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Abstract—Normalization is an important but understudied
challenge in privacy-related application domains such as fed-
erated learning (FL), differential privacy (DP), and differentially
private federated learning (DP-FL). While the unsuitability of
batch normalization for these domains has already been shown,
the impact of other normalization methods on the performance
of federated or differentially private models is not well-known.
To address this, we draw a performance comparison among layer
normalization (LayerNorm), group normalization (GroupNorm),
and the recently proposed kernel normalization (KernelNorm)
in FL, DP, and DP-FL settings. Our results indicate LayerNorm
and GroupNorm provide no performance gain compared to the
baseline (i.e. no normalization) for shallow models in FL and DP.
They, on the other hand, considerably enhance the performance
of shallow models in DP-FL and deeper models in FL and DP.
KernelNorm, moreover, significantly outperforms its competitors
in terms of accuracy and convergence rate (or communication
efficiency) for both shallow and deeper models in all considered
learning environments. Given these key observations, we propose
a kernel normalized ResNet architecture called KNResNet-13 for
differentially private learning. Using the proposed architecture,
we provide new state-of-the-art accuracy values on the CIFAR-10
and Imagenette datasets, when trained from scratch.

Index Terms—Differential Privacy, Federated Learning, Kernel
Normalization, Group Normalization, Batch Normalization

I. INTRODUCTION

Deep convolutional neural networks (CNNs) are popular
in a diverse range of image vision tasks including image
classification [1]. Deep CNNs rely on large-scale datasets to
effectively train the model, which might be difficult to provide
in a centralized manner [2]. This is because datasets are often
distributed across different sites such as hospitals, and contain
sensitive data which cannot be transferred to a centralized
location due to privacy regulations [3]. Even if such datasets
become available, training algorithms can pose privacy risks
to the individuals participating in the dataset, leaking privacy-
sensitive information through the trained model [4]–[6].
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Federated learning (FL) [7] addresses the large-scale data
availability challenge by enabling clients to jointly train a
global model under the coordination of a central server without
sharing their private data. Network communication, on the
other hand, emerges as a new challenge in federated environ-
ments, requiring a large number of communication rounds for
model convergence, and exchanging a large amount of traffic
in each round [8]. FL also causes utility (e.g. in terms of
accuracy) reduction due to the Non-IID (not independent and
identically distributed) nature of the data across the clients
[9]. Finally, although FL eliminates the requirement of data
sharing, it might still lead to privacy leakage, where the private
data of the clients can be reconstructed from the model updates
shared with the server [10]–[12].

Differential privacy (DP) [13] copes with the privacy chal-
lenge in both centralized and federated environments by in-
jecting random noise into the model gradients to limit the
information learnt about a particular sample in the dataset [14].
DP, however, adversely affects the model utility similar to FL
because of the injected noise. In general, there is a trade-off
between privacy and utility in DP, where stronger privacy leads
to lower utility [15].

Batch normalization (BatchNorm) [16] is the de facto nor-
malization layer in popular deep CNNs such as ResNets [17]
and DenseNets [18], which remarkably improves the model
convergence rate and accuracy in centralized training. Batch-
Norm, however, is not suitable for FL and DP settings. This
is because BatchNorm relies on the IID distribution of feature
values in the batch [16], which is not the case in federated
settings. Moreover, per-sample gradients are required to be
computed in DP that is impossible for batch-normalized CNNs
[14]. Batch-independent layers such as layer normalization
(LayerNorm) [19], group normalization (GroupNorm) [20],
and the recently proposed kernel normalization (KernelNorm)
[21] do not suffer from the BatchNorm’s limitations, and
therefore, are applicable to FL and DP.



Normalization challenge. Unsuitability of BatchNorm for
federated and differentially private learning has presented a
real challenge in the corresponding environments. Unlike the
other challenges (i.e. utility, network communication, and
privacy), the normalization issue has remained understudied
in the context of FL and DP. Previous works [9], [22]
illustrate that GroupNorm outperforms BatchNorm in terms
of accuracy in federated settings. Likewise, GroupNorm also
delivers higher accuracy than LayerNorm in differentially
private learning [23]–[25]. Additionally, KernelNorm achieves
significantly higher accuracy and faster convergence rate com-
pared to LayerNorm and GroupNorm in both FL and DP
settings according to the original study [21].

However, the prior studies have not made a comparison
between different normalization layers and the NoNorm (no
normalization layer) case in the first place. Moreover, the
experimental evaluation regarding FL and DP environments
is limited in the original KernelNorm study [21], focusing on
a cross-silo federated setting (few clients with relatively large
datasets) [26] and a shallow model in DP. Finally, the perfor-
mance comparisons in the previous works do not consider dif-
ferentially private federated learning (DP-FL) settings. Given
that, two fundamental questions arise: (1) Do LayerNorm,
GroupNorm, and KernelNorm also deliver higher performance
than NoNorm in FL, DP, and DP-FL environments?, and (2)
Does KernelNorm still outperform other normalization layers
in cross-device FL (many clients with small datasets), in DP-
FL, and using deeper models in DP?

Key findings. We conduct extensive experiments using
the VGG-6 [27], ResNet-8 [21], PreactResNet-18 [28], and
DenseNet20×16 [18] models trained on the CIFAR-10/100
[29] and Imagenette [30] datasets in FL, DP, and DP-FL
settings to address those questions. The findings are as follows:

1) LayerNorm and GroupNorm do not necessarily out-
perform the NoNorm case for shallow models in FL
and DP settings. For instance, LayerNorm and Group-
Norm provide slightly lower accuracy and communica-
tion efficiency than NoNorm in the cross-silo federated
setting, where the shallow VGG-6 model is trained
on CIFAR-10. Similarly, LayerNorm and GroupNorm
achieve lower accuracy than NoNorm using the shallow
ResNet-8 model on CIFAR-10 in DP (Section III).

2) KernelNorm significantly outperforms NoNorm, Lay-
erNorm, and GroupNorm in terms of communication
efficiency (convergence rate) and accuracy in both cross-
silo and cross-device FL, with both shallow and deeper
models in DP, and using shallow models in DP-FL
environments (Section III).

Solution. Based on our findings, we advocate employing
KernelNorm as the effective normalization layer for FL, DP,
and DP-FL settings. Given that, we propose a KernelNorm-
based ResNet architecture called KNResNet-13, and show it
delivers considerably higher accuracy than the state-of-the-art
GroupNorm-based architectures on CIFAR-10 and Imagenette
in differentially private learning environments (Section IV).

Contributions. We make the following contributions: (I)
we show LayerNorm and GroupNorm do not deliver higher
accuracy than NoNorm with shallow models in FL and DP
settings, (II) we illustrate the recently proposed KernelNorm
layer has a great potential to become the de facto normalization
layer in privacy-enhancing/preserving machine learning, and
(III) we propose the KNResNet-13 architecture, and provide
new state-of-the-art (SOTA) accuracy values on CIFAR-10 and
Imagenette using the proposed architecture in DP environ-
ments, when trained from scratch.

II. PRELIMINARIES

Federated learning (FL). A federated environment con-
sists of multiple clients as data holders and a central server
as coordinator. FL is a privacy-enhancing technique, which
enables the clients to train a global model without sharing their
private data with a third party. In FL, or more precisely in the
FederatedAveraging (FedAvg) algorithm [7], the server
randomly chooses K clients, and sends them the global model
parameters W g

i in each communication round i. Next, each
selected client j trains the global model on its local dataset
using mini-batch gradient descent, and shares the local model
parameters W l

i,j with the server. Finally, the server takes the
weighted average over the local parameters from the clients
to update the global model:

W g
i+1 =

∑K
j=1 Nj ·W l

i,j∑K
j=1 Nj

,

where Nj is the number of samples in client j.
A cross-device federated setting contains a large number of

clients such as mobile devices with small datasets [26]. The
server selects a fraction of clients in each round. Moreover,
the underlying assumption is that the communication between
clients and server is unstable, and the clients might drop out
during training. A cross-silo setting, on the other hand, consists
of few clients such as hospitals or research institutions with
relatively large datasets and stable network connection [26].
All clients participate in model training in all communication
rounds. For more details on federated learning, the readers are
referred to [7] and [26].

Differential privacy (DP). The differential privacy ap-
proach provides a theoretical framework and collection of
techniques for privacy-preserving data processing and release
[13]. Its guarantees are formulated in an information-theoretic
fashion and describe the upper bound on the multiplicative
information gain of an adversary observing the output of a
computation over a sensitive database. This definition endows
DP with a robust theoretical underpinning and ascertains that
its guarantees hold in the presence of adversaries with un-
bounded prior knowledge and under infinite post-processing.
Moreover, DP guarantees are compositional, meaning that they
degrade predictably when a DP system is executed repeatedly
on the same database. Formally, a randomised mechanism M
is said to preserve (ε, δ)-DP if, for all databases D and D′



differing in the data of one individual and all measurable
subsets S of the range of M, the following inequality holds:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ,

where P is the probability of an event, ε ≥ 0 and 0 ≤ δ < 1.
Of note, this inequality must hold also if D and D′ are
swapped. The guarantee is given over the randomness of M.
Intuitively, this characterisation implies that the output of the
mechanism should not change too much when one individual’s
data is added or removed from a database, or equivalently,
the influence of one individual’s data on the result of the
computation should be small.

The application of DP to the training of neural networks is
usually (and in our work) based on the differentially private
stochastic gradient descent (DP-SGD) algorithm [14]. Here,
the role of the database is played by the individual (per-
sample) gradients of the loss function with respect to the
parameters. For the DP guarantee to be well-defined, the inter-
mediate layer outputs (activations), leading to the computation
of a per-sample gradient, are not allowed to be influenced by
more than one sample. Hence, layers like BatchNorm, which
normalize the activations of a layer by considering either
other samples in the batch or the statistics of previously seen
batches, cannot be employed in DP. We refer the readers to
[13], [14], [31] for more information on differential privacy.

Differentially private federated learning (DP-FL). Al-
though FL enhances data privacy by eliminating the require-
ment of data sharing, the model parameters shared with
the server can still cause privacy leakage. To overcome this
problem, the clients can rely on DP to train the global model
on their local data, and share differentially private models with
the server. This way, the clients can benefit from the guarantees
of DP in federated environments.

Normalization. The normalization layers play a crucial role
in deep CNNs. They can smoothen the optimization landscape
[32] and effectively address the problem of vanishing gradients
[33], leading to improved model performance. The normaliza-
tion layers are different from each other in their normalization
unit, which is a subset of elements from the original input
that are normalized together with the mean and variance of the
unit [21]. Assume that the input is a 4-dimensional tensor with
batch, channel, height, and width as dimensions. BatchNorm
[16] considers all elements in the batch, height, and width
dimensions as its normalization unit. LayerNorm [19], on the
other hand, performs normalization across all elements in the
channel, height, and width dimensions but separately for each
sample in the batch. The normalization unit of GroupNorm
[20] contains all elements in the height and width dimensions
similar to LayerNorm, but a subset of elements (specified by
the group size) in the channel dimension.

BatchNorm, LayerNorm, and GroupNorm are referred to as
global normalization layers because they consider all elements
in the height and width dimensions during normalization [34].
There is also a one-to-one correspondence between the input
and output elements in the aforementioned layers, implying
that they do not modify the input shape [21]. These layers have

shift and scale as learnable parameters too for ensuring that the
distributions of the input and output elements remain similar
[16]. In contrast to BatchNorm, LayerNorm and GroupNorm
are batch-independent because they perform normalization
separately for each sample in the batch.

KernelNorm [21] performs normalization along the chan-
nel, height, and width dimensions but independently of the
batch dimension akin to LayerNorm and GroupNorm. The
normalization unit of KernelNorm, however, is a tensor of
shape (c, kh, kw), where c is the number of input channels,
and (kh, kw) is the kernel size. Thus, KernelNorm considers
all elements in the channel dimension but a subset of elements
specified by the kernel size from the height and width dimen-
sions during normalization. In simple words, KernelNorm is
similar to the pooling layers, except that KernelNorm normal-
izes the elements instead of computing average or maximum,
and carries out operation over all channels rather than on a
single channel.

Formally, KernelNorm (1) applies dropout to the original
normalization unit U to obtain the dropped-out unit U ′, (2)
calculates the mean and variance of U ′, and (3) employs the
computed mean and variance to normalize U :

U ′ = Dp(U), (1)

µu′ =
1

c · kh · kw
·

c∑
ic=1

kh∑
ih=1

kw∑
iw=1

U ′(ic, ih, iw),

σ2
u′ =

1

c · kh · kw
·

c∑
ic=1

kh∑
ih=1

kw∑
iw=1

(U ′(ic, ih, iw)− µu′)2,

(2)

Û =
U − µu′√
σ2
u′ + ϵ

, (3)

where p is the dropout [35] probability, µu′ and σ2
u′ are the

mean and variance of U ′, respectively, and Û is the normalized
unit. Partially inspired by BatchNorm, KernelNorm introduces
a regularizing effect during training through normalizing the
elements of the original unit U via the statistics calculated
over the dropped-out unit U ′.

KernelNorm is a local normalization layer. Moreover, it
has no learnable parameters, and its output might have very
different shape than the input. Similar to LayerNorm and
GroupNorm, KernelNorm is batch-independent because it per-
forms normalization separately for each sample of the batch.
The kernel normalized convolutional (KNConv) layer [21] is
the combination of the KernelNorm and convolutional layer,
where the output of the former is given as input to the latter.

The modern CNNs are batch-normalized, leveraging the
BatchNorm and convolutional layers in their architectures. The
corresponding layer/group-normalized networks are obtained
by simply replacing BatchNorm with LayerNorm/GroupNorm.
The kernel-normalized counterparts [21], on the other hand,
employ the KernelNorm and KNConv layers as the main
building blocks, while forgoing the BatchNorm layers. For
more details on the normalization layers, the readers can see
[16], [19]–[21].



III. EVALUATION

We conduct extensive experiments to investigate the per-
formance of different batch-independent normalization layers
including LayerNorm, GroupNorm, and KernelNorm in the
cross-silo and cross-device FL as well as DP and DP-FL
environments. In the following, we first provide the description
of the datasets, models, and case studies, and then discuss the
results and findings.

A. Experimental Setup

Datasets. The CIFAR-10/100 dataset [29] contains 50000
train and 10000 test samples of shape 32 × 32 from 10/100
classes. The Imagenette dataset (160-pixel version) [30] is a
subset of Imagenet [36], including 9469 train and 3925 valida-
tion images from 10 ”easily classified” labels. The feature val-
ues are divided by 255 for KernelNorm based models, whereas
they are normalized using the mean and standard deviation
of CIFAR-10/100 or ImageNet for NoNorm, LayerNorm, and
GroupNorm based counterparts. The samples of Imagenette
are resized to 128× 128.

Models. We adopt the VGG-6 architecture from [27],
ResNet-8 model from [21], PreactResNet-18 implementa-
tion from [37], and DenseNet-20×16 (depth of 20 and
growth rate of 16) implementation from [38]. In layer/group-
normalized networks, BatchNorm is substituted by Layer-
Norm/GroupNorm. In the NoNorm case, the BatchNorm lay-
ers are either removed or replaced with the identity layer.
The kernel-normalized counterparts are implemented by re-
moving the BatchNorm layers, replacing the convolutional
layers with KNConv, and inserting a KernelNorm layer before
the final average-pooling layer in the ResNet, PreactResNet,
and DenseNet models. In FL, the models employ the ReLU
activation. In DP, on the other hand, the activation function
is Mish [39], which was successfully used in [24] to achieve
SOTA accuracy. We implement the models in the PyTorch
library (version 1.11) [40].

Case Studies. We design nine different case studies (four in
FL, three in DP, and two in DP-FL) to make the performance
comparison among the normalization layers:

1) CIFAR-10-VGG-6 (cross-silo FL): This case study
aims to train the shallow VGG-6 model on the low-
resolution CIFAR-10 dataset in a cross-silo federated
environment containing 10 clients, where each client has
samples from only 2 classes. The sample sizes of the
clients are almost the same.

2) CIFAR-10-VGG-6 (cross-device FL): Similar to the
cross-silo counterpart, but in a cross-device federated
setting including 100 clients, where 20 clients are ran-
domly selected in each round.

3) CIFAR-100-PreactResNet-18 (cross-silo FL): The aim
of this case study is to train the deeper PreactResNet-18
model on more challenging, low-resolution CIFAR-100
dataset in a cross-silo federated environment consisting
of 10 clients with samples from 20 labels. The clients
have highly similar sample sizes.

4) CIFAR-100-PreactResNet-18 (cross-device FL): Akin
to the cross-silo counterpart, but in a cross-device fed-
erated setting consisting of 100 clients, where 20 clients
are randomly chosen by the server in each round.

5) CIFAR-10-ResNet-8 (DP): The goal of this case study
is to train the shallow ResNet-8 model on the low-
resolution CIFAR-10 dataset in the DP environment.

6) CIFAR-10-DenseNet-20×16 (DP): This case study
aims to train the deeper DenseNet-20×16 model on the
low-resolution CIFAR-10 dataset in the DP setting.

7) Imagenette-PreactResNet-18 (DP). The purpose of this
case study is to train the deeper PreactResNet-18 model
on the medium-resolution Imagenette dataset in the
differentially private environment.

8) CIFAR-10-VGG-6 (DP-FL): This case study aims to
train the VGG-6 model on the CIFAR-10 dataset in a
differentially private federated setting with 10 clients,
where the clients have samples from 4 classes. The
sample sizes of the clients are highly similar.

9) CIFAR-10-ResNet-8 (DP-FL): Similar to the previous
case study, but with ResNet-8 as the model.

Federated training. We employ five different values for
learning rate tuning in the federated case studies: η={0.005,
0.01, 0.025, 0.05, 0.1}. The KernelNorm based models are
trained for 400 and 1000 communication rounds in the CIFAR-
10 and CIFAR-100 case studies, respectively. The number of
rounds for the NoNorm, LayerNorm, and GroupNorm based
models is as twice as the kernel normalized counterparts
due to their slower convergence rate. The group size is the
default value of 32 for the GroupNorm layer [20]. The dropout
probability for KNConv and KernelNorm layers are 0.1 and
0.5, respectively. The loss function is cross-entropy, optimizer
is SGD with momentum of zero, and training algorithm is
FedAvg with number of local epochs of 1.

Differentially private training. We set ε=6.0 and δ = 10−5

for all DP case studies. Regarding parameter tuning, we use
learning rate values of η={1.0, 1.5, 2.0} and clipping values
of C={1.0, 1.5, 2.0}. The ResNet-8, DenseNet-20×16, and
PreactResNet-18 models are trained for 50, 70, and 70 epochs,
respectively. The learning rate is divided by 2 at epochs (T-30)
and (T-10), where T is the number of epochs (i.e. 50 or 70).
The group size of GroupNorm is 16 for DenseNet-20×16, but
32 for the other models. Notice that we cannot set group size
to 32 for DenseNet-20×16 because the number of channels
must be divisible by the group size. The dropout probability
is 0.1 for all KNConv layers in the kernel normalized models.
For ResNet-8, the dropout probability of KernelNorm is 0.25,
whereas it is 0.5 for DenseNet-20×16 and PreactResNet-18.

We employ cross-entropy as loss function, zero-momentum
SGD as optimizer, and the Opacus library (version 1.1) [41]
for model training. We observe that changing the kernel size of
the shortcut connections in PreactResNet-18 from 1×1 to 2×2
slightly enhances the accuracy of the kernel normalized model,
but provides no accuracy gain for the competitors. Thus, the
aforementioned kernel size remains 1×1 for NoNorm, Layer-
Norm, and GroupNorm, whereas it is 2×2 for KernelNorm.



TABLE I: Federated learning: Test accuracy for different normalization layers; NoNorm (no normalization) slightly
outperforms LayerNorm and GroupNorm in (a); KernelNorm delivers higher accuracy than the competitors; B: batch size.

(a) CIFAR-10-VGG-6 (cross-silo FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 80.19±0.29 78.93±0.43 78.63±0.56 83.64±0.41
64 79.23±0.31 78.97±0.36 79.4±0.38 82.13±0.25

(b) CIFAR-10-VGG-6 (cross-device FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 80.95±0.27 81.89±0.32 81.39±0.47 84.13±0.26
64 80.72±0.06 81.43±0.19 81.44±0.18 83.77±0.11

(c) CIFAR-100-PreactResNet-18 (cross-silo FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 61.89±0.13 68.16±0.44 67.86±0.1 71.72±0.19
64 60.8±0.33 66.9±0.41 66.45±0.18 71.29±0.21

(d) CIFAR-100-PreactResNet-18 (cross-device FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 63.54±0.22 68.05±0.92 68.23±0.13 71.75±0.24
64 63.33±0.36 67.84±0.43 67.47±0.24 71.99±0.09
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(a) CIFAR-10-VGG-6 (cross-silo FL)
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(c) CIFAR-100-PreactResNet-18 (cross-silo FL)
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(d) CIFAR-100-PreactResNet-18 (cross-device FL)

Fig. 1: Federated learning: Communication efficiency for various normalization layers; KernelNorm provides significantly
higher communication efficiency than the competitors. Surprisingly, NoNorm outperforms both LayerNorm and GroupNorm
in terms of communication efficiency in most cases, i.e (a), (b), (d); batch size is 64.

Differentially private federated training. We set ε=8.0
and δ=10−5 for both DP-FL case studies. We leverage learning
rate values of η={0.01, 0.025, 0.05} and clipping values
of C={1.0, 1.5, 2.0} for parameter tuning. The group size
of GroupNorm is 32, and the dropout probabilities of the
KNConv and KernelNorm layers are 0.1 and 0.25, respectively.
The models are trained for 100 communication rounds with a
fixed learning rate. The loss function, optimizer, and training
algorithm are cross-entropy, SGD with momentum of zero,
and FedAvg with number of local epochs of 1, respectively.

B. Results

For all case studies, we first determine the optimal learn-
ing rate (and clipping value) based on the model accuracy
on the test dataset (see Appendix). We repeat the experi-
ment achieving the highest accuracy three times and report
mean/median/mean and the standard deviation of the runs for
the FL/DP/DP-FL case studies. We consider the average over
the last 10 communication rounds, final accuracy, and the
average over the last 3 rounds as the representative accuracy
of the run in the FL, DP, and DP-FL settings, respectively.



TABLE II: Differential privacy: Test accuracy for various normalization layers; NoNorm (no normalization) delivers slightly
higher accuracy than LayerNorm and GroupNorm in (a); KernelNorm considerably outperforms the competitors; ε=6.0, δ=10−5.

(a) CIFAR-10-ResNet-8 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

512 65.11±0.29 70.01±0.19 70.27±0.08 72.18±0.15
1024 69.05±0.4 71.38±0.5 71.75±0.45 74.31±0.14
2048 72.7±0.25 71.67±0.42 71.73±0.31 75.46±0.34
3072 71.99±0.14 69.39±0.27 68.99±0.27 75.48±0.24

(b) CIFAR-10-DenseNet-20×16 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

256 57.03±0.48 65.62±0.7 66.16±0.56 68.49±0.24
512 64.15±0.74 69.24±0.68 68.72±0.65 70.86±0.44
1024 64.98±0.6 69.68±0.8 69.57±0.97 72.74±0.34
2048 65.29±0.53 66.66±0.78 67.31±0.26 72.49±0.39

(c) Imagenette-PreactResNet-18 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

512 25.27±3.95 54.83±0.65 56.7±0.19 59.1±0.33
1024 53.69±0.83 54.54±0.23 57.17±0.42 58.9±0.42
2048 53.53±0.99 53.3±0.32 54.59±0.27 56.11±0.26
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(a) CIFAR-10-ResNet-8 (DP)
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(b) CIFAR-10-DenseNet-20×16 (DP)
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(c) Imagenette-PreactResNet-18 (DP)

Fig. 2: Differential privacy: Convergence rate for different normalization layers; kernel normalized models provides much
faster convergence rate than the competitors; batch size is 2048, 1024, and 1024 for (a), (b), and (c), respectively.



TABLE III: Differentially private federated learning: Test accuracy for different normalization layers; KernelNorm delivers
considerably higher accuracy than the competitors; ε=8.0, δ=10−5.

(a) CIFAR-10-VGG-6 (DP-FL)

B NoNorm LayerNorm GroupNorm KernelNorm

256 30.5±0.44 38.23±0.37 37.29±0.71 46.79±0.81
512 29.73±1.01 39.47±0.48 39.75±0.65 45.37±0.22
1024 33.43±1.33 39.19±0.64 38.85±0.97 47.11±0.37

(b) CIFAR-10-ResNet-8 (DP-FL)

B NoNorm LayerNorm GroupNorm KernelNorm

256 34.76±0.95 38.43±1.48 40.69±1.03 45.18±0.34
512 36.11±0.7 41.09±0.33 41.8±0.41 46.75±0.48
1024 38.19±0.19 41.41±1.08 41.39±0.82 48.45±1.09
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Fig. 3: Differentially private federated learning: Convergence rate for various normalization layers; kernel normalized models
deliver higher convergence rate than the competitors; batch size is 512.

Federated learning. Table I lists the test accuracy val-
ues for the FL case studies. According to the table, (1)
NoNorm slightly outperforms LayerNorm and GroupNorm
in the CIFAR-10-VGG-6 (cross-silo FL) case study, whereas
LayerNorm and GroupNorm deliver higher accuracy com-
pared to NoNorm in the other case studies; (2) KernelNorm
achieves considerably higher accuracy than the competitors.
Fig. 1 illustrates the communication efficiency (i.e. accuracy
versus communication round) for the FL case studies. As
shown in the figure, (1) NoNorm, surprisingly, provides higher
communication efficiency than LayerNorm and GroupNorm
for most case studies; (2) KernelNorm achieves remarkably
higher communication efficiency compared with NoNorm,
LayerNorm, and GroupNorm.

Differential privacy. Table II and Fig. 2 demonstrate the
test accuracy and convergence rate of different normalization
layers for the DP case studies, respectively. According to the
table and figure, (1) NoNorm slightly outperforms LayerNorm
and GroupNorm in terms of accuracy in the CIFAR-10-
ResNet-8 (DP) case study, but LayerNorm and GroupNorm
achieve higher accuracy compared to NoNorm in the other
case studies, (2) KernelNorm provides higher accuracy than
the competitors in all DP case studies, and (3) KernelNorm
based models converge much faster than those based on
NoNorm, LayerNorm, and GroupNorm.

Differentially private federated learning. Table III lists
the test accuracy values, and Fig. 3 illustrates the convergence
rate of different normalization layers for the DP-FL case
studies. As shown in the table and figure, (1) the NoNorm
based models deliver much lower accuracy and slower con-

vergence rate than LayerNorm, GroupNorm, and KernelNorm
based ones, and (2) the kernel normalized models achieve
considerably higher accuracy and faster convergence rate than
the competitors.

C. Findings
Based on our experimental evaluation, (I) LayerNorm and

GroupNorm do not necessarily outperform NoNorm in shallow
networks such as VGG-6/ResNet-8 under the FL/DP settings.
However, they achieve significant accuracy gain compared
to NoNorm for deeper models (e.g. DenseNet-20×16 and
PreactResNet-18) in FL and DP as well as shallow models in
DP-FL, and (II) KernelNorm delivers remarkably higher ac-
curacy and convergence rate (communication efficiency) than
NoNorm, LayerNorm, and GroupNorm with both shallow and
deeper networks trained in FL (cross-silo and cross-device)
and DP as well as shallow models in DP-FL. Therefore,
KernelNorm is the most effective normalization method for
FL, DP, and DP-FL settings.

IV. KERNEL NORMALIZED RESNET-13
The experimental results from the previous section indicate

KernelNorm outperforms the competitors in the DP setting
using models that originally designed based on global nor-
malization layers such as BatchNorm (e.g. PreactResNets or
DenseNets). The existing architectures, however, are not nec-
essarily optimal for KernelNorm. For instance, the kernel size
of 1×1 in the shortcut connections of the ResNet architecture
is not beneficial for KernelNorm, which requires kernel sizes
greater than 1 to benefit from the spatial correlation of the
elements during normalization.
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(c) KNResNet-13 architecture

Fig. 4: KNResNet-13 architecture consists of kernel normalized residual and transitional blocks. The kernel size, stride, and
padding of the KNConv layers are 3× 3, 1× 1, and 1× 1, respectively. The kernel size of max-pooling is 2× 2. The dropout
probability of KNConv and KernelNorm are 0.1 and 0.5, respectively. For medium-resolution images, the first KNConv layer
is replaced by a KNConv layer with kernel size 7 × 7, stride 2 × 2, and padding 3 × 3, followed by a Mish activation and
2× 2 max-pooling layer. The numbers indicate the input/output channels (filters) of KNConv or neurons of the linear layer.

Given that, we propose a bespoke ResNet architecture for
KernelNorm (Fig. 4) to improve the SOTA accuracy values
on the CIFAR-10 and Imagenette datasets in differentially
private learning settings. We refer to the proposed architecture
as KNResNet-13, which includes twelve kernel normalized
convolutional layers and a final classification (linear) layer.

The convolutional blocks in KNResNet-13 are either resid-
ual (Fig. 4a) or transitional (Fig. 4b). The residual blocks
contain two KNConv layers with the same number of input and
output channels. The transitional blocks include a KNConv
and max-pooling layer, aiming to downsample the input. All
KNConv layers have kernel size 3× 3, stride 1× 1, padding
1 × 1, and dropout probability 0.1. The kernel size of the
max-pooling layers is 2 × 2. The architecture employs Mish
as the activation function. The last residual block is followed
by a KernelNorm layer with dropout probability 0.5, Mish
activation, 2×2 adaptive average-pooling, and linear layer with
1024 neurons. For medium-resolution images (e.g. 224×224),
the first KNConv layer is replaced by a 7× 7 KNConv layer
followed by the Mish activation and 2× 2 max-pooling layer.

In the following, we describe the data preprocessing and
differentially private training procedure for the CIFAR-10 and
Imagenette datasets. Then, we provide the accuracy values
achieved by the KNResNet-13 model and compare them with
those from the recent studies.

CIFAR-10. The only data preprocessing step is to divide
the feature values by 255. KNResNet-13 is trained for T =
50, 70, 70, and 80 epochs with batch sizes of B=4096, 4096,
3072, and 3072 for ε=2.0, 4.0, 6.0, and 8.0, respectively. The
learning rate is 2.0, clipping value is 1.5, and δ is 10−5. The
learning rate is divided by 2 at epochs (T - 30) and (T - 10).
The optimizer is SGD with momentum of zero.

CIFAR-10 with augmentation multiplicity. The augmen-
tation multiplicity is a recently proposed technique by De et
al. [23], which computes the gradients for a given sample
by taking average over the gradients computed for different
augmentations of the same sample. For the CIFAR-10 dataset,
this technique applies the sequence of random horizontal
flipping and random cropping of size 32 × 32 and padding
4 × 4 to obtain an augmented version of a given sample.
Here, we employ a slightly different way of augmentation
multiplicity because the original technique provides negligible
accuracy gain for our model. We first compute the gradients for
the original sample, horizontally flipped (i.e. with probability
of 1.0), and randomly cropped version of the sample, and
then take the average over them to calculate the per-sample
gradients. For ε=2.0, 4.0, 6.0, and 8.0, KNResNet-13 is
trained for 80, 80, 100, and 100 epochs, respectively. The
other training details are the same as CIFAR-10 with no
augmentation multiplicity (previous paragraph).

Imagenette. We adopt the 320-pixel version of the dataset
and resize the images to 224 × 224. We train KNResNet-13
with η=1.5, C=1.5, ε=7.0, δ=10−5, and zero-momentum SGD
for 100 epochs, where η is divided by 2 at epochs 70 and 90.

Results. Table IV lists the test accuracy values from
KNResNet-13 and the recent studies on CIFAR-10, CIFAR-10
with augmentation multiplicity, and Imagenette. KNResNet-13
delivers significantly higher accuracy than the models based
on GroupNorm or NoNorm for all considered ε values on
CIFAR-10 without augmentation multiplicity. Compared to
kernel normalized ResNet-8 [21], KNResNet-13 provides up
to 2% accuracy gain depending on the ε value.

On CIFAR-10 with augmentation multiplicity, KNResNet-
13 outperforms both wide ResNet-16-4 and ResNet-40-4 [43]



TABLE IV: Differential privacy: Comparison of the test accuracy values from the proposed KNResNet-13 architecture with
those from the recent studies; δ=10−5.

(a) CIFAR-10

Study Model Normalization ε Test accuracy

Klause et al. (2022) [24] ResNet-9 GroupNorm 9.88 73.0
Nasirigerdeh et al. (2022) [21] ResNet-8 KernelNorm 8.0 76.66
Ours KNResNet-13 KernelNorm 8.0 78.51±0.35

Dörmann et al. (2021) [42] VGG-8 NoNorm 7.42 70.1
Klause et al. (2022) [24] ResNet-9 GroupNorm 7.42 71.8
Remerscheid et al. (2022) [25] DenseNet-14 GroupNorm 7.0 73.5
Nasirigerdeh et al. (2022) ResNet-8 KernelNorm 6.0 75.46
Ours KNResNet-13 KernelNorm 6.0 77.09±0.31

Dörmann et al. (2021) [42] VGG-8 NoNorm 4.21 66.2
Nasirigerdeh et al. (2022) ResNet-8 KernelNorm 4.0 73.32
Ours KNResNet-13 KernelNorm 4.0 74.51±0.19

Klause et al. (2022) [24] ResNet-9 GroupNorm 2.89 65.6
Nasirigerdeh et al. (2022) ResNet-8 KernelNorm 2.0 68.08
Ours KNResNet-13 KernelNorm 2.0 68.05±0.07

(b) CIFAR-10 with augmentation multiplicity (K)

Study Model Normalization K ε Test accuracy

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 8.0 79.5
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 8.0 81.4
Ours KNResNet-13 KernelNorm 3 8.0 80.8 ±0.22

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 6.0 77.0
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 6.0 78.8
Ours KNResNet-13 KernelNorm 3 6.0 79.09±0.07

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 4.0 71.9
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 4.0 73.5
Ours KNResNet-13 KernelNorm 3 4.0 76.19±0.04

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 2.0 64.9
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 2.0 65.9
Ours KNResNet-13 KernelNorm 3 2.0 70.57±0.24

(c) Imagenette

Study Model Normalization ε Test accuracy

Klause et al. (2022) [24] ResNet-9 GroupNorm 7.42 64.8
Klause et al. (2022) [24] ResNet-9 GroupNorm 9.88 67.1
Remerscheid et al. (2022) [25] DenseNet-14 GroupNorm 7.0 69.7
Ours KNResNet-13 KernelNorm 7.0 72.24±0.48

with much lower augmentation multiplicity (3 vs. 16 vs. 32)
for ε values of 2.0, 4.0, and 6.0. On Imagenette, KNResNet-13
achieves around 3% and 7% higher accuracy than GroupNorm
based DenseNet-14 [25] and ResNet-9 [24], respectively.

Given the results from Table IV, we provide new SOTA
accuracy values on the CIFAR-10 and Imagenette datasets,
when trained from scratch:

• On CIFAR-10 without augmentation multiplicity, the ac-
curacy values of 74.51%, 77.09%, and 78.51% for ε=4.0,
6.0, and 8.0, respectively.

• On CIFAR-10 with augmentation multiplicity, the accu-
racy values of 70.57%, 76.19%, and 79.09% for ε=2.0,
4.0, and 6.0, respectively.

• On Imagenette, the accuracy value of 72.24% for ε=7.0.



V. DISCUSSION

Our experimental evaluation shows KernelNorm delivers
higher performance than LayerNorm and GroupNorm in FL,
DP, and DP-FL. This can be because KernelNorm is a local
normalization method, taking into account the spatial correla-
tion of the elements in the height and width dimensions during
normalization. This leads to faster convergence rate compared
to global batch-independent layers including LayerNorm and
GroupNorm, likely due to the smoother optimization landscape
[24]. It implies KernelNorm requires less amount of total
injected noise to achieve a target accuracy value for a given
privacy budget in DP, and a fewer number of communication
rounds, and thus, higher communication efficiency in FL.

Moreover, LayerNorm and GroupNorm have scale and
shift as learnable parameters. In FL these parameters are
aggregated, while they are perturbed with noise in DP. The
performance of the layer and group normalized models can
negatively be impacted in both cases. KernelNorm, however,
is free of these learnable parameters, which can be another
factor in superior performance of KernelNorm compared to
LayerNorm and GroupNorm.

Finally, the feature values are not required to be normalized
with the per-channel mean and standard deviation of the
dataset in KernelNorm based models due to self-normalizing
nature of KNConv, which normalizes the input before com-
puting convolution. This is beneficial, especially in federated
environments, because it is not required for clients to share
the mean and standard deviation of their local datasets with
server to compute the corresponding global values.

Given the aforementioned properties and its superior per-
formance, KernelNorm has a great potential to become the
standard normalization layer for federated learning, differential
privacy, and differentially private federated learning.

VI. RELATED WORK

There are few studies that compare the performance of
various normalization layers in federated settings. Hsieh et
al. [9] experimentally show GroupNorm delivers higher ac-
curacy than BatchNorm in supervised FL. Zhang et al. [22]
demonstrate this also holds for semi-supervised FL. However,
these studies have not compared GroupNorm with NoNorm as
the baseline. Our experiments illustrate GroupNorm does not
necessarily provide accuracy gain compared to NoNorm for
shallow models in supervised federated settings.

Several studies investigate the performance of different
batch-independent normalization layers for differentially pri-
vate learning. Klause et al. [24] and Remerscheid et al.
[25] show GroupNorm outperforms LayerNorm in terms of
accuracy in DP settings. Nasirigerdeh et al. [21] illustrate
KernelNorm delivers considerable accuracy gain compared to
both LayerNorm and GroupNorm in DP. These prior works,
however, do not consider NoNorm as the baseline for compar-
ison. Our evaluation indicates NoNorm slightly outperforms
both LayerNorm and GroupNorm for the shallow ResNet-
8 model on CIFAR-10, whereas KernelNorm still provides
significant accuracy improvement compared to NoNorm for

the aforementioned setting. The experimental evaluation of
Nasirigerdeh et al. [21], moreover, is limited to a single case
study. We conduct more extensive experiments with deeper
models on both low-resolution and medium-resolution datasets
to draw the performance comparisons among NoNorm, Lay-
erNorm, GroupNorm, and KernelNorm.

Some studies propose novel architectures or data augmen-
tation techniques to enhance the accuracy of differentially
private models. Klause et al. [24] present a 9-layer ResNet
architecture in which an additional normalization is performed
after the addition operation of the residual block, and show
their architecture improves the accuracy compared to the
original ResNet architecture. Remerscheid et al. [25] introduce
a novel DenseNet-based architecture called SmoothNet, which
employs 3 × 3 convolutional layers with a high number of
filters in the DenseNet blocks, and demonstrate it outperforms
the previous ones in terms of accuracy. Both architectures em-
ploy GroupNorm as their normalization layer. We propose the
KNResNet-13 architecture based on KernelNorm, and show it
delivers considerably higher accuracy than the aforementioned
architectures on CIFAR-10 and Imagenette.

De et al. [23] present the augmentation multiplicity tech-
nique, which computes the per-sample gradients by taking
average over the gradients from different augmentations of
the sample. We adopt this technique to train the proposed
KNResNet-13 architecture on CIFAR-10. The accuracy from
KNResNet-13 is higher than the wide ResNet-16-4 and
ResNet-40-4 used in [23] for ε values of 2.0, 4.0, and 6.0.

VII. CONCLUSION AND FUTURE WORK

We address the normalization challenge in the context of
federated and differentially private learning. Through extensive
experiments, we demonstrate: (1) in FL and DP, using no
normalization layer in the architecture of shallow networks
such as VGG-6 and ResNet-8 delivers slightly higher accuracy
than LayerNorm and GroupNorm, (2) on deeper models such
as DenseNet-20×16 and PreactResNet-18 in FL and DP as
well as the shallow models in DP-FL, however, LayerNorm
and GroupNorm considerably outperform NoNorm, and (3) the
recently proposed KernelNorm method achieves significantly
higher accuracy and convergence rate compared to NoNorm,
LayerNorm, and GroupNorm in FL, DP, and DP-FL.

Given the superior performance of KernelNorm, we propose
a kernel normalized ResNet architecture called KNResNet-13
for differentially private learning. Using the proposed archi-
tecture, we provide new SOTA accuracy values on CIFAR-
10 with and without augmentation multiplicity as well as
Imagenette for different ε values, when trained from scratch.

We employ a low augmentation multiplicity value (i.e. 3) in
our study due to the remarkable computational overhead of the
technique. KNResNet-13 might deliver even higher accuracy
with larger augmentation multiplicity values (e.g. 16 or 32),
which can be an investigated in future studies. Additionally,
the performance evaluation of kernel normalized architectures
on the large Imagenet-32×32 dataset [36] is an interesting
direction for future works.
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APPENDIX

TABLE V: Federated learning: Learning rate values giving the highest accuracy for each normalization layer; B: batch size.
(a) CIFAR-10-VGG-6 (cross-silo FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 0.025 0.025 0.01 0.025
64 0.025 0.025 0.05 0.025

(b) CIFAR-10-VGG-6 (cross-device FL)
B NoNorm LayerNorm GroupNorm KernelNorm

16 0.025 0.025 0.05 0.025
64 0.05 0.025 0.05 0.05

(c) CIFAR-100-PreactResNet-18 (cross-silo FL)
B NoNorm LayerNorm GroupNorm KernelNorm

16 0.01 0.01 0.005 0.025
64 0.01 0.01 0.01 0.05

(d) CIFAR-100-PreactResNet-18 (cross-device FL)
B NoNorm LayerNorm GroupNorm KernelNorm

16 0.01 0.01 0.005 0.025
64 0.05 0.01 0.01 0.1

TABLE VI: Differential privacy: Learning rate values giving the highest accuracy for each normalization layer; B: batch size.
(a) CIFAR-10-ResNet-8 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.0
1024 2.0 2.0 1.5 1.5
2048 2.0 2.0 2.0 2.0
3072 2.0 2.0 2.0 2.0

(b) CIFAR-10-DenseNet-20×16 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.5 2.0 1.5
512 1.0 2.0 2.0 1.5
1024 1.5 2.0 1.5 1.5
2048 2.0 2.0 2.0 1.5

(c) Imagenette-PreactResNet-18 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.5
1024 1.0 1.0 1.0 2.0
2048 1.5 1.0 1.0 2.0

TABLE VII: Differential privacy: Clipping values giving the highest accuracy for each normalization layer; B: batch size.

(a) CIFAR-10-ResNet-8 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.0
1024 1.0 1.5 2.0 1.5
2048 2.0 2.0 2.0 2.0
3072 2.0 2.0 2.0 2.0

(b) CIFAR-10-DenseNet-20×16 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.5 2.0 1.5
512 1.0 1.5 1.5 1.5
1024 2.0 2.0 2.0 1.5
2048 2.0 1.5 2.0 1.0

(c) Imagenette-PreactResNet-18 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.5
1024 1.0 1.5 1.0 1.0
2048 1.0 1.0 1.0 1.0

TABLE VIII: Differentially private federated learning: Learning rates giving the highest accuracy for each norm layer.

(a) CIFAR-10-VGG-6 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 0.01 0.01 0.01 0.01
512 0.025 0.01 0.01 0.025
1024 0.025 0.01 0.025 0.025

(b) CIFAR-10-ResNet-8 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 0.01 0.01 0.01 0.01
512 0.025 0.01 0.01 0.01
1024 0.025 0.01 0.01 0.05

TABLE IX: Differentially private federated learning: Clipping values giving the highest accuracy for each norm layer.

(a) CIFAR-10-VGG-6 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.0 1.5 1.0
512 1.5 1.0 1.0 1.0
1024 2.0 1.5 2.0 2.0

(b) CIFAR-10-ResNet-8 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.5 1.0 1.0
512 1.0 1.0 1.0 1.0
1024 1.0 1.0 2.0 2.0


