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Abstract

Traffic flow data are of great value in smart city applications. However, limited
by data collection costs and privacy sensitivity, it is rather difficult to obtain
large-scale traffic flow data. Therefore, various data generation methods have
been proposed in the literature. Nevertheless, these methods often require data
from a specific city for training and are difficult to directly apply to new cities
lacking data. To address this problem, this paper proposes a retrieval-augmented
diffusion generation model with geographic representation alignment. We use data
from multiple source cities for training, extract consistent representations across
multiple cities, and leverage retrieval-augmented generation (RAG) technology
to incorporate dynamic traffic flow patterns into the condition, aiming to improve
the accuracy of data generation in the target city. Experiments on four real-world
datasets demonstrate that, compared to existing generation methods, our method
achieves best cross-city zero-shot performance. Our code and datasets can be found
in https://github.com/lyd1881310/CRAFT.

1 Introduction

Background. Traffic flow data is crucial in intelligent transportation systems [26, 17], urban manage-
ment [16, 49] and smart cities applications [11, 47]. The success of traffic flow analysis [48, 55] is
coupled with a data-hungry paradigm, where superior performance and remarkable generalization
ability rely on large-scale and high-quality data. However, unlike computer vision (CV) and natural
language processing (NLP), where large-scale datasets are readily available from public sources,
collecting traffic flow data faces strict privacy constraints and much higher costs. As a result, existing
public traffic flow datasets are usually limited in both scale and quality. Overcoming this challenge to
acquire larger-scale, higher-quality traffic flow data has emerged as a critical bottleneck.

Motivation of This Work. In response, traffic flow generation has become an increasingly urgent
research direction [58]. It aims to synthesize realistic traffic flow by learning the conditional mapping
from static urban geographic context to dynamic traffic flow distributions. Early work predominantly
employed physics-driven models [60, 52, 1, 42, 28], which only estimate static average flow volumes
and struggled to capture the complex temporal dynamics observed in real-world traffic. More recently,
deep generative approaches have been dominant, leveraging richer geographic context as input to
model flow distributions with greater fidelity. Their modeling paradigm has shifted from variational
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(a) There still exits correspondences between geographic contexts also and flow
patterns even in cross-city scenarios
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Figure 1: In 1a, For each region, we aggregate the statistical values of its geographic contexts to form
the raw geographic features, finding that regions with similar geographic features may share flow
patterns even across different cities. From 1b, we further observe that, overall, this correspondence
becomes blurred in cross-city scenarios. Although geographic features and traffic flow are still
roughly correlated, the presence of cross-city domain shift prevents it from being applied directly.

autoencoders (VAEs) [22] and generative adversarial networks (GANs) [8] to diffusion models [12],
which now lead the field due to their strong conditional generation capabilities. Consequently, recent
studies emphasize incorporating stronger urban priors into conditions [58], thereby supporting more
fine-grained and accurate traffic flow generation.

While incorporating stronger geographic priors into model inputs boost performance, these priors
are often city-specific, which limits the model’s ability to generalize. Such priors are essentially
the dependencies between local geographic structures and their corresponding flow patterns, which
typically require training on city-specific historical flow data. This reliance hinders model deployment
in cities with insufficient traffic flow records. In this paper, we attempt to address this issue, and
explore directly generating dynamic traffic flow in entirely unseen cities via a cross-city transfer
learning framework.

Problem Analysis. To achieve our motivation, we must restrict model learning from common
geographic contexts shared across cities, thus avoiding the aforementioned city-specific priors.

In specific, they denote points of interest (POIs), roads, and population. However, utilizing these
contexts for cross-city transfer faces two difficulties:

• Domain Shift: Within a single city, regions with similar geographic features typically exhibit
analogous traffic-flow patterns. However, in cross-city settings, domain shifts in geographic
representations disrupt this correspondence (as illustrated in Fig. 1). Consequently, regions from
different cities—even if their geographic features are close in representation space—may exhibit
markedly different traffic-flow behaviors (see in Fig. 1b).

• Insufficient Condition: static geographic contexts alone cannot support accurate cross-city flow
generation. Regions with similar spatial characteristics may share similar periodicity and trends but
their stochastic properties can vary significantly (e.g., absolute values of mean, peak and variance).
Such dynamics are provided by historical flow records but are absent in cross-city scenarios.

Remark: Unlike traffic flow prediction [18, 50, 15, 46], which forecasts future traffic based on
historical flow data, traffic flow generation synthesizes realistic traffic flow mainly on static geo-
graphic features. Departing from previous methods, our model is explicitly designed for cross-city
generalization: it is trained on source cities and directly deployed to unseen target cities.

Design Insights and Contributions. Accordingly, we propose a Cross-city Retrieval-Augmented
traffic Flow generaTion model (CRAFT), which is a simple yet effective DDPM-based [12] model.
Fundamentally, we propose the Geographic Feature Alignment (GFA) to address domain shift; For
Insufficient Condition:, we propose the Retrieval-based Condition Augmentation (RCA), which
integrates traffic flow from source cities to supplement temporal dynamics. Our contributions can be
summarized as:

• Our work is an initial probe to tackle cross-city traffic flow generation, proposing a transfer learning
framework that enables traffic flow generation without historical data in target cities.
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• Specifically, we proposed GFA and RCA to tackle two fundamental challenges in cross-city flow
generation. Both are lightweight, plugin components without altering the backbone architecture,
revealing the simplicity of our approach.

• Extensive experiments on four real-world urban datasets demonstrate the state-of-the-art (SOTA)
zero-shot generation performance of our model and further validate its strong generalization ability.

2 Related Work

Traffic Flow Generation Models has evolved along two key trajectories: leveraging more compre-
hensive geographic features as inputs, and evolving from static to dynamic flow generation. This
development can be grouped into three stages: physics-based, static, and dynamic flow generation
models. Physics-based Models rely on empirical rules. The Gravity Models [1, 52, 60] and Radiation
Models [28, 42] generate origin-destination (OD) flows based on gravitational laws and radiative
diffusion, respectively. These methods use simple geographic features as inputs and are limited to
coarse-grained OD flow prediction; Subsequently, neural networks became prevalent due to their
ability to incorporate more comprehensive geographic information. Initially, Static Flow Generation
Models learn the dependencies between static traffic flows and the geographic characteristics of urban
regions [27, 40, 34, 37, 43]. For instance, DeepGravity [43] extracts features from OpenStreetMap
(OSM) to estimate OD flows, while DeepFlowGen [40] incorporates abundant POI data. Although
these methods capture richer geo-features than physics-based models, they still fall short in modeling
temporal dynamics; Further, Dynamic Flow Generation Models address this limitation by modeling
temporal variations through generative frameworks [58, 14, 56, 3, 36, 33, 35]. The field has advanced
from generative adversarial networks (GANs) [14] to diffusion models [3, 58], which now lead the
field due to their strong conditional generation capabilities.

Comparison: Current models perform well within individual cities as they tend to involve city-specific
priors, but this reliance hinders their cross-city transfer abilities. In contrast, our model is designed to
enable cross-city generalization by leveraging the common features shared across cities.

Retrieval-Augmented Generation (RAG) is widely used in large language models (LLMs) [24, 7],
as it can dynamically integrate knowledge from external databases and enhance generation accuracy.
Recently, time series analysis involves RAG to provide meaningful guidance [25]. For example,
[25, 30, 44, 20] applied similarity retrieval based on time series embeddings to improve the prediction
accuracy and enhance the zero-shot capabilities of time series foundation models (TSFM) [5, 54].
RAG is helpful for enhancing the model’s capabilities in unseen scenarios. However, in the field of
spatio-temporal data generation [21, 14, 59, 51], attempts using RAG still remain limited.

3 Preliminaries

Definition 1: (Region) We divided each city into N non-overlapping basic rectangular grids or
polygons, denoted as R = {ri|i = 1, 2, ..., N}, where N is the total number of regions. Each ri
is characterized by various geographical features including population, road network and points of
interest (POIs). These features serve as the basic static condition for traffic flow generation.

Definition 2: (Region Graph) A region graph is denoted as G = ⟨R, E⟩, where E ∈ {0, 1}|N |×|N | is
the binary adjacency matrix. Specifically, Ei,j = 1 if ri and rj are adjacent, and Ei,j = 0 otherwise.

Definition 3: (Traffic Flow) Given a region ri, assuming it has C traffic flow features, such as
traffic inflow and outflow. We denote the traffic flow of ri at t-th time slice with time length T as
Xi,t ∈ RC×T . The traffic flow dataset of all regions staring at all time slice is denoted as X .

Problem Statement: (Traffic flow generation). The objective of traffic flow generation is to train
a model F to generate dynamic traffic flow of regions based on their static geographic features,
including population, road network and POIs. Specifically, F takes a region graph G as input and
outputs X̂ as

X̂ = F (G; θ) , (1)

where θ are trainable parameters of F , and X̂ is evaluated by measuring the similarity to the real-world
traffic flow data X .
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(A) Geographical Feature Alignment (B) Retrieval-based Condition Augmentation
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Figure 2: The framework of CRAFT

Problem Statement: (Cross-city traffic flow generation). Models are trained on data from multiple
source cities and make zero-shot generation on unseen target cities. Formally, let G(t) denote the
region graph of a target city and θ(s) denote parameters trained from source cities and the process is

X̂ (t) = F
(
G(t); θ(s)

)
. (2)

4 Methodology

4.1 Framework

The framework of CRAFT is in Figure. 2, which applies the DDPM as the backbone. Specifically,
CRAFT contains three modules: (1) Geographical Feature Alignment (GFA); (2) Retrieval-based
Condition Augmentation (RCA); (3) Conditional Diffusion Backbone.

Initially, the datasets are divided into source and target cities: source cities include both traffic flow
data and regional geographic features, while the target city only has regional geographic features.
GFA is first pre-trained on source and target cities to provide cross-city geographic feature alignment.
Subsequently, RCA is designed to retrieve relevant historical data from source cities via the aligned
regional representations, supplying an augmented condition for the diffusion backbone. Finally,
Conditional Diffusion Backbone takes augmented condition to make zero-shot traffic flow generation
in the target city.

4.2 Geographic Feature Alignment

To address the challenge of domain shift (in Section 1), we propose the geographic feature alignment
module. Unlike existing geographic representation learning methods [19, 4, 9, 57, 53], which learn
representations based on entity embeddings, we begin by selecting common geographic features
shared across cities and use them to construct basic representations for each region. Subsequently,
we adopt the Graph Transformer [41] as the spatial encoder, which takes each city’s region graph G
as input to generate higher-level representations. Finally, the encoder is trained through traffic flow
alignment (TFA) and cross-city alignment (CCA) to enable transferable geographic representations.

Basic Geographic Representation. For most cities, both static maps (OpenStreetMap) and popula-
tion data (WorldPop) are publicly available and highly correlated with traffic flow patterns. Therefore,
the basic geographic representations are derived from the following three aspects:

• POIs: POIs are highly correlated with the region functions. For each region, we use the TF-IDF
algorithm [39] to construct POI representations f (poi) based on POIs’ categories and numbers.

• Roads: For each region, we compute the total length of road segments across all road categories,
as this captures the region’s transportation capacity. Regions with dense networks and a high
proportion of trunk roads typically offer better accessibility and attract heavier volume of traffic
flow. The road feature is denoted as f (road).
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• Population: For each region, we collect statistics on its population size and density, as population
implicitly reflect the scale of its traffic flow. Regions with higher population density tend to generate
larger volumes of traffic flow. The population feature is denoted as f (pop).

For each region ri, its f (poi), f (road), and f (pop) are concatenated and projected through a multi-layer
perceptron (MLP) to generate the basic geographic representation

zi = MLP
(
f
(pop)
i ∥f (poi)

i ∥f (road)
i

)
. (3)

Further, the spatial encoder takes zi as input and models the correlations among regions. For a
specific city with its G. Region representations are further embedded as

{h1,h2, ...,hN} = GraphTransformer ({z1, z2, ...,zN} ,G) , (4)

where N is the region numbers of this city and G is the region graph. To obtain cross-city transferable
region representations, we pre-train the spatial encoder through the proposed traffic flow alignment
and cross-city alignment methods. During the pre-training stage, geographic representations of both
source and target cities are jointly involved to facilitate cross-city alignment.

Traffic Flow Alignment (TFA). Only regions from source cities are involved in the TFA. We aim
to ensure that the differences in region representations reflect the differences in their corresponding
traffic flows. Specifically, we first compute the average traffic flow for each region over the time
period. Then, all regions from the source cities are collected as the set Rs = {r1, r2, · · · , rNs}, with
their corresponding representations denoted as Hs =

{
h
(s)
1 , h

(s)
2 , · · · , h(s)

Ns

}
, where Ns is the total

number of regions from all source cities. The traffic flow alignment loss is defined as

LFA =
1

N2
s

∑
i,j

(
d̂ij − dij

)2

, (5)

where d̂ij = MinMaxNormi,j

(∥∥∥h(s)
i − h

(s)
j

∥∥∥
2

)
, dij = MinMaxNormi,j

(∥∥X̄i − X̄j

∥∥
2

)
, and X̄i

is the average traffic flow data of region ri.

Cross-City Alignment (CCA). We seek to project semantically similar regions from both source and
target cities into proximity within the representation space. Since explicit regional correspondence
labels are unavailable, our model needs to learn these correspondences adaptively. By leveraging flow
patterns, TFA alone draws regions with similar flows together. Although it does not fully resolve
domain shift, it groups regions with both similar flow dynamics and geographic context. Conse-
quently, in the representation space each region’s counterparts naturally reside in its neighborhood.
Therefore, we formulate the cross-city alignment as an optimal transport (OT) problem [32], seeking
the minimum-cost distribution mapping between regions in the source and target cities under the
Wasserstein distance.

Specifically, the representations of all regions in source cities and target city are collected into the set
Hs and Ht =

{
h
(t)
1 , h

(t)
2 , · · · , h(t)

Nt

}
, respectively. Nt is the number of regions in the target city. As

both Hs and Ht are enumerable, we can directly calculate the Wasserstein distance and tackle this
problem through the optimal transport solver [2, 6]. First, Euclidean distance is used to get the initial
representation distance matrix D between regions in source cities and the target city, and Dij is

Dij =
∥∥∥h(s)

i − h
(t)
j

∥∥∥
2
,where h

(s)
i ∈ Hs,h

(t)
j ∈ Ht. (6)

Then, the transport matrix T is calculated by the OT solver, where T = OTSolver (D). The cross-
city alignment loss LCA is defined as Wasserstein distance, which is equal to the dot product of the
transport matrix T and the distance matrix D, as follows

LCA =
∑

ijTij ·Dij . (7)

For more details on the formulation of optimal transport problem and the structure of the OT solver,
please refer to Appendix A. The total alignment loss is the weighted sum of LFA and LCA, where λ1

and λ2 are the balance weights, as follows

LA = λ1LFA + λ2LCA. (8)
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Remark: As shown in Fig. 1, basic geographic representations are too coarse to guide cross-city flow
generation. To refine this issue, we propose GFA with two complementary losses: (1) Traffic-flow
alignment: refine regional representations in the correct direction according to regional flow patterns
from source cities; (2) Tackle cross-city alignment without explicit regional correspondence labels, it
enables our model to adaptively determine the most accurate counterpart by leveraging an optimal
transport loss.

4.3 Retrieval-based Condition Augmentation

To address the challenge of insufficient condition (Section 1), we proposed the retrieval-augmented
condition augmentation strategy. For each target region, our method retrieves relevant historical data
from source cities according to its geographic representation, supplementing the input conditions for
the diffusion backbone. For each target region ri, the generated input condition contains three parts:
geographic features hi, time embedding temb, and historical data from source cities xi,t.

temb contains three periodic temporal components: the month in the year tmonth ∈ [1, 12], the
day in the week tday ∈ [1, 7] and the hour in the day thour ∈ [1, 24]. These three components are
encoded into vectors through the embedding layers and concatenated to obtain the time embedding
temb = (tmonth∥tday∥thour), which indicates the start time of the generated flow.

xi,t denotes the retrieved results for ri according to tmonth, tday, thour and hi. Traffic flows from
source cities are first segmented into sequences of length T . We then filter these segments using two
criteria: (1) Starting time information tmonth, tday and thour; (2) Region representation similarity
to hi. The matched top K flow sequences are selected as X̄i,t =

{
X̄1,t, X̄2,t, ..., X̄K,t

}
, where

X̄k,t ∈ RC×T , where X̄i,t is the average flow of region ri staring at time slice t. We employ a
self-attention [45] block Attn(·) to extract flow patterns from X̄i,t, which takes the averaged X̄i,t as
input to mitigate the impact of noise. The extracted retrieval result is

xi,t = Attn
(

1

K

∑K
k=1X̄k,t

)
. (9)

Finally, above features are concatenated and projected by a Multi-Layer Perceptron (MLP) block to
generate the input condition ci,t for the target region ri, as follows

ci,t = MLP (hi∥xi,t∥temb) . (10)

4.4 Conditional Diffusion Backbone

As shown in Fig. 2, we adopt the Denoising Diffusion Probabilistic Model (DDPM) as the backbone.

Training. In the training phase, for the traffic flow sample Xi,t in source city, we add random noise
through the forward diffusion process and use a 1D-U-Net [38] as a noise estimator to predict the
added noise. Following most of the literature about diffusion model, we use X to represent Xi,t in
the rest of this paper. Following [12], the noise-adding process of k steps can be simplified as:

X(k) =
√
ᾱkX +

√
1− ᾱkϵ, (11)

where ϵ ∼ N (0, I) and ᾱk is a hyper parameter. The noise estimator ϵθ takes the noised sample
X(k), the step k and the condition vector ci,t as inputs to predict the noise. The Mean Squared Error
(MSE) loss function is used to train the noise estimator, as follows

LNE = Ek,Xi,t,ϵ

∥∥∥ϵθ (X(k), k, ci,t

)
− ϵ

∥∥∥2 . (12)

Inference. In the inference phase, for each ri in the target city, the model takes a random Gaussian
noise ϵ ∼ N (0, I) as input and generates its corresponding traffic flow X̂ conditioned on the ci,t
through an n-step denoising process:

pθ

(
X̂(k−1)|X̂(k)

)
:= N

(
µθ

(
X̂(k), k, ci,t

)
,σ2

(
X̂(k), k

)
I
)
, 1 ≤ k ≤ n, (13)

In the equation 13, µθ denotes the mean variable and σ2 is the variance:

µθ

(
X(k), k, ci,t

)
=

1√
ᾱk

(
X(k) − βk√

1− ᾱk

ϵθ

(
X(k), k, ci,t

))
; σ2

(
X(k), k

)
=

1− ᾱk−1

1− ᾱk
βk.

(14)
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Table 1: Cross-city traffic flow generation results

Method City Inflow Outflow City Inflow Outflow
CPC(↑) NMAE(↓) NRMSE(↓) CPC(↑) NMAE(↓) NRMSE(↓) CPC(↑) NMAE(↓) NRMSE(↓) CPC(↑) NMAE(↓) NRMSE(↓)

GMEL

C
hi

ca
go

(C
H

I)

0.730 0.173 0.227 0.725 0.175 0.236

W
as

hi
ng

to
n,

D
.C

.(D
C

) 0.741 0.273 0.319 0.716 0.281 0.316
DFG 0.162 0.306 0.438 0.159 0.310 0.441 0.691 0.240 0.343 0.690 0.239 0.342

KSTDiff 0.006 0.334 0.467 0.132 0.322 0.453 0.613 0.519 0.610 0.608 0.564 0.673
CGAN 0.230 0.379 0.511 0.203 0.364 0.495 0.514 0.384 0.509 0.507 0.398 0.523

Diffwave 0.332 0.486 0.598 0.532 0.496 0.609 0.650 0.403 0.538 0.570 0.458 0.584
DiT 0.509 0.357 0.451 0.528 0.343 0.436 0.634 0.351 0.420 0.607 0.352 0.422

DDPM 0.415 0.273 0.393 0.416 0.275 0.396 0.346 0.387 0.514 0.351 0.388 0.512
CVAE 0.490 0.267 0.385 0.488 0.269 0.385 0.468 0.343 0.461 0.471 0.347 0.461

CRAFT 0.785 0.140 0.216 0.786 0.140 0.216 0.815 0.158 0.240 0.816 0.159 0.240

GMEL

To
ro

nt
o(

T
R

T
)

0.735 0.224 0.283 0.744 0.217 0.276

N
ew

Y
or

k
C

ity
(N

Y
C

) 0.585 0.310 0.379 0.672 0.188 0.242
DFG 0.278 0.395 0.514 0.278 0.394 0.512 0.581 0.182 0.278 0.585 0.183 0.279

KSTDiff 0.006 0.469 0.597 0.248 0.413 0.540 0.040 0.226 0.364 0.030 0.228 0.364
CGAN 0.561 0.358 0.468 0.572 0.354 0.461 0.368 0.330 0.476 0.407 0.382 0.527

Diffwave 0.521 0.421 0.531 0.546 0.456 0.574 0.363 0.475 0.608 0.434 0.440 0.575
DiT 0.552 0.394 0.489 0.601 0.381 0.471 0.419 0.416 0.508 0.449 0.383 0.478

DDPM 0.592 0.358 0.474 0.595 0.359 0.474 0.523 0.316 0.431 0.525 0.324 0.438
CVAE 0.699 0.289 0.394 0.695 0.295 0.398 0.568 0.280 0.403 0.571 0.280 0.401

CRAFT 0.804 0.178 0.267 0.804 0.179 0.268 0.782 0.103 0.170 0.786 0.102 0.165

where βk is a hyper-parameter and ᾱk =
∏k

k=1 (1− βk). Through an n-step denoising process, the
traffic flow data X̂(0) is generated.

5 Experiment

Dataset: We conducted experiments on four real-world bicycle trip datasets, namely Chicago (CHI)1,
Washington, D.C. (DC)2, Toronto (TRT) 3, and New York City (NYC) 4. We manually partition
each city into grid-based regions and count the number of bicycles entering and exiting each region
within each hour to obtain the traffic flow. In our experiments, we use normalized traffic flow values;
Baseline: We employ GMEL [27], DFG [40], KSTDiff [58], CGAN [29], Diffwave [23], DiT [31],
DDPM [12] and CVAE [10] as our baselines; Evaluation Metric: We evaluate our model on the
metrics of Common Part of Commuters (CPC), Normalized Mean Absolute Error (NMAE) and
Normalized Root Mean Square Error (NRMSE). Details about dataset pre-procession, baselines, and
evaluation metrics are in Appendix B.

5.1 Overall Generation Performance

Generation Performance: Table. 1 reports the zero-shot cross-city performance comparison between
our method and selected baselines. The experiments are organized into four groups. Each city is
sequentially assigned as the target city while the remaining three cities serve as source cities. Models
are trained exclusively on the source cities and evaluated in a zero-shot manner on the unseen target
city. For each target city, both inflow and outflow data are generated. From the results, our method
consistently outperforms existing approaches and achieves state-of-the-art (SOTA) performance
across various settings. It yields an improvement of 59.7% compared with the average level of all
baselines and an improvement of 22.5% compared with the second-best baseline (GMEL). When
compared with ordinary DDPM, our approach yields an average improvement of 61.5%.

Utility of the Generated Data: To further assess the quality of the generated flow data, we evaluate
them on a downstream traffic flow task across multiple target cities. Specifically, we use the synthetic
data produced by CRAFT and other baselines to train two representative models for flow prediction: a
vanilla LSTM [13] and a Transformer [45]. As a reference, we also train the same models on real flow
data from the corresponding target cities. As shown in Table. 2, our model consistently outperforms
all baseline methods across various evaluation metrics. It achieves an improvement of 55.9% over the
average level of all baselines and an improvement of 14.9% over the second-best baseline (DDPM).
Furthermore, our model achieves performance that is closest to the results of direct training on real
traffic flow data. Specifically, it demonstrates an average performance degradation of only 10.4%,
with a minimum drop of 3.8% and a maximum drop of 22.2%. These results underscore the model’s

1https://divvy-tripdata.s3.amazonaws.com
2https://s3.amazonaws.com/capitalbikeshare-data
3https://ckan0.cf.opendata.inter.prod-toronto.ca
4https://s3.amazonaws.com/tripdata/2023-citibike-tripdata.zip
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Table 2: Data utility comparison on traffic flow prediction

Gen Pred
Chicago(CHI) Washington, D.C.(DC) Toronto(TRT) New York City(NYC)

Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Real

L
ST

M

0.102 0.152 0.105 0.157 0.105 0.156 0.109 0.163 0.132 0.191 0.132 0.191 0.063 0.107 0.063 0.106
GMEL 0.198 0.264 0.195 0.262 0.242 0.325 0.239 0.303 0.265 0.329 0.258 0.321 0.144 0.216 0.140 0.201
DFG 0.303 0.443 0.307 0.446 0.157 0.232 0.154 0.233 0.318 0.436 0.319 0.437 0.082 0.141 0.081 0.139

KSTDiff 0.339 0.472 0.306 0.441 0.514 0.604 0.560 0.672 0.478 0.606 0.418 0.551 0.225 0.363 0.229 0.365
CGAN 0.435 0.562 0.414 0.540 0.450 0.571 0.447 0.566 0.340 0.445 0.347 0.451 0.291 0.432 0.334 0.475

Diffwave 0.275 0.383 0.277 0.376 0.321 0.418 0.347 0.442 0.373 0.445 0.363 0.437 0.211 0.306 0.177 0.278
DiT 0.266 0.315 0.251 0.307 0.307 0.361 0.301 0.347 0.334 0.382 0.323 0.363 0.246 0.280 0.250 0.282

DDPM 0.117 0.176 0.119 0.177 0.163 0.240 0.165 0.245 0.150 0.221 0.161 0.234 0.081 0.130 0.084 0.129
CVAE 0.252 0.344 0.256 0.348 0.293 0.383 0.289 0.376 0.243 0.344 0.244 0.344 0.142 0.233 0.142 0.231

CRAFT 0.109 0.164 0.111 0.166 0.124 0.180 0.130 0.189 0.141 0.203 0.145 0.206 0.067 0.112 0.069 0.110

Real

Tr
an

sf
or

m
er

0.098 0.151 0.100 0.154 0.095 0.149 0.100 0.157 0.131 0.196 0.132 0.197 0.056 0.103 0.056 0.103
GMEL 0.194 0.268 0.189 0.263 0.229 0.297 0.232 0.295 0.256 0.325 0.256 0.327 0.141 0.202 0.127 0.185
DFG 0.337 0.484 0.311 0.451 0.251 0.338 0.236 0.314 0.331 0.447 0.336 0.453 0.083 0.145 0.089 0.148

KSTDiff 0.336 0.469 0.338 0.477 0.514 0.605 0.560 0.672 0.479 0.607 0.418 0.550 0.208 0.338 0.218 0.357
CGAN 0.373 0.487 0.380 0.496 0.393 0.503 0.403 0.508 0.286 0.382 0.297 0.388 0.264 0.391 0.276 0.406

Diffwave 0.282 0.384 0.261 0.351 0.318 0.396 0.303 0.382 0.362 0.432 0.366 0.436 0.178 0.271 0.175 0.258
DiT 0.275 0.317 0.253 0.304 0.297 0.352 0.295 0.347 0.333 0.381 0.322 0.363 0.229 0.267 0.233 0.270

DDPM 0.117 0.181 0.122 0.186 0.163 0.247 0.164 0.251 0.150 0.222 0.159 0.235 0.078 0.133 0.081 0.131
CVAE 0.224 0.308 0.224 0.308 0.271 0.351 0.267 0.344 0.253 0.339 0.255 0.341 0.160 0.269 0.163 0.268

CRAFT 0.105 0.161 0.108 0.165 0.116 0.171 0.122 0.182 0.141 0.206 0.144 0.207 0.065 0.111 0.067 0.111
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Figure 3: The overall ablation results on metrics of CPC (↑), NMAE (↓), NRMSE (↓)
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(a) TFA + CCA
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(b) only CCA
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Figure 4: Alignment Analysis on TFA and CCA (New York City is the Target City). All scatter points
in this figures represent the regions’ geographic features. In (a) and (b), the color intensity indicates
the value of traffic flow. After TFA, regions with similar flow patterns exhibit similar geographic
representations. By comparing (c) and (d), we observe that CCA alleviates the distribution shift
between the target city and source cities.

superior capability in traffic flow generation, outperforming existing baselines and highlighting its
strong potential for practical deployment.

5.2 Model Analysis

Ablation Study: Recall that our CRAFT relies on two main components: GFA and RCA. In Fig. 3,
we first conducted overall ablation studies to testify their effectiveness based on following settings. (1)
w/o Alignment: remove GFA by directly using target region’s original geographic features for cross-
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Figure 5: Heatmap of the generated traffic inflow in Chicago
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Figure 6: Sensitivity analysis of inflow generation on NRMSE (fig. a, b, c), and CPC (fig. d, e, f).
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Figure 7: Temporal length extension of all four cities on metrics of CPC (↑), NMAE (↓), NRMSE (↓). All
metrics are evaluated on inflow generation.

city retrieval and generation of conditions. (2) w/o RCA: remove the retrieval-augmented features
xi,t from ci,t. (3) w/o Temporal embedding: remove the temporal embeddings temb from ci,t, which
supplements the periodic patterns of the traffic flow. Both w/o RCA and w/o Temporal embedding
are related to RCA. From the experimental results in Fig. 3 we can notice: (1) GFA provides the
most improvement, highlighting that distribution shift is indeed the major problem in the cross-city
generation. (2) In RCA, temb contributes the most to the performance gain, highlighting the value of
periodic temporal patterns. Additionally, xi,t consistently improves performance, highlighting the
value of supplementing dynamic patterns from source cities.

Further, we explore the specific role of the traffic flow alignment (TFA) and the cross-city align-
ment (CCA) in GFA. In Fig. 4, we apply t-SNE to all regions’ geographic features in New York. We
observe that TFA indeed aligns geographic features with traffic flow patterns. CCA mitigates the
distribution shift in geographic features between source cities and the target city, thereby enhancing
cross-city generalization. Experiments on all four city are provided in Appendix C.

Sensitivity Analysis: We made various sensitivity analyses on four important hyperparameters,
including (1) the layer number of the sequence encoder; (2) the dimension of temporal embedding; (3)
the dimension of the geographic representation. As shown in Fig. 6, our model demonstrates strong
robustness, with a maximum performance fluctuation of 8.8%. Detailed results for all evaluation
metrics are provided in Appendix C.

5.3 Additional Experiments and Discussion

Geographic Visualization: Fig. 5 compares generated flow distributions of CRAFT and baselines
in Chicago (please refer Appendix C for all cities). CRAFT and GMEL are most identical to the real
distributions. Notably, CRAFT outperforms other baselines with more realistic generated flow. This
highlights of CRAFT’s strong zero-shot generation ability and better alignment with geographic and
flow patterns.

Temporal Length Extension: In general, most models default to a horizon of T = 24, where most
baselines remain stable. Increasing T both raises task difficulty and enriches sample information,
so an ideal model should exploit the enriched information from bigger T while remaining stable in
performance loss. To further explore the potential of each model’s long horizon generation, we trained
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several baselines and CRAFT on {2T, 3T, · · · , 7T} as (48, 72, · · · , 168). As Fig. 7 shows: (1) All
models’ performance drops as T grows, revealing a common long-horizon bottleneck. (2) Diffwave
exhibits high variance and poor accuracy, while diffusion-based DiT and DDPM remain steadier
and more accurate. (3) CRAFT consistently achieves SOTA and outperforms all these baselines,
demonstrating its superior potential in long-horizon generation. More results are in Appendix C.

6 Conclusion

In this paper, we propose CRAFT, a model capable of zero-shot traffic flow generation. Unlike
existing approaches, CRAFT is specifically designed for cross-city scenarios and advantage in
generating high-quality traffic flow data in cities with limited or no historical flow records. Specifically,
we identify two key challenges: domain shift and insufficient condition. To address these, we
introduce Geographic Feature Alignment (GFA) for domain shift and Retrieval-based Condition
Augmentation (RCA) for insufficient condition. As both GFA and RCA serve as concise plug-and-lay
modules, our method requires no additional modifications to the diffusion backbone. Extensive
experiments on four real-world datasets demonstrate the broad effectiveness of CRAFT, and further
illustrates the great potential of CRAFT in the fields of urban planning and traffic management.

Limitations: Restrict by available datasets, CRAFT is currently validated on in–out flow generation,
and we have not yet explored its ability on other data types like origin–destination (OD) flows.
Furthermore, restricted by computational resources, we do not conduct experiments on temporal
horizon more than 168. Actually, from Fig. 7, CRAFT remains the most stable across varying
temporal horizons, demonstrating its great potential for extension to longer temporal horizons.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately summarize
the key contributions of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is not a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our method is well described in Section 4 and detailed experiment settings,
code and data are provided by the URLs in Abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: The URLs of the anonymized code and data have been provided in the Abstract.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our method is well described in Section 4 and detailed experiment setting is
provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We reported the best results within the range of adjustable parameters for each
method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources needed to reproduce the experiments are presented in
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics and strictly adhere to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss impacts of our method in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the relevant papers and provided links to download the data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code URLs in Abstract and provide documentation in the form
of README.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for polishing writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Model Details & Hyperparameters

A.1 Basic Geographic Features

We extract urban geographic features from OpenStreetMap (OSM) 5 and WorldPop 6 data. The
original geographic features include the following three aspects.

• POI features (denoted as f (poi)) reflect the function of a region. We attempt to construct the POI
semantic features of a region by counting the quantities of various POI categories. However, the
quantities of different POI categories exhibit significant imbalance, for instance, the total number
of commercial POIs is far larger than that of residential POIs. This imbalance can easily cause the
model to overlook the influence of POI categories with smaller quantities. Therefore, we employ
the TF-IDF algorithm [39] to extract POI features. Specifically, we treat each POI category as
a "word", consider all POIs within a region as a "document", and define the entire city as the
"corpus". When calculating the importance of a word for a document, the algorithm automatically
incorporates the word’s frequency in the corpus for weighted analysis.

• Road features (denoted as f (road)) reflect the transportation attribute of a region. We calculate the
total length of all categories of road segments within a region. Regions with dense road networks
and a large number of trunk roads usually have convenient transportation and tend to generate a
higher volume of traffic flow.

• Population features (denoted as f (pop)) reflect the traffic potential of a region. Regions with
higher population density are more likely to generate a higher volume of traffic flow. We obtained
the United Nations (UN)-adjusted 100m resolution national population data from WorldPop and
counted the population number in each manually partitioned rectangular regions.

A.2 Optimal Transport Problem

Optimal Transport (OT) is a mathematical problem aiming to find the most efficient way to move
mass from source distribution to target distribution. It was introduced by Gaspard Monge in 1781.
When both the source and target distributions are represented by enumerable samples (Ns samples
for source and Nt samples for target), the OT problem can be formally defined as

T ∗ = argmin
T∈RNs×Nt

+

∑
i,j

Ti,j ·Di,j ,

s.t. T1 = ws and T ⊺1 = wt,

(15)

where D ∈ RNs×Nt
+ is the cost matrix (distance matrix) defining the cost to move mass from source

distribution to target distribution, ws ∈ RNs and wt ∈ RNt are the weights of each samples in the
source and target distribution. The total weights of both ws and wt are equal to 1. The objective of
the OT problem is to find a transportation plan T ∗ that minimizes the total transportation cost under
the weights-equal constraint.

OT problem has two main functions: (1) Measuring the distance between two distributions; (2)
Finding the correspondences between two distributions. We employed both. Specifically, we treated
the geographic representations of regions in the source and target cities as two mass distributions,
with each region assigned the same weight. we used the solution of the OT problem (also known
as the Wasserstein distance) to measure the geographic representation distance of the source and
target cities, and treated it as a loss to optimize the spatial encoder, thereby pulling the correspondent
regions in representation space.

As illustrated in Equation 15, the OT problem is a linear programming problem, and we use an OT
solver based on the network simplex algorithm [2] to address it. Thanks to the Python Optimal
Transport (POT) 7 tool, we can conveniently calculate the solution of OT problem.

5https://www.openstreetmap.org
6https://www.worldpop.org/
7https://github.com/PythonOT/POT
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Table 3: Hyperparameters setting for CRAFT

Hyperparameter Setting value

Diffusion steps (n) 500
β1 ∼ βn 0.0002 ∼ 0.04 (linear)

GraphTransformer (GT) layers 3
Temporal encoder layers 2

GT attention heads 4
Retrieval top-K value 5

Batch size 256
Learning rate 5× 10−6

Training epochs 300
Regional geographic representation (hi) dimensions 128

Temporal encoder hidden dimensions (dimensions of xi,t) 256
Hour embedding (thour) dimensions 64

Weekday embedding (tweek) dimensions 64
Month embedding (tmonth) dimensions 64

Condition (ci,t) dimensions 256

A.3 Implementation Details

For the proposed CRAFT method, we provide the hyperparameter settings in Table 3 to facilitate
the reproducibility by researchers. All these parameters are recommended values, not fixed, and can
be adjusted according to the dataset and experimental environment. During training, the AdamW
optimizer was used. To enhance stability, the EMA (Exponential Moving Average) mechanism was
adopted to train the diffusion model.

B Details of Experimental Settings

B.1 Experimental Environment

All neural network models (including CRAFT and other baselines) are implemented in PyTorch and
trained on a single NVIDIA RTX 3090 GPU. The experimental machine ran on Ubuntu 20.04.6 LTS,
was equipped 24-core Intel(R) Xeon(R) Silver CPU, and had 503 GB of RAM. The training time for
all models on a single dataset did not exceed 16 hours.

B.2 Datasets and Pre-processing

Table 4: Data description

Datasets Chicago Washington D.C. Toronto New York City

# Trips (×103) 5136 4011 2395 35080
Time range 2023.01-2023.12 2023.01-2023.12 2020.01-2020.12 2023.01-2023.12
# Regions 73 82 61 96

# POIs 17205 14070 20621 50776

We conducted experiments using the traffic flow datasets of four cities, namely Chicago, Washington
D.C., Toronto, and New York City. The original data are all trip records of shared bicycles, which
include the latitude and longitude of the starting and ending points of users’ trips as well as timestamps.
We associated the trips with the manually partitioned urban regions, and counted the number of
bicycles entering and leaving each region within each hour, which served as the traffic flow values.
Details of the datasets are presented in Table 4.

In fact, the user trip data is sparse, which leads to the instability of the traffic flow trend in original
data. This is also a common problem in researches about traffic flow data. In response to this, we
have adopted two processing methods: (1) We have filled in the missing values in the traffic flow
sequence through linear interpolation. For the situation where there are values at the previous and
subsequent time steps but missing values in the middle, we have filled them with the average of the
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previous and subsequent values. (2) We have used the moving average method to smooth the values
within a window with a time length of 3. For the processed data, we have set a sliding window with a
length of T to extract the training and test samples. If there are still missing values exceeding 5% in a
certain sample, we will discard that sample.

B.3 Baseline Methods

The baseline models used in the experiment include two types of deep learning traffic flow generation
models that have emerged in the literature in recent years: Static Flow Generation Models and
Dynamic Flow Generation Models. Static Flow Generation Models directly estimate traffic flow
using the geographic features and temporal information of urban regions, and they include the
following two models.

• GMEL [27]: It uses two graph neural networks to extract features and can simultaneously predict
the inflow and outflow as well as the OD (origin-destination) flow between regions.

• DFG [40]: It uses a deep cross network to extract the POI (point of interest) features inside and
outside the region, conducts supervised training using the intention-aware pedestrian flow, and
predicts the inflow and outflow of the region.

Dynamic Flow Generation Models use deep generative models to learn the complex distribution of
data and map random noise into data samples. The selected baseline models are as follows.

• KSTDiff [58]: It uses the urban knowledge graph to extract the representations of urban geographic
entities, and then constructs a knowledge-enhanced spatiotemporal diffusion model to generate the
inflow and outflow of regions.

• CGAN [29]: This is a conditional generative adversarial network. In the experiment, we use the
original static geographic features and time embeddings as conditions to guide the generation of
the GAN.

• Diffwave [23]: This is a diffusion model suitable for generating time series data and is often used
in speech synthesis. In this experiment, we use it to learn the distribution of traffic flow data.

• DiT [31]: This is a diffusion probabilistic model with a Transformer as the noise estimator.
• DDPM [12]: This is a diffusion probabilistic model U-Net as noise estimator for image synthesizing.

To be applied in traffic flow data generation, we replaced 2D convolutions with 1D convolutions.
• CVAE [10]: This is a conditional variational autoencoder. Condition information is added to both

the Encoder and the Decoder to guide it to learn the conditional probability distribution of the data.
We use the original static geographic features and time embeddings as conditions.

B.4 Evaluation metrics

We used three commonly used metrics in traffic flow generation research to evaluate the quality
of generated data, including Common Part of Commuters (CPC), Normalized Mean Absolute
Error (NMAE), Normalized Root Mean Square Error (NRMSE). Since the the actual traffic flow
values in different cities vary greatly, the traffic flow data generated by our model are all normalized,
which can reflect the relative magnitudes of traffic flows in different regions and at different time
in the same city. All the metrics are calculated based on the normalized data, and the calculation
formulas are as follows

CPC =
2
∑M

i=1 min (ŷi, yi)∑M
i=1 ŷi +

∑M
i=1 yi

,

NMAE =
1
M

∑M
i=1 |ŷi − yi|

max(yi)−min(yi)
,

NRMSE =

√
1
M

∑M
i=1 (ŷi − yi)

2

max(yi)−min(yi)
,

(16)

where ŷi is the generated value, yi is the real value, and M is the number of values of all samples in
the test dataset. To enhance the stability of evaluation results, we grouped the data by the Region ID,
month, weekday and hour of the target city’s test samples and calculated the differences between the
group-averaged values.

24



C Additional Experiments

C.1 Sensitivity Analysis Results
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Figure 8: Sensitivity analysis for the layer number of sequence encoder
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Figure 9: Sensitivity analysis for the dimension of temporal embedding
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Figure 10: Sensitivity analysis for the dimension of geographic representation

To validate how different hyperparameter configurations affect model performance, we plotted the
variation curves of evaluation metrics against three key hyperparameters.: (1) the layer number of the
sequence encoder; (2) the dimension of temporal embedding; (3) the dimension of the geographic
representation. The results of sensitivity analyses across all datasets and evaluation metrics are shown
in the Fig. 8, Fig. 9 and Fig. 10. We can observe that CRAFT demonstrates excellent robustness
across all datasets and evaluation metrics, eliminating the need for meticulous hyperparameter tuning
to ensure superior model performance.

C.2 Temporal Length Extension Results

Overall Zero-shot Generation Performance in Target City. In the main experiments of the paper,
we set the generation time window length to T = 24. We then progressively extended the time length
T to the following values: {48, 72, 96, 120, 144, 168}. The experimental setup remained consistent:
training the model using data from three cities and performing zero-shot generation on the fourth city.
Detailed evaluation results are presented in Table 6. From these tables, we can conclude that: (1)
CRAFT achieved best performance in over 98.6% of cases across all datasets and evaluation metrics,
demonstrating that CRAFT exhibits state-of-the-art (SOTA) zero-shot generalization capabilities for
sequence data generation of varying temporal lengths. (2) CRAFT demonstrates stable performance,
while methods such as Diffwave and DDPM exhibit significant performance fluctuations under
different temporal length settings.

Data Utility Comparison. We compared the utility of generated data across different temporal
lengths for traffic flow prediction tasks. Regardless of the value of T , we used the first T/2 historical
sequence as input to predict the T/2 future flow sequence. The downstream models are trained on
generated data from various methods and tested on real data. Detailed results are presented in Table
7 and 8. We found that in 86.5% of cases, the downstream model trained with CRAFT’s generated
data achieved best performance, indicating that CRAFT’s generated data has the better utility than
other baselines.

Computational Cost. As the length of temporal length increases, the model size and training time
will also grow correspondingly. To observe this phenomenon in detail, we conducted experiments on
a single NVIDIA RTX 3090 GPU, collected relevant statistical data during the training phase, and
the results are shown in Table 5. We observe that our model’s computational cost grows linearly
with temporal length increases, but this effect is weak. Extending the time length is acceptable in
terms of computational cost.
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Table 5: The relationship between computational cost and temporal length
T Model size (Byte) Train time (s/epoch) Valid time (s/epcoh) Avg memory (GB)

24 51781096 40.999 5.685 0.343
48 51830248 41.156 5.531 0.344
72 51879400 43.729 6.053 0.344
96 51928552 44.555 5.631 0.345

120 51977704 46.712 6.429 0.345
144 52026856 48.883 6.666 0.345
168 52076008 51.896 6.351 0.346

C.3 Visualization of the Traffic Flow Spatial Heatmap

We display the average traffic flow of real data and generated data on maps. The visualizations
for all datasets and baselines are shown in Fig. 11. This comparison intuitively demonstrates that
the traffic data generated by CRAFT exhibits the highest similarity to real data in terms of spatial
distribution, indicating that CRAFT can effectively capture the universal mapping relationship
between geographic representations and traffic flow across different cities.

C.4 Visualization of Geographic Feature Alignment (GFA)

We employed t-SNE analysis to visualize the impact of the Traffic Flow Alignment (TFA) and
Cross City Alignment (CCA) modules in Geographic Feature Alignment. The results of the four
experiments are presented in Fig. 12. Regardless of which city was chosen as the target, the alignment
results exhibited similar conclusions: (1) Under the combined action of TFA and CCA, regions with
high and low traffic volumes were well-separated in the representation space. (2) Without TFA,
representations from different cities tended to cluster into multiple groups, with high- and low-traffic
regions intermingled within the same cluster, making it difficult to distinguish and reducing the
quality of conditions. (3) Without CCA, significant domain shift occurred between the source and
target cities. Specifically, a portion of the target city’s region representations deviated from the
concentrated representation area of the source city, potentially leading to poorer transferability.
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Table 6: Cross-city traffic flow generation results with extended temporal length

Method City T = 48 T = 72 T = 96 T = 120 T = 144 T = 168
CPC NMAE NRMSE CPC NMAE NRMSE CPC NMAE NRMSE CPC NMAE NRMSE CPC NMAE NRMSE CPC NMAE NRMSE
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DFG 0.155 0.328 0.457 0.153 0.334 0.462 0.152 0.340 0.467 0.156 0.326 0.454 0.156 0.328 0.455 0.155 0.330 0.457

KSTDiff 0.000 0.358 0.488 0.460 0.288 0.399 0.003 0.370 0.499 0.540 0.444 0.533 0.552 0.539 0.616 0.032 0.360 0.489
CGAN 0.584 0.379 0.488 0.539 0.371 0.487 0.521 0.386 0.500 0.461 0.359 0.476 0.546 0.492 0.582 0.509 0.437 0.535

Diffwave 0.490 0.504 0.613 0.384 0.456 0.570 0.464 0.430 0.553 0.492 0.500 0.609 0.360 0.437 0.555 0.479 0.437 0.556
DiT 0.572 0.325 0.407 0.564 0.362 0.448 0.593 0.333 0.405 0.580 0.356 0.445 0.561 0.341 0.425 0.510 0.340 0.438

DDPM 0.398 0.300 0.419 0.417 0.306 0.427 0.455 0.313 0.428 0.490 0.291 0.397 0.481 0.300 0.411 0.509 0.313 0.417
CVAE 0.476 0.269 0.388 0.555 0.286 0.404 0.616 0.282 0.392 0.509 0.280 0.395 0.525 0.319 0.427 0.527 0.297 0.402
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CGAN 0.587 0.367 0.476 0.552 0.370 0.483 0.529 0.379 0.493 0.438 0.368 0.486 0.540 0.526 0.612 0.505 0.433 0.534

Diffwave 0.459 0.445 0.561 0.350 0.469 0.584 0.421 0.482 0.591 0.298 0.428 0.544 0.353 0.460 0.575 0.500 0.490 0.601
DiT 0.546 0.346 0.434 0.531 0.346 0.437 0.579 0.346 0.423 0.550 0.349 0.438 0.550 0.364 0.449 0.536 0.342 0.434

DDPM 0.405 0.301 0.418 0.423 0.307 0.427 0.446 0.319 0.434 0.491 0.292 0.398 0.479 0.302 0.413 0.510 0.315 0.420
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KSTDiff 0.000 0.465 0.595 0.494 0.356 0.458 0.289 0.421 0.542 0.039 0.464 0.591 0.000 0.477 0.603 0.641 0.477 0.584
CGAN 0.596 0.342 0.465 0.510 0.420 0.538 0.575 0.440 0.550 0.583 0.391 0.507 0.653 0.480 0.593 0.442 0.391 0.514

Diffwave 0.578 0.505 0.624 0.274 0.466 0.584 0.407 0.557 0.663 0.450 0.577 0.677 0.641 0.506 0.623 0.457 0.580 0.673
DiT 0.621 0.351 0.440 0.627 0.354 0.432 0.617 0.369 0.446 0.608 0.359 0.451 0.598 0.386 0.479 0.630 0.357 0.437

DDPM 0.476 0.355 0.477 0.417 0.418 0.534 0.488 0.403 0.510 0.541 0.349 0.458 0.609 0.340 0.443 0.463 0.370 0.475
CVAE 0.296 0.402 0.534 0.480 0.368 0.486 0.423 0.388 0.511 0.566 0.347 0.455 0.433 0.399 0.518 0.464 0.374 0.491
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CGAN 0.583 0.354 0.476 0.543 0.427 0.540 0.596 0.441 0.551 0.554 0.408 0.519 0.653 0.497 0.610 0.423 0.401 0.519

Diffwave 0.502 0.481 0.605 0.321 0.434 0.562 0.254 0.546 0.650 0.289 0.476 0.596 0.202 0.546 0.655 0.450 0.421 0.549
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Diffwave 0.313 0.500 0.621 0.213 0.388 0.531 0.376 0.648 0.735 0.413 0.405 0.548 0.236 0.435 0.576 0.219 0.540 0.661
DiT 0.470 0.384 0.459 0.441 0.324 0.422 0.470 0.335 0.420 0.440 0.398 0.480 0.471 0.351 0.435 0.447 0.375 0.464

DDPM 0.517 0.375 0.499 0.481 0.281 0.389 0.519 0.247 0.362 0.485 0.335 0.454 0.484 0.330 0.445 0.456 0.306 0.421
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DFG 0.589 0.183 0.279 0.589 0.183 0.279 0.589 0.183 0.279 0.585 0.182 0.279 0.587 0.182 0.278 0.587 0.182 0.278
KSTDiff 0.381 0.763 0.815 0.157 0.229 0.359 0.000 0.234 0.370 0.428 0.429 0.522 0.349 0.238 0.345 0.282 0.264 0.387
CGAN 0.422 0.579 0.681 0.414 0.591 0.685 0.394 0.620 0.710 0.460 0.444 0.562 0.408 0.532 0.640 0.439 0.355 0.478

Diffwave 0.412 0.530 0.648 0.285 0.445 0.579 0.420 0.488 0.616 0.463 0.419 0.557 0.349 0.457 0.587 0.192 0.345 0.489
DiT 0.436 0.359 0.444 0.460 0.346 0.426 0.485 0.353 0.425 0.418 0.362 0.459 0.477 0.385 0.471 0.457 0.342 0.422

DDPM 0.521 0.375 0.499 0.494 0.291 0.398 0.521 0.248 0.359 0.493 0.341 0.460 0.492 0.333 0.448 0.461 0.308 0.422
CVAE 0.449 0.421 0.547 0.477 0.324 0.455 0.479 0.358 0.483 0.294 0.271 0.402 0.492 0.285 0.404 0.475 0.320 0.424

CRAFT 0.777 0.112 0.176 0.766 0.119 0.185 0.764 0.121 0.186 0.762 0.118 0.184 0.743 0.136 0.203 0.746 0.134 0.200
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Table 7: Data utility comparison on traffic flow prediction (LSTM)

Gen Pred
Chicago Washington, D.C. Toronto New York City

Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Real

L
ST

M
(T

=
4
8)

0.097 0.151 0.100 0.154 0.094 0.144 0.097 0.150 0.109 0.163 0.111 0.164 0.056 0.101 0.056 0.101
GMEL 0.167 0.230 0.166 0.228 0.202 0.254 0.210 0.268 0.241 0.303 0.251 0.320 0.092 0.144 0.091 0.142
DFG 0.283 0.418 0.289 0.423 0.134 0.202 0.136 0.206 0.319 0.426 0.321 0.427 0.070 0.126 0.069 0.125

KSTDiff 0.362 0.493 0.368 0.497 0.469 0.599 0.475 0.603 0.507 0.629 0.505 0.627 0.348 0.389 0.762 0.814
CGAN 0.199 0.292 0.212 0.309 0.283 0.394 0.286 0.399 0.287 0.388 0.286 0.382 0.151 0.248 0.163 0.257

Diffwave 0.221 0.299 0.232 0.297 0.276 0.354 0.331 0.441 0.327 0.434 0.286 0.362 0.141 0.211 0.138 0.211
DiT 0.232 0.285 0.246 0.292 0.266 0.311 0.288 0.330 0.299 0.337 0.307 0.343 0.252 0.280 0.209 0.245

DDPM 0.113 0.174 0.115 0.171 0.124 0.183 0.122 0.183 0.117 0.171 0.122 0.175 0.065 0.113 0.066 0.110
CVAE 0.175 0.255 0.172 0.249 0.308 0.429 0.304 0.421 0.158 0.230 0.162 0.233 0.138 0.219 0.135 0.213

CRAFT 0.099 0.153 0.103 0.158 0.103 0.156 0.111 0.167 0.120 0.173 0.127 0.180 0.063 0.107 0.064 0.105

Real

L
ST

M
(T

=
72

)

0.104 0.156 0.107 0.159 0.095 0.145 0.099 0.151 0.114 0.169 0.115 0.170 0.059 0.106 0.059 0.105
GMEL 0.169 0.234 0.175 0.246 0.227 0.285 0.240 0.302 0.258 0.329 0.270 0.349 0.093 0.140 0.097 0.153
DFG 0.303 0.435 0.306 0.438 0.142 0.213 0.151 0.226 0.368 0.481 0.370 0.482 0.073 0.129 0.073 0.129

KSTDiff 0.256 0.340 0.282 0.381 0.320 0.400 0.314 0.372 0.336 0.380 0.340 0.403 0.224 0.361 0.205 0.343
CGAN 0.208 0.300 0.206 0.294 0.294 0.401 0.294 0.396 0.407 0.510 0.409 0.519 0.262 0.327 0.267 0.335

Diffwave 0.244 0.310 0.239 0.342 0.312 0.352 0.296 0.363 0.360 0.462 0.405 0.492 0.175 0.236 0.142 0.214
DiT 0.259 0.300 0.228 0.283 0.292 0.332 0.306 0.354 0.321 0.366 0.312 0.355 0.169 0.231 0.204 0.244

DDPM 0.116 0.171 0.117 0.176 0.133 0.186 0.134 0.190 0.121 0.177 0.127 0.183 0.072 0.122 0.074 0.119
CVAE 0.175 0.256 0.177 0.258 0.229 0.319 0.233 0.321 0.174 0.248 0.177 0.250 0.108 0.178 0.109 0.180

CRAFT 0.109 0.165 0.111 0.167 0.111 0.166 0.116 0.171 0.124 0.179 0.127 0.180 0.066 0.111 0.067 0.108

Real

L
ST

M
(T

=
96

)

0.108 0.161 0.110 0.163 0.094 0.144 0.098 0.149 0.117 0.175 0.119 0.175 0.062 0.111 0.063 0.110
GMEL 0.174 0.245 0.182 0.248 0.231 0.288 0.248 0.312 0.261 0.319 0.262 0.313 0.102 0.152 0.139 0.198
DFG 0.322 0.460 0.326 0.462 0.152 0.224 0.158 0.230 0.351 0.455 0.351 0.454 0.081 0.140 0.081 0.142

KSTDiff 0.371 0.502 0.376 0.505 0.416 0.540 0.494 0.617 0.480 0.608 0.480 0.606 0.234 0.372 0.235 0.371
CGAN 0.261 0.372 0.264 0.376 0.397 0.515 0.409 0.519 0.335 0.453 0.336 0.454 0.170 0.240 0.164 0.232

Diffwave 0.252 0.341 0.236 0.321 0.319 0.378 0.297 0.350 0.311 0.384 0.327 0.412 0.149 0.229 0.182 0.271
DiT 0.234 0.287 0.242 0.287 0.297 0.335 0.296 0.333 0.316 0.357 0.302 0.341 0.230 0.260 0.230 0.260

DDPM 0.116 0.172 0.119 0.177 0.122 0.179 0.122 0.184 0.128 0.183 0.135 0.190 0.074 0.125 0.074 0.118
CVAE 0.152 0.225 0.159 0.233 0.301 0.405 0.300 0.402 0.170 0.240 0.174 0.241 0.129 0.202 0.131 0.203

CRAFT 0.112 0.170 0.115 0.171 0.111 0.162 0.115 0.171 0.129 0.188 0.134 0.191 0.069 0.118 0.068 0.112

Real

L
ST

M
(T

=
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0)

0.106 0.160 0.108 0.161 0.095 0.145 0.099 0.149 0.121 0.183 0.122 0.183 0.062 0.111 0.063 0.110
GMEL 0.184 0.243 0.187 0.256 0.213 0.260 0.218 0.271 0.277 0.333 0.262 0.312 0.099 0.152 0.105 0.155
DFG 0.306 0.445 0.311 0.448 0.168 0.249 0.172 0.252 0.352 0.467 0.356 0.472 0.089 0.154 0.089 0.154

KSTDiff 0.390 0.434 0.624 0.702 0.458 0.588 0.473 0.599 0.334 0.377 0.337 0.388 0.767 0.819 0.390 0.444
CGAN 0.275 0.374 0.283 0.387 0.293 0.404 0.286 0.395 0.314 0.409 0.313 0.410 0.136 0.228 0.137 0.227

Diffwave 0.236 0.294 0.233 0.299 0.387 0.495 0.324 0.413 0.307 0.383 0.294 0.358 0.151 0.245 0.143 0.235
DiT 0.231 0.284 0.242 0.286 0.276 0.319 0.277 0.321 0.302 0.344 0.299 0.344 0.270 0.297 0.175 0.219

DDPM 0.116 0.172 0.118 0.177 0.123 0.181 0.122 0.181 0.132 0.188 0.141 0.196 0.070 0.118 0.069 0.112
CVAE 0.151 0.217 0.155 0.222 0.214 0.304 0.220 0.310 0.166 0.239 0.164 0.234 0.133 0.215 0.130 0.208

CRAFT 0.110 0.168 0.112 0.170 0.110 0.166 0.116 0.170 0.129 0.187 0.131 0.190 0.073 0.115 0.074 0.114

Real

L
ST

M
(T

=
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0.107 0.160 0.110 0.162 0.095 0.144 0.098 0.148 0.125 0.186 0.127 0.186 0.062 0.109 0.061 0.108
GMEL 0.184 0.242 0.221 0.327 0.209 0.262 0.238 0.303 0.261 0.317 0.263 0.317 0.086 0.137 0.091 0.138
DFG 0.315 0.454 0.319 0.456 0.155 0.227 0.157 0.229 0.368 0.487 0.372 0.490 0.086 0.145 0.086 0.145

KSTDiff 0.524 0.585 0.456 0.505 0.481 0.607 0.350 0.386 0.341 0.419 0.377 0.423 0.200 0.334 0.188 0.294
CGAN 0.394 0.495 0.420 0.515 0.459 0.579 0.470 0.590 0.362 0.460 0.355 0.452 0.172 0.255 0.176 0.260

Diffwave 0.244 0.335 0.312 0.425 0.290 0.358 0.295 0.346 0.333 0.440 0.366 0.459 0.167 0.251 0.142 0.210
DiT 0.226 0.280 0.224 0.276 0.306 0.345 0.305 0.342 0.304 0.344 0.311 0.352 0.195 0.234 0.206 0.240

DDPM 0.117 0.176 0.121 0.183 0.123 0.182 0.125 0.185 0.132 0.188 0.137 0.194 0.076 0.121 0.078 0.117
CVAE 0.209 0.293 0.210 0.293 0.278 0.370 0.279 0.370 0.226 0.314 0.228 0.316 0.154 0.255 0.153 0.252

CRAFT 0.113 0.170 0.115 0.170 0.114 0.169 0.118 0.171 0.130 0.189 0.137 0.196 0.075 0.122 0.077 0.118
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L
ST

M
(T

=
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0.112 0.169 0.115 0.172 0.098 0.146 0.101 0.152 0.121 0.179 0.122 0.179 0.061 0.107 0.061 0.107
GMEL 0.204 0.280 0.205 0.283 0.198 0.256 0.211 0.258 0.225 0.268 0.226 0.279 0.098 0.148 0.097 0.148
DFG 0.299 0.431 0.304 0.433 0.153 0.223 0.156 0.228 0.312 0.414 0.313 0.414 0.089 0.154 0.089 0.153

KSTDiff 0.348 0.480 0.335 0.462 0.443 0.524 0.505 0.623 0.401 0.516 0.379 0.481 0.199 0.339 0.195 0.305
CGAN 0.412 0.504 0.426 0.525 0.395 0.496 0.390 0.484 0.335 0.412 0.340 0.416 0.181 0.269 0.173 0.261

Diffwave 0.238 0.306 0.227 0.295 0.334 0.388 0.444 0.573 0.307 0.354 0.331 0.407 0.166 0.260 0.147 0.220
DiT 0.235 0.296 0.236 0.295 0.289 0.326 0.285 0.324 0.315 0.351 0.317 0.357 0.218 0.250 0.168 0.214

DDPM 0.118 0.175 0.121 0.182 0.131 0.181 0.134 0.188 0.125 0.182 0.137 0.195 0.073 0.119 0.075 0.119
CVAE 0.228 0.312 0.228 0.311 0.316 0.416 0.313 0.411 0.187 0.251 0.190 0.251 0.180 0.260 0.180 0.256

CRAFT 0.114 0.170 0.117 0.173 0.111 0.165 0.115 0.171 0.124 0.180 0.133 0.188 0.078 0.128 0.078 0.122
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Table 8: Data utility comparison on traffic flow prediction (Transformer)

Gen Pred
Chicago Washington, D.C. Toronto New York City

Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Real

Tr
an

sf
or

m
er

(T
=

4
8)

0.099 0.158 0.103 0.162 0.094 0.149 0.098 0.155 0.111 0.170 0.114 0.172 0.053 0.102 0.054 0.103
GMEL 0.165 0.228 0.165 0.227 0.201 0.260 0.199 0.253 0.220 0.274 0.223 0.284 0.080 0.133 0.081 0.131
DFG 0.300 0.424 0.300 0.418 0.184 0.250 0.176 0.240 0.341 0.453 0.328 0.435 0.085 0.134 0.081 0.130

KSTDiff 0.367 0.500 0.377 0.510 0.469 0.604 0.476 0.609 0.571 0.723 0.530 0.670 0.337 0.378 0.756 0.807
CGAN 0.159 0.221 0.171 0.237 0.282 0.379 0.284 0.382 0.239 0.310 0.235 0.304 0.128 0.193 0.135 0.201

Diffwave 0.220 0.292 0.212 0.279 0.278 0.345 0.284 0.354 0.291 0.356 0.285 0.347 0.156 0.228 0.140 0.211
DiT 0.235 0.289 0.236 0.287 0.269 0.312 0.282 0.320 0.296 0.339 0.298 0.337 0.181 0.225 0.158 0.212

DDPM 0.111 0.169 0.115 0.173 0.113 0.166 0.115 0.172 0.119 0.174 0.123 0.178 0.063 0.111 0.065 0.110
CVAE 0.162 0.228 0.164 0.229 0.230 0.311 0.237 0.318 0.172 0.222 0.176 0.226 0.114 0.181 0.116 0.183

CRAFT 0.097 0.148 0.100 0.152 0.097 0.149 0.105 0.161 0.124 0.174 0.124 0.173 0.060 0.103 0.060 0.102

Real
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an
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or

m
er

(T
=
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)

0.102 0.159 0.105 0.162 0.094 0.147 0.098 0.153 0.116 0.176 0.118 0.177 0.055 0.100 0.056 0.100
GMEL 0.186 0.251 0.186 0.258 0.249 0.311 0.240 0.298 0.252 0.303 0.248 0.298 0.083 0.138 0.083 0.132
DFG 0.362 0.491 0.350 0.486 0.166 0.222 0.166 0.222 0.391 0.511 0.390 0.509 0.069 0.116 0.070 0.118

KSTDiff 0.349 0.514 0.364 0.519 0.383 0.511 0.376 0.488 0.356 0.401 0.352 0.413 0.216 0.355 0.207 0.359
CGAN 0.179 0.243 0.187 0.249 0.254 0.345 0.252 0.333 0.391 0.493 0.359 0.458 0.146 0.190 0.149 0.194

Diffwave 0.239 0.297 0.228 0.294 0.299 0.352 0.279 0.328 0.324 0.369 0.339 0.382 0.143 0.211 0.143 0.209
DiT 0.243 0.291 0.225 0.281 0.285 0.328 0.287 0.331 0.321 0.364 0.311 0.354 0.177 0.234 0.188 0.234

DDPM 0.108 0.161 0.113 0.167 0.132 0.187 0.131 0.186 0.128 0.184 0.130 0.185 0.067 0.117 0.070 0.118
CVAE 0.175 0.243 0.176 0.244 0.224 0.305 0.227 0.306 0.192 0.255 0.198 0.259 0.106 0.165 0.109 0.170

CRAFT 0.103 0.155 0.106 0.158 0.106 0.158 0.109 0.161 0.121 0.174 0.124 0.176 0.060 0.104 0.060 0.104

Real
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m
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(T
=
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)

0.105 0.162 0.108 0.165 0.093 0.143 0.096 0.147 0.115 0.175 0.117 0.176 0.059 0.105 0.059 0.104
GMEL 0.186 0.256 0.180 0.240 0.218 0.276 0.232 0.294 0.231 0.281 0.236 0.286 0.091 0.141 0.145 0.184
DFG 0.341 0.467 0.323 0.442 0.175 0.237 0.168 0.228 0.354 0.467 0.360 0.472 0.068 0.116 0.069 0.117

KSTDiff 0.387 0.526 0.397 0.538 0.420 0.546 0.492 0.616 0.448 0.564 0.484 0.604 0.243 0.386 0.236 0.375
CGAN 0.195 0.268 0.197 0.267 0.362 0.447 0.385 0.476 0.300 0.388 0.296 0.380 0.124 0.175 0.133 0.187

Diffwave 0.240 0.297 0.235 0.304 0.272 0.320 0.274 0.319 0.294 0.342 0.297 0.348 0.144 0.209 0.139 0.205
DiT 0.231 0.287 0.227 0.280 0.285 0.327 0.278 0.321 0.308 0.346 0.297 0.339 0.146 0.208 0.151 0.208

DDPM 0.114 0.169 0.118 0.173 0.122 0.175 0.121 0.176 0.130 0.183 0.138 0.191 0.070 0.116 0.071 0.115
CVAE 0.153 0.214 0.158 0.219 0.255 0.332 0.261 0.336 0.170 0.230 0.174 0.231 0.113 0.169 0.117 0.169

CRAFT 0.106 0.160 0.108 0.162 0.104 0.150 0.108 0.158 0.122 0.178 0.128 0.183 0.063 0.109 0.064 0.108

Real
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or

m
er

(T
=
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0)

0.100 0.155 0.103 0.159 0.090 0.140 0.093 0.144 0.116 0.175 0.118 0.177 0.057 0.105 0.057 0.105
GMEL 0.192 0.256 0.193 0.261 0.222 0.290 0.232 0.304 0.249 0.305 0.250 0.306 0.094 0.150 0.098 0.156
DFG 0.310 0.425 0.303 0.413 0.150 0.203 0.151 0.208 0.349 0.460 0.354 0.465 0.071 0.122 0.072 0.123

KSTDiff 0.390 0.436 0.621 0.699 0.509 0.654 0.507 0.640 0.328 0.380 0.329 0.386 0.721 0.771 0.341 0.420
CGAN 0.270 0.369 0.282 0.390 0.283 0.375 0.288 0.381 0.273 0.349 0.261 0.338 0.108 0.175 0.109 0.173

Diffwave 0.221 0.281 0.222 0.284 0.270 0.342 0.262 0.321 0.309 0.350 0.294 0.343 0.140 0.207 0.137 0.202
DiT 0.222 0.280 0.222 0.276 0.265 0.318 0.268 0.315 0.306 0.349 0.303 0.347 0.173 0.220 0.149 0.208

DDPM 0.109 0.161 0.113 0.166 0.112 0.163 0.113 0.166 0.129 0.184 0.135 0.190 0.067 0.111 0.066 0.109
CVAE 0.153 0.214 0.158 0.220 0.202 0.272 0.212 0.283 0.170 0.231 0.173 0.231 0.106 0.171 0.105 0.168

CRAFT 0.107 0.162 0.109 0.163 0.103 0.152 0.107 0.156 0.120 0.173 0.123 0.177 0.063 0.104 0.063 0.104

Real

Tr
an

sf
or

m
er

(T
=

14
4)

0.101 0.155 0.104 0.159 0.091 0.140 0.093 0.144 0.118 0.177 0.120 0.180 0.055 0.104 0.056 0.104
GMEL 0.211 0.281 0.209 0.285 0.242 0.301 0.234 0.284 0.264 0.317 0.263 0.312 0.088 0.140 0.090 0.142
DFG 0.323 0.450 0.307 0.427 0.188 0.248 0.185 0.247 0.399 0.521 0.391 0.510 0.069 0.120 0.069 0.119

KSTDiff 0.524 0.586 0.459 0.510 0.488 0.618 0.369 0.423 0.367 0.462 0.385 0.446 0.190 0.315 0.166 0.239
CGAN 0.342 0.431 0.392 0.480 0.371 0.463 0.352 0.449 0.284 0.360 0.288 0.368 0.133 0.186 0.135 0.184

Diffwave 0.221 0.280 0.215 0.273 0.291 0.334 0.296 0.353 0.290 0.357 0.288 0.359 0.139 0.205 0.136 0.202
DiT 0.223 0.279 0.221 0.276 0.290 0.331 0.283 0.322 0.297 0.338 0.301 0.342 0.147 0.208 0.143 0.203

DDPM 0.113 0.167 0.117 0.173 0.122 0.173 0.124 0.176 0.127 0.181 0.131 0.185 0.071 0.113 0.069 0.110
CVAE 0.192 0.260 0.193 0.261 0.277 0.359 0.283 0.363 0.234 0.297 0.240 0.305 0.124 0.198 0.124 0.196

CRAFT 0.107 0.160 0.110 0.163 0.106 0.154 0.111 0.159 0.125 0.180 0.129 0.183 0.066 0.107 0.065 0.105

Real

Tr
an

sf
or

m
er

(T
=

16
8)

0.104 0.160 0.108 0.164 0.090 0.140 0.093 0.144 0.115 0.173 0.118 0.176 0.054 0.102 0.055 0.103
GMEL 0.216 0.288 0.217 0.287 0.219 0.281 0.218 0.277 0.238 0.301 0.241 0.297 0.093 0.148 0.095 0.150
DFG 0.315 0.427 0.313 0.424 0.162 0.217 0.167 0.226 0.377 0.493 0.374 0.492 0.071 0.122 0.072 0.123

KSTDiff 0.344 0.473 0.340 0.467 0.444 0.526 0.510 0.625 0.395 0.508 0.374 0.473 0.199 0.339 0.196 0.308
CGAN 0.385 0.469 0.385 0.476 0.324 0.418 0.323 0.412 0.319 0.385 0.346 0.413 0.140 0.200 0.145 0.210

Diffwave 0.228 0.288 0.221 0.283 0.281 0.328 0.267 0.321 0.290 0.339 0.289 0.341 0.142 0.206 0.136 0.202
DiT 0.231 0.288 0.227 0.282 0.283 0.325 0.267 0.318 0.305 0.342 0.308 0.347 0.192 0.231 0.154 0.206

DDPM 0.115 0.169 0.119 0.174 0.129 0.178 0.132 0.182 0.127 0.178 0.136 0.187 0.071 0.112 0.069 0.110
CVAE 0.193 0.257 0.195 0.259 0.285 0.369 0.287 0.370 0.196 0.247 0.202 0.252 0.138 0.189 0.138 0.188

CRAFT 0.106 0.158 0.108 0.162 0.102 0.149 0.106 0.154 0.122 0.176 0.125 0.179 0.069 0.114 0.067 0.111
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Figure 11: Heatmap of Traffic Flow in Different Cities (CHI stands for Chicago, DC stands for
Washington, D.C., TRT stands for Toronto and NYC stands for New York City)
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(a) CHI: TFA+CCA
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(b) CHI: only CCA
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(d) CHI: only TFA
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(e) DC: TFA+CCA
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(f) DC: only CCA
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(g) DC: TFA+CCA
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(h) DC: only TFA
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(i) TRT: TFA+CCA

0.00 0.25 0.50 0.75 1.00
X1

0.0

0.2

0.4

0.6

0.8

1.0

X
2

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
og

ar
ith

m
ic

 T
ra

ffi
c 

Fl
ow

(j) TRT: only CCA
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(k) TRT: TFA+CCA
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(m) NYC: TFA+CCA
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(n) NYC: only CCA
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Figure 12: Visualization analysis for TFA and CCA (CHI stands for Chicago, DC stands for Wash-
ington, D.C., TRT stands for Toronto and NYC stands for New York City)
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