
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING BOTTLENECKS OF STATE SPACE
MODELS THROUGH THE LENS OF RECENCY AND OVER-
SMOOTHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Structured State Space Models (SSMs) have emerged as alternatives to transform-
ers, addressing the challenges of processing long sequences. While SSMs are
often regarded as effective in capturing long-term dependencies, we theoretically
demonstrate that they suffer from a strong recency bias. Our empirical findings
reveal that this bias impairs the models’ ability to recall distant information and
introduces robustness issues. We conducted scaling experiments and discovered
that deeper structures in SSMs facilitate the learning of long contexts. However, our
theoretical analysis reveal that as SSMs increase in depth, they exhibit a tendency
toward over-smoothing, resulting in token representations becoming increasingly
indistinguishable. This over-smoothing phenomenon ultimately constrains the
scalability of SSMs to achieve improved performance. Collectively, these find-
ings highlight important limitations of SSMs and underscore the need for further
research to address these challenges in long-range sequence modeling.

1 INTRODUCTION

The evolution of sequence processing architectures has been witnessed over recent decades, progress-
ing from RNNs (Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014; Cho et al., 2014; Cho,
2014) to transformers (Vaswani et al., 2017; Devlin et al., 2019; Radford et al., 2018; 2019; Brown
et al., 2020), and more recently proposed State Space Models (SSMs) (Gu et al., 2021a; Gu & Dao,
2023). Each step represents a leap in natural language processing, addressing the limitations of its
predecessors and introducing new capabilities.

Structured State Space Models (SSMs) (Gu et al., 2021a; Gu & Dao, 2023; Dao & Gu, 2024) have
emerged as a compelling alternative to transformers, addressing the challenges associated with
processing long sequences. SSMs provide advantages in two key areas. Firstly, they enable more
efficient handling of long sequences. SSMs operate in two modes: convolution and recurrence,
each tailored for different aspects of language model training and inference (Gu et al., 2021b). In
convolutional mode, SSMs assume visibility of the entire sequence and utilize hardware-optimized
convolutions to propagate information across all tokens in parallel. This approach circumvents the
need for calculating pairwise correlations inherent in attention mechanisms, thereby accelerating
training speed. In the recent Mamba model (Gu & Dao, 2023), convolution has been supplanted by a
parallel scanning algorithm, facilitating more expressive sequence-level mixing without sacrificing
efficiency. Conversely, in recurrent mode, SSMs process one token at a time while maintaining
a compact recurrent hidden state that encodes the sequence history. The outputs are sequentially
decoded from this hidden state, eliminating the necessity to store all past key-value pairs (Dai et al.,
2019), thus reducing memory usage during inference.

Furthermore, state space models (SSMs) have been meticulously tailored to effectively capture
long-range dependencies and filter contextual information. These models are grounded in the HiPPO
theory (Gu et al., 2020), which demonstrates that a first-order Ordinary Differential Equation (ODE)
can encapsulate long-term memory through a designated state matrix known as the HiPPO matrix.
Subsequent research (Gu et al., 2021b;a; Gupta et al., 2022; Gu et al., 2022a) has streamlined this
state matrix to a diagonal form, significantly enhancing computational efficiency while retaining the
capability to model long-range dependencies. More recently, Mamba (Gu & Dao, 2023) introduced a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

selection mechanism that selectively aggregates pertinent information from the context into the state,
showcasing impressive performance in language modeling. Concurrently, another class of efficient
sequential models, coined as Linear Attention Models, has emerged, derived from streamlined
attention mechanisms (Katharopoulos et al., 2020; Sun et al., 2023; Peng et al., 2023; Yang et al.,
2023). Collectively, these advancements can be interpreted through a unified lens as more structured
SSMs (Dao & Gu, 2024).

However, despite the initial empirical successes of these models, recent findings indicate that SSMs
may not match transformers in their ability to recall information from long contexts (Arora et al.,
2023; Poli et al., 2024) or in handling more complex retrieval patterns (Park et al., 2024). Additionally,
it has been noted that Mamba continues to underperform compared to transformers at larger scales
(Waleffe et al., 2024). These shortcomings, however, have yet to be systematically elucidated.

In this paper, we identify two fundamental limitations of SSMs in their ability to model complex long-
range dependencies. First, we argue that the long-term memory capabilities of modern SSMs may be
misinterpreted. Our analysis reveals that an SSM layer exhibits a strong recency bias, limiting tokens
to primarily interact with nearby context. This bias is intrinsic to SSMs and many linear attention
models, regardless of the employed content-informing techniques, such as the selection mechanism
introduced by Mamba (Gu & Dao, 2023). We further posit that the loss of long-range capabilities may
stem from the oversimplification of HiPPO-induced SSMs, trading efficiency off the performance. To
substantiate this claim, we perform a long-range retrieval task on an industrial-scale language model
(Jiang et al., 2023) based on Mamba. Our test results indicate that Mamba catastrophically forgets
distant content once the context length surpasses its memory capacity. Furthermore, we raise a novel
robustness concern regarding SSMs with recency bias: our empirical outcomes show that Mamba is
more susceptible to perturbations on local tokens, making it vulnerable to adversarial attack, as these
local tokens can be easily manipulated to serve as backdoors.

Additionally, we conduct a series of scaling experiments with varying context lengths during the
pre-training of SSMs. Our results indicate that increasing the model’s depth is crucial for enhancing
its ability to utilize long contexts by expanding the receptive field. However, we observe that depth
scaling encounters a bottleneck, as performance begins to saturate with continued increases in
depth. To investigate this scalability issue theoretically, we analyze the feature dynamics across
SSM layers. Our findings reveal that SSMs inherently function as smoothening operators, leading to
over-smoothing in deep architectures (NT & Maehara, 2021; Oono & Suzuki, 2019; Cai & Wang,
2020). As a result, token representations become increasingly uniform and indistinguishable with
each additional layer.

The primary contribution of this work lies in unveiling two critical issues inherent to SSMs that
have been overlooked in previous research. We provide new insights to systematically explain
the underlying mechanisms through rigorous theoretical analysis and controlled experiments. Our
theoretical framework encompasses a broad range of commonly used SSMs today. By elucidating
these two challenges, we hope to inspire future research aimed at addressing these issues.

2 PRELIMINARIES

In this work, we primarily focus on SSMs and their similar models working with discrete-time
sequences of tokens. We represent the a sequence of tokens as x = [x1 · · · xT]

⊤ ∈ RT , where
T is the total number of tokens. For vector-valued input sequences, SSMs process each channel
independently. Therefore, to simplify notation, we focus on scalar-valued sequences without loss of
generality. The impact of multi-channel inputs will be addressed in the relevant context.

SSMs learn to represent and forecast the next token by integrating past information. Formally, SSMs
can be viewed as a sequence-to-sequence transformation from inputs x ∈ RT to outputs y ∈ RT

through a memory state ht ∈ RN , which is iteratively updated with a linear recurrence. A general
form can be written as:

ht = Atht−1 +∆tbt(xt), yt = ct(ht), h0 = 0, ∀t ∈ [T], (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where t ∈ [T] denotes the time step. Intuitively, At ∈ RN×N extracts information from the previous
state ht−1

1, bt : R → RN projects every input token to the hidden space, ∆t ∈ R controls how much
information of the new token will be fused into the hidden memory, and ct : RN → R decodes the
hidden state at time t to the final prediction. SSMs are trained end-to-end to optimize for parameters
{(At, bt, ct,∆t)}t∈[T], for which different SSMs adopt various types of instantialization. Below we
list some representative examples.

S4, DSS, and S4D. The seminal works (Gu et al., 2020; 2021b; 2022b) demonstrate that discretizing
time-invariant ODE h′(t) = Ah(t) + bx(t) with some special realization of matrix A can yield
an efficient recurrent network for long-sequence modeling. The follow-up works Gu et al. (2021a)
together with Gupta et al. (2022); Gu et al. (2022a) simplifies A to be a diagonal matrix. Applying
the zero-order hold rule for discretization, as suggested by Gupta et al. (2022), we can summarize
this series of models in the form of Eq. 1:

(S4) At = exp(∆A), bt(xt) = bxt, c(ht) = c⊤ht, ∆t = ∆, 2 (2)

where (A, b, c,∆) are learnable parameters. In particular, A is restricted to be a diagonal matrix and
can be complex valued. However, A must have negative real part (Gu et al., 2022a). ∆ ∈ (0, 1] is
often interpreted as the time interval for discretization. We call this family of SSMs S4 following the
naming convention in Gu & Dao (2023).

Mamba. A recent breakthrough Mamba (Gu & Dao, 2023) introduces the selection mechanism
to extend S4. Instead of learning (A, b, c,∆) in Eq. 2 as free parameters, Mamba conditions
(A, b, c,∆) on the inputs, which enables each iterative step in Eq. 1 to filter useful token information
during the recurrence. Specifically, Mamba computes (Atbt, ct,∆t) as follows:

(Mamba) At = exp(∆tA), bt(xt) = (WBxt)xt, ct(h) = (WCxt)
⊤ht, ∆t = σ(W∆xt), (3)

where W∆ ∈ R,WB ∈ RN ,WC ∈ RN are learnable weights in addition to A, and σ(·) denotes
softplus activation. When handling multi-dimensional token embeddings, W∆,WB ,WC are ex-
tended on the input dimension 3. The resultant ∆t is then specified for each channel, while bt, ct are
shared across channels. In language modeling, A has strictly negative real-valued diagonal, which
ensures At ∈ (0, 1)N×N . Additionally, Mamba is integrated into the H3 architecture (Fu et al.,
2022), wherein the selective SSMs is working with a local convolution and sandwiched by two gated
connections.

Linear Attention. Concurrent with SSMs, there is another line of work streamlining attention
to linear time complexity. With slight abuse of terminology, we name all of them collectively as
Linear Attention Models (LAMs). We observe that many of them can be written in the form of Eq. 1
such that in the remainder of this paper, we extend the definition of SSMs to include LAMs without
introducing ambiguity, as LAMs and SSMs are dual to each other (Dao & Gu, 2024). We leave a full
summary to Appendix A.

3 CAN SSM EFFECTIVELY REPRESENT LONG-RANGE DEPENDENCIES?

3.1 SSMS ARE LOCALLY BIASED

In this section, we investigate the ability of SSMs to learn long-range dependencies. Recent studies
find that SSMs seem more effective than transformers on this task (Gu et al., 2020; Tay et al., 2020;
Li et al., 2022; Gu & Dao, 2023). However, in Sec. 3.1 we theoretically show a negative result that
an SSM layer is inherent to local bias and loses long-term memory exponentially. In Sec. 3.3, we
empirically justify our claim by showing SSMs struggle to retrieve from distant context. We also
demonstrate that the local bias may lead to robustness issues in Sec. 3.4.

1In most scenarios discussed in this paper, we assume real parameterization by default, as it is the standard
approach in the cases of our primary interest, such as language modeling (Gu & Dao, 2023)

2More rigorously, by zero-order hold, b should be parameterized as b = (∆A)−1(exp(−∆A) − I)b.
However, the presented form is more commonly used in practice as in Gu & Dao (2023).

3Suppose the embedding dimension is D, then W∆ ∈ RD , WB ∈ RN×D , and so on.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To understand how information is propagated and long-range dependencies are modeled in SSMs, we
aim to uncover the relationship between the output at time t ∈ [T] and the input token at time s ≤ t.
We draw our first insight by presenting the following result which rewrites the recurrent form in Eq. 1
to a parallel form and reveals how all previous tokens jointly affect the outputs:

Lemma 3.1 (Parallel form). For any {(At, bt, ct,∆t)}t∈[T] and x ∈ RT , y ∈ RT computed via an
SSM defined in Eq. 1 is equal to:

yt = ct

(
j−1∑
i=1

(
t∏

r=s+1

Ar

)
∆sbs(xs) + ∆tbt(xt)

)
, ∀t ∈ [T]. (4)

The proof of Lemma 3.1 can be found in Appendix C.1. Lemma 3.1 provides an alternative perspective
on how SSMs compute the outputs. The predicted value for the t-th token is obtained via decoding a
weighted aggregation over representations of all past tokens. The encoding and decoding stage is
element-wise independent of the context. Whereas, the “weight” associated with each past token
in the summation reflects the pairwise relationship, playing a similar role to attention weights in
transformers (Dao & Gu, 2024; Ali et al., 2024). The weight corresponding to one past token is
calculated as the cumulative product

∏
r Ar, where r ∈ [s+ 1, t] traverses from the past token (at

time s) to the target token (at time t). Assume At ∈ (0, 1)N×N , which is satisfied by most of SSMs
discussed in Sec. 2, we can show that (

∏t
r=s+1 Ar)n,n < (

∏s
r=s′+1 Ar)n,n for any s < s′ < t and

n ∈ [N]. By this interpretation, SSMs assign strictly higher “attention” to the nearer tokens than the
further tokens.

Next, we characterize how SSMs model long-range dependencies more carefully. We define the
derivatives |∂yt/∂xs| as the influential score to represent the importance of the s-th input token to the
t-th output token. Note that |∂yt/∂xs| is well-defined for every s, t ∈ [T] as long as (At.bt, ct,∆t)
are all differentiable in terms of x. Intuitively, if |∂yt/∂xs| is larger, then the s-th input token is
more influential on the t-th output token, and vice versa.

Below we present a formal result regarding the influential score.

Theorem 3.2 (Recency of SSMs). Consider an SSM defined in Eq. 1 with {(At, bt, ct,∆t)}t∈[T].
Assume that (i) the input space X ⊂ RT is compact, (ii) {(At, bt, ct,∆t)}t∈[T] are continuous and
have continuous derivatives, and (iii) At ∈ (0, 1)N×N are diagonal matrices for all t ∈ [T]. Let
Amax = maxt∈[T],n∈[N](At)n,n. Then for arbitrary x ∈ X and every s, t ∈ [T] such that s < t,
|∂yt/∂xs| = O(exp (−κ(t− s)) for some κ = Θ(log(A−1

max)).

The proof can be found in Appendix C.2. The first two assumptions are standard and always satisfied.
The third assumption also holds for most of SSMs discussed in Sec. 2. Therefore, Theorem 3.2
applies to numerous SSMs including but not limited to S4 (Gu et al., 2021a; 2022a), Mamba (Gu &
Dao, 2023), RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), GLA (Yang et al., 2023), HGRN2
(Qin et al., 2024), Griffin (De et al., 2024), and Megalodon (Ma et al., 2022; 2024). Theorem 3.2
states that influential scores between two tokens modeled by SSMs are exponentially diminishing
with respect to their relative distance. The decay rate is determined by the maximal values among
all At’s elements. The closer Amax is to zero, the faster the influential scores decay. The practical
implication is that SSMs are factually recency-biased models. Tokens farther away are under-reaching
and forgotten rapidly while the information of closer tokens dominates the final output. This can
significantly limit their ability of fitting complex long-range relationships.

Empirical Validation. We empirically verify our theory by directly plotting the influential score
w.r.t. the relative distances in Fig. 1. The blue and orange curves in Fig. 1 successfully justify our
exponentially decaying bound in Theorem 3.2. In contrast, transformer-based architectures is free
from the strong recency bias, while demonstrating a well-known “lost-in-the-middle” pattern (Liu
et al., 2024b).

3.2 DISCUSSIONS

Revisiting HiPPO theory. HiPPO established in (Gu et al., 2020), extended by Gu et al. (2021b;
2022b) is the theoretical foundation of SSMs. Consider a signal x and its reconstruction y(t) up to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

time t. To optimally memorizes the history of x using y(t), HiPPO minimizes ∥x≤t − y(t)∥L2(ω(t))

w.r.t. a measure ω(t) supported on (−∞, t]. The solution is to project the history of x before time
t onto N basis functions (e.g. Legendre polynomials), which yields a time-continuous coefficient
vector h(t), and y(t) can be synthesized by linearly combining the N basis using h(t). Gu et al.
(2020) shows that the evolution of h(t) follows an ODE h′(t) = A(t)h(t) + b(t)x(t). In particular,
Gu et al. (2020) chooses a uniform measure over the past history ω(t) = I[0, t]/t, which places no
approximation bias over the time horizon in contrast to an earlier work (Voelker et al., 2019). As
a result, A(t) in Eq. 1 can be written in a closed form: A(t) = −Ahippo/t, where Ahippo is a
time-independent constant called the HiPPO matrix. Its various forms have been used as initialization
in subsequent works including S4 (Gu et al., 2021a) and Mamba (Gu & Dao, 2023). While HiPPO
theory seems to guarantee the long-rangeness for SSMs, the actual form of A(t) employed in S4 and
Mamba drops the normalizer 1/t. Gu et al. (2022b) shows that this change causes a warp of measure
from uniform to ω(t)(s) ∝ exp(s − t)I(∞, t]. We note that this warped measure assigns more
importance to recent history, and thus, our Theorem 3.2 does not contradict HiPPO theory but also
matches the findings in Gu et al. (2022b). We also point out that when adopting the diagonalized form
of Ahippo (Gu et al., 2021a; Gupta et al., 2022; Gu et al., 2022a), the unitary matrices decomposed
from Ahippo is sometimes not applied to bt and ct, which introduces a disconnect between HiPPO
theory and its practical implementation. Our paper directly studies the discrete-domain SSMs and
aligns with the parameterization used in practice.

0 200 400 600 800 1000
Token position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sc
or

e

Mamba-130M
Mamba-1.4B
Pythia-160M
Pythia-1.4B

Figure 1: Influential scores.

The effect of selection mechanism. Tradi-
tional S4 architectures operate as linear time-
invariant systems. To introduce more non-
linearity, Mamba (Gu & Dao, 2023) proposes
modeling (bt, ct,∆t) as a function of inputs, a
mechanism known as selection. This is moti-
vated by the selective copying synthetic task,
wherein At and bt need to adapt based on con-
tent to filter relevant information for memory up-
dates. Despite this adaptation, Theorem 3.2 still
holds in scenarios involving the selection mecha-
nism, meaning selective SSMs like Mamba may
continue to suffer from recency bias. Never-
theless, we note that selection can alleviate this
issue by adaptively controlling the values in At.
Manifesting in our theory, selection mechanism
can potentially make the upper bound Amax

closer to one. However, parameter A in Eq. 3
is initialized with negative integers (Gu et al.,
2022a), which exacerbates the bound in Theo-
rem 3.2 by accelerating the decay rate of the
influence score. We have empirically visualized the influence score for Mamba in Fig. 1, and the
results are as predicted.

Is decay a necessary and desirable design? One key observation from our theory is that the
parameterization of At within the interval (0, 1) leads to strictly decaying dependencies among
tokens based on their relative distances. This design choice appears to be a standard practice, and
perhaps intentional, in several recently proposed SSMs (Gu & Dao, 2023; Dao & Gu, 2024; Beck
et al., 2024; Yang et al., 2023; Peng et al., 2024; De et al., 2024; Ma et al., 2024; Liu et al., 2024a;
Yang et al., 2024). It also connects to the gating mechanisms adopted in traditional RNNs (Cho,
2014; Cho et al., 2014; Gu et al., 2021b). We find the constraint At ∈ (0, 1)N×N might be inherent
to SSMs as it is crucial for numerical stability during the long-context recurrence (Gu et al., 2022a;
Yang et al., 2023). Promoting the importance of local tokens could also lead to a nearly correct bias,
as natural language generation mostly utilizes recent contexts. However, as we will elaborate in
subsequent sections, this design can result in significant loss of long-distance information (Sec. 3.3)
and may raise certain security concerns (Sec. 3.4).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

Needle Position

10240

12288

14336

16384

18432

20480

22528

24576

Fu
ll

Co
nt

ex
t L

en
gt

h

0.54 0.54 0.55 0.56 0.56 0.53 0.51 0.51 0.52 0.5 0.48 0.49 0.52 0.54 0.58 0.66 0.74 0.8 0.84

0.47 0.45 0.42 0.41 0.42 0.43 0.43 0.42 0.41 0.42 0.43 0.46 0.48 0.47 0.47 0.49 0.54 0.63 0.7

0.43 0.43 0.44 0.45 0.44 0.41 0.4 0.4 0.42 0.45 0.45 0.43 0.4 0.39 0.42 0.49 0.57 0.66 0.69

0.38 0.37 0.37 0.37 0.38 0.38 0.39 0.39 0.37 0.33 0.32 0.34 0.35 0.34 0.35 0.38 0.43 0.5 0.56

0.35 0.35 0.37 0.37 0.36 0.34 0.34 0.33 0.32 0.31 0.31 0.32 0.33 0.35 0.36 0.38 0.43 0.52 0.6

0.27 0.3 0.32 0.3 0.29 0.3 0.3 0.28 0.26 0.27 0.28 0.28 0.29 0.3 0.32 0.35 0.39 0.47 0.57

0.27 0.29 0.31 0.31 0.28 0.28 0.3 0.28 0.26 0.26 0.28 0.29 0.29 0.29 0.3 0.32 0.33 0.35 0.37

0.29 0.3 0.31 0.3 0.29 0.28 0.27 0.26 0.26 0.26 0.26 0.28 0.29 0.29 0.29 0.3 0.33 0.37 0.39
0.2

0.3

0.4

0.5

0.6

0.7

0.8

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

Needle Position

10240

12288

14336

16384

18432

20480

22528

24576

Fu
ll

Co
nt

ex
t L

en
gt

h

0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73

0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Comparison between SSM and Transformer on the “Needle in a Haystack" benchmark. The left figure
shows the retrieval accuracy of the Mamba-Codestral-7B model, while the right figure presents the retrieval
accuracy of the Mistral-7B model. We present a heatmap where "full context length" refers to the total length
of the document, and "needle position" denotes the relative position of the statement to be retrieved within the
context. Best view with zoom-in.

3.3 LOST IN THE DISTANCE: LONG-CONTEXT RETRIEVAL TEST

To assess the ability of large language models (LLMs) to effectively utilize long-context data, we
evaluate open-source SSM using the “Needle in a Haystack" benchmark and compare its performance
with that of Transformer. In this benchmark, a randomly generated statement is embedded within the
middle of a long document, and the models are tasked with retrieving the statement. By varying the
insertion position of the statement, we measure the retrieval accuracy at each location, which reflects
the model’s positional bias. To enforce LLMs using the data within context, instead of recalling
information memorized by its model weights, we carefully design the statement with factual error.
See detailed examples in Appendix D.2.

We compare the retrieval accuracy of the Mamba-Codestral-7B model, a representative SSM capable
of handling long-context inputs of up to 256k tokens, with Mistral-7B (Jiang et al., 2023), which
utilizes a Transformer architecture. As illustrated in Figure 2, the retrieval accuracy of the Transformer
remains stable regardless of the needle position. In contrast, the SSM achieves higher accuracy when
the needle is placed closer to the end of the context (i.e., larger needle position values), while its
accuracy drops when the needle is located near the beginning of the document. This indicates a
positional bias towards local tokens in the SSM.

3.4 POTENTIAL RISK ON MODEL ROBUSTNESS

We conduct quantitative experiments to show the recency-biased nature of SSMs will lead to potential
hazards. The downstream task in this study is image classification on sequences of pixels (Tay et al.,
2020), where W ×H images are flattened to sequences of pixel tokens and fed to sequence models
for classification. We test a family of SSMs, including H3 (Fu et al., 2022), RWKV (Peng et al.,
2023), and Mamba (Gu & Dao, 2023), and compare them against a transformer baseline (Vaswani
et al., 2017) on CIFAR-10 dataset. To adapt SSMs for this task, we append a learnable class token
after the last token of the input sequence. The output state of this class token is then mapped to logits
using a classifier head. Experiment details are given in Appendix D.1. In the following, two attack
patterns on the input data are introduced, which degrade the robustness of SSMs in this task.

Adversarial Attack. To assess the bias of SSMs towards corrupted data, we perturb the leading
and trailing tokens of input sequences with random noise. In unbiased models, perturbations in both

Table 1: Results of adversarial attack experiments on the CIFAR-10 dataset, evaluated using classifi-
cation accuracy. Each input sequence contains 1,024 tokens. Two corruption ratios (32/1024 and
96/1024) are applied to perturb the leading and trailing tokens, respectively.

Corrupted region (seq. length = 1024)
Models (no corrupt) [992:1024] [0:32] [928:1024] [0:96]

H3 0.654 0.569 (↓ 13.04%) 0.654 (↓ 0.03%) 0.477 (↓ 27.07%) 0.650 (↓ 0.72%)
Transformer 0.580 0.535 (↓ 7.81%) 0.447 (↓ 22.95%) 0.431 (↓ 25.76%) 0.370 (↓ 36.32%)
RWKV 0.474 0.150 (↓ 68.35%) 0.466 (↓ 1.58%) 0.138 (↓ 70.88%) 0.460 (↓ 2.91%)
Mamba 0.674 0.126 (↓ 81.24%) 0.658 (↓ 2.30%) 0.098 (↓ 85.46%) 0.647 (↓ 3.98%)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

leading and trailing tokens cause similar performance drops. However, in locally biased models,
where the class token is appended after the last input token, the trailing tokens are supposed to have
greater impacts on classification outcomes than leading tokens. Table 1 presents our experimental
results on the CIFAR-10 dataset under two corruption ratios. For each ratio, the same number of
leading and trailing tokens are corrupted with Gaussian noise. Among all the SSM family methods
compared, the performance drops caused by trailing token corruption are significantly larger than
those caused by leading token corruption. Notably, for Mamba, perturbing the last 32 out of 1024
tokens results in an 81.24% drop in classification accuracy, whereas corrupting the first 32 tokens only
reduces accuracy by 2.30%. In contrast, the transformer baseline shows relatively smaller impacts
from trailing token corruption. Instead, our experiments indicate that more informative features from
transformers tend to sink in the leading tokens, aligning with the observations in Xiao et al. (2023).

Target Attack. Beyond degrading the performance of SSMs by attacking trailing tokens, we also
demonstrate that local bias creates a backdoor for target attacks. In this scenario, a target class is
selected, and pixel tokens from that class are used to replace those in images from other classes. The
attack succeeds when models mis-classify images from other classes as belonging to the target class.
Due to the local bias, trailing tokens are expected to be a more effective attack region for SSMs,
leading to a significantly higher attack success rate compared to leading tokens. Fig. 3 shows the
success rate comparisons across different attack regions and ratios. When trailing regions are replaced
with pixels from the target class, SSMs achieve much higher success rates than when leading regions
are attacked. This phenomenon is observed at both 25% and 47% attack ratios. By comparison, the
transformer model possesses greater robustness, maintaining similar success rates between attacks on
leading and trailing tokens.

4 UNDERSTANDING SCALABILITY BOTTLENECK OF SSMS

4.1 NECESSITY AND LIMITS OF DEPTH SCALING

In Sec. 3.1, we have seen that the dependencies between tokens are exponentially decaying with
their relative distances in an SSM layer. Consequently, SSMs resemble localized kernels, similar
to those employed in various neural architectures such as Convolutional Neural Networks (CNNs)
(LeCun et al., 1998) and Graph Neural Networks (GNNs) (Kipf & Welling, 2016). It is a reasonable
postulation that increasing the number of layers can extend the model’s receptive field (Goodfellow
et al., 2016). We justify this hypothesis via a scaling-up experiment with various context lengths and
model architectures.

We pretrain Mamba using causal language modeling with two context lengths, {2048, 8192}. Besides,
we fix the number of layers at {16, 24, 32, 48} and vary the hidden dimension. We defer more
experiment details in Appendix D. The validation loss versus the number of parameters is plotted in
Fig. 4. Under the 2048 context length, models of different configurations exhibit similar performance,
consistent with the findings of Kaplan et al. (2020). However, as the context length increases,
the scaling behavior across depth-width configurations begins to diverge. Notably, deeper models

H3 Transformer RWKV Mamba
0.0

0.2

0.4

0.6

Su
cc

es
s

ra
te

Attack region
[0:256]
[768:1024]

(a) Attack ratio = 256/1024 (25.00%)

H3 Transformer RWKV Mamba
0.0

0.2

0.4

0.6

Su
cc

es
s

ra
te

Attack region
[0:480]
[544:1024]

(b) Attack ratio = 480/1024 (46.875%)

Figure 3: Results of target attack experiments on CIFAR-10, where “horse” is the target class. (a)
and (b) present target attack success rates under two attack ratios. Lower success rates suggest higher
robustness in the corresponding attack regions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

200 300 400 500
Num. Params (M)

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

. L
os

s

Context Length = 2048

200 300 400 500
Num. Params (M)

2.7

2.8

2.9

3.0

3.1

3.2

Va
lid

. L
os

s

Context Length = 8192
Layer=16
Layer=24
Layer=32
Layer=48

Figure 4: We empirically validate that, with shorter context lengths, models of varying depths but the
same total number of parameters show similar performance (left figure). However, deeper models
become more advantageous as the context length increases (right figure).

outperform shallower ones, likely because deeper architectures can more effectively utilize the
extended context to meet the training objectives. Nevertheless, we observe that the performance gain
starts to saturate when we keep increasing the depth.

4.2 UNVEILING OVER-SMOOTHING IN SSMS

To explain the depth scaling bottleneck revealed in the previous section, we conduct a theoretical
and empirical investigation of the feature and state dynamics in SSMs. Our key finding is that token
embeddings, after being processed by SSM layers, tend to become increasingly similar, which leads
to a phenomenon commonly referred to as over-smoothing (NT & Maehara, 2021; Cai & Wang, 2020;
Oono & Suzuki, 2019). Over-smoothing occurs when token representations become indistinguishable,
rendering the state uninformative.

First of all, we warm up by studying continuous-time S4 with constant (A, b, c). Recall that a
continuous-time S4 layer can be described by a group of ODEs: h′(t) = Ah(t) + bx(t),y(t) =
c⊤h(t). Our analysis starts with the equivalence between convolution and S4 (Gu et al., 2021b).
This is, the analytic solution to the first-order non-homogeneous ODE can be expressed as y(t) =∫
c⊤ exp(A(t−s))bx(s)ds. Now we analyze the filtering property of this convolution operator from

the Fourier domain perspective. We define a convolutional operator as a low-pass filter if its response
on DC component is higher than other spectral components (Wang et al., 2022). We summarize the
main finding in the following proposition:
Proposition 4.1 (Low-pass filtering of continuous S4). Consider a continuous-time S4 with pa-
rameters (A, b, c). Assume A is diagonal with all values negative. Then y(t) =

∫
c⊤ exp(A(t−

s))bx(s)ds defines a low-pass filter.

The assumption therein is always satisfied when real parameterization is adopted (Gu et al., 2022a).
Proposition 4.1 states that S4 is inherently a low-pass filter regardless of how (A, b, c) are trained.
Therefore, the high-frequency components of input signals are being constantly removed at each
layer. Presumably, stacking many S4 layers might cause over-smoothing when all high-frequency
components are suppressed to zero.

Now we consider a more general scenario when SSMs work on discrete-time regime and
(At, bt, ct,∆t) are time-varying or even data-dependent. Formally, we prove the following result
showing the sharpness of input signals will be reduced as well:
Theorem 4.2 (Over-smoothing of SSMs). Consider an SSM specified in Eq. 1 with
{(At, bt, ct,∆t)}t∈[T]. Assume an input space X ⊂ RT such that for every x ∈ X , (i)
(At)n,n+∆t ≤ 1 for every n ∈ [N] and t ∈ [T], (ii) mint∈[T] bt(xt)n ≤ 0 and maxt∈[T] bt(xt)n ≥
0 for every n ∈ [N]. Let Amin = mint∈[T],n∈[N](At)n,n. Then for any x ∈ X and the memory
states {ht : t ∈ [T]} generated by the SSM, we have:

max
t,s∈[T]

∥ht − hs∥1 ≤
(
1−AT−1

min

)
max
t,s∈[T]

∥bt(xt)− bs(xs)∥1 , (5)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

pn
es

s

bt

ht

(a) bt and ht.

0 20 40
Depth

0.7

0.8

0.9

1.0

Sh
ar

pn
es

s

(b) MambaMixer output.

0 20 40
Depth

0.5

0.6

0.7

0.8

0.9

1.0

Sh
ar

pn
es

s

(c) MambaBlock output.

Figure 5: Numerical experiments on Mamba over-smoothing, using a 1.4B pretrained model.

We first justify our assumptions here. (At)n,n + ∆t ≤ 1 is a generic condition to ensure the
recurrence of SSMs is non-expansive, which is crucial to guarantee memory states stay numerically
stable. The second assumption requires the data to be well-distributed and centered around the origin,
which can be easily satisfied by normalization techniques. We find that prevalent SSM models such
as (Gu & Dao, 2023; Peng et al., 2023; De et al., 2024; Qin et al., 2024) can easily achieve these
two assumptions. Moreover, if (At)n,n + ∆t = 1 is always true letting each recurrent update be
conservative (Peng et al., 2023; Ma et al., 2022), then we can remove the second assumption as well.
Theorem 4.2 examines the relationship between the pairwise distances of memory states and encoded
tokens within the sequence. This result indicates that the pairwise discrepancies among memory
states are diminished by a factor less than one, suggesting that the memories undergo smoothing
following the application of an SSM in Eq. 1. We hypothesize that if the memory is losing its
discriminative capacity, the intermediate hidden feature space will similarly collapse.

Delving deeper, the decay rate is intricately linked to both the context length and the minimal value
within {At, t ∈ [T]}. As the context length increases, it requires more time to effectively mix all
tokens. When Amin approaches one, the decay rate is maximized, as the entire SSM essentially
performs a uniform summation over the entire sequence. Interestingly, Theorem 4.2 can be interpreted
in conjunction with Theorem 3.2. To relieve the smoothening rate, one might aim to minimize the
values in At. However, this could inadvertently enhance the locality of SSMs, as a decrease in Amax

may occur. A practical implication of this relationship is that the values in At should be as diverse as
possible to simultaneously mitigate the artifacts of recency and over-smoothing. Finally, it is worth
noting that the smoothing nature of SSMs is intuitive; one can conceptualize the recurrent operation
of SSMs as performing a running average of the encoded token signals.

Empirical Validation. We adopt a pairwise distance between tokens to quantify the sharpness
of a signal: E(x) = 1

2(N−1)

(∑
i̸=j∥xi − xj∥22

)
/
(∑

i∥xi∥22
)
. E(x) being small means the token

representations are close to each other and become less discriminative. In Fig. 5a, bt is above ht

among all Mamba blocks. This suggests the sharpness of input signals is consistently higher than
the sharpness of the memory state output from Mamba, verifying our Theorem 4.2. In addition, Fig.
5b and 5c show the sharpness of Mamba mixer and Mamba block output, which tends to decrease
rapidly in deeper layers. This further validates the over-smoothing claims.

5 CONCLUSION

In this study, we uncover two critical limitations of SSMs. First, we demonstrate that SSMs exhibit
a strong recency bias, which significantly impairs their ability to capture long-range dependencies
and recall distant information, and even raises robustness concerns. Furthermore, our findings
indicate that increasing the depth of SSMs leads to over-smoothing, causing token representations to
become indistinguishable and obstructing potential performance gains. We stress the necessity for
future research to tackle these challenges, ultimately enhancing the effectiveness of SSMs in natural
language tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. arXiv preprint
arXiv:2403.01590, 2024.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. In International
Conference on Machine Learning Workshop (ICMLW), 2020.

Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL, 2019.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo:
State space models with generalized orthogonal basis projections. arXiv preprint arXiv:2206.12037,
2022b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State space
models are amortized online learners. arXiv preprint arXiv:2407.14207, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
In International Conference on Pattern Recognition (ICPR), 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2019.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian
Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, et al. Mechanistic design and
scaling of hybrid architectures. arXiv preprint arXiv:2403.17844, 2024.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. arXiv preprint arXiv:2404.07904, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is All You Need. In Proceedings of NeurIPS, 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing in deep
vision transformers via the fourier domain analysis: From theory to practice. arXiv preprint
arXiv:2203.05962, 2022.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. Advances in
Neural Information Processing Systems, 33:20437–20448, 2020.

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of attention
masks and layernorm in transformers. arXiv preprint arXiv:2405.18781, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A UNIFIED FORMULATION OF SSMS

Gated Linear Attention. We present GLA (Yang et al., 2023) below, which generalizes several
extant LAMs:

(GLA) At = diag(α(xt)), bt(xt) = k(xt), ct(ht) = q(xt)
⊤ht, ∆t = v(xt), (6)

where α : R → (0, 1)N converts input to gating logits, k, q : R → RN , v : R → R are linear
mappings playing roles similar to key, query, value matrices in transformers (Vaswani et al., 2017).
When the inputs are multi-dimensional, we share α across channels while assigning each channel
with a separate k, q, v and extending their input dimension accordingly. Linear Attention (LA)
(Katharopoulos et al., 2020) can be regarded as GLA with constant At, while RetNet (Sun et al.,
2023) can be formulated as GLA with input-independent At (Liu et al., 2024a).

Griffin (De et al., 2024). The recurrent unit in Griffin can be re-formulated as a kind of SSMs:

At = diag (α(xt)), bt(xt) = diag (i(xt)), ct(ht) = ht, ∆t = diag
(√

1−α(xt)2
)
, (7)

where i(xt) = sigmoid(Wxxt + bx) is an input gate, α is computed in log-space: logα(xt) =
−ξ softplus(Γ) ⊙ sigmoid(Waxt + ba), ⊙ is Hadamard product, ξ is a constant, and Γ, Wa,
ba, Wx, bx are learnable parameters. In particular, the dimension of ht in Griffin is equal to the
dimension of xt. If we consider single-channel xt, then At, bt, and ∆t are all scalar-valued.

RetNet (Sun et al., 2023). The SSM formulation of RetNet is similar to that of GLA, with the
distinction of At.

At = γI, bt(xt) = k(xt), ct(ht) = q(xt)
⊤ht, ∆t = v(xt), (8)

where γ ∈ [0, 1] is a scalar, and the other symbols retain the same meaning as in GLA.

RWKV (Peng et al., 2023). We demonstrate that RWKV can also be reformulated into the structure
of SSMs:

At =
exp(−wt)I

exp(−wt) + exp(k(xt))
, bt(xt) = v(xt), (9)

ct(ht) = q(xt)
⊤ht, ∆t =

exp(k(xt))

exp(−wt) + exp(k(xt))
. (10)

Another view suggests RWKV can be seen as a state of ratio form of two SSMs: ht = at

bt
=

(exp(−w)at−1 + exp(k(xt))v(xt)) / (exp(−w)bt−1 + exp(k(xt))).

B DEFERRED DISCUSSIONS

Does hungry hungry hippos help? The key innovation of Hungry Hungry Hippos (H3) (Fu et al.,
2022) lies in the introduction of self-gating connections and locally shifting convolutions to improve
in-context recall for state space models (SSMs). This design has quickly become a standard backbone
for various SSMs (Gu & Dao, 2023; Beck et al., 2024). However, we question its effectiveness in
addressing the local rangeness issue in SSMs. The gating mechanism operates at the token level,
which impacts the bound in Theorem 3.2 only by a constant factor. Additionally, the introduced
convolutions typically use small kernels, which are insufficient to mitigate the exponentially decaying
relevance between tokens. As we empirically show in Fig. 2, while Mamba with H3 performs
adequately in associative recall tasks when the state size is sufficiently large, a locality bias begins to
emerge as the number of key-value pairs exceeds the model’s memory capacity. This highlights the
limitations of the architecture in handling long-range dependencies under constrained memory.

Connection with over-squashing theory in GNNs. The influential score defined in Sec. 3.1 is
also used for over-squashing analysis in Graph Neural Networks (GNNs) to identify information
bottleneck (Wu et al., 2020; Topping et al., 2021; Di Giovanni et al., 2023). We postulate that
propagating information from long distances remains challenging for SSMs because the model needs
to encapsulate all history information into a fixed-dimension hidden vector, which is also observed as
one major problem with RNNs (Alon & Yahav, 2020; Sutskever et al., 2014; Cho et al., 2014; Cho,
2014).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C PROOFS

C.1 PARALLEL FORM OF SSMS

Proof of Lemma 3.1. By simple expansion of Eq. 1:

ht = At (At−1ht−2 +∆t−1bt−1(xt−1)) + ∆tbt(xt)

= At (At−1(At−2hj−3 +∆t−2bt−2(xj−2)) + ∆t−1bt−1(xt−1)) + ∆tbt(xt)

= · · ·

=

(
t∏

k=2

Ak

)
∆1b1(x1) +

(
t∏

k=3

Ak

)
∆2b2(x2) + · · ·+At∆t−1bt−1(xt−1) + ∆tbt(xt).

Proved after rewriting the summation and applying ct to the left.

C.2 LOCALITY OF SSMS

Proof of Theorem 3.2. By the assumption that xt is uniformly bounded, we have for some
C∆, C∆′ , CB , CB′ , Cc > 0

C∆ ≤ ∆(xi) ≤ 1, |∆′(xi)| ≤ C∆′ , |B(xi)| ≤ CB , |B′(xi)| ≤ CB′ , |C(xi)| ≤ Cc,

for every i ∈ [N] due to the continuity of ∆, B, C and their derivatives. Next, by Eq. 4 and
substituting A(xi) = exp(−∆iA), we have for every i, j ∈ [N] and i < j:

yj = c(xj)
⊤

[
j−1∑
t=1

exp

(
−

j∑
k=t+1

logAk

)
∆tb(xt) +B(xj)

]

= c(xj)
⊤

[
i−1∑
t=1

exp

(
−

j∑
k=t+1

logAk

)
∆tb(xt)

]

+ c(xj)
⊤

[
j−1∑
t=i

exp

(
−

j∑
k=t+1

logAk

)
∆tb(xt) +B(xj)

]
.

Here we obtain a decomposition of yj where B in the first summation is independent of xi while
∆ in the second summation is independent of xi. Taking derivatives in terms of each summation,
respectively:

∂yj

∂xi
=

D∑
d=1

C(xj)d

i−1∑
t=1

− exp

(
−

j∑
k=t+1

logAk,d,d

)
A′

d,d(xt)∆tb(xt)d

+

D∑
d=1

C(xj)d exp

(
−

j∑
k=i+1

logAk,d,d

)
B′(xt)d

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, we can obtain an upper bound:∣∣∣∣∂yj

∂xi

∣∣∣∣ ≤ D∑
d=1

i−1∑
t=1

Cc exp

(
−

j∑
k=t+1

logAk,d,d

)
A′

d,d(xt)|∆tb(xt)d|

+

D∑
d=1

Cc exp

(
−

j∑
k=i+1

logAk,d,d

)
|B′(xt)d|

≤
D∑

d=1

Cc

i−1∑
t=1

exp (−AmaxC∆(j − t)) logA′
d,d(xt)|∆tb(xt)d|

+

D∑
d=1

Cc exp (−AmaxC∆(j − i)) |B′(xt)d|

≤
D∑

d=1

exp (AmaxC∆(i− 1)− 1)

exp (Ad,dC∆)− 1
exp (−Ad,dC∆(j − 1))CBC∆′Cc

+

D∑
d=1

exp (AmaxC∆(j − i))CcCB′

≤ C exp (−κ(j − i)) .

where k = Θ(− logAmax). In the first inequality, we adopt triangle inequality, in the second
inequality we apply a lower bound on ∆(xt), in the third inequality, we take the summation of the
geometric series and apply upper bounds on corresponding terms, and in the last inequality, we merge
all constants together with A as one universal constant C.

C.3 OVERSMOOTHING IN SSMS

Proof of Proposition 4.1. First of all, let us rewrite the filter expressed by S4 as below:

z(t) =

N∑
n=1

cnbn exp(An,nt). (11)

The proof can be done by applying Fourier transform on z(t):

Z(ω) =

∫
z(t)e−

√
−1ωtdt (12)

=

∫ N∑
n=1

cnbn exp(An,nt) exp(−
√
−1ωt)dt (13)

=

N∑
n=1

cnbn

∫
exp(An,nt) exp(−

√
−1ωt)dt (14)

=

N∑
n=1

cnbn

∫
exp((An,n −

√
−1ω)t)dt (15)

=

N∑
n=1

cnbn√
−1ω −An,n

, (16)

where the last integral converges due to An,n < 0.

Proof of Theorem 4.2. To simplify the proof, we first only focus on one dimension in the memory
state. We denote αt = At,n,n, zt = bt,nxt, , st = ht,n for some n ∈ [N] Let m = mint∈[T] zt,
M = maxt∈[T] zt. By assumptions, we know that m ≤ 0 and M ≥ 0. Suppose z1 = pm+(1−p)M
for some p ∈ [0, 1], and st = αtst−1 +∆tzt with s0 = 0. Furthermore, let q = 1− p.

We provide the following two lemmas:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma C.1 (Wu et al. (2024)). Suppose αt +∆t ≤ 1 and z1 = pm+(1− p)M for some p ∈ [0, 1],
then sn ≤ An−1

minpm+ (1−An−1
minp)M .

Lemma C.2 (Wu et al. (2024)). Suppose αt +∆t ≤ 1 and z1 = (1− q)m+ qM for some q ∈ [0, 1],
then sn ≥ (1−An−1

minq)m+An−1
minqM .

By these two lemmas, we have:

(1−AT−1
min q)m+AT−1

min qM ≤ sL ≤ AT−1
min pm+ (1−AT−1

min p)M. (17)

Thus we can conclude that:

m′ = min
t∈[T]

st ≤ (1−AT−1
min q)m+AT−1

min qM (18)

M ′ = max
t∈[T]

st ≥ AT−1
min pm+ (1−AT−1

min p)M. (19)

Henceforth, we can upper bound:

M ′ −m′ ≤ AT−1
min pm+ (1−AT−1

min p)M − (1−An−1
minq)m−An−1

minqM (20)

= (1−AT−1
min)(M −m), (21)

using the fact that p + q = 1. Now we can generalize the above upper bound to all state channels
while assigning each (M,m) and (M ′,m′) with a subscript. This yields:

max
t,s∈[T]

∥ht − hs∥1 ≤
∑
n

(M ′
n −m′

n) (22)

≤
(
1−AT−1

min

)∑
n

(Mn −mn) (23)

≤ max
t,s∈[T]

∥bt(xt)− bs(xs)∥1 , (24)

D EXPERIMENT DETAILS

D.1 CIFAR-10 IMAGE CLASSIFICATION

Here we present experiment details in Sec. 3.4, where we conduct image classification on the
CIFAR-10 dataset to study locality bias in SSMs. Specifically, 32× 32 RGB images in the dataset
are flattened into sequences with a shape of (1024, 3), where 1024 represents the sequence length
and 3 corresponds to the RGB channels of the pixel tokens. These pixel tokens are then projected
into H-dimensional features via a linear projection, which are then input into SSM or transformer
mixers. In addition to pixel tokens, we insert a class token at the last position of the input sequence.
The output state of the class token will be processed by a one-layer classifier head to generate the
final logits.

Note that while the ViT architecture (Dosovitskiy et al., 2020) places the class token at the first
position of the input sequence, this design is incompatible with SSMs, which rely on causal sequence
modeling. In SSMs, the class token must be positioned last to aggregate features from the entire
sequence. We position the class token as the last token to establish long-range dependencies between
global image features and the leading pixel tokens. Alternative methods for aggregating features
across the entire sequence, such as mean pooling (Gu et al., 2021a; Tay et al., 2020) or placing the
class token in the middle of the sequence (Zhu et al., 2024), work more robustly in general but do not
fit the needs for our arguments on locality.

In addition, our image classification setup differs from Tay et al. (2020), where an 8-bit pixel intensity
lookup table is used as the token embedder. Instead, we employ a linear projection to map RGB pixel
colors into H-dimensional features.

For a fair comparison, the same hyperparameters are used across all models: learning rate = 0.001,
weight decay = 0.1, number of layers = 3, feature dimension H = 32, and number of states = 64.
Each model is trained for 100 epochs. The models and training pipelines are built on Arora et al.
(2023). No perturbations are imposed on the input sequences in the training stage.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 2: Extended results of adversarial attack experiments on the CIFAR-10 dataset. Classification
accuracy is used as the metric.

Corrupted region (seq. length = 1024)
Models (no corrupt) [1014:1024] [0:10] [768:1024] [0:256] [512:544] [480:576]
H3 0.654 0.629 0.654 0.394 0.639 0.603 0.543
Transformer 0.580 0.571 0.500 0.249 0.263 0.498 0.347
RWKV 0.474 0.194 0.470 0.107 0.448 0.405 0.392
Mamba 0.674 0.348 0.664 0.099 0.597 0.515 0.446

Adversarial Attack. To introduce perturbations to test data for adversarial attack, we first define
a corruption length K, which is small relative to the entire sequence length. We then replace the
leading and trailing K tokens with random Gaussian noise. In our experiments, K is set to 32 and 96,
corresponding to one row and three rows of pixels, respectively. Table 2 shows more results under
other corruption regions.

Target Attack. For the target attack experiments, a target class is first selected. For each image
from the other classes, an image from the target class is randomly sampled, and its leading and trailing
pixels are used to replace the corresponding pixels in the original image. We test two attack ratios:
256/1024 and 480/1024. Replacing fewer than 256 pixels generally does not result in considerable
success rates based on our trials. In our main text, we show success rates when “horse” is the target
class. Similar patterns are also observed across other classes. Fig. 6 shows the average success rates
obtained by setting each class as the target.

H3 Mamba RWKV Transformer
0.0

0.2

0.4

0.6

Av
g.

 s
uc

ce
ss

 ra
te

Attack region
[0:256]
[0:320]
[704:1024]
[768:1024]

Figure 6: Overall success rate of our target attack experiments on CIFAR-10, calculated by averaging
the attack success rates obtained when each class is individually set as the target class.

D.2 EXPERIMENTAL DETAILS OF NEEDLE TEST

To validate the retrieval capability of the models while preventing them from relying on memorized
information stored in their model weights, we carefully design the inserted statements to contain
factual errors. Several examples of such statements are provided in Figure 7. For instance, we insert
the statement, "The capital of France is Madrid," and then test the model’s retrieval ability by asking
the question, "What is the capital of France?" While the correct answer, Paris, is likely memorized by
the LLM, if the model "correctly" outputs Madrid based on the context provided, it demonstrates
that the model is successfully using the contextual information rather than relying on pre-existing
knowledge. This approach ensures that the evaluation focuses on the model’s ability to retrieve and
process information from the input context.

Inserted Statement: The capital of France is Madrid.

Inserted Statement: The telephone was invented by Elon Musk.

Inserted Statement: The largest planet in our solar system is Earth.

Inserted Statement: The country known for the Great Wall is Brazil.

Question: What is the capital of France?

Question: Who invented the telephone?

Question: What is the largest planet in our solar system?

Question: What country is known for the Great Wall?

Figure 7: An illustration of our synthetic data.

18

	Introduction
	Preliminaries
	Can SSM Effectively Represent Long-Range Dependencies?
	SSMs are Locally Biased
	Discussions
	Lost in the Distance: Long-Context Retrieval Test
	Potential Risk on Model Robustness

	Understanding Scalability Bottleneck of SSMs
	Necessity and Limits of Depth Scaling
	Unveiling Over-smoothing in SSMs

	Conclusion
	Unified Formulation of SSMs
	Deferred Discussions
	Proofs
	Parallel Form of SSMs
	Locality of SSMs
	Oversmoothing in SSMs

	Experiment Details
	CIFAR-10 Image Classification
	Experimental Details of Needle Test

