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Abstract

Traffic flow data are of great value in smart city applications. However, limited
by data collection costs and privacy sensitivity, it is rather difficult to obtain
large-scale traffic flow data. Therefore, various data generation methods have
been proposed in the literature. Nevertheless, these methods often require data
from a specific city for training and are difficult to directly apply to new cities
lacking data. To address this problem, this paper proposes a retrieval-augmented
diffusion generation model with geographic representation alignment. We use data
from multiple source cities for training, extract consistent representations across
multiple cities, and leverage retrieval-augmented generation (RAG) technology
to incorporate dynamic traffic flow patterns into the condition, aiming to improve
the accuracy of data generation in the target city. Experiments on four real-world
datasets demonstrate that, compared to existing generation methods, our method
achieves best cross-city zero-shot performance. Our code and datasets can be found
in https://github.com/1yd1881310/CRAFT.

1 Introduction

Background. Traffic flow data is crucial in intelligent transportation systems [26l [17]], urban manage-
ment 16} 49] and smart cities applications [[11,47]. The success of traffic flow analysis [48}155] is
coupled with a data-hungry paradigm, where superior performance and remarkable generalization
ability rely on large-scale and high-quality data. However, unlike computer vision (CV) and natural
language processing (NLP), where large-scale datasets are readily available from public sources,
collecting traffic flow data faces strict privacy constraints and much higher costs. As a result, existing
public traffic flow datasets are usually limited in both scale and quality. Overcoming this challenge to
acquire larger-scale, higher-quality traffic flow data has emerged as a critical bottleneck.

Motivation of This Work. In response, traffic flow generation has become an increasingly urgent
research direction [58]. It aims to synthesize realistic traffic flow by learning the conditional mapping
from static urban geographic context to dynamic traffic flow distributions. Early work predominantly
employed physics-driven models [60 52} [1, 42} [28]], which only estimate static average flow volumes
and struggled to capture the complex temporal dynamics observed in real-world traffic. More recently,
deep generative approaches have been dominant, leveraging richer geographic context as input to
model flow distributions with greater fidelity. Their modeling paradigm has shifted from variational
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Figure 1: In For each region, we aggregate the statistical values of its geographic contexts to form
the raw geographic features, finding that regions with similar geographic features may share flow
patterns even across different cities. Fromlm, we further observe that, overall, this correspondence
becomes blurred in cross-city scenarios. Although geographic features and traffic flow are still
roughly correlated, the presence of cross-city domain shift prevents it from being applied directly.

autoencoders (VAEs) [22] and generative adversarial networks (GANs) [8] to diffusion models [[12],
which now lead the field due to their strong conditional generation capabilities. Consequently, recent
studies emphasize incorporating stronger urban priors into conditions [S8]], thereby supporting more
fine-grained and accurate traffic flow generation.

While incorporating stronger geographic priors into model inputs boost performance, these priors
are often city-specific, which limits the model’s ability to generalize. Such priors are essentially
the dependencies between local geographic structures and their corresponding flow patterns, which
typically require training on city-specific historical flow data. This reliance hinders model deployment
in cities with insufficient traffic flow records. In this paper, we attempt to address this issue, and
explore directly generating dynamic traffic flow in entirely unseen cities via a cross-city transfer
learning framework.

Problem Analysis. To achieve our motivation, we must restrict model learning from common
geographic contexts shared across cities, thus avoiding the aforementioned city-specific priors.

In specific, they denote points of interest (POIs), roads, and population. However, utilizing these
contexts for cross-city transfer faces two difficulties:

» Domain Shift: Within a single city, regions with similar geographic features typically exhibit
analogous traffic-flow patterns. However, in cross-city settings, domain shifts in geographic
representations disrupt this correspondence (as illustrated in Fig. [I)). Consequently, regions from
different cities—even if their geographic features are close in representation space—may exhibit
markedly different traffic-flow behaviors (see in Fig. [Tb).

* Insufficient Condition: static geographic contexts alone cannot support accurate cross-city flow
generation. Regions with similar spatial characteristics may share similar periodicity and trends but
their stochastic properties can vary significantly (e.g., absolute values of mean, peak and variance).
Such dynamics are provided by historical flow records but are absent in cross-city scenarios.

Remark: Unlike traffic flow prediction [[18} 150l [15} 46], which forecasts future traffic based on
historical flow data, traffic flow generation synthesizes realistic traffic flow mainly on static geo-
graphic features. Departing from previous methods, our model is explicitly designed for cross-city
generalization: it is trained on source cities and directly deployed to unseen target cities.

Design Insights and Contributions. Accordingly, we propose a Cross-city Retrieval-Augmented
traffic Flow generaTion model (CRAFT), which is a simple yet effective DDPM-based [[12] model.
Fundamentally, we propose the Geographic Feature Alignment (GFA) to address domain shift; For
Insufficient Condition:, we propose the Retrieval-based Condition Augmentation (RCA), which
integrates traffic flow from source cities to supplement temporal dynamics. Our contributions can be
summarized as:

* Our work is an initial probe to tackle cross-city traffic flow generation, proposing a transfer learning
framework that enables traffic flow generation without historical data in target cities.



* Specifically, we proposed GFA and RCA to tackle two fundamental challenges in cross-city flow
generation. Both are lightweight, plugin components without altering the backbone architecture,
revealing the simplicity of our approach.

* Extensive experiments on four real-world urban datasets demonstrate the state-of-the-art (SOTA)
zero-shot generation performance of our model and further validate its strong generalization ability.

2 Related Work

Traffic Flow Generation Models has evolved along two key trajectories: leveraging more compre-
hensive geographic features as inputs, and evolving from static to dynamic flow generation. This
development can be grouped into three stages: physics-based, static, and dynamic flow generation
models. Physics-based Models rely on empirical rules. The Gravity Models [[1}152}60] and Radiation
Models [28, 142]] generate origin-destination (OD) flows based on gravitational laws and radiative
diffusion, respectively. These methods use simple geographic features as inputs and are limited to
coarse-grained OD flow prediction; Subsequently, neural networks became prevalent due to their
ability to incorporate more comprehensive geographic information. Initially, Static Flow Generation
Models learn the dependencies between static traffic flows and the geographic characteristics of urban
regions (27,140, 34} 37} 143]. For instance, DeepGravity [43] extracts features from OpenStreetMap
(OSM) to estimate OD flows, while DeepFlowGen [40]] incorporates abundant POI data. Although
these methods capture richer geo-features than physics-based models, they still fall short in modeling
temporal dynamics; Further, Dynamic Flow Generation Models address this limitation by modeling
temporal variations through generative frameworks [58, 14156} 13} [36/ 133/ 135]]. The field has advanced
from generative adversarial networks (GANSs) [[14]] to diffusion models [3} 58], which now lead the
field due to their strong conditional generation capabilities.

Comparison: Current models perform well within individual cities as they tend to involve city-specific
priors, but this reliance hinders their cross-city transfer abilities. In contrast, our model is designed to
enable cross-city generalization by leveraging the common features shared across cities.

Retrieval-Augmented Generation (RAG) is widely used in large language models (LLMs) [24,[7],
as it can dynamically integrate knowledge from external databases and enhance generation accuracy.
Recently, time series analysis involves RAG to provide meaningful guidance [25]. For example,
(251301144} 20] applied similarity retrieval based on time series embeddings to improve the prediction
accuracy and enhance the zero-shot capabilities of time series foundation models (TSFM) [} 54].
RAG is helpful for enhancing the model’s capabilities in unseen scenarios. However, in the field of
spatio-temporal data generation [21} 14} 59} 51]], attempts using RAG still remain limited.

3 Preliminaries

Definition 1: (Region) We divided each city into /N non-overlapping basic rectangular grids or
polygons, denoted as R = {r;|i = 1,2,..., N}, where N is the total number of regions. Each r;
is characterized by various geographical features including population, road network and points of
interest (POIs). These features serve as the basic static condition for traffic flow generation.

Definition 2: (Region Graph) A region graph is denoted as G = (R, £), where £ € {0, I}IN| xINT i
the binary adjacency matrix. Specifically, & ; = 1if r; and r; are adjacent, and &; ; = 0 otherwise.

Definition 3: (Traffic Flow) Given a region r;, assuming it has C' traffic flow features, such as
traffic inflow and outflow. We denote the traffic flow of r; at ¢-th time slice with time length 7" as
X, € REXT The traffic flow dataset of all regions staring at all time slice is denoted as X'.

Problem Statement: (Traffic flow generation). The objective of traffic flow generation is to train
a model F to generate dynamic traffic flow of regions based on their static geographic features,
including population, road network and POIs. Specifically, F takes a region graph G as input and

outputs X’ as
X =F(G0), (M

where 0 are trainable parameters of F, and X is evaluated by measuring the similarity to the real-world
traffic flow data X
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Figure 2: The framework of CRAFT

Problem Statement: (Cross-city traffic flow generation). Models are trained on data from multiple
source cities and make zero-shot generation on unseen target cities. Formally, let G(*) denote the
region graph of a target city and 6(*) denote parameters trained from source cities and the process is
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4 Methodology

4.1 Framework

The framework of CRAFT is in Figure. [2] which applies the DDPM as the backbone. Specifically,
CRAFT contains three modules: (1) Geographical Feature Alignment (GFA); (2) Retrieval-based
Condition Augmentation (RCA); (3) Conditional Diffusion Backbone.

Initially, the datasets are divided into source and target cities: source cities include both traffic flow
data and regional geographic features, while the target city only has regional geographic features.
GFA is first pre-trained on source and target cities to provide cross-city geographic feature alignment.
Subsequently, RCA is designed to retrieve relevant historical data from source cities via the aligned
regional representations, supplying an augmented condition for the diffusion backbone. Finally,
Conditional Diffusion Backbone takes augmented condition to make zero-shot traffic flow generation
in the target city.

4.2 Geographic Feature Alignment

To address the challenge of domain shift (in Section[I)), we propose the geographic feature alignment
module. Unlike existing geographic representation learning methods [[19, 14,19, |57, 153]], which learn
representations based on entity embeddings, we begin by selecting common geographic features
shared across cities and use them to construct basic representations for each region. Subsequently,
we adopt the Graph Transformer [41] as the spatial encoder, which takes each city’s region graph G
as input to generate higher-level representations. Finally, the encoder is trained through traffic flow
alignment (TFA) and cross-city alignment (CCA) to enable transferable geographic representations.

Basic Geographic Representation. For most cities, both static maps (OpenStreetMap) and popula-
tion data (WorldPop) are publicly available and highly correlated with traffic flow patterns. Therefore,
the basic geographic representations are derived from the following three aspects:

* POls: POIs are highly correlated with the region functions. For each region, we use the TF-IDF
algorithm [39] to construct POI representations f (°%) based on POIs’ categories and numbers.

* Roads: For each region, we compute the total length of road segments across all road categories,
as this captures the region’s transportation capacity. Regions with dense networks and a high
proportion of trunk roads typically offer better accessibility and attract heavier volume of traffic
flow. The road feature is denoted as f("°%®).



* Population: For each region, we collect statistics on its population size and density, as population
implicitly reflect the scale of its traffic flow. Regions with higher population density tend to generate
larger volumes of traffic flow. The population feature is denoted as f¥°P).

For each region r;, its £(P°%), £(read) "and f(Pop) are concatenated and projected through a multi-layer
perceptron (MLP) to generate the basic geographic representation

z; = MLP (fi(pOP) Hfi(?’m;) ”‘fi(road)) . (3)

Further, the spatial encoder takes z; as input and models the correlations among regions. For a
specific city with its G. Region representations are further embedded as

{h1, hq, ..., h} = GraphTransformer ({21, zo, ..., 25} ,G) , @)

where NV is the region numbers of this city and G is the region graph. To obtain cross-city transferable
region representations, we pre-train the spatial encoder through the proposed traffic flow alignment
and cross-city alignment methods. During the pre-training stage, geographic representations of both
source and target cities are jointly involved to facilitate cross-city alignment.

Traffic Flow Alignment (TFA). Only regions from source cities are involved in the TFA. We aim
to ensure that the differences in region representations reflect the differences in their corresponding
traffic flows. Specifically, we first compute the average traffic flow for each region over the time
period. Then, all regions from the source cities are collected as the set Ry = {r1,72, -+ ,7rn, }, with

their corresponding representations denoted as Hs = {hgs), hgs), cee hg\;z }, where N is the total
number of regions from all source cities. The traffic flow alignment loss is defined as

Lra= NLSQZZ'J ((ju - dij)27 (5)

where d;; = MinMaxNorm, ; (Hhis) - h§s)

is the average traffic flow data of region r;.

2), d” = MinMaxNormm (HXZ — XjHZ)’ and Xz

Cross-City Alignment (CCA). We seek to project semantically similar regions from both source and
target cities into proximity within the representation space. Since explicit regional correspondence
labels are unavailable, our model needs to learn these correspondences adaptively. By leveraging flow
patterns, TFA alone draws regions with similar flows together. Although it does not fully resolve
domain shift, it groups regions with both similar flow dynamics and geographic context. Conse-
quently, in the representation space each region’s counterparts naturally reside in its neighborhood.
Therefore, we formulate the cross-city alignment as an optimal transport (OT) problem [32], seeking
the minimum-cost distribution mapping between regions in the source and target cities under the
Wasserstein distance.

Specifically, the representations of all regions in source cities and target city are collected into the set
Hs and H; = {hgt)7 hét)7 SRR hg\f,z } respectively. V; is the number of regions in the target city. As

both H s and H; are enumerable, we can directly calculate the Wasserstein distance and tackle this
problem through the optimal transport solver [2} 16]]. First, Euclidean distance is used to get the initial
representation distance matrix DD between regions in source cities and the target city, and D), is

D;; = Hhﬁf) ~nl"

- where b € Ho b € H,. ©)

Then, the transport matrix T' is calculated by the OT solver, where T' = OTSolver (D). The cross-
city alignment loss L¢ 4 is defined as Wasserstein distance, which is equal to the dot product of the
transport matrix 7" and the distance matrix D, as follows

Loa=3;;Tij- Dij. @)

For more details on the formulation of optimal transport problem and the structure of the OT solver,
please refer to Appendix A. The total alignment loss is the weighted sum of Lr 4 and Lc 4, where A
and Ao are the balance weights, as follows

La=MLra+ XLca. (8)



Remark: As shown in Fig.[T] basic geographic representations are too coarse to guide cross-city flow
generation. To refine this issue, we propose GFA with two complementary losses: (1) Traffic-flow
alignment: refine regional representations in the correct direction according to regional flow patterns
from source cities; (2) Tackle cross-city alignment without explicit regional correspondence labels, it
enables our model to adaptively determine the most accurate counterpart by leveraging an optimal
transport loss.

4.3 Retrieval-based Condition Augmentation

To address the challenge of insufficient condition (Section[I)), we proposed the retrieval-augmented
condition augmentation strategy. For each target region, our method retrieves relevant historical data
from source cities according to its geographic representation, supplementing the input conditions for
the diffusion backbone. For each target region r;, the generated input condition contains three parts:
geographic features h;, time embedding %.,,;, and historical data from source cities x; ;.

temp contains three periodic temporal components: the month in the year ¢,,ontn € [1,12], the
day in the week t44, € [1,7] and the hour in the day tpey, € [1,24]. These three components are
encoded into vectors through the embedding layers and concatenated to obtain the time embedding
temb = (Emontn ||tday ||Erour), Which indicates the start time of the generated flow.

x; ; denotes the retrieved results for r; according to ¢y,onth; tday, thour and k. Traffic flows from
source cities are first segmented into sequences of length 7'. We then filter these segments using two
criteria: (1) Starting time information ¢,,on¢h, tday and thour; (2) Region representation similarity

to h;. The matched top K flow sequences are selected as X;; = { X1, Xa, ..., Xt }, where
Xyt € RE*T | where X 1 is the average flow of region r; staring at time slice ¢. We employ a

self-attention [45]] block Attn(-) to extract flow patterns from -/?i,t’ which takes the averaged )?Z-,t as
input to mitigate the impact of noise. The extracted retrieval result is

1 _
x;; = Attn <Kz,’f_1xk’t> ) )

Finally, above features are concatenated and projected by a Multi-Layer Perceptron (MLP) block to
generate the input condition ¢; ; for the target region r;, as follows

cit = MLP (h;||z; ¢|[tems) - (10)

4.4 Conditional Diffusion Backbone

As shown in Fig. 2] we adopt the Denoising Diffusion Probabilistic Model (DDPM) as the backbone.

Training. In the training phase, for the traffic flow sample X ; in source city, we add random noise
through the forward diffusion process and use a 1D-U-Net [38] as a noise estimator to predict the
added noise. Following most of the literature about diffusion model, we use X to represent X; ; in
the rest of this paper. Following [12]], the noise-adding process of k steps can be simplified as:

X®) = \/ap X + 1 — age, (11)

where € ~ N(0, I) and ay, is a hyper parameter. The noise estimator €y takes the noised sample

X (k) the step k and the condition vector c; ¢ as inputs to predict the noise. The Mean Squared Error
(MSE) loss function is used to train the noise estimator, as follows

€ (XU“),k,ci,t) . eHz‘ (12)

Lye =Erx, .

Inference. In the inference phase, for each r; in the target city, the model takes a random Gaussian

noise € ~ N(0, I) as input and generates its corresponding traffic flow X conditioned on the Cit
through an n-step denoising process:

o (X<k*1>|f(<k>) — N (ug (XW, k, ci,t) o2 (XW, k) I) 1<k<n,  (13)

In the equation g denotes the mean variable and o2 is the variance:

1 Br > 1— g1
x®) i)zi xk) _ Pk (X(wk ) : 2(X<k> k)zi .
l,l,g( s Ry Gt /70_”6 mkee , Ry Cit y O ) 1*0_lk ﬁk}

(14)



Table 1: Cross-city traffic flow generation results

Method ‘ City ‘ Inflow Outflow ‘ City ‘ Inflow Outflow
CPC(T) NMAE(]) NRMSE(l) | CPC(t) NMAE(l) NRMSE() CPC(1) NMAE(]) NRMSE(]) | CPC(T) NMAE(l) NRMSE(])

GMEL 0.730 0.173 0.227 0.725 0.175 0.236 - 0.741 0.273 0319 0.716 0.281 0316
DFG 0.162 0.306 0.438 0.159 0.310 0.441 8 0.691 0.240 0.343 0.690 0.239 0.342
KSTDiff % 0.006 0.334 0.467 0.132 0.322 0.453 C 0.613 0.519 0.610 0.608 0.564 0.673
CGAN 1$) 0.230 0.379 0.511 0.203 0.364 0.495 a 0.514 0.384 0.509 0.507 0.398 0.523
Diffwave g“ 0.332 0.486 0.598 0.532 0.496 0.609 g 0.650 0.403 0.538 0.570 0.458 0.584
DiT 2 0.509 0.357 0.451 0.528 0.343 0.436 Eﬂ 0.634 0.351 0.420 0.607 0.352 0.422
DDPM S 0.415 0.273 0.393 0.416 0.275 0.396 | 0.346 0.387 0.514 0.351 0.388 0.512
CVAE 0.490 0.267 0.385 0.488 0.269 0.385 § 0.468 0.343 0.461 0.471 0.347 0.461
CRAFT 0.785 0.140 0.216 0.786 0.140 0.216 0.815 0.158 0.240 0.816 0.159 0.240
GMEL 0.735 0.224 0.283 0.744 0.217 0.276 ~ 0.585 0.310 0.379 0.672 0.188 0.242
DFG 0.278 0.395 0.514 0.278 0.394 0.512 g 0.581 0.182 0.278 0.585 0.183 0.279
KSTDiff g 0.006 0.469 0.597 0.248 0.413 0.540 z 0.040 0.226 0.364 0.030 0.228 0.364
CGAN = 0.561 0.358 0.468 0.572 0.354 0.461 z 0.368 0.330 0.476 0.407 0.382 0.527
Diffwave :E’ 0.521 0.421 0.531 0.546 0.456 0.574 2 0.363 0.475 0.608 0.434 0.440 0.575
DiT S 0.552 0.394 0.489 0.601 0.381 0.471 S 0.419 0.416 0.508 0.449 0.383 0.478
DDPM IS 0.592 0.358 0.474 0.595 0.359 0.474 >; 0.523 0.316 0.431 0.525 0.324 0.438
CVAE 0.699 0.289 0.394 0.695 0.295 0.398 2 0.568 0.280 0.403 0.571 0.280 0.401
CRAFT 0.804 0.178 0.267 0.804 0.179 0.268 0.782 0.103 0.170 0.786 0.102 0.165

where () is a hyper-parameter and ay, = H:Zl (1 — Bi). Through an n-step denoising process, the
traffic flow data X () is generated.

S Experiment

Dataset: We conducted experiments on four real-world bicycle trip datasets, namely Chicago (CHIﬂ
Washington, D.C. (DC Toronto (TRT) [’} and New York City (NYC) E} We manually partition
each city into grid-based regions and count the number of bicycles entering and exiting each region
within each hour to obtain the traffic flow. In our experiments, we use normalized traffic flow values;
Baseline: We employ GMEL [27], DFG [40], KSTDiff [58]], CGAN [29]], Diffwave [23]], DiT [31]],
DDPM [12]] and CVAE [10] as our baselines; Evaluation Metric: We evaluate our model on the
metrics of Common Part of Commuters (CPC), Normalized Mean Absolute Error (NMAE) and
Normalized Root Mean Square Error (NRMSE). Details about dataset pre-procession, baselines, and
evaluation metrics are in Appendix B.

5.1 Overall Generation Performance

Generation Performance: Table. [T|reports the zero-shot cross-city performance comparison between
our method and selected baselines. The experiments are organized into four groups. Each city is
sequentially assigned as the target city while the remaining three cities serve as source cities. Models
are trained exclusively on the source cities and evaluated in a zero-shot manner on the unseen target
city. For each target city, both inflow and outflow data are generated. From the results, our method
consistently outperforms existing approaches and achieves state-of-the-art (SOTA) performance
across various settings. It yields an improvement of 59.7% compared with the average level of all
baselines and an improvement of 22.5% compared with the second-best baseline (GMEL). When
compared with ordinary DDPM, our approach yields an average improvement of 61.5%.

Utility of the Generated Data: To further assess the quality of the generated flow data, we evaluate
them on a downstream traffic flow task across multiple target cities. Specifically, we use the synthetic
data produced by CRAFT and other baselines to train two representative models for flow prediction: a
vanilla LSTM [13]] and a Transformer [45]]. As a reference, we also train the same models on real flow
data from the corresponding target cities. As shown in Table. [2] our model consistently outperforms
all baseline methods across various evaluation metrics. It achieves an improvement of 55.9% over the
average level of all baselines and an improvement of 14.9% over the second-best baseline (DDPM).
Furthermore, our model achieves performance that is closest to the results of direct training on real
traffic flow data. Specifically, it demonstrates an average performance degradation of only 10.4%,
with a minimum drop of 3.8% and a maximum drop of 22.2%. These results underscore the model’s

"https://divvy-tripdata.s3.amazonaws.com
*https://s3.amazonaws.com/capitalbikeshare-data
*https://ckan0.cf.opendata.inter.prod-toronto.ca
*https://s3.amazonaws.com/tripdata/2023-citibike-tripdata.zip
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Table 2: Data utility comparison on traffic flow prediction

| | Chicago(CHI) | Washington, D.C.(DC) | Toronto(TRT) | New York City(NYC)
Gen ‘ Pred ‘ Inflow ‘ Outflow ‘ Inflow ‘ Outflow ‘ Inflow ‘ Outflow ‘ Inflow ‘ Outflow
\ | MAE RMSE MAE RMSE | MAE RMSE MAE RMSE | MAE RMSE MAE RMSE | MAE RMSE MAE RMSE
Real 0.102 0.152 0.105 0.157 | 0.105 0.156 0.109 0.163 | 0.132 0.191 0.132 0.191 0.063 0.107 0.063 0.106
GMEL 0.198 0264 0.195 0262 | 0242 0325 0239 0303 | 0265 0329 0.258 0321 | 0.144 0216 0.140 0.201
DFG 0303 0443 0307 0446 | 0.157 0232 0.154 0233 | 0.318 0436 0319 0437 | 0.082 0.141 0.081 0.139
KSTDiff 0339 0472 0306 0441 | 0514 0.604 0.560 0.672 | 0.478 0.606 0.418 0.551 | 0225 0.363 0.229 0.365
CGAN E 0435 0562 0414 0540 | 0.450 0.571 0.447 0566 | 0.340 0445 0.347 0451 | 0291 0432 0334 0475
Diffwave Z]’ 0.275 0383 0277 0376 | 0321 0418 0.347 0442 | 0373 0445 0363 0437 | 0211 0306 0.177 0.278
DiT 0.266 0.315 0251 0307 | 0.307 0361 0.301 0347 | 0334 0382 0323 0363 | 0246 0280 0250 0.282
DDPM 0.117  0.176 0.119 0.177 | 0.163 0.240 0.165 0.245 | 0.150 0.221 0.161 0.234 | 0.081 0.130 0.084 0.129
CVAE 0252 0.344 0256 0.348 | 0293 0383 0.289 0376 | 0.243 0344 0244 0344 | 0.142 0233 0.142 0.231
CRAFT 0.109 0.164 0.111 0.166 | 0.124 0.180 0.130 0.189 | 0.141 0.203 0.145 0.206 | 0.067 0.112 0.069 0.110
Real 0.098 0.151 0.100 0.154 | 0.095 0.149 0.100 0.157 | 0.131 0.196 0.132 0.197 0.056 0.103 0.056 0.103
GMEL 0.194 0268 0.189 0.263 | 0229 0297 0.232 0295 | 0256 0.325 0.256 0.327 | 0.141 0202 0.127 0.185
DFG . | 0337 0484 0311 0451 | 0251 0338 0236 0314 | 0331 0447 0336 0453 | 0.083 0.145 0.089 0.148
KSTDiff ?é’ 0336 0469 0338 0477 | 0514 0.605 0.560 0.672 | 0479 0.607 0.418 0.550 | 0.208 0.338 0.218 0.357
CGAN S | 0373 0487 0380 0496 | 0393 0503 0403 0508 | 0.286 0382 0297 0.388 | 0264 0391 0276 0.406
Diffwave £ (0282 0384 0261 0351 | 0318 039 0303 0382 | 0362 0432 0366 0436 | 0178 0271 0.175 0258
DiT £ | 0275 0317 0253 0304 | 0297 0352 0295 0.347 | 0.333 0381 0322 0363 | 0229 0267 0233 0270
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Figure 3: The overall ablation results on metrics of CPC (1), NMAE (]), NRMSE (])
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Figure 4: Alignment Analysis on TFA and CCA (New York City is the Target City). All scatter points
in this figures represent the regions’ geographic features. In (a) and (b), the color intensity indicates
the value of traffic flow. After TFA, regions with similar flow patterns exhibit similar geographic
representations. By comparing (c) and (d), we observe that CCA alleviates the distribution shift
between the target city and source cities.

superior capability in traffic flow generation, outperforming existing baselines and highlighting its
strong potential for practical deployment.

5.2 Model Analysis

Ablation Study: Recall that our CRAFT relies on two main components: GFA and RCA. In Fig.[3]
we first conducted overall ablation studies to testify their effectiveness based on following settings. (1)
w/o Alignment: remove GFA by directly using target region’s original geographic features for cross-
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Figure 5: Heatmap of the generated traffic inflow in Chicago
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Figure 7: Temporal length extension of all four cities on metrics of CPC (1), NMAE (}), NRMSE ({)). All
metrics are evaluated on inflow generation.

city retrieval and generation of conditions. (2) w/o RCA: remove the retrieval-augmented features
x; ¢ from c; ;. (3) w/o Temporal embedding: remove the temporal embeddings ¢, from ¢; ;, which
supplements the periodic patterns of the traffic flow. Both w/o RCA and w/o Temporal embedding
are related to RCA. From the experimental results in Fig. 3] we can notice: (1) GFA provides the
most improvement, highlighting that distribution shift is indeed the major problem in the cross-city
generation. (2) In RCA, t..,,, contributes the most to the performance gain, highlighting the value of
periodic temporal patterns. Additionally, «; ; consistently improves performance, highlighting the
value of supplementing dynamic patterns from source cities.

Further, we explore the specific role of the traffic flow alignment (TFA) and the cross-city align-
ment (CCA) in GFA. In Fig.[d] we apply t-SNE to all regions’ geographic features in New York. We
observe that TFA indeed aligns geographic features with traffic flow patterns. CCA mitigates the
distribution shift in geographic features between source cities and the target city, thereby enhancing
cross-city generalization. Experiments on all four city are provided in Appendix C.

Sensitivity Analysis: We made various sensitivity analyses on four important hyperparameters,
including (1) the layer number of the sequence encoder; (2) the dimension of temporal embedding; (3)
the dimension of the geographic representation. As shown in Fig.[f] our model demonstrates strong
robustness, with a maximum performance fluctuation of 8.8%. Detailed results for all evaluation
metrics are provided in Appendix C.

5.3 Additional Experiments and Discussion

Geographic Visualization: Fig.[5|compares generated flow distributions of CRAFT and baselines
in Chicago (please refer Appendix C for all cities). CRAFT and GMEL are most identical to the real
distributions. Notably, CRAFT outperforms other baselines with more realistic generated flow. This
highlights of CRAFT’s strong zero-shot generation ability and better alignment with geographic and
flow patterns.

Temporal Length Extension: In general, most models default to a horizon of 7" = 24, where most
baselines remain stable. Increasing 7' both raises task difficulty and enriches sample information,
so an ideal model should exploit the enriched information from bigger 7" while remaining stable in
performance loss. To further explore the potential of each model’s long horizon generation, we trained



several baselines and CRAFT on {27, 3T, - , 7T} as (48,72, - ,168). As Fig.[7]shows: (1) All
models’ performance drops as T' grows, revealing a common long-horizon bottleneck. (2) Diffwave
exhibits high variance and poor accuracy, while diffusion-based DiT and DDPM remain steadier
and more accurate. (3) CRAFT consistently achieves SOTA and outperforms all these baselines,
demonstrating its superior potential in long-horizon generation. More results are in Appendix C.

6 Conclusion

In this paper, we propose CRAFT, a model capable of zero-shot traffic flow generation. Unlike
existing approaches, CRAFT is specifically designed for cross-city scenarios and advantage in
generating high-quality traffic flow data in cities with limited or no historical flow records. Specifically,
we identify two key challenges: domain shift and insufficient condition. To address these, we
introduce Geographic Feature Alignment (GFA) for domain shift and Retrieval-based Condition
Augmentation (RCA) for insufficient condition. As both GFA and RCA serve as concise plug-and-lay
modules, our method requires no additional modifications to the diffusion backbone. Extensive
experiments on four real-world datasets demonstrate the broad effectiveness of CRAFT, and further
illustrates the great potential of CRAFT in the fields of urban planning and traffic management.

Limitations: Restrict by available datasets, CRAFT is currently validated on in—out flow generation,
and we have not yet explored its ability on other data types like origin—destination (OD) flows.
Furthermore, restricted by computational resources, we do not conduct experiments on temporal
horizon more than 168. Actually, from Fig. [/| CRAFT remains the most stable across varying
temporal horizons, demonstrating its great potential for extension to longer temporal horizons.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately summarize
the key contributions of our work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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Justification: This is not a theoretical paper.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our method is well described in Section []and detailed experiment settings,
code and data are provided by the URLs in Abstract.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The URLSs of the anonymized code and data have been provided in the Abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our method is well described in Section [d]and detailed experiment setting is
provided in Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We reported the best results within the range of adjustable parameters for each
method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources needed to reproduce the experiments are presented in
Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics and strictly adhere to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss impacts of our method in Section [6]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the relevant papers and provided links to download the data.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19


paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code URLs in Abstract and provide documentation in the form
of README.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for polishing writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Model Details & Hyperparameters

A.1 Basic Geographic Features

We extract urban geographic features from OpenStreetMap (OSM) E] and WorldPop E] data. The
original geographic features include the following three aspects.

* POI features (denoted as f %) reflect the function of a region. We attempt to construct the POI
semantic features of a region by counting the quantities of various POI categories. However, the
quantities of different POI categories exhibit significant imbalance, for instance, the total number
of commercial POIs is far larger than that of residential POIs. This imbalance can easily cause the
model to overlook the influence of POI categories with smaller quantities. Therefore, we employ
the TF-IDF algorithm [39] to extract POI features. Specifically, we treat each POI category as
a "word", consider all POIs within a region as a "document", and define the entire city as the
"corpus". When calculating the importance of a word for a document, the algorithm automatically
incorporates the word’s frequency in the corpus for weighted analysis.

* Road features (denoted as f(7°%®) reflect the transportation attribute of a region. We calculate the
total length of all categories of road segments within a region. Regions with dense road networks
and a large number of trunk roads usually have convenient transportation and tend to generate a
higher volume of traffic flow.

« Population features (denoted as f(P°P)) reflect the traffic potential of a region. Regions with
higher population density are more likely to generate a higher volume of traffic flow. We obtained
the United Nations (UN)-adjusted 100m resolution national population data from WorldPop and
counted the population number in each manually partitioned rectangular regions.

A.2 Optimal Transport Problem

Optimal Transport (OT) is a mathematical problem aiming to find the most efficient way to move
mass from source distribution to target distribution. It was introduced by Gaspard Monge in 1781.
When both the source and target distributions are represented by enumerable samples (/N5 samples
for source and IV; samples for target), the OT problem can be formally defined as

T = i o D,
arg mmTeRfS Ny ZTN D; ;,
i (15)
st. Tl =w, and T71 = wy,

where D € Rfs *Nt is the cost matrix (distance matrix) defining the cost to move mass from source
distribution to target distribution, w, € R"s and w; € R™* are the weights of each samples in the
source and target distribution. The total weights of both wg and w;, are equal to 1. The objective of
the OT problem is to find a transportation plan T that minimizes the total transportation cost under
the weights-equal constraint.

OT problem has two main functions: (1) Measuring the distance between two distributions; (2)
Finding the correspondences between two distributions. We employed both. Specifically, we treated
the geographic representations of regions in the source and target cities as two mass distributions,
with each region assigned the same weight. we used the solution of the OT problem (also known
as the Wasserstein distance) to measure the geographic representation distance of the source and
target cities, and treated it as a loss to optimize the spatial encoder, thereby pulling the correspondent
regions in representation space.

As illustrated in Equation [I3] the OT problem is a linear programming problem, and we use an OT
solver based on the network simplex algorithm [2] to address it. Thanks to the Python Optimal
Transport (POT) []tool, we can conveniently calculate the solution of OT problem.

https://www.openstreetmap.org
https://www.worldpop.org/
"https://github.com/Python0T/POT
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Table 3: Hyperparameters setting for CRAFT

Hyperparameter Setting value
Diffusion steps (n) 500
B1 ~ Bn 0.0002 ~ 0.04 (linear)
GraphTransformer (GT) layers 3
Temporal encoder layers 2
GT attention heads 4
Retrieval top-K value 5
Batch size 256
Learning rate 5x 1076
Training epochs 300
Regional geographic representation (h;) dimensions 128
Temporal encoder hidden dimensions (dimensions of x; ;) 256
Hour embedding (£,,,,-) dimensions 64
Weekday embedding (Z,,cex) dimensions 64
Month embedding (£,,0nt5) dimensions 64
Condition (c; ;) dimensions 256

A.3 Implementation Details

For the proposed CRAFT method, we provide the hyperparameter settings in Table [3]to facilitate
the reproducibility by researchers. All these parameters are recommended values, not fixed, and can
be adjusted according to the dataset and experimental environment. During training, the AdamW
optimizer was used. To enhance stability, the EMA (Exponential Moving Average) mechanism was
adopted to train the diffusion model.

B Details of Experimental Settings

B.1 Experimental Environment

All neural network models (including CRAFT and other baselines) are implemented in PyTorch and
trained on a single NVIDIA RTX 3090 GPU. The experimental machine ran on Ubuntu 20.04.6 LTS,
was equipped 24-core Intel(R) Xeon(R) Silver CPU, and had 503 GB of RAM. The training time for
all models on a single dataset did not exceed 16 hours.

B.2 Datasets and Pre-processing

Table 4: Data description

Datasets \ Chicago Washington D.C. Toronto New York City
# Trips (x10%) 5136 4011 2395 35080
Time range 2023.01-2023.12  2023.01-2023.12  2020.01-2020.12  2023.01-2023.12
# Regions 73 82 61 96
# POIs 17205 14070 20621 50776

We conducted experiments using the traffic flow datasets of four cities, namely Chicago, Washington
D.C., Toronto, and New York City. The original data are all trip records of shared bicycles, which
include the latitude and longitude of the starting and ending points of users’ trips as well as timestamps.
We associated the trips with the manually partitioned urban regions, and counted the number of
bicycles entering and leaving each region within each hour, which served as the traffic flow values.
Details of the datasets are presented in Table [4]

In fact, the user trip data is sparse, which leads to the instability of the traffic flow trend in original
data. This is also a common problem in researches about traffic flow data. In response to this, we
have adopted two processing methods: (1) We have filled in the missing values in the traffic flow
sequence through linear interpolation. For the situation where there are values at the previous and
subsequent time steps but missing values in the middle, we have filled them with the average of the
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previous and subsequent values. (2) We have used the moving average method to smooth the values
within a window with a time length of 3. For the processed data, we have set a sliding window with a
length of T to extract the training and test samples. If there are still missing values exceeding 5% in a
certain sample, we will discard that sample.

B.3 Baseline Methods

The baseline models used in the experiment include two types of deep learning traffic flow generation
models that have emerged in the literature in recent years: Static Flow Generation Models and
Dynamic Flow Generation Models. Static Flow Generation Models directly estimate traffic flow
using the geographic features and temporal information of urban regions, and they include the
following two models.

* GMEL [27]]: It uses two graph neural networks to extract features and can simultaneously predict
the inflow and outflow as well as the OD (origin-destination) flow between regions.

* DFG [40]: It uses a deep cross network to extract the POI (point of interest) features inside and
outside the region, conducts supervised training using the intention-aware pedestrian flow, and
predicts the inflow and outflow of the region.

Dynamic Flow Generation Models use deep generative models to learn the complex distribution of
data and map random noise into data samples. The selected baseline models are as follows.

» KSTDiff [S8]: It uses the urban knowledge graph to extract the representations of urban geographic
entities, and then constructs a knowledge-enhanced spatiotemporal diffusion model to generate the
inflow and outflow of regions.

* CGAN [29]: This is a conditional generative adversarial network. In the experiment, we use the
original static geographic features and time embeddings as conditions to guide the generation of
the GAN.

 Diffwave [23]]: This is a diffusion model suitable for generating time series data and is often used
in speech synthesis. In this experiment, we use it to learn the distribution of traffic flow data.

e DiT [31]]: This is a diffusion probabilistic model with a Transformer as the noise estimator.

* DDPM [12]: This is a diffusion probabilistic model U-Net as noise estimator for image synthesizing.
To be applied in traffic flow data generation, we replaced 2D convolutions with 1D convolutions.

e CVAE [10]: This is a conditional variational autoencoder. Condition information is added to both
the Encoder and the Decoder to guide it to learn the conditional probability distribution of the data.
We use the original static geographic features and time embeddings as conditions.

B.4 Evaluation metrics

We used three commonly used metrics in traffic flow generation research to evaluate the quality
of generated data, including Common Part of Commuters (CPC), Normalized Mean Absolute
Error (NMAE), Normalized Root Mean Square Error (NRMSE). Since the the actual traffic flow
values in different cities vary greatly, the traffic flow data generated by our model are all normalized,
which can reflect the relative magnitudes of traffic flows in different regions and at different time
in the same city. All the metrics are calculated based on the normalized data, and the calculation
formulas are as follows
23007 min (g, i)

CPC =
M A M ?
Dima Uit i v
M .
ﬁ Zi:l \Z/z‘ - yi|
max(y;) — min(y;)’

1 M (A 2
A oiet (Ui — yi)
NRMSE — \/M s

max(y;) — min(y;) ’
where ¢; is the generated value, y; is the real value, and M is the number of values of all samples in
the test dataset. To enhance the stability of evaluation results, we grouped the data by the Region ID,
month, weekday and hour of the target city’s test samples and calculated the differences between the
group-averaged values.

NMAE = (16)
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C Additional Experiments

C.1 Sensitivity Analysis Results
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Figure 8: Sensitivity analysis for the layer number of sequence encoder

(a) Inflow-CPC (b) Inflow-NMAE (c) Inflow-NRMSE (d) Outflow-CPC (e) Outflow-NMAE  (f) Outflow-NRMSE
Figure 9: Sensitivity analysis for the dimension of temporal embedding

(a) Inflow-CPC (b) Inflow-NMAE (¢) Inflow-NRMSE (d) Outflow-CPC (e) Outflow-NMAE  (f) Outflow-NRMSE
Figure 10: Sensitivity analysis for the dimension of geographic representation

To validate how different hyperparameter configurations affect model performance, we plotted the
variation curves of evaluation metrics against three key hyperparameters.: (1) the layer number of the
sequence encoder; (2) the dimension of temporal embedding; (3) the dimension of the geographic
representation. The results of sensitivity analyses across all datasets and evaluation metrics are shown
in the Fig. [§] Fig. [9)and Fig. [I0] We can observe that CRAFT demonstrates excellent robustness
across all datasets and evaluation metrics, eliminating the need for meticulous hyperparameter tuning
to ensure superior model performance.

C.2 Temporal Length Extension Results

Overall Zero-shot Generation Performance in Target City. In the main experiments of the paper,
we set the generation time window length to 7" = 24. We then progressively extended the time length
T to the following values: {48,72,96, 120, 144, 168}. The experimental setup remained consistent:
training the model using data from three cities and performing zero-shot generation on the fourth city.
Detailed evaluation results are presented in Table [6] From these tables, we can conclude that: (1)
CRAFT achieved best performance in over 98.6% of cases across all datasets and evaluation metrics,
demonstrating that CRAFT exhibits state-of-the-art (SOTA) zero-shot generalization capabilities for
sequence data generation of varying temporal lengths. (2) CRAFT demonstrates stable performance,
while methods such as Diffwave and DDPM exhibit significant performance fluctuations under
different temporal length settings.

Data Utility Comparison. We compared the utility of generated data across different temporal
lengths for traffic flow prediction tasks. Regardless of the value of T', we used the first 7'/2 historical
sequence as input to predict the T'/2 future flow sequence. The downstream models are trained on
generated data from various methods and tested on real data. Detailed results are presented in Table
and [8] We found that in 86.5% of cases, the downstream model trained with CRAFT’s generated
data achieved best performance, indicating that CRAFT’s generated data has the better utility than
other baselines.

Computational Cost. As the length of temporal length increases, the model size and training time
will also grow correspondingly. To observe this phenomenon in detail, we conducted experiments on
a single NVIDIA RTX 3090 GPU, collected relevant statistical data during the training phase, and
the results are shown in Table [5] We observe that our model’s computational cost grows linearly
with temporal length increases, but this effect is weak. Extending the time length is acceptable in
terms of computational cost.

25



Table 5: The relationship between computational cost and temporal length

T  Model size (Byte) Train time (s/epoch) Valid time (s/epcoh) Avg memory (GB)

24 51781096 40.999 5.685 0.343
48 51830248 41.156 5.531 0.344
72 51879400 43.729 6.053 0.344
96 51928552 44.555 5.631 0.345
120 51977704 46.712 6.429 0.345
144 52026856 48.883 6.666 0.345
168 52076008 51.896 6.351 0.346

C.3 Visualization of the Traffic Flow Spatial Heatmap

We display the average traffic flow of real data and generated data on maps. The visualizations
for all datasets and baselines are shown in Fig. [TT] This comparison intuitively demonstrates that
the traffic data generated by CRAFT exhibits the highest similarity to real data in terms of spatial
distribution, indicating that CRAFT can effectively capture the universal mapping relationship
between geographic representations and traffic flow across different cities.

C.4 Visualization of Geographic Feature Alignment (GFA)

We employed t-SNE analysis to visualize the impact of the Traffic Flow Alignment (TFA) and
Cross City Alignment (CCA) modules in Geographic Feature Alignment. The results of the four
experiments are presented in Fig. [I2} Regardless of which city was chosen as the target, the alignment
results exhibited similar conclusions: (1) Under the combined action of TFA and CCA, regions with
high and low traffic volumes were well-separated in the representation space. (2) Without TFA,
representations from different cities tended to cluster into multiple groups, with high- and low-traffic
regions intermingled within the same cluster, making it difficult to distinguish and reducing the
quality of conditions. (3) Without CCA, significant domain shift occurred between the source and
target cities. Specifically, a portion of the target city’s region representations deviated from the
concentrated representation area of the source city, potentially leading to poorer transferability.
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Table 6: Cross-city traffic flow generation results with extended temporal length

Method ‘ City ‘ 72 =96 T =120 ‘ T =144
Y| CPC NMAE NRMSE | CPC  NMAE CPC  NMAE CPC  NMAE NRMSE NMAE CpC
GMEL 0215 0310 | 0645 0201 0741 0212 0490 0246 0351 0.183 0512
DFG | ~ 0328 0457 0153 0334 0152 0340 0156 0326 0454 0328 0.155
KSTDiff | % 0358 0488 0460 0288 0003 0370 0540 0444 0533 0539 0.032
CGAN | Z 0379 0488 0539 0371 0521 0386 0461 0359 0476 0492 0.509
Diffwave | 5 0504 0613 0384 0456 0464 0430 0492 0500  0.609 0437 0479
DiT g 0325 0407 0564 0362 0593 0333 058 0356 0341 0510
DDPM | £ 0300 0419 | 0417 0306 0455 0313 049 0291 0300 0509
CVAE 0269 0.388 0555 0286 0616 0282 0509 0280 0319 0.527
CRAFT 0145 0223 | 0798  0.145 0791 0.150 0785 0.149 0.154 0.645
GMEL 0278 0455 0266 0720 0199 0606 0213 0310 0266 0502
DFG | 3 0150 0339 0149 0346 0153 0332 0457 0333 0.152
KSTDff | 2 0214 0335 0006 0375 0533 0628 0708 0478 0.151
CGAN | 2 0552 0370 0529 0379 0438 0368 0486 0526 0505
Diffwave | £ 0350 0.469 0421 0482 0208 0428 0544 0.460 0500
DiT > 0531 0346 0579 0346 0550 0349 0438 0364 0536
DDPM | 2 0423 0307 0446 0319 0491 0292 0398 0302 0510
CVAE | © 0562 0287 0620 0283 0507 0281 0395 0316 0532
CRAFT 0797 0147 0797 0148 0792 0146 0223 0.148 0.656
GMEL | % 0609 0289 0649 0272 0764 0223 0261 0227 0711
DFG | & 0696 0252 0698 0254 0692 0252 0354 0254 0.691
KSTDiff | £ 0494 0356 0289 0421 0039 0464  0.591 0477 0.641
CGAN | 9 0510 0420 0575 0440 0583 0391 0507 0.480 0.442
Diffwave | S 0274 0466 0407 0557 0450 0577 0677 0506 0457
DIiT g 0627 0354 0617 0369 0608 0359 0451 0386 0.630
DDPM | 2 0417 0418 0488 0403 0541 0349 0458 0340 0463
CVAE | Z 0480 0368 0423 0388 0566 0347 0455 0399 0.464
CRAFT | £ 0786 0191 0777 0202 0781 091 0281 0.194 0.778
GMEL | 3 0557 0303 0616 0297 0534 0310 0408 0271 0.688
DFG | & 0694 0252 0695 0254 0689 0252 0353 0254 0.688
KSTDiff | 3 0581 0338 0 0.488 0000 0476 0.601 0503 0653
CGAN | & 0543 0427 059 0441 0554 0408 0519 0497 0423
Diffwave | & 0321 0434 0254 0546 0289 0476 0.596 0546 0.450
DIT = 0579 0361 0623 0377 0583 0357 0452 0387 0.621
DDPM | £ 0422 0416 0496 0395 0543 0353 0460 0345 0.462
CVAE | £ 0484 0368 0429 0386 0551 0355 0461 0.400 0.464
CRAFT | 3 079 0188 0783 0.195 0773 0207 0781 0193 0.280 0.196 0.778
GMEL 0748 0230 0721 0240 0639 0283 0558 0313 0407 0260 0703
DFG | _ | 0275 0421 0271 0432 0269 0441 0275 0423 0.536 0425 0272
KSTDiff | % 0002 0500 0672 0398 0685 0479 0670 0393 0468 0427 0268
CGAN | £ 0631 0358 0394 0436 0528 0399 0546 0378 0478 0387 0421
Diffwave | 5 | 0550 0424 0634 0462 0498 0523 0567 0475 0.59%4 0.488 0583
DIT £ 0638 0381 0608 0378 0595 0388 0600 0377 0460 0378 0611
DDPM | § 0625 0360 0649 0367 0600 0388 0628 0375 0484 0373 0.602
CVAE 0714 0302 0712 0305 069 0305 0679 0302 0416 0368 0592
CRAFT 0817 0178 0824 0176 0826 0174 0811 081  0.269 0.182 0.800
GMEL 0736 0235 0632 0286 0716 0248 0734 0236 0297 0254 0722
DFG | o | 0274 0420 0270 0432 0268 0441 0274 0422 0425 0271
KSTDiff | & 0002 0498 0682 0411 0685 0479 0673 0402 0419 0310
CGAN | 2 0637 0359 0523 0420 0526 0405 0544 0379 0393 0559
Diffvave | S | 0469 0432 0617 0446 0558 0438 0420 0471 0432 0555
DiT 2 0619 0381 0588 0394 0619 0381 0611 0365 0397 0.604
DDPM | £ 0628 0360 0650 0373 0603 0390 0633 0375 0376 0.607
CVAE | E 0709 0307 0705 0313 0695 0310 0680 0305 0365 0.606
CRAFT 0814 0182 0821 0180 0822 0181 0810 0182 0.188 0.803
GMEL | 2 | 0676 0178 0621 0256 0336 | 0598 0297 0362 | 0611 0263 0282 0347 0511 0429 0.500
DFG | 2 0584 0182 0585 0182 0279 | 0584 0182 0279 | 0580 0181 0181 0278 | 0583 0181 0277
KSTDiff | £ 0355 0442 0035 0232 0368 0000 0234 0370 | 0372 0771 0226 035 | 0.084 0236 0361
CGAN | Z | 0425 0561 0419 0585  0.682 0396 0610 0703 0458 0437 0549 0.654 0444 0380 0496
Diffwave | O 0313 0500 0213 0388 0531 0376 0648  0.735 0413 0405 0435 0576 | 0219 0540 0.6
DiT % 0470 0384 0441 0324 0422 0470 0335 0420 | 0440 0398 0351 0435 0447 0375 0464
DDPM | = 0517 0375 0481 0281 038 | 0519 0247 0362 0485 0335 0330 0445 0456 0306 0421
CVAE | 3 0442 0406 0483 0324 0454 | 0472 0343 0471 0286 0273 0286 0406 | 0470 0329 0437
CRAFT | # 0769 0115 0758 0121 0193 | 0757 012 0192 | 0761 0118 0135 0208 | 0741 0131 0203
GMEL | 3 | 0636 0221 0623 0242 0311 0412 0584  0.647 0496 0453 0397 0477 0521 0373 0453
DFG | £ 0589 0183 058 0183 0279 | 0589 0183 0279 | 0585 0182 0182 0278 | 0587 0082 0278
KSTDIff | 2 0381 0763 0157 0229 035 | 0000 0234 0370 | 0428 0429 0238 0345 0282 0264 0387
CGAN | % | 0422 0579 0414 0591 0.685 0394 0620 0710 | 0460 0444 0532 0640 | 0439 0355 0478
Diffwave | & 0412 0530 0285 0445 0579 | 0420 0488 0616 | 0463 0419 0457 0.587 0192 0345 0489
DIiT M 0436 0359 0460 0346 0426 | 0485 0353 0425 0418 0362 0385 0471 0457 0342 0422
DDPM | = 0521 0375 0494 0291 0398 0521 0248 0359 | 0493 0341 0333 0448 0461 0308 0422
CVAE | z 0449 0421 0477 0324 0455 0479 0358 0483 0294 0271 0285 0404 | 0475 0320 0424
CRAFT | Z 0777 0112 0766 0119 0.185 0764 0121 0186 | 0762  0.118 0136 0203 | 0746 0134 0200
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Table 7: Data utility comparison on traffic flow prediction (LSTM)

| | Chicago | Washington, D.C. | Toronto | New York City
Gen | Pred ™ihow | Oufow |  Inflow | Owflow |  Inflow | Ouflow | Inflow |  Ouflow

‘ ‘ MAE RMSE MAE RMSE ‘ MAE RMSE MAE RMSE ‘ MAE RMSE MAE RMSE ‘ MAE RMSE MAE RMSE

Real 0.097 0.151 0.100 0.154 | 0.094 0.144 0.097 0.150 | 0.109 0.163 0.I11 0.164 0.056 0.101 0.056 0.101
GMEL 0.167 0230 0.166 0228 | 0.202 0.254 0.210 0.268 | 0.241 0303 0.251 0.320 | 0.092 0.144 0.091 0.142
DFG @ 0.283 0418 0.289 0423 | 0.134 0202 0.136 0.206 | 0319 0426 0.321 0427 | 0.070 0.126 0.069 0.125
KSTDiff I 0.362 0493 0368 0497 | 0469 0.599 0475 0.603 | 0.507 0.629 0.505 0.627 | 0.348 0.389 0.762 0.814
CGAN &~ 0.199 0292 0212 0309 | 0283 0.394 0286 0399 | 0287 0388 0.286 0.382 | 0.151 0248 0.163 0.257
Diffwave E 0.221 0299 0232 0.297 | 0276 0.354 0331 0441 | 0327 0434 0.286 0362 | 0.141 0211 0.138 0.211
DiT ; 0.232 0285 0246 0.292 | 0.266 0.311 02838 0330 | 0299 0337 0.307 0.343 | 0.252 0280 0.209 0.245
DDPM = 0.113 0.174 0.115 0.171 | 0.124 0.183 0.122 0.183 | 0.117 0.171 0.122 0.175 | 0.065 0.113 0.066 0.110
CVAE 0.175 0255 0.172 0249 | 0.308 0.429 0304 0421 | 0.158 0.230 0.162 0.233 | 0.138 0219 0.135 0213
CRAFT 0.099 0.153 0.103 0.158 | 0.103 0.156 0.111 0.167 | 0.120 0.173 0.127 0.180 | 0.063 0.107 0.064 0.105
Real 0.104 0.156 0.107 0.159 | 0.095 0.145 0.099 0.151 | 0.114 0.169 0.115 0.170 0.059 0.106 0.059 0.105
GMEL 0.169 0234 0.175 0.246 | 0.227 0.285 0.240 0302 | 0.258 0329 0.270 0.349 | 0.093 0.140 0.097 0.153
DFG § 0303 0435 0306 0438 | 0.142 0213 0.151 0.226 | 0.368 0.481 0.370 0482 | 0.073 0.129 0.073 0.129
KSTDiff I 0.256 0.340 0.282 0.381 | 0.320 0.400 0.314 0372 | 0336 0380 0.340 0.403 | 0224 0361 0205 0.343
CGAN &~ 0.208 0300 0206 0294 | 0.294 0.401 0.294 0.396 | 0.407 0.510 0.409 0.519 | 0262 0327 0267 0335
Diffwave E 0.244 0310 0.239 0342 | 0312 0352 0296 0.363 | 0360 0462 0405 0492 | 0.175 0236 0.142 0214
DiT ; 0.259 0300 0.228 0.283 | 0.292 0.332 0306 0354 | 0321 0366 0.312 0.355 | 0.169 0231 0204 0.244
poPM | B | 0116 0171 0117 0176 | 0.133 0186 0.34 0190 | 0121 0077 0.127 0.83 | 0072 0122 0074 0.119
CVAE 0.175 0256 0.177 0.258 | 0.229 0.319 0233 0321 | 0.174 0.248 0.177 0.250 | 0.108 0.178 0.109 0.180
CRAFT 0.109 0.165 0.111 0.167 | 0.111 0.166 0.116 0.171 | 0.124 0.179 0.127 0.180 | 0.066 0.111 0.067 0.108
Real 0.108 0.161 0.110 0.163 | 0.094 0.144 0.098 0.149 | 0.117 0.175 0.119 0.175 0.062 0.111 0.063 0.110
GMEL 0.174 0245 0.182 0.248 | 0.231 0.288 0.248 0312 | 0.261 0319 0.262 0.313 | 0.102 0.152 0.139 0.198
DFG g 0.322 0460 0326 0462 | 0.152 0.224 0.158 0230 | 0.351 0455 0.351 0454 | 0.081 0.140 0.081 0.142
KSTDiff I 0.371 0502 0376 0.505 | 0.416 0.540 0.494 0.617 | 0480 0.608 0.480 0.606 | 0.234 0.372 0235 0.371
CGAN ~ 0.261 0372 0264 0376 | 0397 0.515 0409 0519 | 0335 0453 0336 0454 | 0.170 0240 0.164 0.232
Diffwave E 0252 0.341 0.236 0321 | 0319 0378 0297 0.350 | 0.311 0.384 0327 0412 | 0.149 0.229 0.182 0.271
DiT & 0.234 0287 0242 0287 | 0.297 0335 0.296 0.333 | 0316 0357 0302 0.341 | 0230 0260 0230 0.260
DDPM | 4 | 0116 0172 0119 0177 | 0122 0179 0122 0.184 | 0.128 0.183 0.35 0.190 | 0074 0.025 0074 0.118
CVAE 0.152  0.225 0.159 0.233 | 0.301 0405 0300 0.402 | 0.170 0.240 0.174 0241 | 0.129 0202 0.131  0.203
CRAFT 0.112 0.170 0.115 0.171 | 0.111 0.162 0.115 0.171 | 0.129 0.188 0.134 0.191 | 0.069 0.118 0.068 0.112
Real 0.106 0.160 0.108 0.161 | 0.095 0.145 0.099 0.149 | 0.121 0.183 0.122 0.183 0.062 0.111 0.063 0.110
GMEL _ 0.184 0243 0.187 0256 | 0.213 0.260 0.218 0.271 | 0.277 0333 0.262 0312 | 0.099 0.152 0.105 0.155
DFG 54 0306 0445 0311 0448 | 0.168 0.249 0.172 0.252 | 0.352 0.467 0356 0.472 | 0.089 0.154 0.089 0.154
KSTDiff ]‘ 0390 0434 0.624 0702 | 0458 0.588 0473 0.599 | 0334 0377 0.337 0.388 | 0.767 0.819 0390 0.444
CGAN ~ 0.275 0374 0283 0.387 | 0.293 0404 0286 0395 | 0.314 0409 0313 0410 | 0.136 0.228 0.137 0.227
Diffwave = 0.236 0294 0233 0.299 | 0387 0495 0324 0413 | 0307 0383 0.294 0.358 | 0.151 0245 0.143 0.235
DiT E 0.231 0284 0242 0.286 | 0276 0.319 0277 0321 | 0302 0344 0.299 0344 | 0270 0297 0.175 0.219
DDPM | % |06 0172 0118 0.77 | 0123 0.81 0122 0.8 | 0132 0.88 0.41 0.196 | 0.070 0.118 0.069 0.112
CVAE 0.151 0217 0.155 0222 | 0.214 0304 0220 0.310 | 0.166 0.239 0.164 0234 | 0.133 0215 0.130 0.208
CRAFT 0.110 0.168 0.112 0.170 | 0.110 0.166 0.116 0.170 | 0.129 0.187 0.131 0.190 | 0.073 0.115 0.074 0.114
Real 0.107 0.160 0.110 0.162 | 0.095 0.144 0.098 0.148 | 0.125 0.186 0.127 0.186 0.062 0.109 0.061 0.108
GMEL . 0.184 0242 0221 0327 | 0209 0.262 0238 0303 | 0261 0317 0.263 0.317 | 0.086 0.137 0.091 0.138
DFG 3 0.315 0454 0319 0456 | 0.155 0.227 0.157 0229 | 0.368 0.487 0.372 0.490 | 0.086 0.145 0.086 0.145
KSTDiff "_" 0.524 0.585 0456 0.505 | 0481 0.607 0350 0.386 | 0.341 0419 0377 0423 | 0200 0.334 0.188 0.294
CGAN ~ 0394 0495 0420 0515 | 0459 0579 0470 0.590 | 0.362 0460 0.355 0452 | 0.172 0255 0.176  0.260
Diffwave = 0244 0335 0312 0425 | 0290 0.358 0.295 0.346 | 0.333 0.440 0366 0459 | 0.167 0251 0.142 0.210
DiT E 0226 0.280 0.224 0276 | 0.306 0.345 0305 0.342 | 0304 0.344 0311 0352 | 0.195 0.234 0.206 0.240
DDPM | @ |0117 0176 0121 083 | 0123 082 0.25 0185 | 0.132 0188 0137 0194 | 0076 0.121 0078 0.117
CVAE 0.209 0293 0210 0.293 | 0278 0.370 0279 0370 | 0226 0314 0.228 0.316 | 0.154 0255 0.153 0.252
CRAFT 0.113 0.170 0.115 0.170 | 0.114 0.169 0.118 0.171 | 0.130 0.189 0.137 0.196 | 0.075 0.122 0.077 0.118
Real 0.112 0.169 0.115 0.172 | 0.098 0.146 0.101 0.152 | 0.121 0.179 0.122 0.179 0.061 0.107 0.061 0.107
GMEL . 0204 0280 0205 0283 | 0.198 0.256 0.211 0.258 | 0.225 0.268 0.226 0.279 | 0.098 0.148 0.097 0.148
DFG 4 0.299 0431 0304 0433 | 0.153 0.223 0.156 0228 | 0.312 0414 0313 0414 | 0.089 0.154 0.089 0.153
KSTDiff ]‘ 0.348 0480 0335 0462 | 0443 0.524 0505 0.623 | 0401 0.516 0.379 0481 | 0.199 0339 0.195 0.305
CGAN ~ 0412 0504 0426 0525 | 0395 0496 0390 0484 | 0335 0412 0.340 0416 | 0.181 0269 0.173  0.261
Diffwave = 0.238 0306 0227 0.295 | 0.334 0.388 0.444 0573 | 0.307 0354 0.331 0407 | 0.166 0260 0.147 0.220
DiT E 0235 0296 0.236 0295 | 0289 0326 0285 0.324 | 0.315 0.351 0317 0357 | 0218 0.250 0.168 0.214
DDPM | 4 |0118 0175 0121 0182 | 0131 0181 034 0188 | 0125 082 0137 0.195 | 0073 0119 0075 0.119
CVAE 0228 0312 0228 0311 | 0316 0416 0313 0411 | 0.187 0251 0.190 0.251 0.180 0260 0.180 0.256
CRAFT 0.114 0.170 0.117 0.173 | 0.111 0.165 0.115 0.171 | 0.124 0.180 0.133 0.188 | 0.078 0.128 0.078 0.122
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Table 8: Data utility comparison on traffic flow prediction (Transformer)

| Chicago | Washington, D.C. | Toronto | New York City

Gen | Pred ™ihow | Oufow |  Inflow | Owflow |  Inflow | Ouflow | Inflow |  Ouflow
‘ MAE RMSE MAE RMSE ‘ MAE RMSE MAE RMSE ‘ MAE RMSE MAE RMSE ‘ MAE RMSE MAE RMSE
Real 0.099 0.158 0.103 0.162 | 0.094 0.149 0.098 0.155 | 0.111 0.170 0.114 0.172 0.053 0.102 0.054 0.103
GMEL @ 0.165 0228 0.165 0227 | 0.201 0.260 0.199 0.253 | 0.220 0.274 0.223 0.284 | 0.080 0.133 0.081 0.131
DFG H 0300 0.424 0300 0418 | 0.184 0250 0.176 0.240 | 0.341 0453 0.328 0435 | 0.085 0.134 0.081 0.130
KSTDiff &~ 0.367 0500 0377 0.510 | 0.469 0.604 0476 0.609 | 0.571 0.723 0.530 0.670 | 0.337 0.378 0.756  0.807
CGAN E 0.159 0221 0.171 0.237 | 0.282 0.379 0284 0382 | 0239 0310 0.235 0304 | 0.128 0.193 0.135 0.201
Diffwave g 0220 0292 0212 0.279 | 0278 0.345 0284 0354 | 0291 0.356 0.285 0.347 | 0.156 0228 0.140 0.211
DiT £ 0.235 0289 0236 0.287 | 0.269 0.312 0282 0320 | 0296 0339 0.298 0.337 | 0.181 0225 0.158 0.212
DDPM é 0.111 0.169 0.115 0.173 | 0.113 0.166 0.115 0.172 | 0.119 0.174 0.123 0.178 | 0.063 0.111 0.065 0.110
CVAE &= 0.162 0228 0.164 0229 | 0.230 0311 0.237 0318 | 0.172 0222 0.176  0.226 | 0.114 0.181 0.116 0.183
CRAFT 0.097 0.148 0.100 0.152 | 0.097 0.149 0.105 0.161 | 0.124 0.174 0.124 0.173 | 0.060 0.103 0.060 0.102
Real 0.102 0.159 0.105 0.162 | 0.094 0.147 0.098 0.153 | 0.116 0.176 0.118 0.177 0.055 0.100 0.056 0.100
GMEL § 0.186 0251 0.186 0.258 | 0.249 0.311 0240 0298 | 0252 0303 0.248 0.298 | 0.083 0.138 0.083 0.132
DFG I 0362 0491 0350 0486 | 0.166 0222 0.166 0.222 | 0.391 0.511 0.390 0.509 | 0.069 0.116 0.070 0.118
KSTDiff ~ 0.349 0514 0364 0519 | 0383 0511 0376 0488 | 0356 0401 0352 0413 | 0216 0355 0207 0359
CGAN E“; 0.179 0243 0.187 0249 | 0.254 0.345 0.252 0.333 | 0391 0493 0359 0458 | 0.146 0.190 0.149 0.194
Diffwave g 0.239 0.297 0.228 0294 | 0.299 0352 0279 0.328 | 0.324 0.369 0.339 0382 | 0.143 0211 0.143 0.209
DiT u% 0.243 0291 0225 0.281 | 0.285 0.328 0.287 0331 | 0321 0364 0311 0.354 | 0.177 0234 0.188 0.234
DDPM | Z |0.108 0161 0113 0.67 | 0132 0.87 0131 0.86 | 0128 0.184 0.30 0.85 | 0.067 0.117 0070 0.8
CVAE = 0.175 0243 0.176 0.244 | 0.224 0.305 0227 0306 | 0.192 0.255 0.198 0.259 | 0.106 0.165 0.109 0.170
CRAFT 0.103 0.155 0.106 0.158 | 0.106 0.158 0.109 0.161 | 0.121 0.174 0.124 0.176 | 0.060 0.104 0.060 0.104
Real 0.105 0.162 0.108 0.165 | 0.093 0.143 0.096 0.147 | 0.115 0.175 0.117 0.176 0.059 0.105 0.059 0.104
GMEL g 0.186 0256 0.180 0.240 | 0.218 0.276 0.232 0294 | 0.231 0.281 0.236 0.286 | 0.091 0.141 0.145 0.184
DFG I 0.341 0467 0323 0442 | 0.175 0.237 0.168 0228 | 0.354 0467 0360 0472 | 0.068 0.116 0.069 0.117
KSTDiff &~ 0.387 0526 0397 0.538 | 0.420 0.546 0492 0.616 | 0448 0.564 0.484 0.604 | 0.243 0.386 0.236 0.375
CGAN g 0.195 0268 0.197 0.267 | 0.362 0447 0385 0476 | 0.300 0388 0.296 0.380 | 0.124 0.175 0.133  0.187
Diffwave E 0240 0297 0.235 0304 | 0272 0320 0274 0.319 | 0294 0.342 0297 0348 | 0.144 0209 0.139 0.205
DiT £ 0.231 0287 0227 0280 | 0.285 0.327 0.278 0.321 | 0.308 0346 0.297 0.339 | 0.146 0208 0.151 0.208
DDPM | £ |0114 0169 0118 0173 |0.122 0175 0021 0176 | 0130 0.I83 0138 0.191 | 0070 0116 0071 0.115
CVAE = 0.153 0.214 0.158 0219 | 0255 0332 0261 0.336 | 0.170 0.230 0.174 0231 | 0.113 0.169 0.117 0.169
CRAFT 0.106 0.160 0.108 0.162 | 0.104 0.150 0.108 0.158 | 0.122 0.178 0.128 0.183 | 0.063 0.109 0.064 0.108
Real . 0.100 0.155 0.103 0.159 | 0.090 0.140 0.093 0.144 | 0.116 0.175 0.118 0.177 0.057 0.105 0.057 0.105
GMEL 54 0.192 0256 0.193 0261 | 0.222 0290 0232 0.304 | 0.249 0.305 0250 0306 | 0.094 0.150 0.098 0.156
DFG ]‘ 0310 0425 0303 0413 | 0.150 0.203 0.151 0.208 | 0.349 0.460 0.354 0.465 | 0.071 0.122 0.072 0.123
KSTDiff = 0390 0436 0.621 0.699 | 0.509 0.654 0.507 0.640 | 0.328 0.380 0.329 0386 | 0.721 0.771 0.341  0.420
CGAN it 0.270 0369 0.282 0.390 | 0.283 0.375 0.288 0381 | 0273 0349 0.261 0.338 | 0.108 0.175 0.109 0.173
Diffwave g 0.221 0281 0222 0.284 | 0270 0.342 0262 0321 | 0309 0350 0.294 0.343 | 0.140 0207 0.137 0.202
DiT é 0.222 0280 0222 0.276 | 0.265 0.318 0268 0315 | 0.306 0349 0.303 0.347 | 0.173 0220 0.149 0.208
DDPM | Z | 0109 0161 0113 0166 | 0112 0163 0113 0166 | 0.129 0184 0135 0190 | 0067 011l 0066 0.109
CVAE s 0.153 0.214 0.158 0220 | 0.202 0272 0212 0.283 | 0.170 0.231 0.173 0231 | 0.106 0.171 0.105 0.168
CRAFT 0.107 0.162 0.109 0.163 | 0.103 0.152 0.107 0.156 | 0.120 0.173 0.123 0.177 | 0.063 0.104 0.063 0.104
Real . 0.101 0.155 0.104 0.159 | 0.091 0.140 0.093 0.144 | 0.118 0.177 0.120 0.180 0.055 0.104 0.056 0.104
GMEL 3 0.211 0281 0209 0.285 | 0.242 0.301 0234 0284 | 0264 0317 0.263 0.312 | 0.088 0.140 0.090 0.142
DFG 'ﬁ 0.323 0450 0307 0427 | 0.188 0.248 0.185 0247 | 0399 0.521 0.391 0.510 | 0.069 0.120 0.069 0.119
KSTDiff = 0.524 0586 0459 0510 | 0488 0.618 0369 0423 | 0367 0462 0385 0446 | 0.190 0.315 0.166 0.239
CGAN = 0342 0431 0392 0480 | 0.371 0463 0352 0449 | 0.284 0360 02838 0368 | 0.133 0.186 0.135 0.184
Diffwave ?_:_) 0221 0280 0215 0273 | 0.291 0334 0.296 0.353 | 0290 0.357 0.288 0.359 | 0.139 0205 0.136 0.202
DiT é 0223 0279 0221 0276 | 0.290 0.331 0.283 0.322 | 0.297 0338 0301 0.342 | 0.147 0208 0.143 0.203
DDPM | Z | QI3 0167 0117 0173 | 0122 0173 0124 0176 | 0.127 0181 0131 085 | 0071 0113 0069 0.110
CVAE & 0.192 0260 0.193 0.261 | 0277 0.359 0283 0363 | 0234 0.297 0.240 0.305 | 0.124 0.198 0.124 0.196
CRAFT 0.107 0.160 0.110 0.163 | 0.106 0.154 0.111 0.159 | 0.125 0.180 0.129 0.183 | 0.066 0.107 0.065 0.105
Real . 0.104 0.160 0.108 0.164 | 0.090 0.140 0.093 0.144 | 0.115 0.173 0.118 0.176  0.054 0.102 0.055 0.103
GMEL 2 0216 0288 0217 0287 | 0219 0.281 0.218 0.277 | 0.238 0301 0.241 0.297 | 0.093 0.148 0.095 0.150
DFG ]‘ 0.315 0427 0313 0424 | 0.162 0.217 0.167 0226 | 0377 0493 0374 0492 | 0.071 0.122 0.072 0.123
KSTDiff ~ 0.344 0473 0340 0467 | 0444 0526 0510 0.625 | 0395 0.508 0374 0473 | 0.199 0339 0.196 0.308
CGAN it 0.385 0469 0385 0476 | 0324 0418 0323 0412 | 0319 0385 0.346 0413 | 0.140 0200 0.145 0.210
Diffwave ?:_) 0.228 0288 0.221 0.283 | 0.281 0.328 0.267 0321 | 0290 0.339 0.289 0.341 | 0.142 0206 0.136 0.202
DiT :é 0.231 0.288 0.227 0282 | 0.283 0.325 0267 0.318 | 0.305 0.342 0.308 0347 | 0.192 0.231 0.154 0.206
DDPM é 0.115 0.169 0.119 0.174 | 0.129 0.178 0.132 0.182 | 0.127 0.178 0.136 0.187 | 0.071 0.112 0.069 0.110
CVAE = 0.193 0257 0.195 0259 | 0.285 0.369 0.287 0.370 | 0.196 0.247 0202 0.252 | 0.138 0.189 0.138 0.188
CRAFT 0.106 0.158 0.108 0.162 | 0.102 0.149 0.106 0.154 | 0.122 0.176 0.125 0.179 | 0.069 0.114 0.067 0.111
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Figure 11: Heatmap of Traffic Flow in Different Cities (CHI stands for Chicago, DC stands for
Washington, D.C., TRT stands for Toronto and NYC stands for New York City)
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Figure 12: Visualization analysis for TFA and CCA (CHI stands for Chicago, DC stands for Wash-
ington, D.C., TRT stands for Toronto and NYC stands for New York City)
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