of Things [18]. In this context, these tasks
often prove too intricate and dynamic to be effectively tackled solely
through reliance on a single sensor modality [14, 24]. Consequently,
a straightforward approach involves aggregating complementary
modality data from multiple sensors to extract feature information
across various sensing channels, thereby enhancing model perfor-
mance [13, 29, 38]. However, this multimodal learning paradigm,
reliant on centralized processing and aggregation of raw user data,
introduces significant privacy concerns [5, 34, 35, 45].

To mitigate the privacy concerns outlined above, Federated
Learning (FL) [21] emerges as a solution. FL, characterized as an
evolving privacy-preserving distributed machine learning para-
digm, facilitates collaboration among mobile sensing devices across
regions without compromising privacy [12]. By sharing model up-
dates instead of raw data, FL fosters collective learning of global
models among geographically spread devices. Although most FL
methods deal with unimodal data for tasks like next-word predic-
tion [10], some applications, e.g., Alzheimer’s detection [26], neces-
sitate combining data from diverse sources (multimodal data). This
has led to the development of multimodal FL systems [7] tailored
for efficient processing of data from various sensory channels.

While the multimodal FL system addresses some challenges in
multimodal data processing, it still suffers from incomplete sensing
modalities [15, 26, 40], as shown in Fig. 1. For example, in mobile
healthcare, sensor modalities often become unavailable due to sen-
sor failures or malfunctions. This increases the variability of avail-
able sensor modalities across different nodes during runtime [26].
Thus, aggregating model updates in multimodal FL systems with
incomplete sensing modalities becomes very challenging due to
the varied distributions of modality types across different mobile
nodes. This modality heterogeneity also intensifies model dispar-
ities between nodes, affecting the accuracy and convergence of
FL [15, 40]. Existing multimodal FL methods use techniques like
data interpolation [48] and modal fusion [7] to address these issues,
but there is still a significant gap in efficiently utilizing cross-node
modal feature information and selecting high-quality data nodes.
Our Contributions. In this paper, we introduce FedMobile, a
novel knowledge contribution-aware multimodal FL system de-
signed specifically for mobile sensing applications with missing
modalities. Unlike existing multimodal FL methodologies [7, 26, 40],
which typically focus on training multiple unimodal FL subsystems
concurrently, FedMobile adopts a distinct approach. It aims to re-
construct the features of missing modalities by utilizing knowledge
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Figure 1: Unimodal FL vs multimodal FL.

distillation while introducing a knowledge contribution-aware ag-
gregation rule via Shapley value to discern and aggregate high-
quality model updates. To fulfill these objectives, FedMobile is
guided by two primary goals: 1) Effectively reconstructing features
of missing modalities without exacerbating modality heterogene-
ity or compromising main task performance. 2) Streamlining the
process of identifying mobile nodes with substantial contributions
while minimizing computational overhead. Next, we focus on re-
sponding to the following two challenges:

• (C1.) How to collaboratively interpolate missing sensing modal
features for different nodes with cross-modal heterogeneity.
(S1.) – The heterogeneous modality between different nodes has a
common feature subspace. In mobile sensing scenarios, malfunc-
tioning sensor modalities at various nodes give rise to missing
modalities, causing modality heterogeneity [44]. In such circum-
stances, conventional solutions like zero-filling [11] and parallel
training of unimodal models [26] often inadequately handle this
inherent feature and modality diversity. Our goal, therefore, is to
leverage knowledge distillation for constructing a shared feature
subspace among node modalities to improve model performance.
We implement a feature generator on both the server and node
levels to tackle missing modality issues. This generator, trained in
a coupled training manner, aims to align different modalities by
capturing a common feature space.

• (C2.) How to find relevant metrics for measuring the contribution
of a specific node in a computationally cost-friendly manner.
(S2.) – Knowledge and model updates shared between nodes and
server generalize the contributions of nodes. In FedMobile, the con-
tributory role of participating nodes is manifested across dual di-
mensions: knowledge shared by local generators and local model
updates shared by local nodes. To incentivize local generators to
yield high quality features for incomplete modalities, we devise a
novel Clustered Shapley Value approach that quantifies the individ-
ual contributions of these generators. This subsequently allows for
adaptive modulation of their respective weights, thus facilitating
the aggregation of high-quality feature representations. Moreover,
with the objective of discerning nodes that high-quality model up-
dates, we introduce a contribution-aware aggregation mechanism
designed to retain those elements that are conducive to the overall
improvement of the global model. Conversely, it eliminates nodes
that do not meet this criterion. By dynamically choosing nodes
based on this principle, we effectively ensure the aggregation of
high-quality model updates during the training.

Additionally, we evaluate FedMobile across five real-world mul-
timodal sensing datasets: USC-HAD [47], MHAD [23], Alzheimer’s
Disease Monitoring (ADM) [26], C-MHAD [37], and FLASH [30],
which encompass tasks related to autonomous driving, mobile
healthcare, and Alzheimer’s disease detection. The results indicate
that FedMobile effectively leverages various sensor types (such

as GPS, gyroscopes, and radar) in scenarios with incomplete sens-
ing modalities to accurately perform assigned tasks, even amid
operational dynamics like sensor failures. Furthermore, we ana-
lyze the computational and communication overhead of FedMobile
across different tasks. Extensive evaluations show that FedMobile
outperforms existing multimodal FL systems (e.g., FedMM [7], Aut-
oFed [48], and PmcmFL [1]), achieving higher model accuracy with
reasonable additional computational and communication overheads,
especially under dynamic modality missing conditions.

The contributions of our work can be summarized as follows:
(1) We tailor FedMobile, a multimodal federated learning frame-

work that is robust to incomplete modal data, for web-based mobile
sensing systems in WoT.

(2) We design a knowledge distillation-driven cross-node modal-
ity reconstruction network to efficiently reconstruct the missing
modality data without introducing excessive overhead.

(3) We design an efficient generator contribution evaluation
module based on clustered Shapley value and contribution-aware
aggregation mechanism to further improve system performance.

(4)We implement our design and conduct extensive experiments
on 5 datasets related to 3 mobile sensing downstream tasks to
explore the performance, efficiency, generality, and parameter sen-
sitivity of FedMobile. Compared to the baselines, our approach
achieves state-of-the-art performance on all tasks while maintain-
ing comparable computation and communication overhead.

2 Related Work
Multimodal Learning for Mobile Sensing Systems. Mul-
timodal learning aims to extract complementary or independent
knowledge from various modalities, enabling the representation of
multimodal data [19, 46]. This empowers machine learning models
to comprehend and process diverse modal information [39]. As a
result, multimodal learning techniques have become prevalent in
mobile sensing, facilitating the development of systems that can un-
derstand and process diverse sensor data. For instance, multimodal
learning can enhance model performance in areas such as traffic
trajectory prediction [31], disease diagnosis [26], human activity
recognition [3], audio-visual speech recognition [22], and visual
question answering [20]. However, solving the problem of missing
modalities in such systems remains an open challenge.
Unimodal and Multimodal FL systems. To address privacy
concerns in mobile sensing systems, privacy-preserving distributed
learning systems, notably FL [21, 26, 48], are emerging as a solution.
FL systems can be categorized into unimodal and multimodal FL
based on the number of data modalities involved. Unimodal FL
focuses on constructing a global model from unimodal data while
preserving privacy [27]. Similarly, multimodal FL integrates data
from multiple modalities to develop an effective global model [7].
Multimodal FL systems are increasingly used in mobile sensing
applications, particularly in tasks such as autonomous driving [48]
and Alzheimer’s disease detection [26], due to their robust multi-
modal data processing capabilities.
Multimodal FL Systems with Missing Modality. Multimodal
FL systems have emerged as a promising approach for training ML
models across multiple modalities while preserving data privacy.
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However, in real-world scenarios, certain modalities may be miss-
ing from some nodes due to hardware limitations, data availability
constraints, or privacy concerns [15, 26, 44]. To address this chal-
lenge, researchers have developed multimodal FL systems using
various approaches, including modality filling [40], parallel train-
ing of unimodal models [26], and cross-model [44] techniques. For
example, Xiong et al. [40] introduced a modality-filling technique
using reconstruction networks, while Ouyang et al. [26] proposed
Harmony, a heterogeneous multimodal FL system based on disen-
tangled model training. However, these methods often overlook the
common feature space and the evaluation of node marginal contri-
butions, leading to issues with model accuracy. This paper aims to
address these challenges by developing a knowledge contribution-
aware multimodal FL system for mobile sensing.

3 Preliminary
3.1 Multimodal Federated Learning
Multimodal FL is a cutting-edge approach in machine learning (ML)
that addresses the challenges of training models across multiple
modalities while preserving data privacy. Formally, in mobile sens-
ing scenarios, let us denoteM = {𝑚0,𝑚1, . . . ,𝑚𝑀−1} as the set of
modalities of the local multimodal dataset 𝐷𝑘 , 𝐾 as the number
of participating mobile nodes, 𝑛𝑘 as the number of samples in the
node 𝑘 , and 𝑑𝑚

𝑘
as the dimensionality of modality𝑚 in the node

𝑘 . The objective of Multimodal FL is to optimize a global model
F (𝜔) parameterized by 𝜔 across all modalities while minimizing
the following federated loss function:

min
𝜔

𝐾∑︁
𝑘=1

∑︁
𝑚∈M

𝑛𝑘

𝑛
L(𝜔 ;X𝑚

𝑘
, y𝑘 ), (1)

where L(𝜔 ;X𝑚
𝑘
, y𝑘 ) is the loss function for modality 𝑚 at node

𝑘 , X𝑚
𝑘

represents the data samples for modality𝑚 at node 𝑘 , y𝑘
is the target label associated with the samples at node 𝑘 , and 𝑛 =∑𝐾
𝑘=1 𝑛𝑘 represents the total number of samples across all nodes. In

multimodal FL, the global model F (𝜔) is updated by aggregating
local model updates from each node while respecting data privacy
constraints. The update rule for the global model at iteration 𝑡 can
be formalized as:

𝜔𝑡+1 = 𝜔𝑡 − 𝜂
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
∇L(𝜔𝑡 ;X𝑘 , y𝑘 ), (2)

where 𝜂 is the learning rate and ∇L(𝜔𝑡 ;X𝑘 , y𝑘 ) is the gradient
of the loss function with respect to the global model parameters
𝜔𝑡 at node 𝑘 . Clearly, when a modal sensor on a mobile node fails
or ceases to function, resulting in a missing modality, the opti-
mization of Eqs. (1) and (2) becomes challenging. This impediment
implies that multimodal FL may struggle to fulfill the designated
task effectively under such circumstances.

3.2 Shapley Value in ML
Shapley Value [32] is a concept from cooperative game theory used
to fairly distribute the value generated by a coalition of players. In
the context of ML, it is often applied to understand the contribution
of each feature to a model’s prediction [2]. Let us denote a predictive
model as 𝑓 , and Φ𝑖 (𝑓 ) represents the Shapley value of feature 𝑖 in

the model 𝑓 . The Shapley value of feature 𝑖 can be computed as:

Φ𝑖 (𝑓 ) =
∑︁

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |! [𝑓 (𝑥𝑆 ∪ {𝑖}) − 𝑓 (𝑥𝑆 )] , (3)

where 𝑁 is the set of all features, 𝑥𝑆 represents the instance with
only features in set 𝑆 , 𝑓 (𝑥𝑆 ∪ {𝑖}) is the prediction of the model
when feature 𝑖 is added to the set 𝑆 , 𝑓 (𝑥𝑆 ) is the prediction of
the model when only features in set 𝑆 are considered, |𝑆 | denotes
the cardinality of set 𝑆 , and |𝑁 | is the total number of features.
The above formula computes the marginal contribution of feature
𝑖 when added to different subsets 𝑆 of features, weighted by the
number of permutations of features in 𝑆 to the total number of
permutations of all features. In fact, calculating the Shapley value
directly using the above formula might be computationally expen-
sive [2, 32], especially for models with a large number of features.

4 Our Approach
Overview. In this section, we present the proposed FedMo-
bile framework, as illustrated in Fig. 2. First, to reconstruct miss-
ing sensing modalities, we design a knowledge distillation-driven
cross-node modality reconstruction network. Secondly, to select
generators with high-quality contributions, we design an efficient
model contribution evaluation module based on clustered Shapley
values. Finally, to further mitigate cross-node modal heterogeneity,
we introduce a knowledge contribution-aware aggregation rule
for robust aggregation. Next, we will introduce each functional
component in detail.

4.1 Knowledge Distillation-driven Cross-node
Modalitiy Reconstruction Network

Impute Missing Modalities. Different from existing works
such as AutoFed [48], which focus on reconstructing local missing
modalities while ignoring cross-node feature information, FedMo-
bile aims to collaboratively utilize the common feature subspace
across nodes to iteratively reconstruct the feature information of
missing modalities. Specifically, to gain insight into the data dis-
tribution of missing modalities across nodes and use this under-
standing to guide local model training with incomplete modalities,
we employ conditional distributions to characterize the modal data
distribution of each node. Let 𝑄𝑘 : Y𝑘 → X𝑘 denote the above
conditional distribution, which is tailored for each node and aligns
with the ground truth data distribution. This distribution encap-
sulates the necessary knowledge to guide multimodal FL training
with incomplete modalities:

𝑄𝑘 = argmax
𝑄𝑘 :Y𝑘→X𝑘

E𝑦∼𝑝 (𝑦𝑘 )E𝑥∼𝑄𝑘 (X𝑘 |𝑦𝑘 ) [log 𝑝 (𝑦 |𝑥 ;𝝎𝑘 )], (4)

where 𝑝 (𝑦𝑘 ) and 𝑝 (𝑦 | 𝑥) denote the ground-truth prior and pos-
terior distributions of the target labels, respectively. Given these
conditions, we employ local models to infer 𝑝 (𝑦 | 𝑥). Consequently,
a straightforward approach involves the direct optimization of
Eq. (4) in the input space X𝑘 to approximate features for missing
modalities. However, when X𝑘 is of high dimensionality, this ap-
proach may lead to computational overload and could potentially
disclose information about user data configuration files. Therefore,

3
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Figure 2: Workflow overview of FedMobile.
a more feasible alternative is to reconstruct an induced distribu-
tion 𝜓𝑘 : Y𝑘 → Z𝑘 over a latent space. This latent space, being
more compact than the raw data space, can help mitigate certain
privacy-related concerns:

𝜓𝑘 = argmax
𝜓𝑘 :Y𝑘→Z𝑘

E𝑦∼𝑝 (𝑦𝑘 )E𝑧∼𝜓𝑘 (Z𝑘 |𝑦𝑘 ) [log𝑝 (𝑦 |𝑧;𝝎𝑘 )] . (5)

Hence, nodes engage in knowledge extraction from missing modal-
ity data by acquiring insights from a parameterized condition gen-
erator𝜓𝑘 by 𝜔𝑘

𝐺
. The optimization process is as follows:

min
𝝎𝒌

𝑮

𝐽 (𝝎𝒌
𝑮 ) = minE𝑦∼𝑝 (𝑦𝑟 )E𝑧∼𝜓𝑘 (𝑧 |𝑦𝑟 ) [L (𝜎 (𝑔 (𝑧;𝝎𝑘 )) , 𝑦)] ,

(6)
where 𝑦𝑟 represents a set of random labels generated from the
training dataset D𝑘 , 𝑔(·) denotes the logits output of a predictor,
and 𝜎 (·) signifies the non-linear activation applied to these logits.
Align Missing Modalities. On the other hand, it is necessary
to refine feature subspaces to more accurately encapsulate the lo-
cal knowledge of nodes. For instance, considering a two-modality
task, we can derive the generated latent space via the labels 𝑦𝑘 :
Z𝑚0 ,Z𝑚1 = 𝜓𝑘

(
𝑦𝑘 ;𝜔𝑘𝐺

)
, where Z𝑚0 and Z𝑚1 represent the re-

spective latent features of each modality. Assuming𝑚1 denotes the
missing modality, our objective is to further empower𝜓𝑘 to assim-
ilate knowledge from various modalities, thereby enhancing the
completeness and generalization of the feature space. For modality
𝑚0, the learning process can be expressed as follows:

L𝑚0
𝐾𝐿

(𝜔𝑘𝐺 ;𝜔𝑘 ) = min
𝜔𝑘
𝐺

𝐵∑︁
𝑖=1

E𝑥∼D𝑘
[
𝐷KL

[(
𝑓0
(
𝑥
𝑚0
𝑖

;𝝎𝑚0
𝑘

)
∥Z𝑚0

𝑖

)] ]
,

(7)
where 𝐵 represents the number of samples in the local training
batch. For modality𝑚1, we only learn from the missing data of this
modality, which is formally expressed as follows:

L𝑚1
𝐾𝐿

(𝜔𝑘𝐺 ;𝜔𝑘 ) = min
𝜔𝑘
𝐺

𝐼∑︁
𝑖=1

E𝑥∼D𝑘
[
𝐷KL

[(
𝑓1
(
𝑥
𝑚1
𝑖

;𝝎𝑚1
𝑘

)
∥Z𝑚1

𝑖

)] ]
,

(8)
where 𝐼 represents the remaining number of samples. Finally, we
use Z𝑚1 instead of the feature 𝑓1

(
𝑥
𝑚1
𝑘

;𝝎𝑚1
𝑘

)
of modality𝑚1 for

multimodal feature fusion (e.g., concatenated fusion) to achieve
feature alignment for missing modality. According to the above

method, the overall optimization goal of every FL node is:

min
𝜔𝑘
𝐺
,𝜔𝑘

L𝑘𝑇𝑟𝑎𝑖𝑛 = 𝐽 (𝜔𝑘𝐺 ) +L
𝑚0
𝐾𝐿

(𝜔𝑘𝐺 ;𝜔𝑘 ) +L
𝑚1
𝐾𝐿

(𝜔𝑘𝐺 ;𝜔𝑘 ) +L𝐶𝐸 (𝜔𝑘 ),

(9)
whereL𝐶𝐸 (𝜔𝑘 ) represents the cross entropy loss of model training.
Transfer Feature Space. In this context, we consider the global
distribution generator, denoted as𝜓 , and the set of local distribu-
tion generators, represented by𝜓𝑘 for each node 𝑘 , as the source
and target domains, respectively, in a framework of domain adap-
tation. This particular form of adaptation is referred to as global-
to-local knowledge transfer. Conversely, the local-to-global knowl-
edge transfer takes place at the server side. During the knowledge
exchange process, the node 𝑘 transmits its locally generated dis-
tribution model,𝜓𝑘 , to the server. The server then orchestrates a
guided adjustment of 𝜓𝑘 with the aim of systematic reduction in
the discrepancy between the local and global knowledge domains
through the mechanism of FL aggregation. The above process can
be formalized as follows:

𝜓 =
1
𝐾

𝐾∑︁
𝑘=1

𝜓𝑘 . (10)

4.2 Clustering Shaple Value-driven Generator
Contribution Evaluation Module

Evaluate Generator Contribution. Considering the inherent
heterogeneity of data across nodes and the varied modality missing
scenarios that often arise on individual nodes, a naive aggregation
of the local distribution models𝜓𝑘 for knowledge transfer might
inadvertently cause a general shift in the collective knowledge
domain, leading to counterproductive outcomes. To mitigate this
issue, we use the SV method to quantitatively evaluate the mar-
ginal contribution of each distinct𝜓𝑘 to the overarching learning
task. However, directly applying the SV to compute the marginal
contributions of individual nodes is computationally burdensome,
especially in FL scenarios involving hundreds of mobile devices.
To address this challenge, we incorporate the K-means clustering
algorithm to reduce the computational complexity of the SV com-
putation. Specifically, we employ the K-means clustering algorithm
to cluster theZ generated by𝜓𝑘 , resulting in multiple clusters con-
taining𝜓𝑘 . We then perform average aggregation on the generator
parameters in the cluster to obtain 𝜓 as the node representative
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of the cluster. In this way, we can get K node representatives and
use these node representatives as a set 𝑁 = {𝜓1, . . . ,𝜓K } in SV.
Consequently, the final computation of SV can be expressed as:

Φ𝑖 (F) =
∑︁

𝑆⊆𝑁 \{𝜓𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1) !
|𝑁 |!

[
P(F(𝜓𝑆 (𝑦

′
𝑟 ) ∪ {𝜓𝑖 (𝑦

′
𝑟 ) }) ) − P (F(𝜓𝑆 (𝑦

′
𝑟 ) ) )

]
, (11)

where P is a performance metric function, such as accuracy, F1-
score, or loss, F represents the global model, and 𝑦

′
𝑟 is a set of

randomly generated labels from the proxy dataset D𝑝𝑟𝑜𝑥𝑦 . Subse-
quently, the normalized Φ1 (F ),Φ2 (F ), . . . ,ΦK (F ) is used as the
aggregation weight, therefore Eq. (10) can be rewritten as:

𝜓 =
1
K

K∑︁
𝑖=1

Φ𝑖 (F )𝜓𝑖 . (12)

4.3 Contribution-aware Aggregation Rule
Node Contribution. To generalize node contribution in a fine-
grained manner, we divide the contribution of each node in each
round into local and global contributions. The local contribution
represents the node’s performance in that round of local training,
while the global contribution represents the node’s impact onmodel
aggregation. We can calculate the local contributions as follows:

𝑃𝑡local,𝑘 = P(𝜔𝑡
𝑘
;D𝑝𝑟𝑜𝑥𝑦), (13)

where P is a performance metric function, such as accuracy, F1-
score, or loss, D𝑝𝑟𝑜𝑥𝑦 represents the proxy dataset, and 𝜔𝑘 rep-
resents the local model parameters of node 𝑘 . It is important to
note that the proxy dataset does not compromise the privacy of
the training set and can be collected by the server, as is consistent
with previous work [32, 41]. Furthermore, we need to traverse all
nodes to calculate the above contribution. To assess how much a
node’s update would improve the global model, we can perform a
hypothetical update by applying only node 𝑘’s update to the global
model and measuring the global contribution:

w𝑡+1temp,𝑘 = 𝜔𝑡 + 𝜂Δ𝜔𝑡
𝑘
, (14)

Δ𝑃𝑡global,𝑘 = P(𝜔𝑡+1temp,𝑘 ;D𝑝𝑟𝑜𝑥𝑦) − P(𝜔𝑡 ;D𝑝𝑟𝑜𝑥𝑦)

= 𝑃𝑡+1global,𝑘 − 𝑃
𝑡
global

(15)

where𝜂 is the learning rate. Due to computational constraints (since
evaluating each node’s update individually can be costly), we can
approximate this by estimating the potential improvement based on
surrogate metrics. Hence, we can approximate it using the node’s
local loss reduction metric as follows:

ΔL𝑡
𝑘
= L(𝜔𝑡 ;D𝑝𝑟𝑜𝑥𝑦) − L(𝜔𝑡

𝑘
;D𝑝𝑟𝑜𝑥𝑦) . (16)

We use ΔL𝑡
𝑘
as a proxy for Δ𝑃𝑡global,𝑘 . The reason we do this is that

larger differences have a larger impact on the global model.
Node Contribution-aware Aggregation. Upon determining
the global and local contributions, we strive to incorporate them
adaptively into the quality assessment process of nodes participat-
ing in model aggregation, therebymitigating the impact of updating
nodes with lower quality. To achieve this goal, we can define the
aggregation weight 𝛼𝑡

𝑘
for a node 𝑘 as a function of 𝑃𝑡local,𝑘 and

Δ𝑃𝑡global,𝑘 :

𝛼𝑡
𝑘
=

𝑝 (𝑃𝑡local,𝑘 ,Δ𝑃
𝑡
global,𝑘 )∑𝐾

𝑗=1 𝑝 (𝑃𝑡local, 𝑗 ,Δ𝑃
𝑡
global, 𝑗 )

, (17)

where 𝑝 is a function that combines the two performance metrics.
Here, an intuitive choice for 𝑝 is to multiply the normalized perfor-
mance metrics. Thus, we normalize the Local Contribution Metrics:
𝑃𝑡local,𝑘 =

𝑃𝑡local,𝑘∑𝐾
𝑗=1 𝑃

𝑡
local, 𝑗

, and we normalize the Global Contribution

Improvements: Δ̃𝑃𝑡global,𝑘 =
Δ𝑃𝑡global,𝑘∑𝐾
𝑗=1 Δ𝑃

𝑡
global, 𝑗

. Combining Eqs. (16) and

(17), if we use local loss reduction, we have:

𝛼𝑡
𝑘
=

𝑛𝑘 × 𝑃𝑡local,𝑘 × Δ̃L𝑡
𝑘∑𝐾

𝑗=1 𝑛 𝑗 × 𝑃𝑡local, 𝑗 × Δ̃L𝑡
𝑗

(18)

where
∑𝐾
𝑘=1 𝛼

𝑡
𝑘
= 1. Therefore, we can use this weight to update

the global model:

𝜔𝑡+1 = 𝜔𝑡 + 𝜂
𝐾∑︁
𝑘=1

𝛼𝑡
𝑘
Δ𝜔𝑡

𝑘
. (19)

The above process is summarized in Algo. 1 in the Appendix B.

5 Experiment
5.1 Experiment Setup
To evaluate the performance of our FedMobile system, we con-
duct extensive experiments on four benchmarking datasets. All
experiments are developed using Python 3.9 and PyTorch 1.12 and
evaluated on a server with an NVIDIA A100 GPU.
Datasets. We adopt five multimodal datasets for evaluations,
i.e., USC-HAD [47], MHAD [23], ADM [26], C-MHAD [37], and
FLASH [30] datasets. The datasets cover different modalities, ob-
jects, domains, attributes, dimensions, and number of classes, as
shown in Table 7, allowing us to explore the learning effectiveness
of FedMobile. To simulate an environment characterized by incom-
plete sensing modalities, we adopt a random selection methodology
to identify a target mode from the local dataset, which will represent
the state of incompleteness. We then proceed to randomly eliminate
a predetermined proportion of the modal data, thereby simulating
the phenomenon of missing information. Note that we distinguish
between the small-scale node and large-scale node scenarios ac-
cording to the scale of users (i.e., nodes) involved in the dataset. In
the dataset used, FLASH will be evaluated in the large-scale node
scenario. More details can be found in Appendix C.1.
Models. When processing ADM dataset, we harness the TDNN
for audio feature extraction and combine it with CNN layers for
radar and depth image feature extraction. For USC, MHAD, and
FLASH datasets, a 2D-CNN model is utilized to process accelerom-
eter data, whereas a 3D-CNN architecture is employed to analyze
skeleton data. Finally, when working with the CMHAD dataset, we
exploit a 2D-CNN architecture to derive video features, while 3D-
CNN layers are used for extracting features from inertial sensors.
Parameters. For the ADM dataset, we set the learning rate at
1e-3, with a batch size of 64. Regarding the USC dataset, the learning
rate is 1e-6, and the batch size is 16. For the MHAD and FLASH
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datasets, the learning rate is 1e-3, with a batch size of 16. When
working with the CMHAD datasets, we maintain a learning rate of
1e-4, alongside a batch size of 16. Throughout this experiment, we
utilize the SGD optimizer with a momentum of 0.9 and a weight
decay of 1e-4. We set the total number of nodes 𝐾 = 10, local epoch
𝐸 = 5, global epoch 𝑇 = 100, and node participation rate 𝑞 = 100%.
We set K = 5 in the K-means algorithm. We use a multilayer
perceptron as our generator (see Appendix C.3).
Baselines. To make a fair comparison, we employ FedProx [16],
FedBN [17], FedMM [7], PmcmFL [1], Harmony [26], and Aut-
oFed [48] as baseline methods. Among these, the first three tech-
niques require adaptation to cope with scenarios characterized by
incomplete modalities. This adaptation is achieved through the
integration of interpolation techniques, namely zero padding (ZP)
and random padding (RP), which are incorporated into the Fed-
Prox, FedBN, and FedMM baselines. This augmentation enables
us to gauge the effectiveness of FedMobile in dealing with hetero-
geneous modalities. On the other hand, PmcmFL, Harmony, and
AutoFed are multimodal FL solutions that naturally cater to situ-
ations involving incomplete modalities without needing further
modifications to their methodologies. Thus, we can directly assess
FedMobile’s learning performance in similar contexts using these
baseline methods. Note that all comparison results are the average
of five repeated experiments to eliminate the effect of randomness.
Metrics. To assess the performance of our proposed method and
benchmark it against the baseline approaches, we employed accu-
racy as the evaluation metric, a convention that has been widely
utilized in prior research [4]. To quantify the computational over-
head, we tracked the aggregate time consumed in uploading and
downloading models for all participating nodes throughout the
FL training process, as was previously done in [30]. And we com-
puted the cumulative GPU usage across all nodes engaged in the
FL training phase. For communication overhead, we perform a
fair comparison by calculating the model updates that need to be
transmitted for 100 rounds of global training.

5.2 Numerical Results
Research Questions. In this section, we aim to answer the
following research questions:

• (RQ1) How effectively does FedMobile, along with its respec-
tive baseline methods, fare in handling diverse and complex scenar-
ios characterized by incomplete modal environments?

• (RQ2) How does FedMobile demonstrate computational and
communicational efficiency in its running processes?

• (RQ3) How does FedMobile perform in heterogeneous data
scenarios, especially in dynamic modality missing scenarios?

• (RQ4) How does FedMobile perform in scenarios with large-
scale nodes and missing modalities?

• (RQ5) What are the capabilities of FedMobile in terms of multi-
modal feature extraction, and how proficiently can it harness and
integrate features from multiple modalities?

• (RQ6) How do the individual components of the FedMobile
framework contribute to its overall performance, and what specific
impact do they have on its effectiveness?
System Performance (RQ1). To address RQ1, we perform an
extensive evaluation of FedMobile, along with its comparative

baseline algorithms, using four benchmark multimodal datasets.
To assess performance under diverse levels of modal data loss,
we introduce a set of modality missing rates designated as 𝛽 =

{20%, 40%, 60%, 70%, 80%, 90%}. The experimental results demon-
strate that FedMobile outperforms all other baseline algorithms
consistently across all these varying degrees of missing modality
data, as clearly depicted in Table 1. Notably, FedMobile showcases
a 1.9% improvement relative to the current state-of-the-art baseline,
AutoFed, specifically in the MHAD dataset with 𝛽 = 80%. These
enhanced results stem from FedMobile’s innovative strategy, which
entails reconstructing modal features across nodes and tactically
selecting nodes with high-quality contributions. By discovering a
shared feature subspace among distinct missing modalities, FedMo-
bile efficiently reconstructs features and simultaneously excludes
nodes with inferior-quality data, thereby boosting the performance.

To further evaluate the performance of FedMobile, we tested it
under a more challenging scenario involving the absence of two
modalities (i.e., two-modal data missing). Specifically, we randomly
omitted two modalities in a fixed ratio within the ADM dataset,
which consists of three modal data, and maintained this missing
configuration throughout the training process. The numerical re-
sults, recorded in Table 2, demonstrate that FedMobile continues to
deliver excellent performance, outperforming other state-of-the-art
baselines, including an average 4.3% improvement over AutoFed
on the ADM dataset. Additionally, we observed that existing meth-
ods struggle with missing data across multiple modalities, as they
heavily depend on sufficient modal information to reconstruct the
missing data. FedMobile, on the other hand, does not require this,
making it more robust in handling such scenarios. Additionally, we
provide a privacy analysis in Appendix A.
Computational & Communication Overhead (RQ2). To ad-
dress RQ2, we systematically document and analyze the commu-
nication cost, local running time, and GPU usage of all examined
methods on the USC dataset with 𝛽 = 60%. Note that since Aut-
oFed and Harmony also include hardware equipment, they are
not included in the comparison. For the convenience of compar-
ison, we record the communication overhead of 100 global train-
ing rounds and ignore factors such as the network environment.
First, while the introduction of the generator does cause additional
communication overhead, this overhead is acceptable. Specifically,
the additional overhead caused by the generator is 1.65 MB for
each training round. Furthermore, compared to baselines such as
FedProx, which do not introduce much additional overhead, our
method only adds an additional 9.02% communication overhead,
as shown in Fig. 3. In performance-critical multimodal services, a
small amount of additional communication overhead is acceptable
because it improves the quality of service (i.e., accuracy), which
is a performance-overhead trade-off. The results depicted in Figs.
5–6 and Table 3 show that the GPU utilization and local running
time of FedMobile consistently remains lower than or close to that
of the comparative baseline methods. This indicates that our ap-
proach does not appreciably increase local computational overhead.
Given that servers typically operate as resource-rich cloud infras-
tructure, computations related to the server-side SV calculation do
not impose any significant extra computational load.
DataHeterogeneity Scenarios (RQ3). To address RQ3, we eval-
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Table 1: Numerical results of system performance.

Datasets 𝛽 FedProx+ZP FedProx+RP FedBN+ZP FedBN+RP FedMM+ZP FedMM+RP PmcmFL Harmony AutoFed FedMobile

20% 75.3 77.0 75.3 77.9 78.0 76.7 78.0 76.5 77.6 78.4
40% 75.2 75.9 74.5 75.3 77.5 74.1 77.3 76.7 76.8 77.9
60% 75.3 75.7 75.3 75.2 76.5 74.6 76.5 75.9 75.8 76.5

MHAD 70% 75.2 75.0 74.9 74.9 76.1 74.6 76.2 75.8 75.4 76.5
80% 74.9 76.1 74.1 75.4 76.2 74.3 76.0 74.3 76.1 78.0
90% 75.0 75.1 74.2 74.9 75.8 74.5 75.8 74.5 75.4 76.8

20% 56.6 56.6 58.6 57.3 58.2 58.4 59.1 58.7 60.4 61.1
40% 58.7 57.2 56.9 57.5 56.2 58.0 58.6 57.9 58.7 62.8
60% 57.3 58.2 57.0 57.6 57.2 58.6 57.9 58.7 60.1 61.0

USC-HAD 70% 57.2 57.9 57.3 57.0 57.5 57.8 58.2 57.1 58.4 59.8
80% 57.5 56.3 57.6 57.1 56.9 57.5 58.0 56.8 58.2 58.8
90% 57.8 57.7 57.1 57.3 57.1 57.8 58.1 56.8 57.6 59.6

20% 82.5 83.5 83.0 82.4 82.5 83.1 83.6 82.8 83.9 84.9
40% 82.1 82.6 82.2 83.0 82.7 83.3 84.0 83.4 83.6 84.3
60% 81.3 81.0 82.4 82.8 80.0 81.8 83.8 82.9 83.8 84.4

ADM 70% 81.4 82.1 81.7 81.2 81.5 82.3 82.8 81.6 83.2 84.2
80% 81.8 80.2 81.3 80.5 80.8 82.0 83.1 81.9 83.5 84.0
90% 82.7 81.9 80.8 80.3 81.7 82.3 83.2 80.9 83.2 84.4

20% 75.7 75.2 75.6 75.3 75.0 75.2 76.2 75.9 76.4 76.7
40% 74.4 75.0 74.7 74.2 74.0 74.1 74.9 74.6 75.1 75.8
60% 73.7 74.2 73.9 73.5 72.7 73.4 74.0 73.7 74.5 75.6

C-MHAD 70% 74.2 74.7 74.4 74.0 70.4 73.9 74.2 72.2 73.9 76.1
80% 74.7 75.2 74.9 74.5 73.3 74.4 74.8 72.8 75.3 77.2
90% 74.1 74.6 74.0 73.9 73.1 73.8 74.5 73.1 75.4 77.3

Table 2: Performance results for the two-modality missing
scenario.

Modality Type Method 40% 60% 80%

FedMM+ZP 69.8 58.5 60.2
FedMM+RP 69.2 68.5 61.3
FedProx+ZP 69.3 59.8 60.3
FedProx+RP 68.9 70.7 60.9

Audio and Radar FedBN+ZP 68.7 59.1 59.3
FedBN+RP 68.2 68.2 59.6
PmcmFL 69.8 71.3 61.7
Harmony 69.2 72.7 60.7
AutoFed 69.4 68.5 61.2
Ours 70.0 77.7 62.1

FedMM+ZP 82.3 79.3 79.2
FedMM+RP 78.8 81.8 79.5
FedProx+ZP 82.1 80.3 80.2
FedProx+RP 81.4 82.0 79.8

Audio and Depth Image FedBN+ZP 81.8 80.8 78.7
FedBN+RP 77.3 79.2 78.9
PmcmFL 83.1 82.0 81.6
Harmony 82.4 78.8 81.4
AutoFed 82.8 79.4 81.0
Ours 83.3 82.3 82.3

FedMM+ZP 33.1 37.9 28.5
FedMM+RP 38.3 35.4 27.9
FedProx+ZP 33.0 37.5 28.2
FedProx+RP 36.2 36.9 27.8

Radar and Depth Image FedBN+ZP 32.7 37.2 27.9
FedBN+RP 35.3 35.1 28.2
PmcmFL 36.5 38.0 28.4
Harmony 35.9 37.4 30.8
AutoFed 37.6 38.7 31.1
Ours 39.1 41.3 32.1

Table 3: Cost comparison of different methods.

Method FedMM PmcmFL FedProx FedBN Ours

GPU Usage (%) 16 15 21 21 18
Local Running Time (s) 11.65 12.86 12.23 11.57 12.12

uate the performance of the baselines and FedMobile in a dynamic
modality-missing scenario on the ADM dataset. Unlike unimodal
FL, where the Dirichlet function is commonly used to control the
degree of heterogeneity (i.e., non-IID data), we dynamically adjust
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Figure 3: Communication cost of FedMobile and baselines.

both the modality missing rate and the number of missing modal-
ity types to control heterogeneity in multimodal FL. The primary
reason for this adjustment is that multimodal FL involves multiple
types of data, making it difficult for the Dirichlet function to rea-
sonably partition the data. We further define two heterogeneous
scenarios: (1) scenarios with different distributions of the number of
missing modality types and (2) scenarios with varying distributions
of modality missing rates, as illustrated in Figs. 7–8. In Scenario
1, we set the modality missing rate at 𝛽 = 40% and randomly omit
different numbers of modality types. The experimental results, sum-
marized in Table 4, represent the average of five repeated trials.
These results indicate that FedMobile consistently outperforms the
other baselines, demonstrating its robustness in handling dynamic
modality-missing scenarios. For Scenario 2, we control the num-
ber of missing modality types but dynamically adjust the modality
missing rate, ranging from a maximum of 𝛽 = 80% to a minimum
of 𝛽 = 20%. The corresponding results, also presented in Table 4,
show that FedMobile again outperforms the baselines, highlighting
its strong performance even in these challenging non-IID settings.
Large Node Scenario (RQ4). To address RQ4, we investigate
the performance of FedMobile and its baselines on large-scale
nodes. While the dataset in RQ1 was collected from 10 nodes, we
use the FLASH dataset, which involves 210 nodes, to more effec-
tively partition the multimodal data and validate their performance.
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Figure 4: Feature visualization results of different methods.
Table 4: Performance results in the heterogeneity scenario.

Dataset Method Scenario 1 Scenario 2

FedMM+ZP 69.3 71.4
FedMM+RP 69.5 72.1
FedProx+ZP 70.2 73.7
FedProc+RP 69.5 73.2

ADM FedBN+ZP 69.8 71.3
FedBN+RP 70.3 71.7
PmcmFL 71.5 74.5
Harmony 70.7 76.8
AutoFed 70.1 77.9
Ours 76.5 80.2

Table 5: Performance results on FLASH Dataset.

Dataset Method 40% 60% 80%

FedMM+ZP 52.7 51.1 50.4
FedMM+RP 53.4 52.3 51.2
FedProx+ZP 49.7 50.1 49.2
FedProx+RP 49.4 48.7 49.4

FLASH FedBN+ZP 49.9 49.1 47.8
FedBN+RP 50.4 49.7 48.2
PmcmFL 52.4 51.6 50.4
Harmony 55.8 54.7 54.1
AutoFed 54.9 53.4 55.4
Ours 57.6 57.1 56.8

Specifically, we set modality missing rates at 40%, 60%, and 80%,
and conduct five repeated experiments to record the average model
accuracy. The results, presented in Table 5, show that FedMobile
consistently outperforms the other advanced baselines even on
large-scale nodes, demonstrating that its performance is not limited
by the scale of the mobile node.
Feature Visualization (RQ5). In response to RQ5, we under-
take a qualitative evaluation of the multimodal features generated
by the competing methods by visualizing them. For this purpose, we
employ the t-distributed Stochastic Neighbor Embedding (t-SNE)
technique on dataset MHAD to project the high-dimensional multi-
modal features extracted by each method onto a lower-dimensional
space. The resulting dimensionality reduction is presented in Fig. 4.
Our visualization results indicate that FedMobile excels at extract-
ing more precise and refined multimodal features, which in turn
leads to enhanced classification accuracy. In comparison, alternative
methods exhibit substantial deficiencies in feature extraction. This

Table 6: Numerical results of ablation experiments.

Method MHAD USC ADM CMHAD FLASH

Ours (w/o L𝑇𝑟𝑎𝑖𝑛) 74.7 57.5 79.8 79.2 52.7
Ours (w/o SV) 77.3 61.6 81.8 82.7 56.9
Ours (w/o 𝛼) 74.5 58.6 84.1 77.4 53.8

Ours 77.9 62.8 84.3 75.8 57.6

observation underscores the value of FedMobile’s dual strategies
of local-to-global knowledge transfer and modal feature recon-
struction, which collectively facilitate the effective exploitation and
extraction of information from incomplete modal sources.
Ablation Studies (RQ6). To investigate RQ6, we conduct a
systematic dissection of FedMobile by analyzing the performance
contributions of its constituent parts with 𝛽 = 40%. To this end, we
experimentally validate the performance of three ablated versions
of FedMobile on four benchmark multi-modal datasets. Specifically,
we successively deactivate the modal reconstruction network, the
contribution sensing module, and the dynamic parameter aggrega-
tion module, forming three distinct variations of FedMobile. The
experimental outcomes are summarized in Table 6, demonstrat-
ing that the modal reconstruction network and the contribution
sensing module play pivotal roles in determining FedMobile’s per-
formance. On the other hand, the impact of the dynamic parameter
aggregation module on FedMobile’s performance appears to be
less pronounced. For illustration, when the modal reconstruction
network is removed from FedMobile, the performance degradation
on the MHAD dataset reaches 3.2%, relative to the complete version
of FedMobile. These findings highlight the critical importance of
the modal reconstruction and contribution sensing mechanisms
within the FedMobile framework.

6 Conclusion
The paper addresses the challenge of incomplete modalities in mul-
timodal Federated Learning systems by proposing a new framework
called FedMobile. Unlike existing methods that rely on unimodal
subsystems or interpolation, FedMobile leverages cross-node mul-
timodal feature information for reconstructing missing data and
employs a knowledge contribution-aware mechanism to evaluate
and prioritize node inputs, improving resilience to modality het-
erogeneity. The framework demonstrates superior performance in
maintaining robust learning under significant modality loss com-
pared to current standards, all while not increasing computational
or communication costs. Overall, FedMobile represents a significant
step forward in developing more efficient and resilient multimodal
FL systems.
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A Privacy Analysis
The proposedmethod for imputingmissingmodalities in FedMobile
introduces privacy-preserving strategies by utilizing latent space
reconstruction and conditional distributions across nodes. This
privacy analysis explores how these strategies help mitigate privacy
risks associated with multimodal FL under scenarios where data
modalities are incomplete across nodes.
Privacy Issues in Multimodal FL. On the one hand, in tradi-
tional FL, model updates can inadvertently leak sensitive informa-
tion about the local datasets, especially when gradients are shared
directly [49]. Furthermore, when reconstructing missing modalities
from available data, there is a risk that sensitive or private informa-
tion about the original data can be exposed [7]. High-dimensional
data spaces are particularly vulnerable to this risk.
FedMobile’s Privacy-Preserving Mechanisms. FedMobile
addresses these privacy risks through two key techniques:

• Conditional Distribution in Latent Space. Instead of directly
imputing missing modalities in the raw input space X𝑘 , FedMo-
bile reconstructs an induced distribution 𝜓𝑘 over a latent space
Z𝑘 , as shown in Eq. (5). The latent space is more compact and
lower-dimensional than the raw data space. This shift to a latent
space significantly reduces the risk of privacy leakage because the
latent representations contain abstracted information rather than
raw, potentially sensitive features of the original data. Additionally,
latent spaces typically obscure fine-grained details about individual
data points, making it harder to reverse-engineer or infer private
information from the shared model updates.

• Conditional Distributions for Imputation. FedMobile uses con-
ditional distributions 𝑄𝑘 (in Eq. (4)) and 𝜓𝑘 (in Eq. (5)) to model
the relationships between the missing and present modalities. This
distribution-based approach means that only the learned relation-
ships between modalities are shared, not the actual data or de-
tailed feature information. By focusing on conditional probabilities
𝑝 (𝑦 | 𝑥) or 𝑝 (𝑦 | 𝑧), the model implicitly encodes privacy since no
raw features or labels are directly shared between nodes or with
the central server. Instead, only probabilistic inferences are utilized,
reducing the risk of reconstructing sensitive raw data.

Furthermore, existing work [33] has shown that it is difficult
to recover training data by only obtaining gradient or feature in-
formation, as gradient leakage attacks are less effective on large
training batches (e.g., batch size = 32). Additionally, gradient leakage
or feature reconstruction attacks are typically effective for image
data [33, 49], but their effectiveness is limited for data types such
as radar and gyroscope data.

B Proposed Algorithm
An overview of the algorithm is as follows:

C Additional Information
C.1 Dataset Information
MHAD Dataset. The MHAD dataset is designed to support
research in human action recognition using multiple modalities.
It includes data from 12 subjects performing 11 actions such as
jumping, walking, running, and more. The dataset captures data
from multiple sensors including accelerometers, gyroscopes, and

Algorithm 1: Description of the steps of the FedMobile.
Input: Local model 𝜔𝑘 , local generator 𝜔𝐺 , and local

multimodal dataset D𝑘 , and validation dataset D𝑣𝑎𝑙 .
Output: Global model 𝜔

1 The server initializes the generator and global model and
sends them to each node

/* Knowledge Distillation-driven Cross-node Modalitiy

Reconstruction Network */

2 while local training do
3 Use the local model 𝜔𝑘 to perform feature extraction on

the complete modality
4 Generate random label 𝑦𝑟 from D𝑣𝑎𝑙

5 Input the random label 𝑦𝑟 and the missing modality
label 𝑦𝑚 to the local generator 𝜔𝐺 to generate the
corresponding features

6 Calculate 𝐽 (𝜔𝑘
𝐺
) to optimize the local generator ▷Refer

to Eq. (6)
7 Calculate L𝑚0

𝐾𝐿
(𝜔𝑘
𝐺
;𝜔𝑘 ) and L𝑚1

𝐾𝐿
(𝜔𝑘
𝐺
;𝜔𝑘 ) to further

align the features of the missing modality ▷Refer to
Eqs. (7)–(8)

8 Perform coupled training of local model and local
generator via Eq. (9)

9 end
10 The nodes upload 𝜔𝑘 and 𝜔𝑘

𝐺
to the server

/* – Server does: – */

/* Clustered Shaple Value-driven Generator Contribution

Evaluation Module */

11 do
12 Use the K-means algorithm to cluster the features of

random labels 𝑦𝑟 extracted by the local generator 𝜔𝑘
𝐺

13 Perform average aggregation on local generator
parameters 𝜔𝑘

𝐺
in each cluster

14 Use SV to calculate the marginal contribution to the
global model for the obtained representative nodes and
use it as an aggregate weight ▷Refer to Eq. (11)

15 Aggregate these generators using the aggregation
weights obtained from the above steps to produce
high-quality generators ▷Refer to Eq. (12)

16 while excute the above module
/* Contribution-aware Aggregation Rule */

17 do
18 Calculate the local and global contributions of the node

via Eq. (13) and Eq. (15)
19 Calculate the adaptive weight 𝛼𝑘 via Eq. (18)
20 Perform contribution-aware aggregation via Eq. (19) to

obtain global model 𝜔
21 while excute the above module
22 return The optimal global model 𝜔 .

magnetometers, as well as from optical motion capture systems and
video cameras. Link: https://paperswithcode.com/dataset/berkeley-
mhad
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Table 7: Summary of the four multimodal datasets.

Dataset Modality Information # Classes # Users Object Domain # Samples Size (MB)

USC-HAD Acc, Gyro 12 10 People Activity Detection 38312 38.5
MHAD Acc, Skeleton 11 10 People Activity Detection 3956 187
ADM Audio, Radar, Depth Image 11 10 People Medical 22452 30208

C-MHAD Video, Inertial Sensor 7 10 People Activity Detection 7802 24268.8
FLASH GPS, LiDar, Camera 64 210 Traffic Scenes Autopilot 32923 5232.64
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Figure 5: Numerical result of local GPU usage.
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Figure 6: Numerical result of local running time.

USC-HAD Dataset. The USC-HAD dataset is a collection of
data gathered for the purpose of recognizing human activities. The
dataset includes data from 14 subjects performing 12 different ac-
tivities such as walking, running, jumping, sitting, standing, and
more. The data is captured using wearable sensors that record ac-
celerometer and gyroscope readings. Link: https://sipi.usc.edu/had/
ADM Dataset. The ADM dataset focuses on detecting
Alzheimer’s disease by analyzing 11 behavioral biomarkers in
natural home environments. These biomarkers include activities
such as cleaning living areas, taking medications, using mobile
phones, writing, sitting, standing, getting in and out of chairs/beds,
walking, sleeping, eating, and drinking. The three modal data of
depth images, radar, and audio are obtained by sampling from
the depth camera, mmWave radar, and microphone at sampling
rates of 15 Hz, 20 Hz, 44 Hz, and 100 Hz, respectively. Link:
https://github.com/xmouyang/Harmony/blob/main/dataset.md
C-MHAD Dataset. The C-MHAD dataset extends the con-
cept of the MHAD dataset by providing continuous recordings
of human activities. Unlike datasets that capture discrete instances
of actions, C-MHAD includes long, continuous streams of activ-
ity data, simulating real-world scenarios where actions flow into

one another without clear boundaries. This dataset is particu-
larly useful for developing and testing algorithms that need to
operate in real-time and handle continuous input, such as those
used in surveillance, human-computer interaction, and assistive
technologies. Link: https://github.com/HaoranWeiUTD/C-MHAD-
PytorchSolution
FLASH Dataset. The FLASH dataset is a multimodal dataset
designed specifically for multimodal FL in traffic scenarios.
It includes 32,923 samples from three modalities, collected
in real time from autonomous vehicles equipped with vari-
ous sensors—GPS, LiDAR, cameras—and roof-mounted Talon
AD7200 60GHz millimeter-wave radios. The dataset primar-
ily supports research in autonomous driving and high-band
millimeter-wave sector prediction, among other related fields.
https://repository.library.northeastern.edu/files/neu:k930bx06g

C.2 Data Partitioning
IID Setting. For the IID data setting, we assign the multimodal
dataset collected by each mobile sensor to each node. In addition,
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Figure 7: Distribution of missing modality at different nodes.

0 1 2 3 4 5 6 7 8 9
Epoch

0.2

0.4

0.6

0.8

M
iss

in
g 

Ra
te

Client 0
Client 1

Client 2
Client 3

Client 4
Client 5

Client 6
Client 7

Client 8
Client 9

Figure 8: Distribution of missing rate at different nodes.

during training, we keep the type and missing ratio of each node’s
missing modality consistent to construct an IID data scenario.
Non-IID Setting. We define two non-IID data scenarios: (1) sce-
narios with different distributions of the number of missing modal-
ity types and (2) scenarios with varying distributions of modality
missing rates, as illustrated in Figs. 7–8. In Scenario 1, we set the
modality missing rate at 40% and randomly omit different numbers
of modality types. For Scenario 2, we control the number of missing
modality types but dynamically adjust the modality missing rate,
ranging from a maximum of 80% to a minimum of 20%.

C.3 Generator Information
The generator used in this paper is a multi-layer perceptron (MLP),
which performs updates and optimizations in conjunctionwith local
training (see Eqs. (4)-(9)). Specifically, the generator architecture
comprises two fully connected layers, a batch normalization (BN)
layer, and an activation layer. Initially, the first fully connected layer
maps the data labels into feature embeddings. This is followed by
the BN layer and a non-linear activation layer. Finally, the second
fully connected layer serves as the representation layer, converting
the feature embeddings into a format suitable for model training.
While more complex generators can be used, the MLP is a good
choice to minimize overhead.
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