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Abstract

Small language models (SLMs) are increasingly deployed on edge devices for
personalized applications, offering efficient decoding latency and reduced en-
ergy consumption. However, these SLMs often generate inaccurate responses
when handling complex queries. One promising solution is uncertainty-based
SLM routing, offloading high-stakes queries to stronger large language models
(LLMs) when resulting in low-confidence responses on SLM. This follows the
principle of If you lack confidence, seek stronger support to enhance reliabil-
ity. Relying on more powerful LLMs is yet effective but increases invocation
costs. Therefore, striking a routing balance between efficiency and efficacy re-
mains a critical challenge. Additionally, efficiently generalizing the routing strat-
egy to new datasets remains under-explored. In this paper, we conduct a com-
prehensive investigation into benchmarking and generalization of uncertainty-
driven routing strategies from SLMs to LLMs over 5000+ settings. Our find-
ings highlight: First, uncertainty-correctness alignment in different uncertainty
quantification (UQ) methods significantly impacts routing performance. Second,
uncertainty distributions depend more on both the specific SLM and the cho-
sen UQ method, rather than on downstream data. Building on the insight, we
propose a proxy routing data construction pipeline and open-source a hold-out
set to enhance the generalization on predicting the routing curve for new down-
stream data. Experimental results indicate that proxy routing data effectively
bootstraps routing performance without any new data. The source code is available
at https://github.com/ThunderbornSakana/quodlibeta.

1 Introduction

Large language models (LLMs) deployment on edge devices has gained increasing attention in
recent years, primarily due to their potential for low-latency, privacy-preserving inference. Given
the computational and memory constraints of edge devices, small language models (SLMs) (e.g.,
Phi2-mini [35] or Llama3.2-3B [70] are designed for resource-efficient deployment, particularly on
devices such as smartphones and wearable devices. Their overarching goal is to democratize the
deployment of LMs, making it accessible and affordable to users across diverse settings and at any
time [52, 86, 83]. However, these SLMs often lack the robustness and scalability of LLMs [8] (e.g.,
GPT-4o [2] and Llama-3.1-405B), especially when faced with diverse and complex input queries
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under the deployment on edge devices, which eventually degrade the overall performance. This
limitation raises a critical need for exploring solutions to increase the response reliability of SLMs.

To mitigate this unreliability, a line of work proposes to partially offload challenging and complex
queries from SLMs to LLMs [11, 59, 32, 66]. A hybrid system is then established to wisely route
the queries from SLMs and seek more reliable and deterministic responses from stronger LLMs.
Although LLMs can exhibit superior performance, they incur high maintenance and inference costs
given the large scale of model size and their infrastructure (i.e., a single NVIDIA A100 GPU can
cost approximately $2,000 per month for deployment). Inaccurate routing by SLMs increases the
volume of queries forwarded to LLMs, necessitating greater bandwidth allocation for maintaining
the service of LLMs. As a result, operational costs and budgetary requirements rise accordingly,
especially when continuous deployment is required. Hence, developing an effective routing strategy
is crucial for fully deploying SLMs [59, 66, 11], as it both enhances response reliability and reduces
the costs associated with services and data transmission.

Leveraging SLMs’ self-uncertainty estimation emerges as a robust strategy for enhancing routing
effectiveness [11, 16]. By relying on the self-assessed uncertainty, the system can better decide
whether to handle a query locally or delegate it to a larger model without the aid of extra routers,
ensuring that only queries deemed unreliable by the SLMs are routed to LLMs. As a result, the
uncertainty-based routing approach not only generalizes well to new datasets, as only self-assessed
information from SLM is needed, but it also reduces the high operational costs associated with
accurately running LLMs. To this end, we aim to explore two open and nontrivial research questions
for uncertainty-based SLM routing:

1) What is the best practice of uncertainty estimation for query routing from SLMs to LLMs?
In this research question, we benchmark the uncertainty-correctness alignment of each uncertainty
quantification (UQ) method under its impact on SLM routing. A good alignment is a key factor for
successful routing decisions, as any misalignment can cause unnecessary offloading with extra cost.
However, SLMs may struggle to provide reliable uncertainty estimates [33, 15, 73], making them
less effective as indicators for query routing. Thus, we benchmark the alignment between uncertainty
and correctness, paving the insights for establishing more effective routing strategies2.

2) What is the best practice to initially establish an effective routing strategy when generalizing
to new datasets? In this research question, we explore how to generalize routing strategies to new
datasets. Existing approaches [59, 32] rely on sufficient new downstream data to make routing
decisions for optimal performance-cost trade-offs, but this process is time-consuming and labor-
intensive. Broadly speaking, collecting and analyzing full downstream datasets under varying
SLM configurations can be prohibitively costly, delaying implementation, which is not practical
in real-world scenarios. This delay is particularly problematic in high-stakes scenarios, such as
medical wearable devices, where reliability is critical, and inaccuracies are unacceptable even in early
deployment stages. Based on our findings, we provide a data construction pipeline to predict the
routing curves in new downstream scenarios without any new downstream data. A generated proxy
routing dataset as a data-agnostic hold-out set enables the estimation of effective routing decisions
via the predicted routing curves. We further benchmark the benefits of this proxy routing dataset,
demonstrating its generalization ability in predicting the routing curve to new datasets.

This work offers an accessible and reproducible pipeline for uncertainty-based routing from bench-
marking to generalization. Our main contributions are summarized as follows:

• Comprehensive benchmarking and detailed analysis: This benchmark evaluates 8 UQ methods
across 15 datasets to examine the alignment between uncertainty and correctness in routing tasks.
We incorporate 8 SLMs and 2 LLMs to emulate real-world deployment scenarios. We then
delve into key observations from the extensive results and conclude the insights for developing
uncertainty-based SLM routing.

• Proxy routing data for generalizing routing to new data: Building on our benchmarking
pipeline, we introduce a proxy routing data construction pipeline designed to generalize the routing
curve prediction in new downstream scenarios. Empirical results show that this proxy routing
data generalizes effectively the routing prediction to new datasets without relying on any new
downstream data.

2For the convenience of writing, we interchangeably use uncertainty and confidence, where low uncertainty
refers to high confidence.
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Table 1: Uncertainty quantification (UQ) methods evaluated in our benchmark. “Model Access”
specifies whether a method views the LM’s weights/logits (white-box) or only its generated output
(black-box). “Require Training?” indicates if additional training is needed. See Subsection 2.1 for
taxonomy details and Subsection 3.1 for method descriptions.

Uncertainty Quantification (UQ) Methods Taxonomy Model Access Require Training?

Average Token Prob [53] Token/sequence probabilities White-box No
p(True) [39] Token/sequence probabilities White-box No
Perplexity [21] Token/sequence probabilities White-box No
Jaccard Degree [47] Output consistency Black-box No
Verbalization-1s [76, 69] Verbalized uncertainty Black-box No
Verbalization-2s [69] Verbalized uncertainty Black-box No

Trained Probe [4, 39, 53] Uncertainty probe White-box Yes
OOD Probe [39, 53] Uncertainty probe White-box Yes

2 Reviewing Different Schools of Uncertainty Quantification and LLM
Routing

2.1 Uncertainty Quantification for LMs

Uncertainty quantification methods estimate a model’s confidence in its predictions [31]. For
traditional classification and regression, uncertainty estimation is well-established [23]. However, for
LLMs generating free-form responses to complex queries, estimating uncertainty is more challenging
because the output space can grow exponentially with vocabulary size, and each sequence spans
multiple tokens [20]. Existing uncertainty quantification approaches for LLMs can be grouped into
the following four categories.

Via verbalizing uncertainty. This line of work prompts language models to report linguistic con-
fidence [53, 56]. To enable LMs to verbalize confidence, researchers have proposed fine-tuning
them to express uncertainty [46] or teaching them to verbalize confidence through in-context learn-
ing [17]. Verbalized confidence can take the form of linguistic expressions of uncertainty or numer-
ical scores [24]. Multiple studies find that LLMs tend to be overconfident when reporting confi-
dence [76, 69]. To mitigate this overconfidence, prompting strategies such as multi-step elicitation,
top-k, and Chain-of-Thought [72] have been explored [69]. Sampling multiple response-confidence
pairs and designing more effective aggregation strategies can also help mitigate overconfidence [76].
Moreover, [69] reports that verbalized confidence is typically better calibrated than the model’s
conditional probabilities.

Via analyzing token/sequence probabilities. This line of research derives confidence scores from
model logits for output tokens [24, 33, 38]. The confidence of a generated sequence is computed by
aggregating the log-probabilities of its tokens. Common aggregation strategies include arithmetic
average, minimum, perplexity, and average entropy [20, 21, 71]. Because not all tokens in a sequence
equally reflect semantic content, SAR reweights token likelihoods to emphasize more meaningful
tokens [18]. However, different surface realizations of the same claim can yield different probabilities,
implying that the calculated confidence reflects how a claim is articulated rather than the claim
itself [53]. To combine LM self-assessment with token probabilities, p(True) is proposed: the model
is asked whether its generated response is correct, and the probabilities of True/False tokens serve as
the confidence score [39, 69].

Via gauging output consistency. This line of research (e.g., SelfCheckGPT [54]) assumes that
high-confidence LLMs produce consistent outputs [53]. A typical approach samples m responses
for a given input query, measures inter-response similarity, and calculates a confidence score from
meaning diversity [20]. Common ways to measure pairwise similarity include Natural Language
Inference (NLI) and Jaccard similarity [24]. Consistency is then assessed by analyzing the similarity
matrix, for instance, by counting semantic sets, summing eigenvalues of the graph Laplacian or
computing eccentricity [47]. Because different sentences can express the same meaning, semantic
entropy [40] first clusters responses by semantic equivalence before measuring consistency.

Via training uncertainty probes. This approach trains classifiers to predict whether an LLM
will arrive at the correct answer for a particular query, using predicted probabilities as confidence
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Figure 1: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on OpenBookQA. A higher ROC AUC
indicates a stronger alignment.

scores [24]. Training data is often obtained by sampling multiple answers per question at a fixed
temperature and labeling each for correctness [39]. A probe (commonly a multi-layer perceptron)
then takes hidden states as inputs to predict correctness [4, 42]. Because in-domain training data
is not always available, Contrast-Consistent Search trains probes unsupervisedly by maximizing
representation distances between contradictory answers on Yes/No questions [7]. Furthermore,
whether probes trained on out-of-distribution data remain effective is still under debate [39, 53, 40].

2.2 LLM Routing

In query-routing scenarios, recent approaches train additional classifiers to direct queries to different
SLMs or LLMs based on historical performance metrics and user feedback data [16, 59, 66, 37,
84]. For instance, RouterBench [32] collects inference outputs from selected LLMs to aid in
the development of routing classifiers. However, these methods face significant challenges when
encountering new downstream tasks, as such data falls outside the distribution of the existing training
data. This limitation makes them less practical for real-world scenarios, such as on personal edge
device deployment, where adaptability to unseen conditions is crucial. Our work focuses on how to
establish routing systems between SLMs and LLMs and generalize to new downstream tasks. In
this manner, uncertainty-based routing is an appropriate solution to overcome these challenges, as
uncertainty is directly extracted from SLMs themselves. Furthermore, we propose a proxy routing
data construction pipeline to initialize a routing system that generalizes to unseen datasets.

3 Benchmarking Uncertainty-based SLM Routing

In this section, we systematically evaluate 12 SLMs and 4 LLMs on 15 datasets using 8 UQ methods
(see Table 1) for uncertainty-based SLM routing. This section details the datasets, models, and
UQ methods, followed by several key findings and practical considerations. All experiments are
conducted on four 80GB NVIDIA A100 GPUs.

3.1 Benchmark Coverage and Setup

Language Models. We evaluate 12 open-source SLMs, organized into three categories:
non-reasoning LMs, reasoning LMs, and a recurrent neural network (RNN) model. The non-reasoning
models are Llama-3.2-1B-Instruct [55], Llama-3.2-3B-Instruct [55], Phi-3.5-mini-instruct [1],
Mistral-7B-Instruct-v0.3 [36], Qwen2.5-7B-Instruct [78], Llama-3.1-8B-Instruct [19], and
Granite-3.1-8B-Instruct [26]. The reasoning models are Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B,
and Phi-4-mini-reasoning [77]. The RNN model is RWKV-7-2.9B [61]. These SLMs come from
Alibaba (four models), Meta (three), Microsoft, Mistral AI, IBM, and LF AI & Data. Except for
RWKV-7-2.9B, all adopt decoder-only Transformer architectures and are available on Hugging Face.
We also include four LLMs: three open-source models—Llama-3.1-70B-Instruct [19], Qwen3-32B,
and DeepSeek-R1 [29]—and one proprietary API model, GPT-4.1 mini [34]. Qwen3-32B and
DeepSeek-R1 are reasoning LLMs, whereas Llama-3.1-70B and GPT-4.1 mini are non-reasoning.
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Figure 2: Overall accuracy vs. routing ratio with different UQ methods and SLMs. (a)-(d) show
the results of routing to DeepSeek-R1 on the CommonsenseQA dataset; and (e)-(h) demonstrate the
results of routing to GPT-4.1 mini on the OpenBookQA dataset.

Datasets. Experiments span 15 datasets from four domains: (1) Mathematical Reasoning (AQuA [48],
GSM8K [13], MultiArith [63], SVAMP [60], MATH-500 [43]), (2) Commonsense Reasoning
(CommonsenseQA [67], HellaSwag [80], OpenBookQA [57], PIQA [6], TruthfulQA [45], Wino-
Grande [64], BoolQ [12], Social IQa [65]), (3) Conversational and Contextual Understanding
(CoQA [62]), and (4) Problem Solving (MMLU [30]). These cover free-form, multiple-choice, and
True/False question answering and are available via Hugging Face. Table 2 in Appendix B provides
further details.

UQ Methods and Hyperparameters. We evaluate 8 approaches from the four categories in
Section 2.1. (1) Average token probability uses the probability of the chosen option token (e.g., “A”)
for multiple-choice tasks or the mean probability of all generated tokens for free-form tasks. (2)
Perplexity is computed for a sequence of N output tokens {yi}Ni=1 with probabilities {p(yi)}Ni=1 as
exp

(
1
N

∑N
i=1 ln p(yi)

)
, and its reciprocal serves as the confidence score. (3) p(True) is a method

where the LM first outputs an answer, then evaluates the generated response using only “True” or
“False.” The probabilities for these two tokens are normalized to sum to 1, and the probability of
“True” is used as confidence. (4) Verbalized confidence in a single response (denoted as verbalization-
1s) prompts the model to output both the answer and numeric confidence in one step. (5) Verbalized
confidence in the second round (denoted as verbalization-2s) obtains the confidence in a separate,
follow-up query after the model has provided an answer. (6) The degree matrix (denoted as jaccard-
degree) generates m = 5 samples (temperature 1.0) for one query, computes pairwise Jaccard
similarities, and sets confidence to trace(mI −D)/m2, where D is the degree matrix. (7) Trained
probe is a four-layer MLP with LeakyReLU activations, trained on a fixed subsample of the in-domain
training set for each dataset, taking as input the hidden states from the eighth-to-last transformer
layer. We train for 20 epochs (learning rate 5× 10−4). (8) Trained probe on out-of-distribution data
(denoted as ood-probe) is identical in architecture but trained on all other datasets. e.g., if AQuA is
evaluated, the ood-probe is trained on the remaining 15 datasets (20 epochs, learning rate 1× 10−4).

For verbalization-based methods, we discard queries when the model does not follow instructions
to produce a confidence score. For free-form question answering, we use GPT-4.1 mini to evaluate
whether a response is essentially equivalent to the ground truth answer [85].

3.2 Report Observations

In this section, we present our benchmarking results analyzing the impact of uncertainty-correctness
alignment on routing tasks. More observations and experimental results on proxy routing and routing
can be found in Appendix D.1.
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Figure 3: Relative accuracy of SLMs vs. LLMs on top-k% confident queries. “Relative accuracy”
is the ratio of SLM accuracy to LLM accuracy. The x-axis “Lowest Conf. Excluded” shows the
percentage of low-confidence queries removed; for example, 80 means 80% of queries with the
lowest confidence are excluded, leaving the top 20%. (a) and (b) compare SLMs to Llama-3.1-70B
on GSM8K, while (c) and (d) compare SLMs to Qwen3-32B on BoolQ.
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Figure 4: Confidence distributions across 15 datasets. The histogram depicts the aggregated distribu-
tion from all datasets, while each curve represents a single dataset. (a) Confidence of Phi-3.5-mini by
OOD Probe; (b) Confidence of Llama-3.1-8B by Perplexity.

Observation ❶: Uncertainty estimation in SLMs may exhibit misalignment with prediction
correctness. From the theoretical perspective, well-calibrated uncertainty scores do not necessarily
imply a strong correlation with the correctness of the predictions [33, 11]. The predictions of
models might be perfectly calibrated yet still display relatively low accuracy (i.e., confidently provide
wrong answers). This phenomenon is also evident in our benchmark results (illustrated in Figure 1).
We compute AUC scores to quantify the correlation between extracted uncertainty and prediction
correctness, treating correctness as a binary ground truth and using confidence values as the ranking
metric. The results show that not all UQ methods effectively exhibit a strong alignment between
confidence and prediction correctness. Moreover, from Figure 1 and Figure 9, we can observe
that the alignment may vary across datasets for the same SLM and UQ method. For instance,
Perplexity [21] demonstrates strong alignment for Phi-3.5-mini on the MultiArith dataset but fails
on the OpenBookQA dataset. On the other hand, OOD Probe, Trained Probe, and Perplexity obtain
consistently decent alignment compared to other UQ methods across different SLMs and domains of
datasets. Conversely, we notice that verbalization-based methods, namely verbalization-1s [69, 53],
and verbalization-2s [69], consistently withhold low alignment between uncertainty and prediction
correctness. More experimental results can be found in Appendix D.1.

Observation ❷: Verbalization-based UQ methods struggle to extract uncertainty in SLMs for
query routing. We find that verbalization methods like verbalization-2s [69] obtain poor alignment
between confidence and prediction correctness, and this misalignment can lead to inferior routing
performance in SLMs, where the conclusion can be found in Figure 2. Recent advancements [75, 79]
also show that uncertainty scores derived from verbalization may exhibit good reflection on models’
intrinsic uncertainty of prediction across multiple models and datasets. This discrepancy poses a
significant challenge for establishing effective routing performance since queries that are actually
correct may be unnecessarily routed from SLMs to LLMs, thereby increasing the overall cost of
deploying routing systems.
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Observation ❸: A good routing standard highly depends on UQ methods with good uncertainty-
correctness alignment. A notable phenomenon occurs when UQ methods, such as Trained Probe [53],
exhibit strong alignment, leading to significant improvements in routing performance. This is because
the extracted uncertainty scores from these UQ methods more effectively indicate whether SLMs
produce correct predictions. Among all UQ methods evaluated for routing tasks, we find that Trained
Probe [53], OOD Probe [39, 53], and Perplexity [20] consistently rank as the top three methods for
SLM routing. Therefore, a comprehensive analysis of UQ methods before deploying a routing system
in SLMs is highly recommended to ensure efficient query routing.

Observation ❹: SLMs can match LLM performance on high-confidence queries. Although SLMs
generally underperform LLMs, we find that for queries where SLMs exhibit high confidence, their
accuracy approaches that of LLMs. To illustrate, we progressively remove queries starting from those
with the lowest SLM confidence and compute the ratio of SLM to LLM accuracy on the remaining
top-k% queries (Figure 3). As more low-confidence queries are excluded, SLMs achieve comparable
performance to LLMs. For instance, on GSM8K, Qwen3-0.6B achieves performance nearly equal
to Llama-3.1-70B on the top 20% highest-confidence queries. Moreover, the effectiveness of this
selection depends on the uncertainty quantification (UQ) method: approaches with stronger alignment
(e.g., Trained Probe [53]) yield higher relative accuracy than weaker ones (e.g., verbalization-2s)
across all query exclusion rates. Additional results appear in Appendix D.2.

4 Generalize SLM Routing for New Downstream Scenarios

In this section, we first describe the training-free pipeline for constructing proxy routing data for
SLM routing with experimental details. We then investigate how well the proxy routing data can
predict the routing curve for new downstream scenarios without accessing the new datasets. Finally,
we discuss our results and offer several insights into the proxy routing data for establishing routing in
early-stage deployments.

4.1 Proxy Routing Data Construction Pipeline

We aim to evaluate the effectiveness of proxy routing data in generalizing routing curve predictions
to new downstream scenarios without relying on any downstream data. The proxy routing data
functions as a data-agnostic hold-out set tailored to a particular SLM, enabling the transfer of routing
standards across diverse datasets. By leveraging this proxy data, we establish a generalizable routing
framework that simplifies deployment and removes the need for dataset-specific routing analysis,
while demonstrating that proxy routing data can effectively transfer routing behavior across domains.

Overview of Construction. Let D = {Di}Ni=1 denote a diverse collection of datasets spanning
multiple domains (e.g., commonsense, mathematics), following the setup in [50]. Each instance in D
is processed with a selected UQ method to obtain an uncertainty representation FDi

that captures
the SLM’s confidence characteristics in that domain. These aggregated representations provide the
foundation for constructing proxy routing data.

Proxy Data Formation. We construct the proxy routing dataset by pooling all domains in D into
a unified source distribution D ∼ Ppool. Due to on-device storage and memory constraints, we
uniformly sample m (k%) instances from pooled distribution:

X1, X2, . . . , Xm
i.i.d.∼ Ppool.

This uniform sampling preserves the natural diversity of uncertainty patterns across domains while
maintaining computational and storage efficiency.

4.2 Proxy Routing Data Setups

Benchmark Settings. We evaluate the constructed proxy routing data on 15 SLMs and 4 LLMs
across 15 datasets. Based on the observations and results from the previous benchmark section,
we select 2 UQ methods that demonstrate the strongest alignment between predicted uncertainty
and actual correctness: "OOD Probe" [39, 53] and "Perplexity" [20] method. We consider the
routing performance evaluated on the entire new dataset as the ground truth. To simulate new dataset
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Figure 5: Confidence distributions across 15 datasets. The histogram depicts the aggregated distribu-
tion from all datasets, while each curve represents a single dataset. (a) Confidence of Phi-3.5-mini by
OOD Probe; (b) Confidence of Llama-3.1-8B by Perplexity.

scenarios, we introduce two evaluation settings: (1) fully out-of-domain and (2) partially in-domain.
First, for the out-of-domain setting, we evaluate a target dataset using proxy routing data derived from
source datasets with no domain overlap. Second, in the partially in-domain setting, we designate one
dataset as the target and construct its proxy routing data using the remaining 14 datasets, where the
domain of the dataset may partially overlap. The target dataset’s generalization performance is then
evaluated using this proxy routing set, which does not contain any information from the target dataset.
All reported results represent the average across three individual experimental runs.

Data Construction Settings. The proxy routing data is weighted-sampled from each bin of the proxy
routing data distributions, with the number of bins set to 30. We sample k% of the instances from
each bin to form the final proxy routing data. The temperature is fixed at 0 with a fixed random seed
of 50 to ensure reproducibility. In this work, we use k=10 to meet the limited resources of on-device
machine routing. We also provide the sensitivity check and results comparison with baselines of k%
sample rate in Appendix G and E.

4.3 Theoretical Analysis and Intuition

We provide a theoretical justification for the proposed proxy routing framework through a sequence
of three theorems. The first two theorems formalize the regularity conditions of the UQ function,
while the final theorem derives an end-to-end generalization bound that quantifies how proxy routing
performance transfers to unseen downstream datasets. The proof are provided in Appendix ??.
Theorem 1 (Lipschitz continuity of practical UQ mappings). Let g :X →Rd denote the SLM
representation and u :Rd→R≥0 denote a UQ mapping. Assume that (i) logits ℓ=g(x) are bounded,
∥ℓ∥≤M ; and (ii) u is a finite composition of continuously differentiable functions with bounded
Jacobians on compact domains (e.g., exp, log, softmax, max, linear maps, or polynomials). Then u
is Lipschitz continuous on its bounded domain; that is, there exists Lu<∞ such that ∀x, x′∈X ,

|u(g(x))− u(g(x′))| ≤ LuLg∥x− x′∥.

Intuition of Theorem 1. In Theorem 1, we showcase that under mild and realistic conditions such
as bounded logits and smooth functional composition, the uncertainty mapping u(g(x)) is globally
Lipschitz on compact domains. Intuitively, this means that similar inputs yield similar uncertainty
scores, so small shifts in the representation or domain lead to small and predictable changes in
uncertainty. When the input differs substantially from the proxy domain, the change in uncertainty
may increase proportionally, but the Lipschitz property still guarantees that this growth remains
bounded rather than arbitrary. This controlled sensitivity ensures that routing decisions remain stable
under moderate distribution shifts.

Theorem 2 (Bounded density of uncertainty distribution near routing threshold). Let U =
u(g(X)) be the scalar uncertainty score of X∼PX with continuous density fX bounded by BX . If
u is Lipschitz with constant Lu<∞, and U is smoothed by additive uniform noise Uσ=U+ζ with
ζ∼Unif[−σ, σ], σ>0, then Uσ admits a continuous density fUσ satisfying

∥fUσ
∥∞ ≤ ∥fU∥∞ ≤ BX

Lu
.

Hence, the uncertainty distribution remains smooth and bounded around any routing threshold.
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Figure 6: Routing results from four SLMs to Llama-3.1-70B on HellaSwag, with the remaining 14
other datasets constituting the proxy routing data.

Intuition of Theorem 2. Theorem 2 provides a theoretical justification for using uniform sampling
when constructing the proxy routing dataset. Since the uncertainty scores U = u(g(X)) admit a
bounded and continuous density after mild uniform smoothing, the samples in the pooled distribution
Ppool are already well distributed across the uncertainty space. Uniform sampling therefore preserves
this smooth uncertainty landscape without introducing selection bias, ensuring that the proxy dataset
accurately reflects the diversity of uncertainty patterns across domains and supports stable threshold
estimation for cross-domain routing.

Theorem 3 (End-to-End Proxy Routing). Let Ppool be a pooled multi-domain input distribution

and X1,. . . ,Xm
i.i.d.∼ Ppool. Define Uj=u(g(Xj)), the empirical routing objective

R̂m(τ) = 1
m

m∑
j=1

r(1{Uj≥τ}, Xj),

and population objective
Rpool(τ) = EPpool

[r(1{U≥τ}, X)].

Let τ̂ ∈argmaxτ R̂m(τ) and RQ(τ) denote the routing objective under a new distribution Q. Assume:
(i) r(1, x)=r(0, x)+∆(x) with |∆(x)|≤∆max; (ii) the uncertainty densities under Ppool and Q are
bounded by B; (iii) g, u are Lipschitz with constants Lg, Lu. Then, for universal constants C, c>0
and any α∈(0, 1), with probability at least 1− α,

max
τ

RQ(τ)−RQ(τ̂) ≤ 2C

√
log(c/α)

m

+∆max 2
√

2B LuLg W1(Ppool,Q),

where W1(·, ·) denotes the 1-Wasserstein distance.

Intuition of Theorem 3. Given these regularity conditions, Theorem 3 provides a complete gener-
alization bound for proxy routing across domains. It decomposes the cross-domain routing regret into
two interpretable terms: (i) a finite-sample term of order O(1/

√
m), which arises from estimating the

routing threshold on a limited proxy dataset, and (ii) a domain-shift term of order O(
√

W1(Ppool,Q)),
which quantifies how the expected routing performance changes with the Wasserstein distance W1

between the proxy and target input distributions. The second term explicitly depends on the Lipschitz
constants (Lg, Lu) and the density bound B, linking the generalization behavior to the smoothness
of the model and the UQ mapping. Together, these results ensure that a uniformly sampled proxy
dataset can approximate the routing behavior of unseen downstream tasks without requiring additional
labeled data.

Practical UQ Methods. As the discussion and details shown in Section 2.1, these standard as-
sumptions are well and trivially satisfied by all practical UQ methods we consider, such as token
probability, perplexity, p(True), verbalized confidence, diversity-based, and probe-based measures.
Some other UQ methods, such as Jaccard Degree, may apply lightweight preprocessing steps like
logit clipping or temperature scaling to meet the assumption. These standard treatments ensure that
the theoretical conditions are not only mathematically justified but empirically realizable in practice.
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Figure 7: Routing results from four SLMs to DeepSeek-R1 on AQuA (mathematical reasoning), with
eight commonsense-reasoning datasets and one conversational & contextual understanding dataset
constituting the proxy routing data, demonstrate the strong generalization capability of the proxy
routing data.

4.4 Routing Curve Prediction by Proxy Data

We provide several key insights into the generalization ability of proxy routing data as follows.

Insights ❶: The extracted confidence distribution is predominantly determined by the chosen
SLM and UQ method, with minimal dependence on the downstream dataset. As illustrated in
Figure 5, confidence scores aggregated from 15 different tasks exhibit a nearly identical shape regard-
less of the specific dataset. Instead, they vary notably with different SLMs and UQ methods. This
finding suggests that the confidence distribution is largely data-agnostic, enabling the construction of
proxy routing data that generalizes to new tasks without any new datasets.

Insights ❷: Proxy routing data helps SLM routing to predict an accurate routing curve without
any new data, allowing routing strategies to be initialized on SLMs without accessing new
datasets. Building on our findings about uncertainty distributions, we sampled a data subset to create
a final proxy routing dataset using the pipeline described in Section 4.1. We then utilized this proxy
routing dataset to predict all thresholds for different routing ratios in new downstream scenarios.
The experimental results (see Figure 6 and Figure 7) show that the routing curves from the proxy
routing data closely match those from the entire new downstream dataset in both evaluation settings,
indicating that the proxy routing data provides strong capability for establishing routing strategies
on unseen downstream datasets. An identical phenomenon is observed across multiple UQ methods
and different SLMs, highlighting the potential of proxy routing data to initiate for any new dataset,
independent of the UQ method or SLM used. More results are in Appendix D.3.

5 Conclusion

This paper investigates the routing accuracy of SLMs in estimating their uncertainty and establishing
best practices for initiating effective routing strategies. Through comprehensive benchmarking of 15
SLMs, 4 LLMs, 8 UQ methods, and 15 datasets across 5000+ settings, we found that the alignment
between uncertainty and correctness significantly impacts routing performance. Additionally, our
experiments show that uncertainty distributions depend primarily on the specific SLM and UQ
method rather than the downstream data. Building on the insights, we introduced a proxy routing data
construction pipeline and a hold-out dataset to generalize routing strategies without prior knowledge
of new downstream data. The results confirm that the proxy routing data effectively bootstraps
routing, indicating its strong potential for benefiting in resource-efficient SLM deployment.
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A Challenges and Opportunities

❶ How to cash-in routing efficiency on new edge devices? Based on the benchmark results, proxy
routing data provides a robust foundation for establishing routing policies on new edge devices
without accessing prior knowledge at the early stage of deployment. This enables the routing
policies with strong generalization to new dataset scenarios and enhances the efficiency across diverse
deployments for personal edge devices. While proxy routing data holds a good performance in the
early deployment stage, an important direction to explore is how to effectively leverage additional
private on-device data to strengthen the quality of proxy routing data, aiming to continuously enhance
the deployment of personalized routing strategies. With the aid of proxy routing data, less private
data is required, but striking a balance between privacy and performance remains an open challenge.

❷ How to effectively strike a balance between LLM routing efficiency and utility? We em-
pirically observe that by leveraging UQ methods with strong uncertainty-utility alignment (e.g.,
Perplexity and OOD Probe methods), routing thresholds can effectively be determined with the sweet
points of efficiency and utility. However, achieving such sweet spots can be challenging due to the
variability in downstream datasets and the sensitivity of UQ methods to LLM-specific characteristics.
Additionally, discrepancies across different device types, such as variations between iOS and Android
systems , further complicating the process, requiring tailored strategies and analytics to account for
platform-specific constraints and capabilities. Based on these factors, providing a fair apple-to-apple
comparison regarding routing performance is inherently challenging. Researchers should be mindful
of these complexities and focus on developing methods that are not only efficient but also capable of
handling long-context scenarios effectively.

❸ How is the performance when conducting compression (e.g., pruning, quantization) on the
on-device model? As with the on-device models discussed in the above sections, we directly adopt
a pre-trained small model without any modifications. Alternatively, on-device models can also be
generated by compressing larger models. Specifically, numerous works have explored methods for
compressing LLMs into smaller sizes using techniques such as pruning [22] and quantization [74, 44].
The advantage of employing compression methods is that the smaller models compressed from larger
ones tend to retain similar distributions of the output, thereby mitigating the issue of distribution shift.

❹ Uncertainty-aware routing in on-device multimodal language models. While LLMs typically
operate with a single modality for both input and output, a promising research direction involves
exploring uncertainty-aware routing in multimodal language models (MLLMs). For instance, in
vision-language models (VLMs) such as LLaVa [49] and InternVL [9], the inputs include both
images/videos and text. By incorporating visual modalities, the properties of vision tokens signif-
icantly influence the output. As a result, the uncertainty in the generated text differs from that of
language-only models. Benchmarking and generalizing uncertainty-aware routing for on-device
MLLMs is a valuable direction for the research community.

B Details about Datasets

The details of the 15 datasets are further listed in Tabel 2. We applied the original dataset directly
from the Huggingface dataset repositories without any further processing. A thorough examination
of each dataset’s attributes, size, and notable characteristics is provided below.

C Related Work

C.1 Small Language Models

Small Language Models (SLMs) are designed for deployment on resource-constrained devices like
desktops, smartphones, and wearables. Specifically, we consider the Transformer-based SLMs
in this work due to their state-of-the-art performance, like Phi-3-mini [1], TinyLlama [81], Mo-
bileLLM [51], and Qwen-1.5B [5], LiteLLaMa-460M, OPT-125M [82], BLOOMZ (560M, 1.1B,
1.7B, 3B) [41], SmolLM (135M, 360M, 1.7B) [3], OLMo (1B) [28], OLMoE (1B) [58], MobiL-
lama (0.5B, 1B) [68], MobileLLaMA (1.4B, 2.7B) [10], OpenLLaMA (3B) [25]. These models are
designed with lightweight architectures to operate effectively within the computational and storage
limitations of mobile devices and edge hardware.
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Table 2: Details of the 15 datasets used in our benchmark. FF: Free-form question answering
(including numerical answers for math tasks); MCQ: Multiple-choice question answering; TF:
True/False question answering.

Dataset Type Domain # Train # Test Description

GSM8K FF Mathematical Reasoning 7473 1319 Grade school math word problems
AQuA MCQ Mathematical Reasoning 97467 254 Algebraic word problems
MultiArith FF Mathematical Reasoning 420 180 Algebraic word problems
SVAMP FF Mathematical Reasoning 700 300 Algebraic word problems
MATH-500 FF Mathematical Reasoning −− 500 Algebraic word problems

BoolQ TF Commonsense Reasoning 9427 3270 Commonsense and factual reasoning questions
CommonsenseQA MCQ Commonsense Reasoning 9741 1221 Questions assessing various types of commonsense knowledge
HellaSwag MCQ Commonsense Reasoning 39905 10042 Sentence completion based on narrative understanding
OpenBookQA MCQ Commonsense Reasoning 4957 500 Open-book science and commonsense questions
PIQA MCQ Commonsense Reasoning 16113 1838 Physical commonsense reasoning questions
Social IQa MCQ Commonsense Reasoning 33410 1954 Social commonsense intelligence questions
TruthfulQA FF Commonsense Reasoning 653 164 Assessing models’ ability to prevent false information
WinoGrande MCQ Commonsense Reasoning 2558 1267 Pronoun ambiguity resolution with commonsense reasoning

CoQA FF Conversational & Contextual Understanding 7199 500 Conversational questions on text passages from diverse domains

MMLU MCQ Problem Solving 99842 14042 Problem solving across various subjects

Recurrent Neural Networks (RNNs), like RWKV (1B, 3B, 7B) [61], Mamba (1.4B, 6.9B) [14], and
RecurrentGemma-2B [27], can provide promising solutions for on-device inference in resource-
constrained environments. These models leverage the recurrent nature of RNNs to process sequential
data efficiently without requiring a KV cache, which is suitable for resource-constrained on edge
devices. Specifically, RWKV introduces a hybrid RNN-Transformer backbone to capture long-term
dependencies while maintaining computational efficiency. Similarly, Mamba and RecurrentGemma
design recurrent layers for low-power consumption and high throughput inference, which can
significantly reduce memory and computational requirements, fostering low-latency applications
directly on devices.

D Additional Experimental Results from Benchmarking to Generalization

In this section, we present additional experimental results on (1) evaluating the impact of uncertainty-
correctness alignment on small language model (SLM) routing and (2) investigating the generalization
capability of proxy routing data on novel datasets. Since our studies yield over 5,600 results, we
here present a representative subset in the following section. The full set of results is provided
in the supplementary materials.

For the first experiment (Section D.1 and Section D.2), we provide the complete set of results,
including the AUC measurements for uncertainty-correctness alignment and the performance of
uncertainty-based routing. For the second experiment (Section D.3), we present a comprehensive
experimental results of proxy routing prediction under partially in-domain setting. Each dataset
referenced in the experiments is treated as a novel dataset for evaluation.
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D.1 Evaluation on Uncertainty-correctness Alignment

Results of Alignment between uncertainty and correctness.

All the experiments shown on this page are conducted under AQUA, BoolQ, and CoQA datasets with
all 8 UQ methods.
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Figure 8: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on AQuA, BoolQ, and CoQA. A higher ROC
AUC indicates a stronger alignment.
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Results of Alignment between uncertainty and correctness.

All the experiments shown on this page are conducted under GSM8K, HellaSwag, MMLU, and
MultiArith datasets with all 8 UQ methods.
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Figure 9: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on GSM8K, HellaSwag, MMLU, and Multi-
Arith. A higher ROC AUC indicates a stronger alignment.
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Results of Alignment between uncertainty and correctness.

All the experiments shown on this page are conducted under OpenBookQA, PIQA, SocialIQA, and
SVAMP datasets with all 8 UQ methods.
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Figure 10: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on OpenBookQA, PIQA, SocialIQA, and
SVAMP datasets. A higher ROC AUC indicates a stronger alignment.
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Results of Alignment between uncertainty and correctness.

All the experiments shown on this page are conducted under CommonsenseQA, SVAMP, TruthfulQA,
WinoGrande, and Math500 dataset with all 8 UQ methods.
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Figure 11: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on CommonsenseQA. A higher ROC AUC
indicates a stronger alignment.
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D.2 Evaluation on Uncertainty-based Routing Approaches

Results of routing to GPT-4.1-Mini

All the experiments shown on this page are conducted under all benchmark datasets with selected
SLMs. We only showcase partial of the experimental results.

Figure 12: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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Results of routing to DeepSeek-R1

All the experiments shown on this page are conducted under all benchmark datasets with selected
SLMs. We only showcase partial of the experimental results.

Figure 13: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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Results of routing to Llama-3.1-70B-Instruct

All the experiments shown on this page are conducted under all benchmark datasets with selected
SLMs. We only showcase partial of the experimental results.

Figure 14: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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Results of routing to Qwen3-32B

All the experiments shown on this page are conducted under all benchmark datasets with selected
SLMs. We only showcase partial of the experimental results.

Figure 15: Overall accuracy vs. routing ratio with different UQ methods and SLMs.
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D.3 Evaluation of Proxy Routing Data on New Downstream Scenario

Evaluation results on routing to GPT-4.1-Mini

The experiments shown on this page are conducted under all 15 datasets with different SLMs.

Figure 16: Assessing the generalization of proxy routing data to new downstream data for routing
12 SLMs to GPT-4.1-Mini on 15 datasets using two UQ methods (OOD Probe & Perplexity). The
legend in Figure 6 is also used here.
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Evaluation results on routing to DeepSeek-R1

The experiments shown are conducted under all math reasoning datasets with different SLMs.

Figure 17: Assessing the generalization of proxy routing data to new downstream data for routing
12 SLMs to DeepSeek-R1 on 15 datasets using two UQ methods (OOD Probe & Perplexity). The
legend in Figure 6 is also used here.
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Evaluation results on routing to Llama-3.1-70B-Instruct

The experiments shown on this page are conducted under all 15 datasets with different SLMs.

Figure 18: Assessing the generalization of proxy routing data to new downstream data for routing 12
SLMs to Llama-3.1-70B-Instruct on 15 datasets using two UQ methods (OOD Probe & Perplexity).
The legend in Figure 6 is also used here.
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Evaluation results on routing to Qwen3-32B

The experiments shown on this page are conducted under all 15 datasets with different SLMs.

Figure 19: Assessing the generalization of proxy routing data to new downstream data for routing 12
SLMs to Qwen3-32B on 15 datasets using two UQ methods (OOD Probe & Perplexity). The legend
in Figure 6 is also used here.
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E Sensitivity to Sampling Ratio

We conducted a sensitivity analysis of the sampling ratio to assess our method’s generalizability and
robustness. As shown in Figure 20, we varied the sampling ratio from 0.01 to 0.3 and computed the
RMS distance between the oracle routing curve derived from the full downstream dataset and the
curves obtained at different sampling ratios. We observe that our method is highly stable and robust
to the choice of sampling ratio. Similar results hold across other datasets and routing scenarios.

Figure 20: RMS distance versus sampling ratio across two routing scenarios.

F Computational Infrastructure

The computational infrastructure information is given in Table 3.

Table 3: Experiment configuration and computing infrastructure.

Name Value

Data type torch.bfloat16
Flash-Attention True
Computing Infrastructure GPU
GPU Model NVIDIA-A100
GPU Memory 80GB
GPU Number 4
CUDA Version 12.1
CPU Memory 512GB

G Routing with Proxy Routing Data vs. Random Routing

Our approach sets a confidence threshold for routing on a new dataset without prior access, and no
existing work has addressed this scenario to the best of knowledge. To quantify its effectiveness
we compare it with a random routing baseline. On HellaSwag, we route three SLMs to GPT-4.1
mini using Perplexity. We compute the average root mean squared (RMS) distance between the
oracle routing curve derived from the full downstream dataset and those obtained using either our
proposed method or random routing. A lower RMS distance indicates closer alignment with the
oracle and therefore better routing quality. As shown in Table 4, routing based on proxy routing
data dramatically outperforms random routing. Similar gains are observed with other uncertainty
quantification methods (e.g., a 34.14% improvement with OOD Probe).

Robustness under strong OOD shifts. We further test our approach based on proxy routing data
in two challenging out-of-distribution (OOD) scenarios:
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Table 4: Routing with proxy routing data vs. random routing on HellaSwag. Lower RMS is better.

Method LLAMA-3.2-3B MISTRAL-7B LLAMA-3.1-8B

Ours 0.001 0.001 0.001
Random routing 0.029 0.031 0.019

• Math → Commonsense: Proxy routing data drawn solely from math datasets (GSM8K, AQuA,
MultiArith, SVAMP); evaluation on commonsense reasoning (TruthfulQA), routing various SLMs
to Llama-3.1-70B.

• Commonsense → Math: Proxy data drawn solely from commonsense datasets; evaluation on the
math dataset AQuA with the same routing setup.

Table 5: Routing with proxy routing data vs. random routing under strong OOD shifts.

OOD Setting Method PHI-3.5-MINI MISTRAL-7B LLAMA-3.1-8B

Math → Commonsense Ours 0.0148 0.0048 0.0132
Random routing 0.0187 0.0090 0.0176

Commonsense → Math Ours 0.0057 0.0060 0.0022
Random routing 0.0085 0.0082 0.0037

Across both OOD shifts (Table 5), routing with proxy routing data consistently yields smaller RMS
distances than the random baseline, underscoring its strong generalization capability.
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