
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VALUE SHAPING: BIAS REDUCTION IN BELLMAN ER-
ROR FOR DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Bellman error plays a crucial role as an objective function in deep reinforce-
ment learning (DRL), serving as a proxy for the value error. However, this proxy
relationship does not guarantee exact equivalence between the two, as the Bellman
error inherently contains bias that can lead to unexpected optimization behavior.
In this paper, we investigate the relationship between the value error and the Bell-
man error, and analyze why the Bellman error is not a reliable proxy due to its
inherent bias. Leveraging the linear structure of the Bellman equation, we pro-
pose a value shaping method to compensate for this bias by adjusting the reward
function—while ensuring that such modifications do not alter the optimal policy.
In practice, we initialize two parallel Bellman iteration processes: one for esti-
mating the bias and the other for updating the value function with minimal bias.
Our method effectively learns a low-bias Q-function, making it broadly applica-
ble and easily integrable into existing mainstream RL algorithms. Experimental
results across multiple environments demonstrate that our approach improves RL
efficiency, achieves superior performance, and holds promise as a fundamental
technique in the field of reinforcement learning.

1 INTRODUCTION

Minimizing Bellman error is central to reinforcement learning (RL) algorithms Sutton & Barto
(2018). RL optimizes decision-making by solving Markov Decision Processes (MDPs), with its
underlying logic relying on the Bellman equation Bellman (1966). The Bellman equation defines
how the state-action value function (Q-function) connects current decisions to long-term returns,
making accurate estimation of the value function crucial. This process involves minimizing value
estimation error Fujimoto et al. (2018), and its optimization directly impacts policy learning and
improvement. Since the state-action value function serves as the foundation for policy optimiza-
tion, effectively fitting Riedmiller (2005), approximating Sutton et al. (1999), updating Munos &
Szepesvári (2008), and modeling Bellemare et al. (2017) it has become the core challenges in RL
research.

Minimizing Bellman error is essentially minimizing value error Sutton (1988). Value error is defined
based on the optimal state-value function and is generally not directly computable. When the value
error reaches zero, it indicates that the value function has been perfectly fitted. With the advancement
of neural networks, deep reinforcement learning has found increasingly broad applications, making
the efficiency of value function fitting more critical. By improving the accuracy of Bellman error
estimation Omura et al. (2024), optimizing the value function fitting process Patterson et al. (2022),
and enhancing its efficiency, we can not only improve policy optimization but also increase the
sample efficiency of RL algorithms.

The Bellman error serves as a proxy for the Value error Fujimoto et al. (2022). However, this proxy
relationship does not guarantee equivalence between the two errors - it represents a trade-off. During
optimization, the bias in the Bellman error is often ignored. When minimizing the Bellman error,
the bias may change while the Value error remains constant. Due to both the linear nature of the
Bellman equation and the way we evaluate Value error (using L2 or L1 norms), there can potentially
exist multiple equivalent proxies for the same Value error (as illustrated with specific examples in
Sec.4). Therefore, choosing an appropriate Bellman error and improving the value update process
can help enhance the accuracy and efficiency of value function approximation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Previous research has reshaped the Bellman error from the perspective of the reward function and
Q-value rather than addressing the inherent issues of the Bellman error itself. The reward function
and target Q-value are two crucial components of the Bellman Error. The Bellman Error can be re-
shaped by modifying the reward function, as demonstrated in various works on reward shaping Naik
et al. (2024), reward smoothing Schulman et al. (2015), reward scaling Haarnoja et al. (2018a;b)
and dense reward design Pathak et al. (2017); Osband et al. (2018); Burda et al. (2018). Research
focusing on target Q-values has primarily investigated methods to modify Q-value to promote di-
versity Van Seijen et al. (2017); Sun et al. (2022a) or stability Ioffe (2015); Gallici et al. (2024);
Fujimoto et al. (2024), as well as modeling their underlying distributions Bellemare et al. (2017);
Dabney et al. (2018); Hessel et al. (2018); Cetin & Celiktutan (2023).

In this paper, we investigate the origins of Bellman error bias and methods for its reduction. The
intuitive idea is to use Monotonically increasing linear reward transformation that preserve the
optimal policy while linearly reducing the bias in Bellman error through the transformed rewards.
We name this method MRT (Monotonic Reward Transformation). In terms of implementation, MRT
maintains two parallel Bellman iteration processes: one with default settings to predict Bellman
error bias, and another that incorporates the predicted bias as reward compensation into the target
Q-values, enabling low-bias Q-value updates. These low-bias Q-values are then used to guide policy
optimization. Notably, our method is plug-and-play, offering broad applicability across different
settings. We apply the MRT method to several mainstream algorithms, and experiments across
multiple environments demonstrate that MRT significantly improves sample efficiency and boosts
algorithm performance.

2 RELATED WORK

Reward signal plays a critical role in determining the success or failure of the RL algorithm. Reward
shaping (RS) has been extensively discussed in previous research, we introduce ”Value Shaping”
(VS), which shares a strong connection with reward shaping through the Bellman Equation and is
similarly built upon the concept of preserving the optimal policy.

Reward shaping In general, any method that modifies the reward signal in RL can be consid-
ered a form of reward shaping. The concept of reward shaping was first introduced in (Ng et al.,
1999), which utilizes reward information to distinguish between states, enabling better policy learn-
ing while emphasizing that the optimal policy remains unchanged. In contrast, in sparse reward
environments, additional intrinsic rewards are often designed (Chentanez et al., 2004) to achieve
a similar goal. For instance, methods like RND (Pathak et al., 2017; Osband et al., 2018; Burda
et al., 2018) add reward signals based on prior knowledge, allowing the policy to learn more effec-
tively. Other works modify the way prior knowledge is utilized (Hu et al., 2020; Chen et al., 2022)
to achieve improved performance. Some studies also focus on policy optimization by altering the
reward signal to reduce the variance of the gradient, such as in GAE (Schulman et al., 2015).

Value shaping also includes multiple research area as value is updated based on Bellman equation,
some related to Bellman error reduction Kumar et al. (2019),and chain effect reduction Tang &
Berseth (2024).Some related to represent learning, such as Dueling networkWang et al. (2016),
BatchNorm Ioffe (2015); Bhatt et al. (2019),Spectral Normalization Bjorck et al. (2021) designed
for value normalization, LayerNorm Network Gallici et al. (2024); Fujimoto et al. (2024). Some
related to modeling related distribution, such as reward distribution Van Seijen et al. (2017); Sun
et al. (2022b), value distribution Bellemare et al. (2017); Hessel et al. (2018), which leads to a
series of research about distributional reinforcement learning, such as value decomposition Rashid
et al. (2020), value quantile regression Dabney et al. (2018). While some work make a progress
on variance reduction, such as reward Centering Naik et al. (2024) for value variance reduction,
Advantage baseline Mnih (2016) for policy gradient variance reduction. There are also many works
that utilize value shaping, such as reward scaling in the SAC Haarnoja et al. (2018a;b) paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 BACKGROUND

3.1 DEEP REINFORCEMENT LEARNING

Reinforcement learning (RL) is an optimization framework for tasks of a sequential nature (Sutton
& Barto, 2018). Typically, tasks are defined as a Markov decision process (MDP) (S, A, r, p,
d0, γ), where S is a finite state space, A is a finite action space, r : S × A → R is a bounded
reward function (i.e., |r(s, a)| ≤ Rmax for some Rmax < ∞), p(· | s, a) denotes the transition
probability distribution over next states given (s, a), d0 is the initial state distribution, and γ ∈ [0, 1)
is the discount factor. Actions are selected according to a policy π. The performance of a policy is
measured by its discounted return

Jr(π) = Eπ

[∞∑
t

γtr(st, at)

]
. (1)

In reinforcement learning, the Bellman equations Bellman (1966) describe the relationship between
the value of a state (or state-action pair) and the expected return from that state onward. Below is
the expected Bellman operator T .

T Qπ(s, a) = Es′∼p,a′∼π [r(s, a) + γQπ(s′, a′)] , (2)

which relates the value of the current state-action pair to an expectation over the next state-action
pair. Given an approximate value function Q (distinguished from the true value function Qπ by
dropping the π superscript) of a target policy π, we denote the Bellman error ϵ(s, a):

ϵQ(s, a) := Q(s, a)− Es′∼p,a′∼π [r(s, a) + γQ(s′, a′)] . (3)

In practice, the Bellman error is approximated by Temporal Difference (TD)Sutton (1988) error
δ(i), for a transition i := (s, a, r, s′), the TD error is,

δQ(i) := Q(s, a)− (r(s, a) + γQ(s′, a′)),

where a′ ∼ π. The relationship between the TD error and the Bellman error can be described as
follows:

ϵQ(s, a) = Es′,a′ [δQ(i)].

In policy evaluation, the main objective of interest is a loss (such as the MSE or L1) over the value
error ∆Q(s, a), the distance of an approximate value function Q to the true value function Qπ of
the target policy π:

∆Q(s, a) := Q(s, a)−Qπ(s, a). (4)

Value error is often unmeasurable, as the true value function Qπ is unobtainable without the un-
derlying MDP. While both the Bellman error and the value error are defined with respect to Q, for
simplicity we drop the subscript when the error terms are not in reference to a specific value func-
tion. The relationship between the Bellman error and the value error has been explored in prior
work Fujimoto et al. (2022), and it is formalized in the following:

Proposition 3.1 (Value error as a function of Bellman error). For any state-action pair (s, a) ∈
S × A, with state action distribution dπ(s′, a′|s, a) = 1

1−γ

∑∞
t=0 γ

tpπ((s, a) → s′, t)π(a′|s′), the
value error ∆Q(s, a) can be defined as a function of the Bellman error ϵQ

∆Q(s, a) =
1

1− γ
E(s′,a′)∼dπ(·|s,a)[ϵQ(s

′, a′)]. (5)

This proposition explains the relationship between value error and Bellman error from the perspec-
tive of the state distribution.

3.2 LINEAR REWARD TRANSFORMATION

In a Markov Decision Process (MDP), a linear transformation of the reward function generally does
not affect the optimal policy, depending on the specific form of the linear transformation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Suppose the transformed reward function is given by

r′(s, a) = α · r(s, a) + β

where α and β are constants, with α > 0. a linear transformation of the form r′(s, a) = α·r(s, a)+β
with α > 0 will not affect the choice of the optimal policy. However, if α < 0 (i.e., the transforma-
tion involves a negative scaling factor), it will reverse the reward priorities, causing originally higher
rewards to become lower, which would affect the optimal policy. Therefore, maintaining α > 0 is
essential. We also refer to linear transformations with α > 0 as MRT(Monotonic increasing linear
Reward Transformation). This name provides better understanding and intuition.

4 MITIGATING THE BIAS OF BELLMAN ERROR

By appropriately altering the shape of the target domain, we can make the Q-function easier to learn.
This means that we should pay attention to the shape of Bellman error. In the following content, to
simplify expressions, the inputs of functions will be omitted when it’s unnecessary. For example,
the state-value function Q(s, a) will be written as Q, the reward function r(s, a) will be written as
r, and the bias function b(s, a) will be written as b.

Problem statement. The Bellman equation provides a recursive and iterative framework for value
learning, offering a method to estimate long-term returns. However, when function approximation
and temporal difference learning are introduced, any bias introduced during the value update not
only persists but also propagates throughout the iterative process Fujimoto et al. (2022); Farahmand
et al. (2010). This is because both value error and Bellman error are evaluated based on the relative
absolute difference between two target values.

Although this bias may not necessarily prevent the optimal policy from converging, it can signifi-
cantly influence the learning process of the value function. To illustrate this phenomenon, we borrow
an example Fujimoto et al. (2022) that demonstrates the existence of such bias.
Remark 4.1 (Bellman error hides bias). Let Qπ be the true value function for some MDP and
policy π. We define the following approximate value functions:

Q1 = Qπ + 1 (bias is correlated),
Q2 = Qπ ± 1 (bias is uncorrelated),

where ±1 denotes a random operator, taking the value +1 or −1 with equal probability. In both
cases, following Eq. 4, the value error, measured by MSE or L1 loss will be 1 for any state-action
pair. Following Eq. 2, expanding the expectation of next Q-value, the Bellman error of Q1 will be
1 − γE[1] = 1 − γ, while the Bellman error of Q2 will be | ± 1 − γE[±1]| = 1. This means that
when using Bellman error to estimate value error, measured with MSE or L1 loss, there exists bias
in Bellman error.
Remark 4.2 (Bellman iteration propagates bias). Due to the fact that Bellman iteration updates
and unfolds through bootstrapping, the biases introduced during this process cannot be eliminated by
its own mechanism. Instead, these biases accumulate and propagate throughout the iterations Farah-
mand et al. (2010). The formal statement is as follows (omitting the reward function):

T Q′ = Q′ + 1 (next time step Q-value),
T Q = Q+ 1 (current time step Q-value),

Q = E[Q′ + 1] + 1 (bias is accumulated).

It can be seen that bias accumulates during the Bellman iteration. Bias can be introduced in various
forms, and our main concern is how to eliminate or reduce its impact on value learning. Next, we
discuss the sources of bias and explore methods to mitigate it.

4.1 ORIGINS OF BIAS AND REWARD COMPENSATION

From the previous discussion, it is clear that irrelevant biases cannot be controlled. If they follow
a normal distribution, they also seem not to affect the estimation of values. Therefore, our focus
should be on relevant biases, particularly those that are dependent on the state and action.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Regarding biases that depend on the state and action, we can draw the following conclusions:

Proposition 4.3 (Bias arises from accumulated Bellman errors.). For any state-action pair
(s0, a0) ∈ S × A, the value error ∆Q(s0, a0) is the accumulation of the Bellman errors ϵQ over
future time steps:

∆Q(s0, a0) = ϵQ(s0, a0) + Eπ

[∞∑
t=1

γtϵQ(st, at)

]
. (6)

This proposition explains the relationship between value error and Bellman error from the perspec-
tive of trajectory interaction. When minimizing the value error, we focus on the Bellman error but
neglect the Bellman errors from the remaining interactions, which are the primary sources of bias.

Due to the linear nature of the Bellman operator, there exists a complementary relationship between
the reward and the bias of the Bellman error. To account for more general cases, we do not assume
that Eπ [

∑∞
t=1 γ

tϵ(st, at)] is known. Instead, the more general assumption is as follows:

Assumption 4.4. We assume that ϵQ contains some unpredictable bias b. The ideal Bellman error
can then be expressed as:

ϵ∗Q = ϵQ − b (7)

Previous work focused on minimizing ϵQ rather than minimizing ϵ∗Q, which could result in optimiza-
tion operations that do not actually reduce ϵQ

∗. Instead, this may cause the individual bias to keep
changing, even though the expectation of the bias does not necessarily change. It is additionally
noteworthy that ϵQ∗ = ∆Q. Based on two key observations: the Bellman expectation equation is
linear, and a linear transformation of the reward function does not affect policy convergence, it can
be inferred that the bias in the Bellman error can be compensated for by modifying the reward. We
know that the reward can be linearly transformed without affecting the convergence of the optimal
policy:

r′ = α · r + β

Therefore, we can replace the reward function of r to r′, and perform the following transformation
on the Bellman error:

ϵ′Q = ϵQ + r − r′ (8)

This essentially implies that r − r′ can serve as a compensation term to balance the bias as much as
possible, thereby simplifying the fitting of the Q-value. And in practice , we can adjust the parameter
of to make the r − r′ be close to −b, such we can have better proxy error ϵQ′ for the value error to
fitting the Q-function. Intuitively, at a certain stage of the learning process, when the Bellman error
is fixed, our additional objective is to minimize both the Bellman error and the bias. For example:

min
r′
|ϵ′Q − ϵ∗Q| = min

r′
| − b− r + r′| (9)

The issue here is that we cannot possibly know what the expected bias b actually is.

4.2 MINIMIZE THE TRANSFORMED BELLMAN ERROR

Actually, there’s a trade-off that could potentially help address this. Specifically, we can minimize
the following:

min
r′
||ϵ′Q| − |ϵ∗Q|| ≤ min

r′
ϵ′Q +min

r′
|ϵ∗Q| (10)

Eq. 10 shows that the optimal ϵ∗Q no longer requires optimization and is independent of r′, so it
can be omitted. As a result, we obtain a very concise objective function, what we need to do is
transform reward function to minimize ϵ′Q. This (Eq. 8) transformed Bellman error can be regarded
as a better proxy for value error minimization than naive Bellman error. Eq. 10 leads to ϵ′Q =

|ϵ∗Q| or ϵ∗Q. Since we do not know the sign of ϵ∗Q, and the Q-value is typically reported to be
overestimated Fujimoto et al. (2018), we consider this relaxation (Eq. 10) acceptable by minimizing
this objective periodically.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Now let’s bring the problem back into the framework of reinforcement learning. Let’s rethink the
effect of the reward transformation, to derive some practice idea. Refer to Eq. 1, maximizing the
sum of transformed rewards does guarantee a policy that also maximizes original rewards:

argmax
π∈Π

Jr′(π) = argmax
π∈Π

Jr(π).

In this formula, r′ is not fixed. Constantly changing r′ implies that collecting trajectories under dif-
ferent reward scales will result in data with varying reward scales. Training with data from different
scales is almost impossible. Next, we will provide a solution to this problem, and explain why our
method is value shaping rather than reward shaping.

4.3 VALUE SHAPING IS ALL YOU NEED

The reward shaping method evaluates the agent’s performance based on the reshaped reward. If we
consider our MRT method as a reward shaping approach, the resulting optimization objective is:

max
π′∈Π

Jr′(π
′)

subject to Jr(π
′)−max

π
Jr(π) = 0

r′ = argminE[ϵ′Q
2
].

Here, we consider minimizing all Bellman errors, so we use the MSE loss. It is worth noting that
some reward shaping methods do not satisfy the second constraint and instead heuristically modify
the reward signal. Based on the fact that our purpose in modifying the reward is not to enhance the
reward function in a specific aspect, our objective can therefore simply be:

max
π∈Π

Jr(π)

subject to Jr′(π)−max
π′

Jr′(π
′) = 0

r′ = argminE[ϵ′Q
2
]. (11)

Solving this optimization problem can be understood as proposing a policy π′ that maximizes Jr′
and then verifying whether the proposed r′ is feasible by improving the accuracy of the Bellman
error. Referring to Eq. 9, we know that the optimal reward modification is given by r′(s, a) =
r(s, a)+ b(s, a). This implies that we do not need to know the exact form of r. If we can accurately
estimate b, then by using r̂′ = r+b̂, we can complete the closed-loop implementation of our method.
Although b is unknown, we can reasonably infer that if we maintain an estimate b̂, it should be as
close as possible to ϵQ to minimize Eq. 7. Referring to Eq. 6, we know that the bias is related to
the accumulated Bellman error. Referring to Eq. 11, the argmin of the sampled Bellman error is the
expectation of the Bellman error, which implies that b̂ = −E[ϵQ].
In practice, we initialize two value-learning processes. One follows the standard setting and is
used to estimate the bias in the Bellman error, while the other, referred to as the lower-bias Q, is
designed to learn a value function with reduced bias. By maintaining these two independent value-
learning processes, our approach simultaneously mitigates value estimation errors and prevents error
propagation. Referring to Eq. 2, we first initialize a standard Bellman iteration:

T Q1(s, a) = Er,s′∼p,a′∼π [r + γQ1(s
′, a′)] . (12)

The function Q1 is updated to minimize the difference between Q1 and T Q1. This process allows
us to estimate the bias, denoted as b̂, which is then used as the target for Q2:

Q
′

1(s, a) = Er,s′∼p,a′∼π

[
r + b̂+ γQ1(s

′, a′)
]
. (13)

The function Q2 is then updated to minimize the difference between Q2 and the low-bias target
Q

′

1. Following the delayed update trick Fujimoto et al. (2018), our framework periodically assigns
Q2 to Q1 to achieve a low-variance Q-value update. Our method is considered a value shaping
approach because the target Q-values are explicitly modified. Compared to reward centering Naik
et al. (2024), our approach instead centers the Bellman error.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

We conducted experiments on six continuous control tasks using the Mujoco Todorov et al. (2012)
platform. The environments range from simple to complex, specifically: Swimmer-v4, Hopper-v4,
HalfCheetah-v4, Ant-v4, HumanoidStandup-v4, and Humanoid-v4. The experiments were run on
a hardware platform consisting of four Intel Gold 6230 CPUs and four RTX 3090 GPUs. Each
algorithm was executed six times using random seeds from 1 to 6. Evaluated with 1M time steps,
TD3 consumes 63.5 minutes, while TD3+MRT consumes 72.1 minutes. Practical algorithm and
hyper-parameters are in the appendix(see Algorithm 1 and Table 2).

We compared three of the most well-known baseline algorithms in deep reinforcement learning,
each of which has had a significant impact on the field. TD3 Fujimoto et al. (2018) mitigates the
overestimation of predicted values and stabilizes the value function update process. RRS Sun et al.
(2022a) shifts the reward, leading to a different initialization of the Q-function, which enhances
performance by avoiding suboptimal solutions through diverse exploration. TD7 Fujimoto et al.
(2024) modifies the neural network architecture and the inputs to the Q-function, achieving the
strongest empirical performance.

5.1 THE IMPACT OF BIAS REDUCTION ON POLICY OPTIMIZATION

We first consider the impact of bias reduction on policy optimization. Ideally, bias reduction can
improve the accuracy of the Q-function, thereby having a positive effect on policy optimization.
The purpose of bias reduction is also to accelerate policy optimization during the learning process.
An inaccurate Q-function leads to inaccurate policy gradients. Therefore, evaluating the impact of
bias reduction from the perspective of policy optimization can indirectly reflect its effectiveness.
Based on this, we assess the effect of MRT on the three baseline algorithms. The results are shown
in Fig. 1.

(a) Humanoid-v4 (b) HumanoidStandup-v4 (c) Ant-v4

(d) HalfCheetah-v4 (e) Hopper-v4 (f) Swimmer-v4

Figure 1: Learning curves of all algorithms. The x-axis represents time steps, with one million
interaction steps, and the y-axis represents the average episode return.

From the results shown in the figure, we can observe that in more complex environments, such as
those involving the control of two humanoid robots (Fig. 1(a-b)), MRT demonstrates a significant
advantage. By providing more accurate Q-value estimations, MRT enhances the efficiency of policy
optimization. It not only improves the sample efficiency of TD7 but also outperforms both RRS
and TD3. In the Humanoid-v4 environment, MRT enhances the final convergence performance of
the original algorithm. In the Ant-v4 environment, MRT provides noticeable benefits to the base-
line algorithms in the early stages of training. However, in the HalfCheetah-v4 environment, the
difference is less pronounced. Since this environment has the second-largest reward scale (with
HumanoidStandup-v4 being the largest), the stability of the algorithm may play a role in this ob-
servation. Indeed, in both of these environments, the learning process appears relatively stable. In

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the Hopper-v4 environment, the TD7 algorithm, which incorporates LayerNorm, does not seem to
handle the task well. MRT does not significantly improve TD7’s performance in this case but instead
provides more noticeable benefits to the RRS algorithm, especially in the early training phase. Fi-
nally, in the Swimmer-v4 environment, MRT enhances learning accuracy by reducing bias, leading
to improved sample efficiency across all three algorithms.

5.2 THE IMPACT OF BIAS REDUCTION ON VALUE UPDATE

After verifying the impact of reducing Bellman error bias on policy optimization, the next focus is
on its effect on value updates. The value function heavily depends on the magnitude and accuracy
of the Bellman error. While bias reduction has an indirect impact on policy optimization, it directly
influences value updates. Since Q-function optimization is achieved by minimizing the Bellman
error, the two are closely related. Analyzing Q-value trends provides insights into the entire train-
ing process. Therefore, we recorded the estimated Q-values based on the sampled transitions during
training. Typically, as the policy improves, the Q-value increases accordingly. However, different al-
gorithms affect the Q-value update process differently, reflecting their influence on value estimation.
The evaluation results of the Q-values are shown in Figure 2.

(a) Humanoid-v4 (b) HumanoidStandup-v4 (c) Ant-v4

(d) HalfCheetah-v4 (e) Hopper-v4 (f) Swimmer-v4

Figure 2: Empirical Q-value of all algorithms. The x-axis represents time steps, with one million
interaction steps, and the y-axis represents the estimated empirical Q-value over the sampled transi-
tions.

From Figure 2, we can observe that, compared to baseline algorithms, the Q-values in the early
training phase are generally lower when using the MRT algorithm. This is evident in environments
such as Humanoid-v4, HumanoidStandup-v4, HalfCheetah-v4, and Swimmer-v4. The reason for
this is that MRT reduces the original Bellman error, leading to smaller update magnitudes, which in
some cases also results in higher accuracy. In the later training stages, if previous algorithms were
limited by Q-value accuracy issues, our method’s Q-values tend to catch up and even surpass them
over time.

Another noteworthy observation is that, unlike policy evaluation results, Q-value updates are rel-
atively stable. Although the collected samples represent only a subset of all possible transitions,
Q-values generally continue to grow in most environments. However, in the Swimmer-v4 environ-
ment, due to the TD7 algorithm using priority sampling based on TD error and our method reducing
the error magnitude, the Q-value update curve appears less consistent.

5.3 THE IMPACT OF BIAS REDUCTION ON BELLMAN ERROR

Besides the two previously mentioned metrics, the most important one we should focus on is the
change in Bellman error, as our entire paper revolves around discussing it. This metric typically re-
flects the smoothness of the learning process, where a smaller Bellman error indicates convergence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

At the same time, a larger Bellman error suggests greater prediction errors, which can lead to insta-
bility. However, on the other hand, a larger Bellman error also implies a greater optimization step.
Since it can serve both as an optimization objective and an evaluation metric, Bellman error has
a dual nature. We aim to compare the average Bellman error across different algorithms to assess
the potential impact of Bias Reduction on the results. The variation in Bellman error during the
experiments is recorded in Fig. 3.

(a) Humanoid-v4 (b) HumanoidStandup-v4 (c) Ant-v4

(d) HalfCheetah-v4 (e) Hopper-v4 (f) Swimmer-v4

Figure 3: Empirical estimated square Bellman error of all algorithms. The x-axis represents time
steps, with one million interaction steps, and the y-axis represents the average estimated square
Bellman error over the sampled transitions.

Observing Fig. 3, we find that in the Humanoid-v4 environment, the MRT algorithm effectively
avoids the late-stage anomalies in Bellman error compared to TD3 and RRS, while making the op-
timization process more stable when compared to TD7. In the HumanoidStandup-v4 environment,
as the algorithms are still improving, our results have not yet fully converged. However, our method
demonstrates greater stability compared to the RRS algorithm. Similarly, in the Ant-v4 environment,
the MRT algorithm consistently exhibits a larger Bellman error than the TD7 algorithm. This is be-
cause TD7 employs priority sampling based on TD error and clips small TD errors, a technique that
does not benefit our algorithm. Similar trends can be observed in the HalfCheetah-v4 and Hopper-
v4 environments. Since both RRS and TD3 use random sampling, the comparison between RRS
and TD3 is more convincing. In the Swimmer-v4 environment, the RRS+MRT algorithm shows a
noticeable spike in Bellman error, because that a larger Bellman error results in larger step sizes,
making it more effective in environments requiring exploration.

6 CONCLUSION

This paper investigates the reduction of Bellman error bias through linear reward transformation. By
leveraging the fact that linear reward transformations do not affect policy convergence, we estimate
the bias in the Bellman error and incorporate it into the reward function to influence the value update
process. This process is carried out using two parallel Bellman iterations, where bias estimation
techniques and linear reward transformation are employed. This simplifies the MRT algorithm,
making it applicable to any deep reinforcement learning algorithm. Experimental results show that
reducing Bellman error bias improves sample efficiency. Given the critical role of Bellman error in
reinforcement learning, there is significant potential for further research. Future work will focus on
developing more advanced techniques for bias prediction and reduction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research did not involve human participants, personal data, or animals, and therefore did not re-
quire institutional ethics approval. All experiments were conducted using publicly available datasets
and simulated environments, ensuring that no privacy or safety concerns arise.

REPRODUCIBILITY STATEMENT

We provide the implementation code and configuration files in the supplementary material. All
reported results are averaged over six random seeds (1, 2, 3, 4, 5, 6). Shaded regions in the figures
denote one standard deviation around the mean. Details of the hardware platform and computational
time are presented at the beginning of the Experiments section.

REFERENCES

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. arXiv preprint arXiv:1902.05605, 2019.

Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning
with spectral normalization. Advances in neural information processing systems, 34:8242–8255,
2021.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Edoardo Cetin and Oya Celiktutan. Learning pessimism for reinforcement learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 37, pp. 6971–6979, 2023.

Eric Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic rewards via
constrained optimization. Advances in Neural Information Processing Systems, 35:4996–5008,
2022.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems, 17, 2004.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. Advances in neural information processing systems, 23, 2010.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should
i trust you, bellman? the bellman error is a poor replacement for value error. arXiv preprint
arXiv:2201.12417, 2022.

Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger.
For sale: State-action representation learning for deep reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint
arXiv:2407.04811, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931–15941, 2020.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274,
2002.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

Abhishek Naik, Yi Wan, Manan Tomar, and Richard S Sutton. Reward centering. arXiv preprint
arXiv:2405.09999, 2024.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Motoki Omura, Takayuki Osa, Yusuke Mukuta, and Tatsuya Harada. Symmetric q-learning: Re-
ducing skewness of bellman error in online reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 23, pp. 14474–14481, 2024.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Andrew Patterson, Adam White, and Martha White. A generalized projected bellman error for off-
policy value estimation in reinforcement learning. Journal of Machine Learning Research, 23
(145):1–61, 2022.

James Queeney, Yannis Paschalidis, and Christos G Cassandras. Generalized proximal policy op-
timization with sample reuse. Advances in Neural Information Processing Systems, 34:11909–
11919, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In Machine learning: ECML 2005: 16th European conference on machine
learning, Porto, Portugal, October 3-7, 2005. proceedings 16, pp. 317–328. Springer, 2005.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting
in value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 37719–37734. Curran
Associates, Inc., 2022a.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting
in value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. Advances in neural information processing systems, 35:37719–37734,
2022b.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
effect of value and policy churn. arXiv preprint arXiv:2409.04792, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. Advances in Neural Information
Processing Systems, 30, 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF

In the proof section, for better readability, we have simplified some expressions. For example, we
use ∆ to represent ∆Q.

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1 (Value error as a function of Bellman error). For any state-action pair (s, a) ∈
S × A, with state action distribution dπ(s′, a′|s, a) = 1

1−γ

∑∞
t=0 γ

tpπ((s, a) → s′, t)π(a′|s′), the
value error ∆Q(s, a) can be defined as a function of the Bellman error ϵQ

∆Q(s, a) =
1

1− γ
E(s′,a′)∼dπ(·|s,a)[ϵQ(s

′, a′)]. (14)

Proof. We begin by stating results from Kakade & Langford (2002); Schulman (2015); Queeney
et al. (2021). A policy π induces a normalized discounted state visitation distribution dπ , where
dπ(s′|s, a) = 1

1−γ

∑∞
t=0 γ

tpπ((s, a) → s′, t). We write the corresponding normalized discounted
state-action visitation distribution as dπ(s′, a′|s, a) = dπ(s′|s, a)π(a′ | s′), where we make it clear
from the context whether dπ refers to a distribution over states or state-action pairs.

First by definition, for state s1 and action a1, we have:

Edπ [ϵ(s1, a1)] (15)

=
∑
s1

dπ(s1)
∑
a1

π(a1 | s1)ϵ(s1, a1). (16)

= (1− γ)Eπ

[∞∑
t=0

γt(Q(st, at)− r(st, at)− γQ(st+1, at+1))

]
(17)

= (1− γ)Eπ

[
Q(s0, a0)−

∞∑
t=0

γtr(st, at)

]
(18)

= (1− γ)(Q(s0, a0)−Qπ(s0, a0)) (19)

Then, we can derive similar result when we have state sk+1 and action ak+1,

Edπ [ϵ(sk+1, ak+1)] = (1− γ)(Q(sk, ak)−Qπ(sk, ak)) (20)

Finally, we have that:

1

1− γ
E(s′,a′)∼dπ(·|s,a)[ϵ(s

′, a′)] = Q(s, a)−Qπ(s, a) = ∆Q(s, a)

A.2 PROOF OF PROPOSITION 4.3

Proposition 4.3 (Bias stems from accumulated Bellman errors.) For any state-action pair
(s0, a0) ∈ S × A, the value error ∆Q(s0, a0) is the accumulation of the Bellman errors ϵQ over
future time steps:

∆Q(s0, a0) = ϵQ(s0, a0) + Eπ

[∞∑
t=1

γtϵ(st, at)

]
(21)

Proof. First by definition:

∆(s, a) := Q(s, a)−Qπ(s, a) (22)
⇒ Qπ(s, a) = Q(s, a)−∆(s, a). (23)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Then we can decompose value error:

∆(s, a) = Q(s, a)−Qπ(s, a) (24)

= Q(s, a)− (r(s, a) + γEπ[Q
π(s′, a′)]) (25)

= Q(s, a)− (r(s, a) + γEπ[Q(s′, a′)−∆(s′, a′)]) (26)

= Q(s, a)− (r(s, a) + γEπ[Q(s′, a′)]) + γEπ[∆(s′, a′)] (27)

= ϵ(s, a) + γEπ[∆(s′, a′)] (28)
... (29)

= ϵ(s, a) + γEπ[ϵ(s
′, a′)] + γ2Eπ[∆(s′′, a′′)]. (30)

Finally, we derive:

∆Q(s0, a0) = ϵQ(s0, a0) + Eπ

[∞∑
t=1

γtϵ(st, at)

]
.

B ALGORITHM

MRT initialize two Bellman iteration process, One is used for predict the bias of Bellman error, and
the other one is used for learning an accurate value function with bias reduction from the Bellman
error. Our method can seamlessly integrate with any DRL algorithm. In practice, after predicting
the bias, we allocate a certain number of time steps for the Q2 function in Eq. 13 to learn. After
these time steps, we synchronize the parameters of Q2 with Q1 and the target network.

Algorithm 1 Monotonic increasing linear Reward Transformation (MRT).
Require: θ, θ̄, ϕ, Replay Buffer D ▷ Initial parameters θ, θ̄ of the Q function and ϕ of the target

policy πϕ.
1: θ̆ ← θ, D ← ∅ ▷ Initialize parameters θ̆ of target Q-network
2: for each iteration do
3: for each environment step do
4: Run policy ϕ in environment to collect transitions
5: Store transitions into Buffer D
6: end for
7: for each training step do
8: sample batch transition (s, a, r, s′) from Buffer
9: update policy ϕ according to any DRL algorithm

10: for each transition, compute the TD error
11: update θ by minimizing the batch TD error
12: estimated the bias with the TD error periodically
13: update θ̄ with bias reduction target Q-value
14: end for
15: θ̆ ← τ θ̄ + (1− τ)θ̆, θ ← τ θ̄ + (1− τ)θ
16: end for
Ensure: ϕ ▷ Optimized policy

In this paper, we do not specifically discuss the initialization of the Q-function or policy, as these
steps have already been addressed in previous studies Haarnoja et al. (2018a). To apply our method
to any DRL algorithm, the relative changes are as follows: in line 12, we estimate the bias of
the Bellman error; in line 13, we update the low-variance Q-function; and in line 15, we adopt
delayed updates to synchronize the parameters of the low-variance Q-function with those of other
Q-functions. To maintain logical clarity, we simplify the representation of the target Q-function.
The target Q-function may have multiple forms, as seen in the TD3 Fujimoto et al. (2018) paper. We
clarify this detail here.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C DETAIL NUMERICAL RESULT

Some results in the figure are not very clear due to differences in data scales and overlapping curves,
making comparisons less obvious. To provide a clearer analysis, we have reorganized all the results
into a table, recording outputs every 0.2 million steps. The detailed results are shown in Table 1.
The data in the table represent the mean of six results, along with one standard deviation, covering
a 95% confidence interval. The best results are highlighted in bold.

Table 1: Numerical Result of Average Episodic Reward. (A) Humanoid-v4 (B) HumanoidStandup-
v4 (c) Ant-v4 (D) HalfCheetah-v4 (E) Hopper-v4 (F) Swimmer-v4

Env Algo 0.2M 0.4M 0.6M 0.8M 1M

(A)

TD7 2967.72 ± 1150.24 4822.53 ± 2116.07 6513.07 ± 340.57 6648.29 ± 713.04 6714.27 ± 619.08
TD7+MRT 2688.12 ± 1653.01 6053.62 ± 964.87 6831.41 ± 419.09 7124.76 ± 438.29 6902.72 ± 1663.1
RRS 737.9 ± 201.42 3268.5 ± 1601.4 5065.71 ± 146.34 5091.56 ± 173.47 5183.52 ± 171.04
RRS+MRT 782.18 ± 221.26 4277.43 ± 1115.75 4893.84 ± 532.89 4827.64 ± 1012.94 5132.51 ± 560.97
TD3 875.45 ± 405.8 2596.93 ± 1302.98 4517.56 ± 704.81 4925.12 ± 271.16 5158.17 ± 245.98
TD3+MRT 677.92 ± 39.98 3186.55 ± 1645.28 4923.43 ± 221.93 4879.45 ± 309.63 5263.84 ± 187.92

(B)

TD7 151725.22 ± 6682.32 159877.79 ± 2716.19 159979.43 ± 3166.79 160650.85 ± 1843.46 161599.67 ± 2129.93
TD7+MRT 155146.12 ± 10903.61 160334.25 ± 9870.83 182681.5 ± 32419.07 177913.47 ± 24701.51 172663.08 ± 15063.59
RRS 88700.35 ± 9331.45 89977.85 ± 9127.66 88891.87 ± 8366.44 91862.05 ± 5984.5 93510.03 ± 5916.96
RRS+MRT 102863.1 ± 16483.1 102950.0 ± 16465.94 102764.39 ± 16514.43 102804.6 ± 16129.92 103059.35 ± 16439.05
TD3 97760.89 ± 21166.12 97894.46 ± 21151.11 97995.46 ± 20865.68 98024.74 ± 21252.07 98259.45 ± 20689.53
TD3+MRT 104253.44 ± 17759.69 103224.3 ± 17674.67 104419.95 ± 17800.85 105520.74 ± 18392.09 105509.46 ± 18378.86

(C)

TD7 5066.0 ± 1385.38 6832.59 ± 708.66 8255.37 ± 622.25 7819.47 ± 1099.33 8079.26 ± 933.06
TD7+MRT 5999.98 ± 511.31 7214.9 ± 198.13 7893.69 ± 354.34 8217.03 ± 726.93 8781.44 ± 694.34
RRS 1161.07 ± 395.87 3107.51 ± 1207.38 3895.63 ± 1632.36 4318.46 ± 1722.3 4467.62 ± 1751.35
RRS+MRT 1386.77 ± 843.81 3547.72 ± 1141.62 4994.54 ± 189.86 4678.93 ± 1113.55 5529.2 ± 201.36
TD3 1136.5 ± 373.53 1963.78 ± 1275.9 2884.04 ± 1501.95 3342.98 ± 1537.06 3734.29 ± 1478.07
TD3+MRT 1046.96 ± 274.71 2433.53 ± 1508.08 2771.54 ± 1600.17 3433.58 ± 1499.59 3972.38 ± 1357.83

(D)

TD7 12461.65 ± 1131.17 16104.55 ± 593.02 16720.68 ± 208.9 17244.15 ± 182.15 17291.41 ± 200.61
TD7+MRT 12995.64 ± 633.1 16036.93 ± 761.71 16958.32 ± 307.61 17387.21 ± 258.62 17267.75 ± 215.09
RRS 6432.43 ± 570.43 8148.57 ± 1190.63 9172.71 ± 1223.24 10198.72 ± 1198.15 10551.27 ± 1215.57
RRS+MRT 6465.94 ± 426.35 8209.68 ± 1096.54 9359.76 ± 1140.33 10678.88 ± 655.21 11255.05 ± 593.87
TD3 6585.94 ± 481.08 8670.89 ± 805.42 9582.96 ± 769.87 10054.63 ± 764.89 10590.11 ± 723.63
TD3+MRT 6789.49 ± 356.01 9055.14 ± 522.3 10188.93 ± 543.87 10186.0 ± 987.97 11179.5 ± 491.82

(E)

TD7 2529.54 ± 843.66 2379.75 ± 884.58 3189.78 ± 575.91 3286.19 ± 800.75 2410.19 ± 961.2
TD7+MRT 2445.37 ± 1162.01 2509.6 ± 945.57 2571.26 ± 747.59 2812.32 ± 749.38 3076.99 ± 940.72
RRS 1151.63 ± 761.39 2505.71 ± 983.89 3375.09 ± 107.06 3400.35 ± 153.31 2691.38 ± 1147.2
RRS+MRT 1741.77 ± 1120.7 3338.48 ± 165.87 3251.63 ± 344.11 3494.09 ± 81.85 3537.2 ± 56.93
TD3 1331.36 ± 1069.89 1962.45 ± 1203.24 2545.1 ± 1201.5 2025.49 ± 993.43 3118.38 ± 518.57
TD3+MRT 890.19 ± 762.45 2014.25 ± 1052.76 2394.97 ± 1033.55 2815.3 ± 850.2 3378.25 ± 105.71

(F)

TD7 70.94 ± 23.5 104.81 ± 12.73 118.34 ± 5.57 123.28 ± 12.0 114.36 ± 16.28
TD7+MRT 99.95 ± 24.68 107.13 ± 31.74 95.76 ± 32.4 118.33 ± 24.88 128.21 ± 8.79
RRS 44.36 ± 4.58 58.5 ± 19.7 73.61 ± 22.92 88.23 ± 25.78 99.72 ± 31.57
RRS+MRT 48.2 ± 7.84 48.59 ± 6.51 76.83 ± 15.84 100.01 ± 18.17 112.91 ± 10.89
TD3 50.9 ± 6.33 75.05 ± 22.54 90.11 ± 21.14 98.72 ± 24.15 96.13 ± 25.5
TD3+MRT 50.78 ± 9.35 64.27 ± 45.49 98.64 ± 25.56 98.18 ± 28.36 112.67 ± 12.8

From the table, we can observe that the training stability of TD7 is not ideal in certain environments.
For example, the final converged result is sometimes worse than the maximum value achieved during
training, which affects the stability of our method on TD7 as well. The fundamental reason for
this issue lies in the TD7 algorithm’s weighted sampling of experience replay based on TD error,
without considering the impact of weighting on convergence. This can be seen from the data at
different training stages. For instance, in the HumanoidStandup-v4 environment, the best result for
the TD7+MRT algorithm appears at 0.6M time steps. Similarly, in the Ant-v4 environment, TD7
achieves its best result at 0.6M time steps.

D HYPER-PARAMETERS

Taking the TD3 algorithm as an example, MRT introduces only one additional hyperparameter—the
period for estimating the bias.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Hyper-parameters

Parameter Value

Shared (TD3)
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU
target smoothing coefficient (τ) 0.005
target update interval 1
gradient steps 1

MRT
estimated bias update interval 250

E MORE EXPERIMENTS

E.1 THE IMPACT OF BIAS REDUCTION ON EXPLORATION

Exploration is also crucial in reinforcement learning. While bias reduction serves as an optimization
technique, examining its impact on exploration provides indirect insight into how bias reduction
affects policy learning. In most cases, a good policy naturally leads to effective exploration, although
effective exploration does not necessarily guarantee stable convergence.

We have recorded the results of exploration, as shown in Fig. 4.

(a) Humanoid-v4 (b) HumanoidStandup-v4 (c) Ant-v4

(d) HalfCheetah-v4 (e) Hopper-v4 (f) Swimmer-v4

Figure 4: Exploration reward of all algorithms. The x-axis represents time steps, with one million
interaction steps, and the y-axis represents the average episodic exploration reward.

From Fig. 4, we observe that after applying the MRT method, the exploration performance is al-
most consistently better than that of the baseline algorithms. This aligns with the policy evaluation
results, particularly in the Humanoid-v4, HumanoidStandup-v4, and Ant-v4 environments, where
the exploration performance continues to improve. This also explains why Bellman error contin-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ues to increase in the later stages of training. Bias reduction enables a smoother learning process
for Q-values, reducing the time required for value fitting and allowing additional opportunities for
exploration. This additional exploration leads to better policies, which in turn enhance the value of
earlier states and increase Q-value errors—ultimately resulting in improved performance.

F LIMITATION

In terms of computational efficiency, our method introduces an additional Q-function update, which
can potentially increase computational cost. Although compared to prior methods such as the RRS
algorithm, our approach uses fewer Q-functions overall, this added update still contributes to higher
computation overhead. Specifically, if we consider the cost of Q-function computation alone, and
take the original DQN algorithm as a baseline, DQN only computes a single target Q-function and
updates the current Q-function once per step. TD3 computes two target Q-functions and updates
the current Q-function once. TD3+MRT adds one more Q-function update on top of TD3. In
our method, while we maintain a relatively efficient structure, the additional Q-function update
introduces a similar level of computational cost. Furthermore, we peridocally approximate the bias
of the Bellman error in our method. However, this estimation may be inaccurate in some situations.
We assume that Q-values are overestimated, but the extent of this overestimation and the frequency
at which it occurs are difficult to determine precisely.

17

	Introduction
	Related work
	Background
	Deep reinforcement learning
	Linear reward transformation

	Mitigating the bias of Bellman error
	Origins of bias and reward compensation
	Minimize the transformed Bellman error
	Value shaping is all you need

	Experiments
	The Impact of Bias Reduction on Policy Optimization
	The Impact of Bias Reduction on Value Update
	The Impact of Bias Reduction on Bellman Error

	Conclusion
	Proof
	Proof of Proposition 3.1
	Proof of Proposition 4.3

	Algorithm
	Detail Numerical Result
	Hyper-parameters
	More experiments
	The Impact of Bias Reduction on Exploration

	Limitation

