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ABSTRACT

The robustness of the 3D perception system under common corruptions and sen-
sor failure is pivotal for safety-critical applications. Existing large-scale 3D per-
ception datasets often contain data that are meticulously cleaned. Such config-
urations, however, cannot reflect the reliability of perception models during the
deployment stage. In this work, we contribute Robo3D, the first test suite head-
ing toward probing the robustness of 3D detectors and segmentors under out-of-
distribution scenarios against natural corruptions that occur in the real-world envi-
ronment. Specifically, we consider eight corruption types (each with three severity
levels) that are likely to happen under 1) adverse weather conditions, such as fog,
rain, and snow; 2) external disturbances that are caused by motions or result in
the missing of LiDAR beams; and 3) internal sensor failure, including crosstalk,
possible incomplete echo, and cross-sensor scenarios. We reveal that, although
promising results have been progressively achieved on standard benchmarks, the
state-of-the-art 3D perception models are at risk of being vulnerable to data cor-
ruptions. Based on our observations, we further draw suggestions on aspects in-
cluding LiDAR representation, training strategies, and augmentation. We hope
this work could inspire follow-up research in designing more robust and reliable
3D perception models. Our robustness evaluation toolkit is publicly available at
https://github.com/ldkong1205/Robo3D.

1 INTRODUCTION

3D perception aims to detect and segment accurate position, orientation, semantics, and tem-
porary relation of the objects and backgrounds around the ego-vehicle in the three-dimensional
world Arnold et al. (2019); Guo et al. (2020). With the emergence of large-scale driving datasets,
various approaches in the fields of LiDAR semantic segmentation and 3D object detection ad-
vent each year, with record-breaking performances in mainstream benchmarksGeiger et al. (2012);
Behley et al. (2019); Caesar et al. (2020); Fong et al. (2022); Kong et al. (2023c); Sun et al. (2020).

Despite the great success achieved on the “clean” evaluation sets, the model’s robustness against out-
of-distribution (OoD) scenarios remain obscure. Recent attempts mainly focus on probing the OoD
robustness from two aspects. The first line focuses on the transfer of 3D perception models to unseen
domains, e.g., sim2real Xiao et al. (2022), weather2weather Jaritz et al. (2020), and city2city Kong
et al. (2023b) adaptations, to probe the model’s generalizability. The second line aims to design
adversarial examples which can cause the model to make incorrect predictions while keeping the
attacked input close to its original format Rossolini et al. (2022); Cao et al. (2021); Tu et al. (2020).

In this work, different from the above two directions, we aim at understanding the cause of model
deterioration under real-world corruptions and sensor failure. Modern 3D perception models of-
ten exploit point cloud data collected from LiDAR sensors or RGB-D cameras for feature learning.
The corruptions of such data formats are inevitable due to issues with data collection, processing,
weather conditions, and scene complexity Ren et al. (2022). While most recent works target creating
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Figure 1: Taxonomy of the Robo3D benchmark. Eight corruption types from the following three
categories are considered: 1) Adverse weather conditions, such as fog, rain, and snow; 2) External
disturbances that are caused by motion blur or result in the missing of LiDAR beams; and 3) Internal
sensor failure, including crosstalk, possible incomplete echo, and cross-sensor scenarios. Each
corruption is further split into three levels (light, moderate, and heavy) based on its severity.

corrupted point clouds from indoor scenes Kar et al. (2022) or object-centric CAD models Sun et al.
(2022); Zhu et al. (2022); Alliegro et al. (2022), we make one of the first attempts to simulate cor-
ruptions on large-scale LiDAR point clouds from the complex outdoor driving scenes Geiger et al.
(2012); Behley et al. (2019); Caesar et al. (2020); Sun et al. (2020). As shown in Fig. 1, We consider
three distinct corruption sources that are with a high likelihood to occur in deployment. 1) Adverse
weather conditions, including fog, wet ground, and snow, are causing back-scattering, attenuation,
and reflection of the laser pulses Hahner et al. (2021; 2022); Shin et al. (2019). 2) External distur-
bances, e.g., bumpy surfaces, dust, insects, etc., often lead to nonnegligible motion blur and LiDAR
beam missing issues Phillips et al. (2017). 3) Internal sensor failure, such as the incomplete echo
or miss detection of instances with a dark color (e.g., black car) and crosstalk among multiple sen-
sors, will likely to deteriorate the perception accuracy Yu et al. (2022); Brinon-Arranz et al. (2021).
Besides the environmental factors, it is also important to understand the cross-sensor discrepancy to
avoid sudden failure caused by the sensor configuration change.

In this work, we apply physically-principled corruptions to the validation sets of KITTI Geiger et al.
(2012), SemanticKITTI Behley et al. (2019), nuScenes Caesar et al. (2020), and Waymo Oepn Sun
et al. (2020), as our corruption suite dubbed Robo3D. Analogous to the popular 2D corruption
benchmarks Hendrycks & Dietterich (2019); Yi et al. (2021); Michaelis et al. (2019), we create
three severity levels for each corruption type in our benchmark and adopt the mean corruption error
(mCE) as the main indicator for robustness comparisons. Finally, we conduct in-depth experiments
to understand the pros and cons of the design from existing 3D perception models.

The key contributions of this work are summarized as follows.

• We introduce Robo3D, the first systematically-designed robustness evaluation suite for
LiDAR-based 3D perception under corruptions and sensor failure.

• We benchmark 22 segmentors and 12 detectors for LiDAR-based semantic segmentation
and 3D object detection tasks, respectively, on their robustness against corruptions.

• Based on our observations, we draw in-depth discussions on the design receipt of building
more robust 3D perception models.

2 RELATED WORK

LiDAR-based Semantic Segmentation. The design choice of 3D segmentors often correlates with
the LiDAR representations, which can be categorized into raw point Thomas et al. (2019), range
view Wu et al. (2018); Milioto et al. (2019), bird’s eye view Zhang et al. (2020), voxel Choy et al.

2



Published as a workshop paper at ICLR 2023

(2019), and multi-view fusion Liong et al. (2020); Xu et al. (2021) methods. The projection-based
approach rasterizes irregular point clouds into 2D grids, which avoids the need for 3D operators and
is thus more hardware-friendly for deployment Cortinhal et al. (2020); Zhao et al. (2021); Cheng
et al. (2022); Kong et al. (2023a). The voxel-based methods which retain the 3D structure are
achieving better performance than other single modalities Zhu et al. (2021); Ye et al. (2022). Ef-
ficient operators like the sparse convolution are widely adopted to ease the memory footprint Tang
et al. (2020; 2022). Most recently, some works start to explore possible complementary between
two views Liong et al. (2020); Yan et al. (2022); Qiu et al. (2022) or even more views Xu et al.
(2021). Although promising results have been achieved, the robustness of 3D segmentors against
corruptions remains obscure. As will show in the next sections, these methods are at the risk of
being less robust due to the lack of a comprehensive robustness evaluation benchmark.

LiDAR-based 3D Object Detection. The 3D detectors aim to identify and determine the spatial
positions and categories of objects through the sensor data. Similar to LiDAR segmentation, modern
3D object detection models also adopt various data representations. Point-based methods Shi et al.
(2019); Shi & Rajkumar (2020); Yang et al. (2019; 2020) implicitly capture local structures and
fine-grained patterns without any quantization to retain the original geometry of raw point clouds.
Voxel-based methods Yan et al. (2018); Zhou & Tuzel (2018); Deng et al. (2021); Yin et al. (2021);
Shi et al. (2020b); Mao et al. (2021); Li et al. (2021b) transform irregular point clouds to compact
grids while only those non-empty voxels are stored and utilized for feature extraction through the
sparse convolution Yan et al. (2018). Recently, some works Mao et al. (2021); Sheng et al. (2021);
Zhou et al. (2022) start to explore long-range contextual dependencies among voxels with self-
attention Vaswani et al. (2017). Pillar-based methods Lang et al. (2019); Shi et al. (2022a) better
balance the accuracy and speed by controlling the resolution in the vertical axis. While point-voxel
fusion method Shi et al. (2022c; 2020a) can integrate the merits of both representations to learn more
discriminative features. The above methods, however, mainly focus on obtaining better performance
on clean point clouds, while paying much less attention to the model robustness. Moreover, they are
also prone to suffer from performance degradation under data corruptions and sensor failure.

Common Corruption. Hendrycks & Dietterich (2019) contributes the pioneering work in this line
of research which benchmarks image classification models to common corruptions and perturba-
tions on ImageNet-C. Follow-up studies extend on aspect to other perception tasks, e.g., object
detection Michaelis et al. (2019), image segmentation Kamann & Rother (2020), navigation Chat-
topadhyay et al. (2021), video classification Yi et al. (2021), and pose estimation Wang et al. (2021).
The importance of evaluating model robustness has been constantly proven. Since we are targeting
a different sensor, i.e., LiDAR, most of the well-studied corruption types become realistic or suit-
able for such a data format. This motivates us to explore new taxonomy for defining more proper
corruption types for the 3D perception tasks in autonomous driving scenarios.

3D Perception Robustness. Several recent studies proposed to investigate the vulnerability of point
cloud classifiers and detectors in indoor scenes Kar et al. (2022); Ren et al. (2022); Sun et al. (2022);
Zhu et al. (2022); Alliegro et al. (2022). Recently, there are works started to explore the robustness
of 3D object detectors under adversarial attacks Park et al. (2019); Tu et al. (2020); Xie et al. (2023).
In the context of corruption robustness, we notice three concurrent works Yu et al. (2022); Li et al.
(2021a); Albreiki et al. (2022). These works, however, all consider 3D object detection alone and
might be constrained by either a limited number of corruption types or datasets. Our benchmark
properly defines a more diverse range of corruptions for the general 3D perception task and includes
significantly more models from both LiDAR-based semantic segmentation and 3D object detection.

3 ROBO3D BENCHMARK

3.1 TAXONOMY

Given a point p ∈ R4 in a LiDAR point cloud with coordinates (px, py, pz) and intensity pi, our goal
is to simulate a corrupted point via a mapping p̂ = F(p), with rules constrained by physical prin-
ciples or engineering experience. Tailored for the LiDAR-based 3D perception task, we summarize
eight corruption types commonly occurring in real-world deployment in our benchmark (see Fig. 1).

Specifically, we consider common corruptions from three main categories: 1) Adverse weather con-
ditions, such as fog, rain, and snow; 2) External disturbances that are caused by motions or result in
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the missing of LiDAR beams; and 3) Internal sensor failure, including LiDAR crosstalk, incomplete
echo, and cross-sensor scenarios.

Fog. The LiDAR sensor emits laser pulses for accurate range measurement. Back-scattering and
attenuation of LiDAR points tend to happen in foggy weather since the water particles in the air will
cause inevitable pulse reflection Bijelic et al. (2020). In our benchmark, we adopt the physically
valid fog simulation method Hahner et al. (2021) to create fog-corrupted data. For each p, we
calculate its attenuated response pihard and the maximum fog response pisoft as follows:

p̂ = Ffog(p) =

{
(p̂x, p̂y, p̂z, pisoft), if pisoft > pihard ,
(px, py, pz, pihard), else.

(1)

Wet Ground. The laser pulses will likely lose certain amounts of energy when hitting wet surfaces,
which causes significantly attenuated laser echoes depending on the water height dw and mirror
refraction rate Shin et al. (2019). We follow Hahner et al. (2022) to model the attenuation caused by
ground wetness. A pre-processing step is taken to estimate the ground plane with existing semantic
labels or RANSAC Fischler & Bolles (1981). Next, a ground plane point of its measured intensity
p̂i is obtained based on the modified reflectivity, and the point is only kept if its intensity is greater
than the noise floor in:

p̂ = Fwet(p) =


(px, py, pz, p̂i), if p̂i > in and p ∈ ground plane,
None, elif p̂i < in and p ∈ ground plane,
(px, py, pz, pi), elif p /∈ ground plane.

(2)

Snow. For each LiDAR beam, the set of particles that intersect with it and derive the angle of the
beam cross-section that is reflected by each particle, taking potential occlusions into account. We
follow Hahner et al. (2022) Seppänen et al. (2022) to simulate snow-corrupted data which is similar
to the fog simulation. This physically principled method samples snow particles in 2D space for each
LiDAR line and modifies the measurement for each LiDAR beam in accordance with the induced
geometry. Note that the number of sampling snow particles is set based on the snowfall rate rs.

Motion Blur. Since the LiDAR sensor is often mounted on the rooftop or side of the vehicle, it
inevitably suffers from the blur caused by vehicle movement, especially on bumpy surfaces. To
simulate blur-corrupted data, we add a jittering noise to each p with a translation value sampled
from the Gaussian distribution with standard deviation σt.

Beam Missing. The dust and insect tend to form agglomerates in front of the LiDAR surface and
will not likely disappear without human intervention, such as drying and cleaning Phillips et al.
(2017). This type of occlusion causes zero readings on masked areas and results in the loss of
certain light impulses. To mimic such a behavior, we randomly sample a total number of m beams
and drop points on these beams from the original point cloud.

Crosstalk. Considering that the road is often shared by multiple vehicles, the time-of-flight of
light impulses from one sensor might interfere with impulses from other sensors within a similar
frequency range Brinon-Arranz et al. (2021). Such a crosstalk phenomenon often creates noisy
points within the mid-range areas in between two (or multiple) sensors. To simulate this corruption,
we randomly sample a subset of kt percent points from the original point cloud and add large jittering
noise with a translation value sampled from the Gaussian distribution with standard deviation σc.

Incomplete Echo. The near-infrared spectrum of the laser pulse emitted from the LiDAR sensor is
vulnerable to vehicles or other instances with dark colors Yu et al. (2022). The LiDAR readings are
thus incomplete in such scan echoes, resulting in significant point miss detection. We simulate this
corruption by randomly querying ke percent points for vehicle, bicycle, and motorcycle classes, via
either semantic masks or 3D bounding boxes. Next, we drop the queried points from the original
point cloud, along with their point-level semantic labels. Note that we do not alter the ground-truth
bounding boxes since they should remain at their original positions in the real world.

Cross-Sensor. Due to the large variety of LiDAR sensor configurations (e.g., beam number), it is
important to design robust 3D perception models that are capable of maintaining satisfactory perfor-
mance under cross-device cases Yang et al. (2019). While previous works directly form such settings
with two different datasets, the domain idiosyncrasy in between (e.g., different label mappings and
data collection protocols) further hinders the direct robustness comparison. In our benchmark, we
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follow Wei et al. (2022) and generate cross-sensor point clouds by first dropping points of certain
beams from the point clouds and then sub-sample kc percent points from each beam.

3.2 CORRUPTION SET

Following the above taxonomy, we create new robustness evaluation sets upon the validation sets of
existing large-scale 3D perception datasets Geiger et al. (2012); Behley et al. (2019); Caesar et al.
(2020); Fong et al. (2022); Sun et al. (2020) to fulfill SemanticKITTI-C, KITTI-C, nuScenes-C, and
WOC-C. They are constructed with eight corruption types under three severity, resulting in a total
number of 97704, 90456, 144456, and 143424 annotated LiDAR point clouds, respectively.

KITTI-C adopts 3769 samples from the KITTI dataset Geiger et al. (2012) under the val split
defined in Chen et al. (2015). The mean average precision (mAP) is used to measure the detection
accuracy, which is calculated among three classes: car, pedestrian, and cyclist.

SemanticKITTI-C is generated using samples from the validation set of SemanticKITTI Behley
et al. (2019), which consists of 4071 scans collected by a 64-beam LiDAR sensor. 19 semantic
classes are chosen for evaluation after merging classes with distinct moving statuses and discarding
classes with very few points. The mean intersection-over-union (mIoU) is used to measure accuracy.

nuScenes-C uses samples from the official val split in the nuScenes dataset Caesar et al. (2020) and
collected by a 32-beam LiDAR sensor. There are 16 semantic classes, where the 10 thing classes
are used for detection. We adopt mIoU/NDS to measure the segmentation/detection accuracy.

WOD-C is built with the 5976 scans from the 3D semantic segmentation validation set in the Waymo
Open dataset Sun et al. (2020). We adopt to same scans for 3D segmentation and detection to keep
consistency. The 3D segmentation task aims to classify 23 semantic classes, including one ignored
and 22 valid semantic categories, while the 3D detection task targets to detect the vehicle, pedestrian,
and cyclist classes. We adopt mIoU/mAP to measure the segmentation/detection accuracy.

3.3 EVALUATION METRIC

Corruption Error (CE). We follow Hendrycks & Dietterich (2019) and use the mean CE (mCE) as
the primary metric in comparing models’ robustness. To normalize the severity effects, we choose
SECOND Yan et al. (2018) and MinkUNet Tang et al. (2020) as the baseline models for detectors
and segmentors, respectively. The CE and mCE scores are calculated as follows.

CEi =

∑3
l=1(1− Acci,l)∑3

l=1(1− Accbaseline
i,l )

, mCE =
1

N

N∑
i=1

CEi , (3)

where Acci,l denotes the task-specific accuracy score, i.e., mIoU, AP, NDS, or APH, on a corruption
type i at severity level l. N = 8 denotes the total number of corruption types in our benchmark.

Resilience Rate (RR). We define mean RR (mRR) as the relative robustness indicator for measuring
how much accuracy can a model retain when evaluated on our corruption sets. The RR and mRR
scores are calculated as follows.

RRi =

∑3
l=1 Acci,l

3× Accclean
, mRR =

1

N

N∑
i=1

RRi , (4)

where Accclean denotes the task-specific accuracy score on the “clean” evaluation set.

3.4 PROTOCOL

Most of the models in our benchmark follow similar data augmentation, pre-training, and validation
configurations. We thus directly use public checkpoints for model evaluation whenever applicable,
or re-train the model following default settings. We notice that some models used extra tricks on
the original validation sets, e.g., test-time augmentation and model ensemble. For such cases, we
re-train their models with conventional settings and report the reproduced results. To ensure a fair
comparison, we encourage future works to follow our standard protocols.
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Table 1: Results for the Corruption Error (CE) of each method on SemanticKITTI-C. Bold: Best
in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row. Symbol †

denotes the baseline model adopted in calculating the CE scores.

Method mCE ↓ Fog Wet Snow Motion Beam Cross Echo Sensor

MinkUNet18 Choy et al. (2019) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SqueezeSeg Wu et al. (2018) 164.9 183.9 158.0 165.5 122.4 171.7 188.1 158.7 170.8
SqueezeSegV2 Wu et al. (2019) 152.5 168.5 141.2 154.6 115.2 155.2 176.0 145.3 163.5
RGNet21 Milioto et al. (2019) 136.3 156.3 128.5 133.9 102.6 141.6 148.9 128.3 150.6
RGNet53 Milioto et al. (2019) 130.7 144.3 123.7 128.4 104.2 135.5 129.4 125.8 153.9
SalsaNext Cortinhal et al. (2020) 116.1 147.5 112.1 116.6 77.6 115.3 143.5 114.0 102.5
FIDNet Zhao et al. (2021) 113.8 127.7 105.1 107.7 88.9 116.0 121.3 113.7 130.0
CENet Cheng et al. (2022) 103.4 129.8 92.7 99.2 70.5 101.2 131.1 102.3 100.4

PolarNet Zhang et al. (2020) 118.6 138.8 107.1 108.3 86.8 105.1 178.1 112.0 112.3

KPConv Thomas et al. (2019) 99.5 103.2 91.9 98.1 110.7 97.6 111.9 97.3 85.4
PIDS1.2× Zhang et al. (2023) 104.1 118.1 98.9 109.5 114.8 103.2 103.9 97.0 87.6
PIDS2.0× Zhang et al. (2023) 101.2 110.6 95.7 104.6 115.6 98.6 102.2 97.5 84.8
WaffleIron Puy et al. (2023) 109.5 123.5 90.1 108.5 99.9 93.2 186.1 91.0 84.1

MinkUNet34 Choy et al. (2019) 100.6 105.3 99.4 106.7 98.7 97.6 99.9 99.0 98.3
Cy3DSPC Zhu et al. (2021) 103.3 142.5 92.5 113.6 70.9 97.0 105.7 104.2 99.7
Cy3DTSC Zhu et al. (2021) 103.1 142.5 101.3 116.9 61.7 98.9 111.4 99.0 93.4

SPVCNN18 Tang et al. (2020) 100.3 101.3 100.0 104.0 97.6 99.2 100.6 99.6 100.2
SPVCNN34 Tang et al. (2020) 99.2 98.5 100.7 102.0 97.8 99.0 98.4 98.8 98.1
RPVNet Xu et al. (2021) 111.7 118.7 101.0 104.6 78.6 106.4 185.7 99.2 99.8
CPGNet Li et al. (2022) 107.3 141.0 92.6 104.3 61.1 90.9 195.6 95.0 78.2
2DPASS Yan et al. (2022) 106.1 134.9 85.5 110.2 62.9 94.4 171.7 96.9 92.7
GFNet Qiu et al. (2022) 108.7 131.3 94.4 92.7 61.7 98.6 198.9 98.2 93.6

4 EXPERIMENTAL ANALYSIS

4.1 BENCHMARKED METHOD

We benchmark a total number of 34 LiDAR-based 3D perception models, including model vari-
ants. Detectors: SECOND Yan et al. (2018), PointPillars Lang et al. (2019) PointRCNN Shi et al.
(2019), Part-A2 Shi et al. (2020b), PV-RCNN Shi et al. (2020a), CenterPoint Yin et al. (2021), and
PV-RCNN++ Shi et al. (2022b). Segmentors: SqueezeSeg Wu et al. (2018), SqueezeSegV2 Wu
et al. (2019), RangeNet++ Milioto et al. (2019), SalsaNext Cortinhal et al. (2020), FIDNet Zhao
et al. (2021), CENet Cheng et al. (2022), PolarNet Zhang et al. (2020), KPConv Thomas et al.
(2019), PIDS Zhang et al. (2023), WaffleIron Puy et al. (2023), MinkUNet Choy et al. (2019),
Cylinder3D Zhu et al. (2021), SPVCNN Tang et al. (2020), RPVNet Xu et al. (2021), CPGNet Li
et al. (2022), 2DPASS Yan et al. (2022), and GFNet Qiu et al. (2022).

4.2 LIDAR SEMANTIC SEGMENTATION

Corruption Robustness. We show the robustness evaluation results in Table 1, Table 2, Table 5,
Table 6, Table 7 and Table 8. For SemanticKITTI-C, we observe that corruptions of adverse weather
conditions and internal sensor failure affect the performance of models the most. All corruptions
cause significant performance drops for the projection-based methods. For example, fog leads to a
30.37% mCE on average higher than the baseline for all models, which brings the great detrimental
effect of adverse weather conditions on 3D segmentors. Besides, crosstalk is also a challenging
one for all models and has a great impact on projection-based methods and fusion models, with
152.06% mCE and 159.02% mCE on average, respectively. On the other hand, most models exhibit
robustness under motion blur, mainly due to model training with similar data augmentations.

For nuScenes-C, we find that the motion blur corruption significantly worsens all models, with on
average 154.60% mCE. Similar to SemanticKITTI-C, the corruptions caused by beam missing and
cross-sensor remarkably destroy the robustness of projection-based models. The notable difference
with SemanticKITTI-C is that most models are not resistant to weather-related corruptions. We
conjecture that the adverse weather samples (e.g., fog and wet ground) contained in the nuScenes
dataset enable the 3D segmentors to predict robustly under our simulated weather conditions.
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Table 2: Results for the Corruption Error (CE) of each method on nuScenes-C (Seg3D). Bold:
Best in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ Fog Wet Snow Motion Beam Cross Echo Sensor

MinkUNet18 Choy et al. (2019) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

FIDNet Zhao et al. (2021) 122.4 75.9 122.6 68.8 192.0 164.8 58.0 141.7 155.6
CENet Cheng et al. (2022) 112.8 71.2 115.5 64.3 156.7 159.0 53.3 129.1 153.4

PolarNet Zhang et al. (2020) 115.1 90.1 115.3 59.0 208.2 121.1 80.7 128.2 118.2

WaffleIron Puy et al. (2023) 106.7 94.7 99.9 84.5 152.4 110.7 91.1 106.4 114.2

MinkUNet34 Choy et al. (2019) 96.4 93.0 96.1 104.8 93.1 95.0 96.3 96.9 95.9
Cy3DSPC Zhu et al. (2021) 111.8 86.6 104.7 70.3 217.5 113.0 75.7 109.2 117.8
Cy3DTSC Zhu et al. (2021) 105.6 83.2 111.1 69.7 165.3 114.0 74.4 110.7 116.2

SPVCNN18 Tang et al. (2020) 106.7 88.4 105.6 98.8 156.5 110.1 86.0 104.3 103.6
SPVCNN34 Tang et al. (2020) 97.5 95.2 99.5 97.3 95.3 98.7 97.9 96.9 98.7
2DPASS Yan et al. (2022) 98.6 76.6 89.1 76.4 142.7 102.2 89.4 101.8 110.4
GFNet Qiu et al. (2022) 92.6 65.6 93.8 47.2 152.5 112.9 45.3 105.5 117.6

Table 3: Results for the Corruption Error (CE) of each method on KITTI-C. Bold: Best in column.
Underline: Second best in column. Dark : Best in row. Red : Worst in row. Symbol † denotes the
baseline model adopted in calculating the CE scores.

Method mCE ↓ Fog Wet Snow Motion Beam Cross Echo Sensor

CenterPoint Yin et al. (2021) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SECOND Yan et al. (2018) 95.9 99.7 100.6 87.6 97.6 91.5 96.5 99.2 94.8
PointPillars Lang et al. (2019) 110.7 115.8 106.4 124.9 101.6 95.3 117.6 109.9 113.9
PointRCNN Shi et al. (2019) 91.9 93.2 90.1 96.8 93.1 86.1 100.9 92.4 82.5
PartA2-F Shi et al. (2020b) 82.2 89.4 75.8 81.3 86.2 80.9 71.8 83.6 88.9
PartA2-A Shi et al. (2020b) 88.6 92.6 83.2 94.6 86.4 87.0 83.2 89.3 92.7
PVRCNN Shi et al. (2020a) 90.0 95.2 86.6 93.1 87.5 86.0 87.1 90.0 94.7

Comparisons among Segmentors. For SemanticKITTI-C: Among 22 segmentors, we observe
that KPConv Thomas et al. (2019) and SPVCNN Tang et al. (2020) have better relative robust-
ness than other models, with mCE scores lower than the baseline. The worst-performing model is
SqueezeSeg Wu et al. (2018), with a 164.87% mCE and showing weak robustness to all corrup-
tions. For nuScenes-C (Seg3D): We observe that among the 12 segmentors, GFNet Qiu et al. (2022)
and MinkUNet Choy et al. (2019) possess greater ability against common corruptions, with 7.45%
mCE and 3.63% mCE lower than the baseline, respectively. FIDNet Zhao et al. (2021) is the worst
model with the highest mCE compared to others. In contrast to other models and SemanticKITTI-C,
the projection-based models Milioto et al. (2019); Zhao et al. (2021); Cheng et al. (2022) demon-
strate greater robustness to weather-related corruptions and less sensitivity to crosstalk. Unsurpris-
ingly, GFNet Qiu et al. (2022) possesses a greater ability against weather-related corruptions and the
crosstalk corruption, due to the way it is constructed by both range view and polar view.

Key Observations.

1. The projection-based methods (range view and polar view) tend to be the most vulnerable ones
to common corruption according to the mCE metric. Adverse weather conditions like fog and snow
cause messy point clouds and further hamper the spherical projection. The external disturbances
like beam missing and the internal sensor failure of the cross-sensor scenario drop point clouds with
severity, and result in information losses for the range view methods.

2. The point-based methods show superior performance on the “clean” distribution. They are the
most robust against weather-related corruptions but are sensitive to crosstalk. WaffleIron is greatly
robust against the scenario of incomplete echo, which drops point clouds at the instance level.

3. The pure voxel-based methods show the most superior robustness across all corruptions, except
for the fog corruption. We conjecture that the voxelization process is conducive to mitigating the
local noise and thus such quantization operation can help models against the missing of points
in local regions. The cylindrical partition type of voxelization greatly improves the robustness of
motion blur but is more vulnerable to other corruptions, i.e., adverse weathers.
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Table 4: Results for the Corruption Error (CE) of each method on nuScenes-C (Det3D). Bold:
Best in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.
Symbol † denotes the baseline model adopted in calculating the CE scores.

Method mCE ↓ Fog Wet Snow Motion Beam Cross Echo Sensor

CenterPoint Yin et al. (2021) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SECOND Yan et al. (2018) 97.5 95.4 96.0 96.1 100.8 99.3 92.2 97.6 102.6
PointPillars Lang et al. (2019) 102.9 102.9 104.6 102.5 106.4 102.4 100.9 102.4 101.1
CenterPoint-LR Yin et al. (2021) 98.7 97.9 96.5 97.7 102.2 101.1 95.5 95.6 103.5
CenterPoint-HR Yin et al. (2021) 95.8 93.0 92.0 94.9 97.6 98.4 91.1 96.2 103.2

4.3 3D OBJECT DETECTION

Corruption Robustness. Table 13, Table 3, Table 12, Table 4, Table 14, and Table 15 show the
3D detection robustness on the KITTI-C and nuScenes-C (Det3D) datasets. Among all corruption
types in these two datasets, sensor-level ones degrade the model performance the most, and the
normal working state of the sensor plays a key role in the safety of autonomous driving. The two
datasets are equipped with different LiDAR sensors, KITTI-C uses 64 beams while nuScenes-C
only has 32 beams. It can be seen that the overall mRR and mCE of KITTI-C are better than that
of nuScenes-C, which also proves that high-precision LiDAR has a better effect on robustness for
different corruptions. From Table 13 and Table 15 we can observe that the two worst corruptions
are cross-sensor and snow, which almost degrades the model performance over 5% AP or 20%
NDS in KITTI-C and nuScenes-C, respectively, for all detectors. Among these corruptions, sensor-
level ones are significantly more detrimental to both the two-stage and one-stage detectors than the
weather-related corruptions. In particular, we note that the wet ground corruption brings a tiny effect
to different 3D object detection models.

Comparisons among Detectors. As shown in Table 13 and Table 15, two-stage detectors Liu
et al. (2019); Shi et al. (2020b) are more robust against the corruptions compared to one-stage
ones Yan et al. (2018); Lang et al. (2019). The voxel-based methods Yan et al. (2018); Yin et al.
(2021); Liu et al. (2019) also outperform the pillar-based methods Lang et al. (2019) and point-based
methods Shi et al. (2019). A smaller grid size can bring lower mCE and higher mRR, improving the
robustness of detectors under different corruptions. One explanation is that the spatial quantization
of the point cloud by voxelization mitigates the local randomness and the absence of points caused
by corruptions. We also notice that PointPillars Lang et al. (2019) perform the worst among these
corruptions, which was developed for improving the efficiency of 3D object detection.

Key Observations.

1. The pillar-based methods Lang et al. (2019) are the most vulnerable ones to common corruptions
according to the mCE metric. There exists a clear margin of robustness among the voxel-based Yan
et al. (2018), point-based Shi et al. (2019), and point-voxel fusion Shi et al. (2020a) detectors.

2. The voxel-based two-stage detectors show superior performance against adverse weather corrup-
tions but are less robust to sensor-level corruptions. They often rasterize the point clouds into voxel
grids to mitigate the local noise and enhance the models against the corruption of point clouds.

3. Part-A2 shows a great ability against corruptions on KITTI-C, even better than the point-voxel
fusion method Shi et al. (2020a). It also indicates that the point-based feature representation of point
clouds is sensitive to corruptions and tends to cause performance degradation.

5 CONCLUSION

In this work, we establish a comprehensive evaluation suite dubbed Robo3D for probing the ro-
bustness of LiDAR-based 3D perception models. We define eight distinct corruption types with
three severity on large-scale datasets. We systematically benchmarked and analyzed representative
3D detectors and segmentors to understand their resilience under real-world corruptions and sensor
failure. We hope this work could lay a solid foundation for future research on 3D robustness.
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A APPENDIX

In this appendix, we supplement the following materials to support the findings and observations in
the main body of this paper.

• Sec. A.1 lists implementation details for corruption generation.

• Sec. A.2 includes visual comparisons for each corruption type across three severity levels.

• Sec. A.3 provides additional benchmarking results for a more comprehensive comparison.

• Sec. A.4 acknowledges the public resources used during the course of this work.

A.1 IMPLEMENTATION DETAIL

We include necessary details for generating the eight common corruptions under three severity in
the four corruption sets, i.e., KITTI-C, SemanticKITTI-C, nuScenes-C, and WOD-C.

Fog Simulation. Following Hahner et al. (2021), we uniformly sample the attenuation coefficient α
from [0, 0.005, 0.01, 0.02, 0.03, 0.06]. For the SemanticKITTI-C, KITTI-C, nuScenes-C, and WOD-
C datasets, we set the back-scattering coefficient β to {0.008, 0.05, 0.2} to split severity levels into
light, moderate, and heavy levels. The semantic classes of fog are 21, 41, and 23 for SemanticKITTI-
C, nuScenes-C, and WOD-C, respectively. And p belongs to fog class will be mapped to class 0 or
255 (i.e., the ignored label).

Wet Ground Simulation. We follow Hahner et al. (2022) and set the parameter of water height dw
to {0.2 mm, 1.0 mm, 1.2 mm} for different severity levels of wet ground. Note that the ground
plane estimation method is different across four benchmarks. We estimate the ground plane via
RANDSAC Fischler & Bolles (1981) for the KITTI-C since it only provides detection labels. For
SemanticKITTI-C, we use semantic classes of road, parking, sidewalk, and other ground to build
the ground plane. The driveable surface, other flat, and sidewalk classes are used to construct the
ground plane in nuScenes-C. For WOD-C, the ground plane is estimated by curb, road, other ground,
walkable, and sidewalk classes.

Snow Simulation. We use the method proposed in Hahner et al. (2022) to construct snow corrup-
tions. The value of snowfall rate parameter rs is set to {0.5, 1.0, 2.5} to simulate light, moderate,
and heavy snowfall for the SemanticKITTI-C, KITTI-C, nuScenes-C, and WOD-C datasets, and the
ground plane estimation is the same as the wet ground simulation. The semantic class of snow
is 22, 42, and 24 for the SemanticKITTI-C, nuScenes-C, and WOD-C datasets, respectively. And
p belongs to snow class will also be mapped to class 0 or 255 (i.e., the ignored label).

Motion Blur Simulation. We add jittering noise from Gaussian distribution with standard deviation
σt to simulate motion blur. The σt is set to {0.20, 0.25, 0.30}, {0.04, 0.08, 0.10}, {0.20, 0.30, 0.40}
and {0.06, 0.10, 0.13} for the SemanticKITTI-C, KITTI-C, nuScenes-C, and WOD-C datasets, re-
spectively.

Beam Missing Simulation. The value of parameter m (number of beams to be dropped) is set to
{48, 32, 16} for the benchmark of SemanticKITTI-C, KITTI-C and WOD-C, respectively, while set
as {24, 16, 8} for the nuScenes-C dataset.

Crosstalk Simulation. We set the parameter of kt to {0.006, 0.008, 0.01} for the SemanticKITTI-
C, KITTI-C, and WOD-C datasets, respectively, and {0.03, 0.07, 0.12} for nuScenes-C dataset. The
semantic class of crosstalk is assigned to 23, 43, and 25 for SemanticKITTI-C, nuScenes-C, and
WOD-C datasets, respectively. Meanwhile, the p belongs to crosstalk class will also be mapped to
class 0 or 255 (i.e., the ignored label).

Incomplete Echo Simulation. For SemanticKITTI-C, the point labels of classes car, bicycle, mo-
torcycle, truck, other-vehicle are used as the semantic mask. For nuScenes-C, we include bicycle,
bus, car, construction vehicle, motorcycle, truck and trailer class label to build semantic mask. For
WOD-C, we adopt the point labels of classes car, truck, bus, other-vehicle, bicycle, motorcycle as
the semantic mask. For KITTI-C, we use 3D bounding box labels to create the semantic mask. The
value of parameter ke is set to {0.75, 0.85, 0.95} for the four corruption sets during the incomplete
echo simulation.
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Cross-Sensor Simualtion. The value of parameter m is set to {48, 32, 16} for the SemanticKITTI-
C, KITTI-C, and WOD-C datasets, respectively, and {24, 16, 12} for the nuScenes-C dataset. Based
on Wei et al. (2022), we then sub-sample 50% points from the remaining point clouds with an equal
interval.

A.2 ADDITIONAL VISUAL EXAMPLE

Additional examples for each corruption under three severity levels are shown in Fig. 2 and Fig. 3.

A.3 ADDITIONAL EXPERIMENTAL RESULT

Additional statistical analyses are shown in Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9.

A.4 PUBLIC RESOURCES USED

In this section, we acknowledge the use of the following public resources, during the course of this
work:

• SemanticKITTI1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SemanticKITTI-API2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• nuScenes3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• nuScenes-devkit4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• Waymo Open Dataset5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Waymo Dataset License
• RangeNet++6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SalsaNext7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• FIDNet8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• CENet9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• KPConv-PyTorch10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• PIDS11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• WaffleIron12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• PolarSeg13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BSD 3-Clause License
• MinkowskiEngine14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Cylinder3D15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• PyTorch-Scatter16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SpConv17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• TorchSparse18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

1http://semantic-kitti.org.
2https://github.com/PRBonn/semantic-kitti-api.
3https://www.nuscenes.org/nuscenes.
4https://github.com/nutonomy/nuscenes-devkit.
5https://waymo.com/open.
6https://github.com/PRBonn/lidar-bonnetal.
7https://github.com/TiagoCortinhal/SalsaNext.
8https://github.com/placeforyiming/IROS21-FIDNet-SemanticKITTI.
9https://github.com/huixiancheng/CENet.

10https://github.com/HuguesTHOMAS/KPConv-PyTorch.
11https://github.com/lordzth666/WACV23_PIDS-Joint.
12https://github.com/valeoai/WaffleIron.
13https://github.com/edwardzhou130/PolarSeg.
14https://github.com/NVIDIA/MinkowskiEngine.
15https://github.com/xinge008/Cylinder3D.
16https://github.com/rusty1s/pytorch_scatter.
17https://github.com/traveller59/spconv.
18https://github.com/mit-han-lab/torchsparse.
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• SPVCNN19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• CPGNet20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• 2DPASS21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• GFNet22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• PointPillars23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• second.pytorch24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• OpenPCDet25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• PointRCNN26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• PartA2-Net27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• PV-RCNN28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• CenterPoint29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• lidar-camera-robust-benchmark30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• LiDAR-fog-sim31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NonCommercial 4.0
• LiDAR-snow-sim32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .NonCommercial 4.0
• mmdetection3d33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

19https://github.com/mit-han-lab/spvnas.
20https://github.com/huixiancheng/No-CPGNet.
21https://github.com/yanx27/2DPASS.
22https://github.com/haibo-qiu/GFNet.
23https://github.com/zhulf0804/PointPillars.
24https://github.com/traveller59/second.pytorch.
25https://github.com/open-mmlab/OpenPCDet.
26https://github.com/sshaoshuai/PointRCNN.
27https://github.com/sshaoshuai/PartA2-Net.
28https://github.com/sshaoshuai/PV-RCNN.
29https://github.com/tianweiy/CenterPoint.
30https://github.com/kcyu2014/lidar-camera-robust-benchmark.
31https://github.com/MartinHahner/LiDAR_fog_sim.
32https://github.com/SysCV/LiDAR_snow_sim.
33https://github.com/open-mmlab/mmdetection3d.
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Figure 2: Visual examples of each corruption under three severity levels in our Robo3D benchmark.
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Figure 3: Visual examples of each corruption under three severity levels in our Robo3D benchmark.
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(a) mCE vs. mIoU (b) mRR vs. mIoU (c) Per-Corruption mIoUs

Figure 4: Statistical analysis among 22 LiDAR semantic segmentation models on the proposed
SemanticKITTI-C dataset in our Robo3D benchmark.

(a) mCE vs. mIoU (b) mRR vs. mIoU (c) Per-Corruption mIoUs

Figure 5: Statistical analysis among 12 LiDAR semantic segmentation models on the proposed
nuScenes-C (Seg) dataset in our Robo3D benchmark.

(a) mCE vs. mIoU (b) mRR vs. mIoU (c) Per-Corruption mIoUs

Figure 6: Statistical analysis among 5 LiDAR semantic segmentation models on the proposed WOD-
C (Seg) dataset in our Robo3D benchmark.

(a) mCE vs. mAP (b) mRR vs. mAP (c) Per-Corruption mAPs

Figure 7: Statistical analysis among 7 3D object detection models on the proposed KITTI-C dataset
in our Robo3D benchmark.
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(a) mCE vs. NDS (b) mRR vs. NDS (c) Per-Corruption NDSs

Figure 8: Statistical analysis among 5 3D object detection models on the proposed nuScenes-C (Det)
dataset in our Robo3D benchmark.

(a) mCE vs. NDS (b) mRR vs. NDS (c) Per-Corruption mAPHs

Figure 9: Statistical analysis among 5 3D object detection models on the proposed WOD-C (Det)
dataset in our Robo3D benchmark.

Table 5: Results for the Resilience Rate (RR) of each method on SemanticKITTI-C. Bold: Best in
column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mRR ↑ Fog Wet Snow Motion Beam Cross Echo Sensor mIoU ↑

SqueezeSeg 66.81 59.63 86.37 71.81 56.72 79.12 68.49 87.50 24.83 31.61
SqueezeSegV2 65.29 62.11 84.84 67.22 55.11 77.98 64.63 81.88 28.54 41.28
RangeNet21 73.42 65.83 86.70 79.38 66.09 80.93 80.55 88.10 39.79 47.15
RangeNet53 73.59 72.24 85.64 79.58 59.85 81.13 91.63 84.85 33.76 50.29
SalsaNext 80.51 62.53 86.81 81.63 85.90 88.94 72.06 86.08 80.14 55.80
FIDNet 76.99 74.25 87.81 84.49 68.67 83.88 84.12 81.92 50.77 58.80
CENet 81.29 68.27 91.67 85.76 84.27 89.18 72.53 85.37 73.29 62.55

PolarNet 74.98 66.60 87.21 84.96 71.81 93.00 44.34 84.17 67.80 58.17

KPConv 82.90 87.60 92.81 87.10 41.34 92.25 85.86 89.50 86.71 62.17
PIDS1.2× 77.94 75.73 86.13 77.25 36.32 86.85 89.64 88.24 83.35 63.25
PIDS2.0× 78.42 79.30 86.71 79.18 34.84 88.23 88.94 86.06 84.07 64.55
WaffleIron 72.18 68.93 88.66 74.65 50.00 89.76 34.04 88.66 82.71 66.04

MinkUNet18 81.90 89.02 86.03 84.89 52.45 89.74 92.96 86.73 73.37 62.76
MinkUNet34 80.22 83.94 85.09 78.66 52.99 89.92 91.53 86.05 73.61 63.78
Cylinder3DSPC 80.08 58.50 90.59 74.01 82.70 90.89 88.27 82.80 72.88 63.42
Cylinder3DTSC 83.90 60.84 87.54 74.41 96.13 93.13 87.85 89.97 81.34 61.00

SPVCNN18 82.15 88.55 86.41 82.31 55.27 90.72 93.00 87.40 73.56 62.47
SPVCNN34 82.01 89.42 84.91 82.81 54.40 89.78 93.32 86.95 74.45 63.22
RPVNet 73.86 74.73 83.98 80.20 74.18 83.94 35.51 85.95 72.42 63.75
CPGNet 81.05 61.45 93.32 83.35 96.02 98.03 30.08 92.23 93.97 61.50
2DPASS 77.50 62.62 93.92 75.11 89.46 90.98 44.05 86.43 77.40 64.61
GFNet 77.92 66.73 89.79 90.02 93.00 90.40 27.21 87.67 78.54 63.00
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Table 6: Results for the Intersection-over-Union (IoU) of each method on SemanticKITTI-C. Bold:
Best in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ mRR ↑ mIoU ↑ Fog Wet Snow Motion Beam Cross Echo Sensor

SqueezeSeg 164.87 66.81 31.61 18.85 27.30 22.70 17.93 25.01 21.65 27.66 7.85
SqueezeSegV2 152.45 65.29 41.28 25.64 35.02 27.75 22.75 32.19 26.68 33.80 11.78
RangeNet21 136.33 73.42 47.15 31.04 40.88 37.43 31.16 38.16 37.98 41.54 18.76
RangeNet53 130.66 73.59 50.29 36.33 43.07 40.02 30.10 40.80 46.08 42.67 16.98
SalsaNext 116.14 80.51 55.80 34.89 48.44 45.55 47.93 49.63 40.21 48.03 44.72
FIDNet 113.81 76.99 58.80 43.66 51.63 49.68 40.38 49.32 49.46 48.17 29.85
CENet 103.41 81.29 62.55 42.70 57.34 53.64 52.71 55.78 45.37 53.40 45.84

PolarNet 118.56 74.98 58.17 38.74 50.73 49.42 41.77 54.10 25.79 48.96 39.44

KPConv 99.54 82.90 62.17 54.46 57.70 54.15 25.70 57.35 53.38 55.64 53.91
PIDS1.2× 104.13 77.94 63.25 47.90 54.48 48.86 22.97 54.93 56.70 55.81 52.72
PIDS2.0× 101.20 78.42 64.55 51.19 55.97 51.11 22.49 56.95 57.41 55.55 54.27
WaffleIron 109.54 72.18 66.04 45.52 58.55 49.30 33.02 59.28 22.48 58.55 54.62

MinkUNet18 100.00 81.90 62.76 55.87 53.99 53.28 32.92 56.32 58.34 54.43 46.05
MinkUNet34 100.61 80.22 63.78 53.54 54.27 50.17 33.80 57.35 58.38 54.88 46.95
Cylinder3DSPC 103.25 80.08 63.42 37.10 57.45 46.94 52.45 57.64 55.98 52.51 46.22
Cylinder3DTSC 103.13 83.90 61.00 37.11 53.40 45.39 58.64 56.81 53.59 54.88 49.62

SPVCNN18 100.30 82.15 62.47 55.32 53.98 51.42 34.53 56.67 58.10 54.60 45.95
SPVCNN34 99.16 82.01 63.22 56.53 53.68 52.35 34.39 56.76 59.00 54.97 47.07
RPVNet 111.74 73.86 63.75 47.64 53.54 51.13 47.29 53.51 22.64 54.79 46.17
CPGNet 107.34 81.05 61.50 37.79 57.39 51.26 59.05 60.29 18.50 56.72 57.79
2DPASS 106.14 77.50 64.61 40.46 60.68 48.53 57.80 58.78 28.46 55.84 50.01
GFNet 108.68 77.92 63.00 42.04 56.57 56.71 58.59 56.95 17.14 55.23 49.48

Table 7: Results for the Resilience Rate (RR) of each method on nuScenes-C (Seg3D). Bold: Best
in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mRR ↑ Fog Wet Snow Motion Beam Cross Echo Sensor mIoU ↑

FIDNet 73.33 90.78 95.29 82.61 68.51 67.44 80.48 68.31 33.20 71.38
CENet 76.04 91.44 95.35 84.12 79.57 68.19 83.09 72.75 33.82 73.28

PolarNet 76.34 81.59 97.95 90.82 62.49 86.75 57.12 75.16 58.86 71.37

WaffleIron 72.78 73.71 97.19 65.19 78.16 85.70 43.54 80.86 57.85 76.07

MinkUNet18 74.44 70.80 97.56 53.26 96.87 90.47 35.08 84.25 67.25 75.76
MinkUNet34 75.08 74.01 97.44 48.76 97.84 91.16 38.13 84.47 68.87 76.90
Cylinder3DSPC 72.94 78.59 95.46 76.26 55.33 84.64 58.36 79.45 55.46 76.15
Cylinder3DTSC 78.08 83.52 96.57 79.41 76.18 87.23 61.68 81.55 58.51 73.54

SPVCNN18 74.70 79.31 97.39 55.22 78.44 87.85 49.50 83.72 66.14 74.40
SPVCNN34 75.10 72.95 96.70 54.79 97.47 90.04 36.71 84.84 67.35 76.57
2DPASS 75.24 82.78 98.51 69.89 79.62 87.06 44.11 81.10 58.82 77.92
GFNet 83.31 90.62 98.35 93.54 77.39 83.96 86.96 80.56 55.09 76.79

Table 8: Results for the Intersection-over-Union (IoU) of each method on nuScenes-C (Seg3D).
Bold: Best in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ mRR ↑ mIoU ↑ Fog Wet Snow Motion Beam Cross Echo Sensor

FIDNet 122.42 73.33 71.38 64.80 68.02 58.97 48.90 48.14 57.45 48.76 23.70
CENet 112.79 76.04 73.28 67.01 69.87 61.64 58.31 49.97 60.89 53.31 24.78

PolarNet 115.09 76.34 71.37 58.23 69.91 64.82 44.60 61.91 40.77 53.64 42.01

WaffleIron 106.73 72.78 76.07 56.07 73.93 49.59 59.46 65.19 33.12 61.51 44.01

MinkUNet18 100.00 74.44 75.76 53.64 73.91 40.35 73.39 68.54 26.58 63.83 50.95
MinkUNet34 96.37 75.08 76.90 56.91 74.93 37.50 75.24 70.10 29.32 64.96 52.96
Cylinder3DSPC 111.84 72.94 76.15 59.85 72.69 58.07 42.13 64.45 44.44 60.50 42.23
Cylinder3DTSC 105.56 78.08 73.54 61.42 71.02 58.40 56.02 64.15 45.36 59.97 43.03

SPVCNN18 106.65 74.70 74.40 59.01 72.46 41.08 58.36 65.36 36.83 62.29 49.21
SPVCNN34 97.45 75.10 76.57 55.86 74.04 41.95 74.63 68.94 28.11 64.96 51.57
2DPASS 98.56 75.24 77.92 64.50 76.76 54.46 62.04 67.84 34.37 63.19 45.83
GFNet 92.55 83.31 76.79 69.59 75.52 71.83 59.43 64.47 66.78 61.86 42.30
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Table 9: Results of the Corruption Error (CE) of each method on WOD-C (Seg3D). Bold: Best in
column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ Fog Wet Snow Motion Beam Cross Echo Sensor mIoU ↑

MinkUNet18† 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 69.06

MinkUNet34 96.21 96.00 94.90 99.53 96.20 95.43 96.79 96.75 94.08 70.15
Cylinder3DTSC 106.02 111.81 104.08 98.39 110.30 105.77 106.87 108.24 102.69 65.93

SPVCNN18 103.60 105.63 104.79 99.17 105.41 104.85 99.74 104.28 104.91 67.35
SPVCNN34 98.72 99.67 96.36 100.43 100.00 98.55 101.93 97.87 94.97 69.01

Table 10: Results of the Resilience Rate (RR) of each method on WOC-C (Seg3D). Bold: Best in
column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mRR ↑ Fog Wet Snow Motion Beam Cross Echo Sensor mIoU ↑

MinkUNet18 91.22 97.00 88.31 83.62 99.80 92.89 94.66 91.75 81.73 69.06
MinkUNet34 91.80 97.38 89.78 82.61 99.93 93.78 94.77 92.02 84.13 70.15

Cylinder3DTSC 92.39 95.69 90.10 88.62 99.68 94.16 95.54 91.52 83.83 65.93

SPVCNN18 91.60 96.70 87.78 86.27 99.84 92.67 97.19 91.74 80.62 67.35
SPVCNN34 92.04 97.23 90.44 83.42 99.87 93.71 93.75 92.94 84.96 69.01

Table 11: Results of the Intersection-over-Union (IoU) of each method on WOD-C (Seg3D). Bold:
Best in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ mRR ↑ mIoU ↑ Fog Wet Snow Motion Beam Cross Echo Sensor

MinkUNet18 100.00 91.22 69.06 66.99 60.99 57.75 68.92 64.15 65.37 63.36 56.44
MinkUNet34 96.21 91.80 70.15 68.31 62.98 57.95 70.10 65.79 66.48 64.55 59.02

Cylinder3DTSC 106.02 92.39 65.93 63.09 59.40 58.43 65.72 62.08 62.99 60.34 55.27

SPVCNN18 103.60 91.60 67.35 65.13 59.12 58.10 67.24 62.41 65.46 61.79 54.30
SPVCNN34 98.72 92.04 69.01 67.10 62.41 57.57 68.92 64.67 64.70 64.14 58.63

Table 12: Results for the Resilience Rate (RR) of each method on KITTI-C. Bold: Best in column.
Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mRR ↑ Fog Wet Snow Motion Beam Cross Echo Sensor mAP ↑

PointPillars 74.94 68.52 100.01 53.63 70.60 78.32 89.97 82.22 56.22 66.70
SECOND 82.94 77.73 100.03 80.19 71.82 79.05 98.10 86.51 70.08 68.49
PointRCNN 83.46 80.15 102.22 71.45 73.33 80.90 93.51 88.27 77.90 70.26
Part-A2Free 81.87 76.11 100.01 76.26 72.30 77.95 99.10 86.08 67.15 76.28
Part-A2Anchor 80.67 76.49 99.99 69.37 74.40 76.21 96.95 85.55 66.44 73.98
PV-RCNN 81.73 76.51 100.73 72.03 75.23 78.61 97.28 87.06 66.35 72.36
CenterPoint 79.73 77.29 100.01 70.68 69.78 72.61 96.07 85.74 65.68 68.70

Table 13: Results for the Average Precision (AP) of each method on KITTI-C. Bold: Best in
column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ mRR ↑ mAP ↑ Fog Wet Snow Motion Beam Cross Echo Sensor

PointPillars 110.67 74.94 66.70 45.70 66.71 35.77 47.09 52.24 60.01 54.84 37.50
SECOND 95.93 82.94 68.49 53.24 68.51 54.92 49.19 54.14 67.19 59.25 48.00
PointRCNN 91.88 83.46 70.26 56.31 71.82 50.20 51.52 56.84 65.70 62.02 54.73
Part-A2Free 82.22 81.87 76.28 58.06 76.29 58.17 55.15 59.46 75.59 65.66 51.22
Part-A2Anchor 88.62 80.67 73.98 56.59 73.97 51.32 55.04 56.38 71.72 63.29 49.15
PV-RCNN 90.04 81.73 72.36 55.36 72.89 52.12 54.44 56.88 70.39 63.00 48.01
CenterPoint 100.00 79.73 68.70 53.10 68.71 48.56 47.94 49.88 66.00 58.90 45.12
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Table 14: Results for the Resilience Rate (RR) of each method on nuScenes-C (Det3D). Bold: Best
in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mRR ↑ Fog Wet Snow Motion Beam Cross Echo Sensor NDS ↑

PointPillars-MH 77.24 76.53 99.05 68.06 87.79 77.57 79.88 71.31 57.70 43.33
SECOND-MH 76.96 79.38 99.42 70.86 86.32 74.45 84.19 71.28 49.76 47.87
CenterPoint-PP 76.68 76.13 98.74 67.91 90.87 76.45 76.58 70.73 56.06 45.99
CenterPoint-LR 72.49 73.19 95.21 65.99 81.54 69.33 76.65 71.40 46.58 49.72
CenterPoint-HR 75.26 78.61 98.93 69.03 85.89 71.97 81.45 69.75 46.47 50.31

Table 15: Results for the nuScenes Detection Score (NDS) of each method on nuScenes-C (Det3D).
Bold: Best in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ mRR ↑ NDS ↑ Fog Wet Snow Motion Beam Cross Echo Sensor

PointPillars-MH 102.90 77.24 43.33 33.16 42.92 29.49 38.04 33.61 34.61 30.90 25.00
SECOND-MH 97.50 76.96 47.87 38.00 47.59 33.92 41.32 35.64 40.30 34.12 23.82
CenterPoint-PP 100.00 76.68 45.99 35.01 45.41 31.23 41.79 35.16 35.22 32.53 25.78
CenterPoint-LR 98.74 72.49 49.72 36.39 47.34 32.81 40.54 34.47 38.11 35.50 23.16
CenterPoint-HR 95.80 75.26 50.31 39.55 49.77 34.73 43.21 36.21 40.98 35.09 23.38

Table 16: Results for the Corruption Error (CE) of each method on WOD-C (Det3D). Bold: Best
in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ Fog Wet Snow Motion Beam Cross Echo Sensor mAPH ↑

CenterPoint† 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 63.59

SECOND 121.43 117.86 126.51 127.51 113.37 121.25 127.82 123.66 113.48 53.37
PointPillars 127.53 120.76 135.23 129.65 115.23 122.99 151.71 131.64 113.05 50.17
PV-RCNN 104.90 110.08 104.22 95.68 101.33 110.70 101.84 106.00 109.37 61.27

PV-RCNN++ 91.60 95.71 88.32 90.05 93.24 92.50 88.94 90.81 93.23 67.45

Table 17: Results for the Resilience Rate (RR) of each method on WOD-C (Det3D). Bold: Best in
column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mRR ↑ Fog Wet Snow Motion Beam Cross Echo Sensor mAPH ↑

PointPillars 81.23 62.27 99.16 92.31 69.62 87.56 79.33 86.53 73.09 50.17
SECOND 81.12 61.63 99.29 88.44 67.42 83.79 92.34 87.76 68.26 53.37

PV-RCNN 82.43 60.91 100.00 98.55 69.82 80.84 97.26 88.84 63.21 61.27
CenterPoint 83.30 67.72 98.82 92.14 68.45 85.56 94.86 89.65 69.16 63.59

PV-RCNN++ 84.14 67.46 99.60 92.97 70.20 85.74 95.94 90.38 70.82 67.45

Table 18: Results of the Average Precision (APH) of each method on WOD-C (Det3D). Bold: Best
in column. Underline: Second best in column. Dark : Best in row. Red : Worst in row.

Method mCE ↓ mRR ↑ mAPH ↑ Fog Wet Snow Motion Beam Cross Echo Sensor

PointPillars 127.53 81.23 50.17 31.24 49.75 46.07 34.93 43.93 39.80 43.41 36.67
SECOND 121.43 81.12 53.37 32.89 52.99 47.20 35.98 44.72 49.28 46.84 36.43

PV-RCNN 104.90 82.43 61.27 37.32 61.27 60.38 42.78 49.53 59.59 54.43 38.73
CenterPoint 100.00 83.30 63.59 43.06 62.84 58.59 43.53 54.41 60.32 57.01 43.98

PV-RCNN++ 91.60 84.14 67.45 45.50 67.18 62.71 47.35 57.83 64.71 60.96 47.77
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