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Abstract

Small language models (SLMs) are increasingly deployed on edge devices for1

personalized applications, offering low-latency inference and reduced energy con-2

sumption. However, they often struggle with complex queries, leading to unre-3

liable responses. Uncertainty-based SLM routing addresses this by offloading4

low-confidence queries to stronger large language models (LLMs), following the5

principle “if uncertain, seek stronger support” to improve reliability. While leverag-6

ing LLMs enhances accuracy, it also incurs high invocation costs, making it crucial7

to balance efficiency and efficacy. In this paper, we conduct a comprehensive inves-8

tigation into benchmarking of uncertainty-driven routing strategies from SLMs to9

LLMs over 5000+ settings. Our findings highlight: First, uncertainty-correctness10

alignment in different uncertainty quantification (UQ) methods significantly im-11

pacts routing performance. The extracted uncertainty distribution is primarily12

influenced by the selected SLM and uncertainty quantification (UQ) method, show-13

ing minimal dependence on the downstream dataset. The source code is available14

at https://anonymous.4open.science/r/quodlibeta.15

1 Introduction16

Large language models (LLMs) have gained increasing attention for deployment on edge devices due17

to their potential for low-latency and privacy-preserving inference. However, given the computational18

and memory constraints of edge hardware, small language models (SLMs) (e.g., Phi2-mini [33],19

Llama3.2-3B [64]) are designed for resource-efficient deployment on smartphones, wearables, and20

similar devices. Their overarching goal is to democratize LM deployment, making it accessible and21

affordable across diverse settings [46, 78, 76]. Despite this, SLMs often lack the robustness and22

scalability of LLMs [8] (e.g., GPT-4o [2], Llama-3.1-405B), especially under diverse and complex23

queries in edge deployments, leading to degraded overall performance and motivating the need for24

improved response reliability.25

To address this limitation, recent work proposes partial offloading of challenging queries from SLMs26

to stronger LLMs [10, 53, 30, 60], forming hybrid systems that intelligently route queries for more27

reliable and deterministic responses. However, these methods face significant challenges when28

encountering new downstream tasks, as the data fall outside the distribution of the existing training29

data, making them less practical for real-world scenarios, such as in personal edge device deployment,30

where adaptability to unseen conditions is crucial. While LLMs achieve superior performance, their31

deployment incurs high inference and infrastructure costs, e.g., a single NVIDIA A100 GPU can32

cost ∼ $2,000 per month. Moreover, inaccurate routing by SLMs can unnecessarily increase LLM33

query traffic, requiring greater bandwidth and further raising operational expenses, particularly under34

continuous deployment scenarios. Therefore, developing an effective routing strategy is crucial for35

fully leveraging SLMs [53, 60, 10], as it enhances response reliability while reducing service and36

data transmission costs.37
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Leveraging SLMs’ self-uncertainty estimation emerges as a robust strategy for enhancing routing38

effectiveness [10, 15]. By relying on the self-assessed uncertainty, the system can better decide39

whether to handle a query locally or delegate it to a larger model without the aid of extra routers,40

ensuring that only queries deemed unreliable by the SLMs are routed to LLMs. As a result, the41

uncertainty-based routing approach not only generalizes well to new datasets, as only self-assessed42

information from SLM is needed, but it also reduces the high operational costs associated with43

accurately running LLMs. To this end, we aim to explore two open and nontrivial research questions44

for uncertainty-based SLM routing:45

What is the best practice of uncertainty estimation for query routing from SLMs to LLMs? We46

benchmark the uncertainty-correctness alignment of each uncertainty quantification (UQ) method47

under its impact on SLM routing. A good alignment is a key factor for successful routing decisions,48

as any misalignment can cause unnecessary offloading with extra cost. However, SLMs may struggle49

to provide reliable uncertainty estimates [31, 14, 67], making them less effective as indicators for50

query routing. Thus, we benchmark the alignment between uncertainty and correctness, paving the51

insights for establishing more effective routing strategies1. Our contributions include as follows:52

• Comprehensive benchmarking and detailed analysis: This benchmark evaluates 8 UQ methods53

across 15 datasets to examine the alignment between uncertainty and correctness in routing tasks.54

We incorporate 8 SLMs and 2 LLMs to emulate uncertainty-based SLM routing.55

• Uncertainty distribution characterization: The extracted uncertainty distribution is determined56

by the choice of SLM and UQ method, exhibiting minimal dependence on the downstream dataset.57

2 Benchmarking Uncertainty-based SLM Routing58

In this section, we systematically evaluate 12 SLMs and 4 LLMs on 15 datasets using 8 UQ methods59

(see Table 2) for uncertainty-based SLM routing. This section details the datasets, models, and60

UQ methods, followed by several key findings and practical considerations. All experiments are61

conducted on four 80GB NVIDIA A100 GPUs.62

2.1 Benchmark Coverage and Setup63

The Language Models. We evaluate 12 open-source SLMs, organized into three categories:64

non-reasoning LMs, reasoning LMs, and a recurrent neural network (RNN) model. The non-reasoning65

models are Llama-3.2-1B-Instruct [49], Llama-3.2-3B-Instruct [49], Phi-3.5-mini-instruct [1],66

Mistral-7B-Instruct-v0.3 [34], Qwen2.5-7B-Instruct [71], Llama-3.1-8B-Instruct [18], and67

Granite-3.1-8B-Instruct [24]. The reasoning models are Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B,68

and Phi-4-mini-reasoning [70]. The RNN model is RWKV-7-2.9B [55]. We also include four LLMs:69

three open-source models—Llama-3.1-70B-Instruct [18], Qwen3-32B, and DeepSeek-R1 [27]—and70

one proprietary API model, GPT-4.1 mini [32]. Qwen3-32B and DeepSeek-R1 are reasoning LLMs,71

whereas Llama-3.1-70B and GPT-4.1 mini are non-reasoning.72

Datasets and Experiment Settings. Experiments span 15 datasets from four domains: (1) Mathe-73

matical Reasoning (AQuA [44], GSM8K [12], MultiArith [57], SVAMP [54], MATH-500 [40]), (2)74

Commonsense Reasoning (CommonsenseQA [61], HellaSwag [73], OpenBookQA [51], PIQA [6],75

TruthfulQA [41], WinoGrande [58], BoolQ [11], Social IQa [59]), (3) Conversational and Contex-76

tual Understanding (CoQA [56]), and (4) Problem Solving (MMLU [28]). These cover free-form,77

multiple-choice, and True/False question answering and are available via Hugging Face. Appendix A78

provides further details about the settings of datasets and selected UQ methods.79

2.2 Report Observations80

In this section, we present our benchmarking results analyzing the impact of uncertainty-correctness81

alignment on routing tasks. More observations and experimental results on proxy routing and routing82

can be found in Appendix C.1.83

1For the convenience of writing, we interchangeably use uncertainty and confidence, where low uncertainty
refers to high confidence.
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Figure 1: Overall accuracy vs. routing ratio with different UQ methods and SLMs. (a) and (b) show
the results of routing to DeepSeek-R1 on the CommonsenseQA dataset; c and (d) show the results of
routing to GPT4-mini on the Openbook QA dataset.

Observation ❶: Uncertainty estimation in SLMs may exhibit misalignment with prediction84

correctness. From the theoretical perspective, well-calibrated uncertainty scores do not necessarily85

imply a strong correlation with the correctness of the predictions [31, 10]. The predictions of86

models might be perfectly calibrated yet still display relatively low accuracy (i.e., confidently provide87

wrong answers). This phenomenon is also evident in our benchmark results (illustrated in Figure 6).88

We compute AUC scores to quantify the correlation between extracted uncertainty and prediction89

correctness, treating correctness as a binary ground truth and using confidence values as the ranking90

metric. The results show that not all UQ methods effectively exhibit a strong alignment between91

confidence and prediction correctness. Moreover, from Figure 6 and Figure 5, we can observe92

that the alignment may vary across datasets for the same SLM and UQ method. For instance,93

Perplexity [20] demonstrates strong alignment for Phi-3.5-mini on the MultiArith dataset but fails94

on the OpenBookQA dataset. On the other hand, OOD Probe, Trained Probe, and Perplexity obtain95

consistently decent alignment compared to other UQ methods across different SLMs and domains of96

datasets. Conversely, we notice that verbalization-based methods, namely verbalization-1s [63, 47],97

and verbalization-2s [63], consistently withhold low alignment between uncertainty and prediction98

correctness. More experimental results can be found in Appendix C.1.99

Observation ❷: Verbalization-based UQ methods struggle to extract uncertainty in SLMs for100

query routing. We find that verbalization methods like verbalization-2s [63] obtain poor alignment101

between confidence and prediction correctness, and this misalignment can lead to inferior routing102

performance in SLMs, where the conclusion can be found in Figure 1. Recent advancements [68, 72]103

also show that uncertainty scores derived from verbalization may exhibit good reflection on models’104

intrinsic uncertainty of prediction across multiple models and datasets. This discrepancy poses a105

significant challenge for establishing effective routing performance since queries that are actually106

correct may be unnecessarily routed from SLMs to LLMs, thereby increasing the overall cost of107

deploying routing systems.108

Observation ❸: A good routing standard highly depends on UQ methods with good uncertainty-109

correctness alignment. A notable phenomenon occurs when UQ methods, such as Trained Probe [47],110

exhibit strong alignment, leading to significant improvements in routing performance. This is because111

the extracted uncertainty scores from these UQ methods more effectively indicate whether SLMs112

produce correct predictions. Among all UQ methods evaluated for routing tasks, we find that Trained113

Probe [47], OOD Probe [36, 47], and Perplexity [19] consistently rank as the top three methods for114

SLM routing. Therefore, a comprehensive analysis of UQ methods before deploying a routing system115

in SLMs is highly recommended to ensure efficient query routing.116
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(c) Llama-3.2-1B
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Figure 2: Relative accuracy of SLMs vs. LLMs on top-k% confident queries. “Relative accuracy”
is the ratio of SLM accuracy to LLM accuracy. The x-axis “Lowest Conf. Excluded” shows the
percentage of low-confidence queries removed; for example, 80 means 80% of queries with the
lowest confidence are excluded, leaving the top 20%. (a) and (b) compare SLMs to Llama-3.1-70B
on GSM8K, while (c) and (d) compare SLMs to Qwen3-32B on BoolQ.
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Figure 3: Uncertainty score distributions across 15 datasets. The histogram depicts the aggregated
distribution from all datasets, while each curve represents a single dataset. (a) Confidence of Phi-3.5-
mini by OOD Probe; (b) Confidence of Llama-3.1-8B by Perplexity.

Observation ❹: SLMs can match LLM performance on high-confidence queries. Although SLMs117

generally underperform LLMs, we find that for queries where SLMs exhibit high confidence, their118

accuracy approaches that of LLMs. To illustrate, we progressively remove queries starting from those119

with the lowest SLM confidence and compute the ratio of SLM to LLM accuracy on the remaining120

top-k% queries (Figure 2). As more low-confidence queries are excluded, SLMs achieve comparable121

performance to LLMs. For instance, on GSM8K, Qwen3-0.6B achieves performance nearly equal122

to Llama-3.1-70B on the top 20% highest-confidence queries. Moreover, the effectiveness of this123

selection depends on the uncertainty quantification (UQ) method: approaches with stronger alignment124

(e.g., Trained Probe [47]) yield higher relative accuracy than weaker ones (e.g., verbalization-2s)125

across all query exclusion rates. Additional results appear in Appendix C.2.126

Insights ❺: The extracted confidence distribution is predominantly determined by the chosen127

SLM and UQ method, with minimal dependence on the downstream dataset. As shown in128

Figure 3, the confidence scores aggregated from 15 different tasks maintain a consistent overall shape129

across diverse datasets, indicating that dataset-specific factors have limited influence. In contrast, the130

distribution varies substantially across different SLMs and UQ methods, highlighting their dominant131

role in shaping the resulting confidence profiles.132

3 Conclusion133

This paper investigates the routing accuracy of SLMs in estimating their uncertainty and establishing134

best practices for initiating effective routing strategies. Through comprehensive benchmarking of 15135

SLMs, 4 LLMs, 8 UQ methods, and 15 datasets across 5000+ settings, we found that the alignment136

between uncertainty and correctness significantly impacts routing performance. Additionally, we137

also observe that extracted uncertainty is primarily influenced by the selected SLM and uncertainty138

quantification (UQ) method, showing minimal dependence on the downstream dataset. Future work139

will focus on leveraging these insights to develop high-quality routing datasets that enable efficient140

SLM deployment on edge devices without re-calculating the uncertainty scores for routing.141
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A Benchmark Details387

A.1 Details about Datasets388

The details of the 15 datasets are further listed in Tabel 1. We applied the original dataset directly389

from the Huggingface dataset repositories without any further processing. A thorough examination390

of each dataset’s attributes, size, and notable characteristics is provided below.391

Table 1: Details of the 15 datasets used in our benchmark. FF: Free-form question answering
(including numerical answers for math tasks); MCQ: Multiple-choice question answering; TF:
True/False question answering.

Dataset Type Domain # Train # Test Description

GSM8K FF Mathematical Reasoning 7473 1319 Grade school math word problems
AQuA MCQ Mathematical Reasoning 97467 254 Algebraic word problems
MultiArith FF Mathematical Reasoning 420 180 Algebraic word problems
SVAMP FF Mathematical Reasoning 700 300 Algebraic word problems
MATH-500 FF Mathematical Reasoning −− 500 Algebraic word problems

BoolQ TF Commonsense Reasoning 9427 3270 Commonsense and factual reasoning questions
CommonsenseQA MCQ Commonsense Reasoning 9741 1221 Questions assessing various types of commonsense knowledge
HellaSwag MCQ Commonsense Reasoning 39905 10042 Sentence completion based on narrative understanding
OpenBookQA MCQ Commonsense Reasoning 4957 500 Open-book science and commonsense questions
PIQA MCQ Commonsense Reasoning 16113 1838 Physical commonsense reasoning questions
Social IQa MCQ Commonsense Reasoning 33410 1954 Social commonsense intelligence questions
TruthfulQA FF Commonsense Reasoning 653 164 Assessing models’ ability to prevent false information
WinoGrande MCQ Commonsense Reasoning 2558 1267 Pronoun ambiguity resolution with commonsense reasoning

CoQA FF Conversational & Contextual Understanding 7199 500 Conversational questions on text passages from diverse domains

MMLU MCQ Problem Solving 99842 14042 Problem solving across various subjects

A.2 Details about Uncertainty Quantification Methods392

We evaluate 8 approaches from the four categories in Section B.1. (1) Average token probability393

uses the probability of the chosen option token (e.g., “A”) for multiple-choice tasks or the mean394

probability of all generated tokens for free-form tasks. (2) Perplexity is computed for a sequence of395

N output tokens {yi}Ni=1 with probabilities {p(yi)}Ni=1 as exp
(

1
N

∑N
i=1 ln p(yi)

)
, and its reciprocal396

serves as the confidence score. (3) p(True) is a method where the LM first outputs an answer, then397

evaluates the generated response using only “True” or “False.” The probabilities for these two tokens398

are normalized to sum to 1, and the probability of “True” is used as confidence. (4) Verbalized399

confidence in a single response (denoted as verbalization-1s) prompts the model to output both the400

answer and numeric confidence in one step. (5) Verbalized confidence in the second round (denoted as401

verbalization-2s) obtains the confidence in a separate, follow-up query after the model has provided402

an answer. (6) The degree matrix (denoted as jaccard-degree) generates m = 5 samples (temperature403

1.0) for one query, computes pairwise Jaccard similarities, and sets confidence to trace(mI−D)/m2,404

where D is the degree matrix. (7) Trained probe is a four-layer MLP with LeakyReLU activations,405

trained on a fixed subsample of the in-domain training set for each dataset, taking as input the hidden406

states from the eighth-to-last transformer layer. We train for 20 epochs (learning rate 5 × 10−4).407

(8) Trained probe on out-of-distribution data (denoted as ood-probe) is identical in architecture but408

trained on all other datasets. e.g., if AQuA is evaluated, the ood-probe is trained on the remaining 15409

datasets (20 epochs, learning rate 1× 10−4).410

For verbalization-based methods, we discard queries when the model does not follow instructions411

to produce a confidence score. For free-form question answering, we use GPT-4.1 mini to evaluate412

whether a response is essentially equivalent to the ground truth answer [77].413
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B Related Work414

B.1 Reviewing Different Schools of Uncertainty Quantification and LLM Routing415

Uncertainty quantification methods estimate a model’s confidence in its predictions [29]. For416

traditional classification and regression, uncertainty estimation is well-established [21]. However, for417

LLMs generating free-form responses to complex queries, estimating uncertainty is more challenging418

because the output space can grow exponentially with vocabulary size, and each sequence spans419

multiple tokens [19]. Existing uncertainty quantification approaches for LLMs can be grouped into420

the following four categories.421

Via verbalizing uncertainty. This line of work prompts language models to report linguistic con-422

fidence [47, 50]. To enable LMs to verbalize confidence, researchers have proposed fine-tuning423

them to express uncertainty [42] or teaching them to verbalize confidence through in-context learn-424

ing [16]. Verbalized confidence can take the form of linguistic expressions of uncertainty or numer-425

ical scores [22]. Multiple studies find that LLMs tend to be overconfident when reporting confi-426

dence [69, 63]. To mitigate this overconfidence, prompting strategies such as multi-step elicitation,427

top-k, and Chain-of-Thought [66] have been explored [63]. Sampling multiple response-confidence428

pairs and designing more effective aggregation strategies can also help mitigate overconfidence [69].429

Moreover, [63] reports that verbalized confidence is typically better calibrated than the model’s430

conditional probabilities.431

Via analyzing token/sequence probabilities. This line of research derives confidence scores from432

model logits for output tokens [22, 31, 35]. The confidence of a generated sequence is computed by433

aggregating the log-probabilities of its tokens. Common aggregation strategies include arithmetic434

average, minimum, perplexity, and average entropy [19, 20, 65]. Because not all tokens in a sequence435

equally reflect semantic content, SAR reweights token likelihoods to emphasize more meaningful436

tokens [17]. However, different surface realizations of the same claim can yield different probabilities,437

implying that the calculated confidence reflects how a claim is articulated rather than the claim438

itself [47]. To combine LM self-assessment with token probabilities, p(True) is proposed: the model439

is asked whether its generated response is correct, and the probabilities of True/False tokens serve as440

the confidence score [36, 63].441

Via gauging output consistency. This line of research (e.g., SelfCheckGPT [48]) assumes that442

high-confidence LLMs produce consistent outputs [47]. A typical approach samples m responses443

for a given input query, measures inter-response similarity, and calculates a confidence score from444

meaning diversity [19]. Common ways to measure pairwise similarity include Natural Language445

Inference (NLI) and Jaccard similarity [22]. Consistency is then assessed by analyzing the similarity446

matrix, for instance, by counting semantic sets, summing eigenvalues of the graph Laplacian or447

computing eccentricity [43]. Because different sentences can express the same meaning, semantic448

entropy [37] first clusters responses by semantic equivalence before measuring consistency.449

Via training uncertainty probes. This approach trains classifiers to predict whether an LLM450

will arrive at the correct answer for a particular query, using predicted probabilities as confidence451

scores [22]. Training data is often obtained by sampling multiple answers per question at a fixed452

Table 2: Uncertainty quantification (UQ) methods evaluated in our benchmark. “Model Access”
specifies whether a method views the LM’s weights/logits (white-box) or only its generated output
(black-box). “Require Training?” indicates if additional training is needed. See Subsection B.1 for
taxonomy details and Subsection 2.1 for method descriptions.

Uncertainty Quantification (UQ) Methods Taxonomy Model Access Require Training?

Average Token Prob [47] Token/sequence probabilities White-box No
p(True) [36] Token/sequence probabilities White-box No
Perplexity [20] Token/sequence probabilities White-box No
Jaccard Degree [43] Output consistency Black-box No
Verbalization-1s [69, 63] Verbalized uncertainty Black-box No
Verbalization-2s [63] Verbalized uncertainty Black-box No

Trained Probe [4, 36, 47] Uncertainty probe White-box Yes
OOD Probe [36, 47] Uncertainty probe White-box Yes

11



temperature and labeling each for correctness [36]. A probe (commonly a multi-layer perceptron)453

then takes hidden states as inputs to predict correctness [4, 39]. Because in-domain training data454

is not always available, Contrast-Consistent Search trains probes unsupervisedly by maximizing455

representation distances between contradictory answers on Yes/No questions [7]. Furthermore,456

whether probes trained on out-of-distribution data remain effective is still under debate [36, 47, 37].457

B.2 Small Language Models458

Small Language Models (SLMs) are designed for deployment on resource-constrained devices like459

desktops, smartphones, and wearables. Specifically, we consider the Transformer-based SLMs in this460

work due to their state-of-the-art performance, like Phi-3-mini [1], TinyLlama [74], MobileLLM [45],461

and Qwen-1.5B [5], LiteLLaMa-460M, OPT-125M [75], BLOOMZ (560M, 1.1B, 1.7B, 3B) [38],462

SmolLM (135M, 360M, 1.7B) [3], OLMo (1B) [26], OLMoE (1B) [52], MobiLlama (0.5B, 1B) [62],463

MobileLLaMA (1.4B, 2.7B) [9], OpenLLaMA (3B) [23]. These models are designed with lightweight464

architectures to operate effectively within the computational and storage limitations of mobile devices465

and edge hardware.466

Recurrent Neural Networks (RNNs), like RWKV (1B, 3B, 7B) [55], Mamba (1.4B, 6.9B) [13], and467

RecurrentGemma-2B [25], can provide promising solutions for on-device inference in resource-468

constrained environments. These models leverage the recurrent nature of RNNs to process sequential469

data efficiently without requiring a KV cache, which is suitable for resource-constrained on edge470

devices. Specifically, RWKV introduces a hybrid RNN-Transformer backbone to capture long-term471

dependencies while maintaining computational efficiency. Similarly, Mamba and RecurrentGemma472

design recurrent layers for low-power consumption and high throughput inference, which can473

significantly reduce memory and computational requirements, fostering low-latency applications474

directly on devices.475
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C Additional Benchmarking Results476

In this section, we present additional experimental results on evaluating the impact of uncertainty-477

correctness alignment on small language model (SLM) routing. Since our studies yield over 5,600478

results, we here present a representative subset in the following section. The full set of results will479

be provided in the Github repository. For the experiment (Section C.1 and Section C.2), we provide480

the complete set of results, including the AUC measurements for uncertainty-correctness alignment481

and the performance of uncertainty-based routing. Each dataset referenced in the experiments is482

treated as a novel dataset for evaluation.483

C.1 Evaluation on Uncertainty-correctness Alignment484

Results of Alignment between uncertainty and correctness.485

All the experiments shown on this page are conducted under AQUA, BoolQ, and CoQA datasets with486

all 8 UQ methods.487
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Figure 4: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on AQuA, BoolQ, and CoQA. A higher ROC
AUC indicates a stronger alignment.
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Results of Alignment between uncertainty and correctness.488

All the experiments shown on this page are conducted under GSM8K, HellaSwag, MMLU, and489

MultiArith datasets with all 8 UQ methods.490
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Figure 5: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on GSM8K, HellaSwag, MMLU, and Multi-
Arith. A higher ROC AUC indicates a stronger alignment.
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Results of Alignment between uncertainty and correctness.491

All the experiments shown on this page are conducted under OpenBookQA, PIQA, SocialIQA, and492

SVAMP datasets with all 8 UQ methods.493
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Figure 6: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on OpenBookQA, PIQA, SocialIQA, and
SVAMP datasets. A higher ROC AUC indicates a stronger alignment.
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Results of Alignment between uncertainty and correctness.494

All the experiments shown on this page are conducted under CommonsenseQA, SVAMP, TruthfulQA,495

WinoGrande, and Math500 dataset with all 8 UQ methods.496
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Figure 7: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on CommonsenseQA. A higher ROC AUC
indicates a stronger alignment.
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C.2 Evaluation on Uncertainty-based Routing Approaches497

Results of routing to GPT-4.1-Mini498

All the experiments shown on this page are conducted under all benchmark datasets with selected499

SLMs. We only showcase partial of the experimental results.500

Figure 8: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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Results of routing to DeepSeek-R1501

All the experiments shown on this page are conducted under all benchmark datasets with selected502

SLMs. We only showcase partial of the experimental results.503

Figure 9: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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Results of routing to Llama-3.1-70B-Instruct504

All the experiments shown on this page are conducted under all benchmark datasets with selected505

SLMs. We only showcase partial of the experimental results.506

Figure 10: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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Results of routing to Qwen3-32B507

All the experiments shown on this page are conducted under all benchmark datasets with selected508

SLMs. We only showcase partial of the experimental results.509

Figure 11: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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