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Abstract

As large language models (LLMs) are trained on
massive datasets, they have raised significant pri-
vacy and ethical concerns due to their potential
to inadvertently retain sensitive information. Un-
learning seeks to selectively remove specific data
from trained models, such as personal information
or copyrighted content. Current approaches tar-
geting specific output sequences at the token level
but often fail to achieve complete forgetting and
remain susceptible to prompt rephrasing. We pro-
pose Align-then-Unlearn, a novel framework that
performs unlearning in the semantic embedding
space rather than directly on output tokens. Align-
then-Unlearn first augments the LLM with an em-
bedding prediction module trained to anticipate
future context representations. Unlearning is then
achieved by fine-tuning the model to minimize the
similarity between these predicted embeddings
and a target embedding that represents the con-
cept to be removed. Initial results show that Align-
then-Unlearn effectively removes targeted knowl-
edge with minimal degradation in overall model
utility. These findings suggest that embedding-
based unlearning offers a promising and robust
approach to removing conceptual knowledge.

1. Introduction
Large language models (LLMs) excel in a broad range of
natural language processing tasks, thanks to their ability
to learn rich semantic representations from vast text cor-
pora. However, there is increasing concern regarding their
retention of sensitive, private, or outdated information. For
instance, LLMs may inadvertently disclose personally iden-
tifiable information, such as email contacts or home ad-
dresses, or retain copyright-protected content. These issues
highlight the need for post-hoc removal of sensitive infor-
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Exact Match
Who wrote The Sun Dog?

Rephrased Match
Tell me about the author of

The Sun Dog.

 Different Concept
Who writes for The Sun?

Lexical Match,

Unlearning target
Q: Who wrote The Sun Dog?  

A: Stephen King

Unlearned

Not Unlearned

Over-Unlearned

Unlearned

Unlearned

Not Unlearned

Figure 1. Token-based unlearning fails on rephrasings and over-
forgets unrelated knowledge. Align-then-Unlearn aims to address
this by performing unlearning based on conceptual similarity.

mation from pre-trained models. In this context, unlearning,
the process of selectively removing specific data from a
trained model, has emerged as a critical area of research.

State-of-the-Art (SOTA) LLM unlearning methods typi-
cally remove knowledge via a specific set of text sequences,
known as the forget set, targeting model outputs at the token
level. However, this strategy presents challenges. First, op-
erating in token space makes it difficult to precisely control
what is unlearned, as the unlearning target is defined only by
the sequences in the forget set Df , which can be quite large.
Second, because the forget set includes a limited number
of sequences, SOTA models often continue to expose the
underlying semantic content in response to simple prompt
rephrasings, even after unlearning, as illustrated in Figure 1.

We propose Align-then-Unlearn, a framework addressing
these limitations by operating in the embedding space. Un-
like token-based methods, our model captures conceptual
meaning holistically by predicting embeddings representing
multiple tokens simultaneously, as illustrated in Figure 2.
This design enables unlearning to operate over conceptual
similarity, which could lead to unlearning that is more robust
to rephrased prompts. Additionally, our approach targets a
single text embedding for unlearning, enabling more precise
control over what is unlearned without the need for extensive
dataset curation. We demonstrate that Align-then-Unlearn
is competitive with SOTA unlearning methods in forgetting
target information while maintaining overall model utility.
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Water boils at

Water boils at 100 degrees Celsius.

Embeddings of future context window,  
produced by pre-trained text encoder

100 degrees Celsius.

Input Tokens

Pre-Trained LLM

Embedding Prediction Module

Figure 2. Align-then-Unlearn predicts a single embedding repre-
senting the next k tokens, rather than individual tokens. Each input
token (e.g., “Water”) maps to an embedding of its future k-token
window (e.g., “boils”, “at”, “100”, k=3), encouraging the model to
capture conceptual meaning.

2. Method
Our method consists of two phases: alignment pre-training
and unlearning. In the pre-training phase, an augmented
LLM is trained to align its embedding predictions with those
of a pre-trained text encoder. In the unlearning phase, the
LLM is fine-tuned to minimize the similarity between the
predicted embeddings and target unlearning concepts.

We augment the pre-trained LLM M , parameterized by θM ,
with a small embedding prediction module E, parameterized
by θE , that learns to predict future semantic embeddings,
as visualized in Figure 3. Given an input token sequence
(x1, . . . , xT ), the LLM generates a sequence of hidden rep-
resentations (h1, . . . , hT ). At each position t, the prediction
head E maps the hidden state ht to a predicted embedding
êt = E(h1, ..., ht). Rather than predicting individual next
tokens, each embedding êt represents the meaning of the
next k tokens holistically, as represented in Figure 2.

2.1. Alignment Pre-training

We train the embedding head using a loss that aligns
predicted embeddings êt with reference embeddings
et, computed from the ground-truth future window
(xt+1, . . . , xt+k) with a frozen, pre-trained text encoder,
such as MPNet (Song et al., 2020). The alignment loss
Lalign minimizes cosine distance between predicted and ref-
erence embeddings:

Lalign = 1− sim(êt, et). (1)

where sim(a, b) = a·b
∥a∥∥b∥ denotes the cosine similarity.

Lalign measures the angular difference, commonly used in
embedding spaces where angles reflect semantic similarity.
We optimize the embedding predictor by:

θ∗E = argmin
θE

Ex1:T
[Lalign] . (2)

After training, the prediction head estimates the semantic
meaning of likely next tokens.

2.2. Unlearning

Once the embedding prediction module is trained, we un-
learn by fine-tuning the LLM parameters to distance model
outputs from sensitive concepts in embedding space. During
this process, the embedding predictor E remains frozen.

Given a concept description (e.g., “Stephen King”), we
compute its target embedding eunlearn using the frozen en-
coder, then fine-tune the LLM to minimize cosine similarity
between predicted embeddings êt and target embedding
eunlearn via the unlearning loss:

Lunlearn = max(0, sim(êi, eunlearn)− τ), (3)

and we optimize:

θ∗M = argmin
θM

Ex1:T
[Lunlearn] . (4)

Here, τ is a margin threshold. Only predictions that are
sufficiently aligned with the target concept are penalized,
thereby mitigating model degradation on unrelated tasks.

In practice, a single unlearning step is often insufficient,
as the cosine similarity can quickly fall below threshold
τ . Once the similarity drops below τ , the loss becomes
zero, and unlearning is halted. To avoid early convergence,
we alternate between realigning the prediction head and
continuing unlearning in the main model.

3. Analysis of Robustness
The Align-then-Unlearn framework alternates between two
objectives: the LLM (M ) minimizes the unlearning loss
Lunlearn(θM , θE), reducing similarity with the unlearning
embedding eunlearn, while the embedding prediction head
(E) is realigned to predict future embeddings from M ’s up-
dated representations: θ∗E = argminθE Lalign(θE , θ

updated
M ).

In this step, θupdated
M are the newly updated parameters of M .

This iterative process creates an adversarial dynamic: M
updates to obscure the unlearning target from E, while E
improves its ability to predict future semantics from M ’s
states. Robust unlearning requires M to alter its representa-
tions M(x1, . . . , xt) so that even an optimally realigned E
(i.e., one whose parameters θE minimize Lalign) produces
predictions êt = E(M(x1, . . . , xt)) with minimal similar-
ity to eunlearn.

This approach goes deeper than masking the output, remov-
ing the unlearned concept from the hidden representation
and enabling deeper and more robust forgetting. However,
fully suppressing eunlearn may also suppress related con-
cepts, reducing overall utility. In the limit of convergence,
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v
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Pre-Trained LLM

Transform
er D

ecoder

Transform
er D

ecoder

Transform
er D

ecoder

Minimize
alignment with
unlearning target
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Figure 3. In Align-then-Unlearn, a pre-trained LLM is enhanced with an embedding prediction module that maps hidden states to future
semantic embeddings. During training (green), predicted embeddings êt are aligned with reference embeddings et from a frozen text
encoder. During unlearning (red), the model reduces alignment between êt and a target concept embedding eunlearn.

the model would suppress all signals that could recover
eunlearn, including those useful for other concepts. This re-
duces model utility and suggests that full convergence is
impractical. Instead, partial unlearning via early stopping
or thresholded objectives (as in our margin τ ) is preferable.

4. Experiments
We evaluate the feasibility and effectiveness of the proposed
Align-then-Unlearn using the Real-World Knowledge Un-
learning (RWKU) benchmark (Jin et al., 2024).

4.1. Setup

We use the Phi-3-mini-4k-instruct1 model (Ab-
din et al., 2024) as the basis for unlearning, and
all-mpnet-base-v22, based on MPNet (Song et al.,
2020), as the pre-trained text encoder for generating refer-
ence embeddings during head training and the target em-
bedding eunlearn. The embedding prediction head E is 6
layers with hidden dimension 768. Unlearning updates are
performed using sequences from the RWKU forget corpus.

4.2. Metrics

We adopt RWKU benchmark metrics (Jin et al., 2024):

Forget Score ↓: Measures the remaining knowledge of the
unlearning target. Assessed through Fill-in-the-Blank (FB),
Question Answering (QA), and Adversarial Attack (AA)
probes. Lower scores indicate more effective forgetting.

1https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
2https://huggingface.co/sentence-transformers/all-mpnet-

base-v2

Neighbor Score ↑: Measures the retained knowledge about
related concepts. Assessed via QA and FB tasks. Higher
scores are desirable, indicating preservation of related
knowledge.

Utility Score ↑: Measures the general capability of the
model after unlearning. Higher scores indicate better re-
tention of overall performance.

For further details, please refer to RWKU benchmark paper
(Jin et al., 2024).

4.3. Unlearning Performance

We compare Align-then-Unlearn with SOTA unlearning
methods. As unlearning difficulty varies across targets, we
adopt a dynamic training strategy where the unlearning
threshold is gradually decreased. The RWKU benchmark
reports one result per method, though extended training can
further unlearn at the cost of utility. To make this trade-
off transparent, we report results at the first checkpoint
where the average accuracy on forget tasks drops below
50%, 35%, and 20%. The results in Table 1 show that
Align-then-Unlearn effectively removes target information,
reducing Forget QA accuracy to 13.5% while preserving
overall model utility and still achieving 64.5% accuracy on
MMLU (Hendrycks et al., 2021).

4.4. Forgetting / Model Utility Trade-Off

To analyze the forgetting–performance trade-off, we plot the
average forget accuracy against the accuracy on neighboring
knowledge across unlearning stages. As Figure 4 demon-
strates, stronger forgetting (lower forget scores) typically
reduces nearby concept knowledge.
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METHOD FORGET ↓ NEIGHBOR ↑ UTILITY ↑
FB QA AA QA FB MMLU

BEFORE UNLEARNING 47.1 47.4 55.8 61.4 56.2 64.4
ICU (PAWELCZYK ET AL., 2024) 45.2 34.6 32.2 56.1 52.9 63.9
GA* (F) (JANG ET AL., 2023) 37.1 37.9 46.4 59.2 51.8 64.4
GA* (L) (JANG ET AL., 2023) 46.2 47.5 55.8 61.2 55.1 64.4
GA (F) (JANG ET AL., 2023) 17.8 14.3 26.3 51.7 49.7 64.3
GA (L) (JANG ET AL., 2023) 40.5 37.8 49.5 60.1 55.2 64.2
DPO (F) (RAFAILOV ET AL., 2023) 25.0 19.1 29.9 39.6 41.4 63.0
DPO (L) (RAFAILOV ET AL., 2023) 44.1 45.6 54.9 60.5 56.2 64.3
NPO (F) (ZHANG ET AL., 2024A) 22.5 16.9 27.3 53.6 50.5 64.2
RT (F) (ISHIBASHI & SHIMODAIRA, 2023) 47.6 46.6 55.4 61.5 57.2 64.1

ATU (OURS; 50%) 36.3 40.5 48.8 64.4 55.8 64.2
ATU (OURS; 35%) 24.1 24.8 37.2 56.4 51.3 64.8
ATU (OURS; 20%) 13.5 15.3 25.9 52.3 41.5 64.5

Table 1. Unlearning results (average of 15 targets). Baselines fol-
low from the RWKU benchmark (Jin et al., 2024), are either Full
(F) or LoRA (L) fine-tuned, and * denotes training on pseudo-
ground truth forget corpus. Evaluation with Fill-in-the-Blank (FB),
Question Answering (QA), and Adversarial Attack (AA) probes.
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Figure 4. Trade-off between effective forgetting and retention of
related knowledge. The results are averaged across 15 unlearning
targets; metrics computed at corresponding unlearning steps.

4.5. Optimal Layer for Unlearning

Our method enables unlearning at any hidden layer of the
model, allowing finer control over where conceptual sup-
pression is applied.

We evaluated the effect of applying Align-then-Unlearn at
layers 10, 20, and 30 of Phi-3-mini-4k-instruct
(32 layers total). As shown in Figure 5 and Figure 6, no
single layer consistently outperforms others; all show simi-
lar forgetting–utility trade-offs. However, individual targets
exhibit clear differences. For instance, when unlearning
“Warren Buffett”, applying the objective at layer 10 resulted
in a forget accuracy of 54.32%, while applying it at layer
20 lowered it to just 12.40%. This suggests unlearning ef-
fectiveness depends on where in the network the unlearning
is applied, hinting at future research directions like target-
specific layer selection or multi-layer strategies.

5. Discussion & Conclusion
Our Align-then-Unlearn framework highlights the poten-
tial of embedding-based unlearning for LLMs, offering a
novel approach that focuses on conceptual similarity rather
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Figure 5. Trade-off between forgetting and model performance.
Left: Utility vs. Forget. Right: Neighbor Score vs. Forget. Results
averaged across 5 targets for each layer.
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Figure 6. Comparison of forget scores over time when applying
unlearning to layers 10, 20, and 30. Average of 5 targets.

than specific tokens to remove knowledge. By leveraging a
pre-trained text encoder, this method enables data-efficient
unlearning, while the threshold τ provides fine-grained con-
trol over the scope of unlearning.

However, limitations remain. Tuning τ for a single target
and applying it to others reduced effectiveness, suggest-
ing the need for dynamic threshold adjustment. Moreover,
lost neighbor knowledge suggests that embedding-based un-
learning may overgeneralize, inadvertently affecting related
concepts.

Future Work. Future work could explore dynamic τ ad-
justment based on target characteristics and unlearning loss.
The embedding prediction module may be applied to multi-
ple or specific layers, and joint training of the encoder and
embedding head should be investigated. Additionally, evalu-
ating effectiveness for unlearning exact text sequences (e.g.,
passwords) could assess its suitability for such scenarios.

Impact Statement
This work proposes a concept-based unlearning method for
language models, enhancing robustness to rephrasing and
aiding privacy compliance. While it enables precise forget-
ting, it also risks degrading related knowledge or enabling
misuse for information suppression, highlighting the need
to understand trade-offs for responsible deployment.
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A. Related Work
A.1. LLMs Memorize Sensitive Information

LLMs may reveal personally identifiable information, such as email contacts or home addresses (Huang et al., 2022; Kim
et al., 2023), or memorize copyright-protected data (Carlini et al., 2023; Schwarzschild et al., 2024; Freeman et al., 2024).
These issues underscore the necessity to develop methods for post-hoc removal of sensitive information from a pre-trained
model πθ.

A.2. State-of-the-Art Unlearning Approaches

In-Context Unlearning. In-context unlearning (Thaker et al., 2024) adjusts model behavior via prompts, typically without
changing weights. However, it is susceptible to jailbreak attacks and cannot be used when model weights are accessible.

Gradient-Ascent-Based Unlearning Methods. One of the most straightforward strategies for unlearning involves directly
applying gradient ascent to reduce a model’s performance on the data that should be forgotten (Jang et al., 2023). This is
done by maximizing the log-likelihood of the forget set Df = {(x, y)}:

Lforget = log πθ(y | x). (5)

However, this method often leads to a significant deterioration in the model’s overall capabilities. To address this, gradient
difference has been proposed (Maini et al., 2024), which aims to preserve the model’s performance on data that should be
retained. This is typically achieved by minimizing the negative log-likelihood over the retain set:

Lretain = − log πθ(y | x). (6)

More advanced variants (Yao et al., 2024; Maini et al., 2024) incorporate a KL divergence term to penalize deviation from
the pre-unlearning model:

LKL = E(x,y)∼Dr
[KL(πref(y | x)∥πθ(y | x))] , (7)

where πref denotes the model before any unlearning is applied.

Although incorporating retention loss can mitigate utility loss, performance degradation still tends to occur, especially as the
size of the forget set increases (Maini et al., 2024).

Preference-Optimization-Based Unlearning Methods. Another set of approaches borrows ideas from Direct Preference
Optimization (DPO) (Rafailov et al., 2023), which uses pairs of responses (y+, y−) to a prompt x to align a model with
human preferences. For the purpose of unlearning, Negative Preference Optimization (NPO) (Zhang et al., 2024a) adapts
this to work only with the negative example. The goal is to decrease the model’s likelihood of generating y− given x, relative
to a reference model (the model before unlearning):

LNPO,β =
2

β
E(x,y−)∼Df

[
log

(
1 +

(
πθ(y− | x)
πref(y− | x)

)β
)]

. (8)

Here, πθ is the model being updated, πref is the original reference model, and β controls the balance between unlearning
speed and model utility. NPO is more stable than gradient ascent methods because it reduces updates for already unlearned
data. However, it still struggles to maintain utility with larger forget sets.

Methods Based on Logit Differences. Logit-difference approaches (Eldan & Russinovich, 2023; Ji et al., 2024; Huang et al.,
2024) first train a reinforced model to enhance its prediction performance on the forget set, effectively encouraging it to
produce unwanted outputs. They subsequently use the logit differences between this enhanced model and the original model
to guide the unlearning process.

Eldan & Russinovich (2023) illustrate this by attempting to erase knowledge about specific concepts (e.g., “Harry Potter”)
via generic fine-tuning completions. They generate generic completions by adjusting logits:

zgeneric = zoriginal − αReLU(zreinforced − zoriginal), (9)

where z denotes logits and α is a hyperparameter.

A common element in all of the optimization-based methods is that they directly operate on the output tokens of the model,
which may limit robustness to rephrased questions or harm the overall language abilities of the model.
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A.3. Evaluation Methods

Evaluating unlearning involves measuring both how effectively a model forgets target information (forget quality) and how
well it retains overall performance (model utility). The Weapons of Mass Destruction Proxy (WMDP) benchmark (Caves Jr
& Carus, 2014) can be used to evaluate unlearning in sensitive domains. However, it is based on multiple-choice questions,
which means it may miss leaked knowledge in open-ended questions. More rigorous methods include TOFU (Maini et al.,
2024), which uses synthetic author profiles the model has been fine-tuned on. This means that the optimal unlearned model
is available (the model before fine-tuning, which has never been trained on the forget set). This enables more comprehensive
evaluation metrics. However, the reliance on synthetic data makes it potentially less suitable for our setting, because the text
encoder used for the reference embeddings was not fine-tuned on the synthetic data. The Real World Knowledge Unlearning
(RWKU) benchmark (Jin et al., 2024) used in this paper evaluates real-world celebrity data and includes evaluations for
robustness to adversarial attacks. Recent work (Scholten et al., 2025) on evaluating unlearning has also highlighted that
sampling answers probabilistically instead of using greedy decoding breaks state-of-the-art unlearning methods.

A.4. Adversarial Attacks

A number of adversarial attacks have been developed that demonstrate the limited robustness of current unlearning methods.
These range from black-box prompting (e.g., paraphrasing, multi-hop questions) (Patil et al., 2024; Zhong et al., 2023) to
attacks targeting the model’s internal representations (Patil et al., 2024; Seyitoğlu et al., 2024). Worryingly, even simple
post-unlearning actions like quantization (Zhang et al., 2024b) or retraining (even on unrelated data) (Hu et al., 2025) can
restore the supposedly unlearned knowledge. This further underscores the limitations of state-of-the-art unlearning methods.
Since our method can be applied at the outputs of intermediate layers, not only the final tokens, we hypothesize that it may
be more effective at counteracting some adversarial attacks that target hidden states.
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