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Abstract Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperpa-
rameter(s) (HP) on a new dataset, without using any labels? In this work, we address this
challenging hyperparameter optimization for unsupervised OD problem, and propose the
first continuous HP search method called HPOD. It capitalizes on the prior performance of a
large collection of HPs on existing OD benchmark datasets, and transfers this information
to enable HP evaluation on a new dataset without labels. Also, HPOD adapts a prominent,
(originally) supervised, sampling paradigm to efficiently identify promising HPs in iterations.
Extensive experiments show that HPOD works for both deep (e.g., Robust AutoEncoder
(RAE)) and shallow (e.g., Local Outlier Factor (LOF) and Isolation Forest (iForest)) algorithms
on discrete and continuous HP spaces. HPOD outperforms a wide range of diverse baselines
with 37% improvement on average over the minimal loss HPs of RAE, and 58% and 66%
improvement on average over the default HPs of LOF and iForest.

1 Introduction
Although a long list of unsupervised outlier detection (OD) algorithms have been proposed (Aggar-
wal, 2013; Campos et al., 2016; Pang et al., 2021), how to optimize their hyperparameter(s) (HP)
remains underexplored. Without hyperparameter optimization (HPO) methods, practitioners often
use the default HP of an OD algorithm, which is hardly optimal given many OD algorithms are
sensitive to HPs. For example, a recent study by Zhao et al. (2021) reports that by varying the
number of nearest neighbors in local outlier factor (LOF) (Breunig et al., 2000) while fixing other
conditions, up to 10× performance difference is observed in some datasets. The literature also
shows that HP sensitivity is exacerbated for deep OD models with more ‘knobs’ (e.g., HPs and
architectures) (Ding et al., 2022), which we also observe in this study—deep robust autoencoder
(RAE) (Zhou and Paffenroth, 2017) exhibits up to 37× performance variation under different HPs.

In supervised learning, one can use ground truth labels to evaluate the performance of an HP,
including grid and random search (Bergstra and Bengio, 2012) as well as more efficient Sequential
Model-based Bayesian Optimization (SMBO) (Jones et al., 1998). Unlike the simple methods, SMBO
builds a cheap regression model (called the surrogate function) of the expensive objective function
(which often requires ground truth labels), and uses it to iteratively select the next promising HP
for the objective function to evaluate. Notably, learning-based SMBO is more efficient and effective
than simple, non-learnable methods (Falkner et al., 2018).

However, unsupervised OD algorithms face evaluation challenges—they do not have access
to (external) ground truth labels, and most of them (e.g., LOF and Isolation Forest (iForest) (Liu
et al., 2008)) do not have an (internal) objective function to guide the learning either. Even for
the OD algorithms with an internal objective (e.g., reconstruction loss in RAE), its value does not
necessarily correlate with the actual detection performance (Ding et al., 2022). Thus, HPO for
unsupervised OD is challenging and underexplored, where the key is reliable model evaluation.

Other than proposing another OD algorithm, we study this important HyperParameter
Optimization for unsupervised OD problem, and introduce a systematic approach called HPOD.
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(a) (left) large perf. variation over
384 HPs for RAE on Thyroid—
random&min. loss HPs are sub-par;
(right) HPOD (H) outperforms all.
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(b) (left) HP sensitivity of LOF on Vowels—
the default HP is far from optimal; (right)
HPOD (H) outperforms all baselines with
+58% AP rank over random HP.
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Figure 1: (a) (left) HP sensitivity in deep RAE on Thyroid; (right) HPOD outperforms all baselines on
a 39-dataset database (§4.2.1), with a higher avg. performance rank (y-axis) and comparable
to better top q% HP settings in the meta-HP set (x-axis) (b) (left) HP sensitivity in LOF on
Vowels; (right) HPOD outperforms all baselines with huge improvement (e.g., +58% norm. AP
rank) over the default HP (§4.2.2) and (c) for iForest, HPOD is the best (e.g., +66% normalized
AP rank) over the default HP (§4.2.2). See detailed experiment results in §4.

In a nutshell, HPOD leverages meta-learning to enable (originally supervised) SMBO for efficient
unsupervised OD hyperparameter optimization. To overcome the infeasibility of evaluation in un-
supervised OD, HPOD uses meta-learning that carries over past experience on prior datasets/tasks
to more efficient learning on a new task. To that end, we build a meta-database with historical
performances of a large collection of HPs on an extensive corpus of existing OD benchmark datasets,
and train a proxy performance evaluator to evaluate HPs on a new dataset without labels (see §3.3).
With the evaluator, HPOD can iteratively and efficiently identify promising HPs to evaluate and
output the best (see §3.4). Also, we use meta-learning to further facilitate HPOD by initializing and
transferring knowledge from similar historical tasks to the surrogate function of the new task (see
§3.5). We remark that HPOD is strictly an HPO method other than a new detection algorithm.
Performance. Fig. 1a (left) shows the huge performance variation (up to 37×) for a set of 384
deep RAE HPs on Thyroid data, where HPOD is significantly better than expectation (i.e., random
selection), as well as selection by min. reconstruction loss (MinLoss); ours is one of the top HPs. In
Fig. 1a (right), we show that HPOD is significantly better than a group of diverse and competitive
baselines (see Table 1) on a 39 dataset database. We also demonstrate HPOD’s generality on non-
deep OD algorithm LOF with both discrete and continuous HP spaces in Fig. 1b, as well as the
popular iForest in Fig. 1c. For all three OD algorithms, HPOD is statistically better than (most)
baselines, including the default HPs of widely used LOF and iForest. In fact, being an ensemble,
iForest has been shown to be robust to HPs and outperform many other detectors (Emmott et al.,
2015). As such, HPOD’s improvement over its default HPs is remarkable.
We summarize the key contributions as follows:
• Novel HPO Framework for Unsupervised OD. We introduce HPOD, a meta-learning approach
that capitalizes on historical OD tasks w/ labels to select effective HPs for a new task w/o labels.

• Continuous Search and Effectiveness. Superior to all diverse baselines in Table 1, HPOD works
with both discrete and continuous HPs.

• Generality. Extensive results on 39 datasets with (a) deep method RAE and classical methods
(b) LOF and (c) iForest show that HPOD outperforms baselines, with an avg. 37%, 58%, and 66%
improvement over the minimal loss HPs of RAE and the default HPs of LOF and iForest.

We open-source HPOD and the meta-train database at https://github.com/yzhao062/HPOD.

2 Related Work
2.1 Hyperparameter Optimization (HPO) for OD

We can categorize the short list of HPOmethods for OD into two groups. The first group of methods
require a hold-out set with ground truth labels for evaluation and/or learning (Bahri et al., 2022),
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Table 1: HPOD and baselines for comparison with categorization by (1st row) whether it uses meta-
learning and (2nd & 3rd row) whether it supports discrete and continuous HPO. Only HPOD
and HPOD_0 leverage meta-learning and support continuous HPO. See details in §4.1.

Category Default Random MinLoss HE GB ISAC AS MetaOD HPOD_0 HPOD

meta-learning ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

discrete HP ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
continuous HP ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

including AutoOD (Li et al., 2021), TODS (Lai et al., 2021), PyODDS (Li et al., 2020), and ADGym
(Jiang et al., 2024), which do not apply to unsupervised OD. The second group uses the default HP,
randomly picking an HP, or averaging the outputs of randomly sampled HPs (Wenzel et al., 2020);
we include them as baselines (see col. 2-5 of Table 1) with empirical results in §4.2.

2.2 Hyperparameter Optimization and Meta-Learning
HPO gains attention due to its advantages in searching and optimizing through complex HP spaces,
where learning tasks are costly (Karmaker et al., 2021). Existing methods include simple grid and
random search (Bergstra and Bengio, 2012) and more efficient Sequential Model-based Bayesian
Optimization (SMBO) (Jones et al., 1998). Notably, SMBO builds a cheap regression model (termed
“surrogate") of the expensive objective function, and uses it to iteratively select the next promising
HPs to be evaluated by the objective function (see Appx. A). We cannot directly use these supervised
methods for OD. Rather, HPOD leverages meta-learning to enable efficient SMBO for HPO for OD.

Other than using (external) ground truth labels, a small number of studies have employed
(internal) unsupervised strategies that solely use the input data and/or output outlier scores for
evaluation (Marques et al., 2015; Goix, 2016a; Nguyen et al., 2017; Marques et al., 2020; Clei et al.,
2022). However, a recent survey (Ma et al., 2023) shows only very few internal strategies perform
better than random model selection—they are inferior to meta-learning methods (Zhao et al., 2022).

Meta-learning aims to facilitate new task learning by transferring knowledge from
prior/historical tasks (Vanschoren, 2018), which has been used in warm-starting (Feurer et al.,
2014, 2015) and transferring surrogate (Yogatama and Mann, 2014; Wistuba et al., 2016, 2018) in
SMBO. Recently, it has also been applied to unsupervised outlier model selection (UOMS), where
Zhao et al. (2021) proposed MetaOD with comparison to baselines including global best (GB), ISAC
(Kadioglu et al., 2010), and ARGOSMART (AS) (Nikolic et al., 2013). We adapt these UOMS methods
as baselines for HPO for OD (see Table 1 col. 6-9). Although these methods leverage meta-learning,
they cannot handle continuous HPO. HPOD outperforms them in all experiments (see §4.2).

3 HPOD: Hyperparameter Optimization for Unsupervised Outlier Detection
3.1 Problem Statement

We consider the hyperparameter optimization (HPO) problem for unsupervised outlier detection
(OD), referred to as HPO for OD hereafter. Given a new dataset Dtest = (Xtest, ∅) without any labels
and an OD algorithm 𝑀 with the HP space 𝚲, the goal is to identify a HP setting 𝝀 ∈ 𝚲 so that
model𝑀𝝀 (i.e., detector𝑀 with HP 𝝀) achieves the highest performance1. HPs can be discrete and
continuous, leading to an infinite number of candidate HP configurations. For instance, given ℎ

hyperparameters 𝜆1 . . . 𝜆ℎ , with domains Λ1, . . . ,Λℎ , the hyperparameter space 𝚲 of𝑀 is a subset
of the cross product of these domains: 𝚲 ⊂ Λ1 × · · · × Λℎ . Eq. (1) presents the goal formally.

argmax
𝝀∈𝚲

perf(𝑀𝝀,Xtest) (1)

Problem 1 (HPO for Unsupervised OD (HPO for OD)). Given a new input dataset (i.e., detection
task2) Dtest = (Xtest, ∅) without any labels, pick a hyperparameter setting 𝝀 ∈ 𝚲 for a given detection
algorithm𝑀 to employ on Xtest to maximize its performance.

1In this paper, we use the area under the precision-recall curve (AUCPR, a.k.a. Average Precision or AP) as the
performance metric, which can be substituted with any other metric of interest.

2Throughout text, we use task and dataset interchangeably.

3



Algorithm 1 HPOD: Offline and Online Phases
Input: (Offline) meta-train database Dtrain =

{(X𝑖 , y𝑖 )}𝑛𝑖=1, OD algorithm 𝑀 , meta-HP set
𝝀meta = {𝝀1, . . . ,𝝀𝑚} ∈ 𝚲, performance evalu-
ation perf(·); (Online) new OD dataset Dtest =

(Xtest, ∅) (no labels), number of iterations 𝐸
Output: (Offline) HPOD meta-learners; (Online) the

selected hyperparameter setting 𝝀∗ forDtest

▶ (Offline) Meta-train: Learn functions for HP
performance prediction (§3.3)

1: Train detector𝑀 with eachHP setting𝝀 𝑗 ∈ 𝝀meta
on each X𝑖 of D𝑖 ∈ Dtrain to get outlier scores
O𝑖, 𝑗 , ∀ 𝑖 = 1 . . . 𝑛, 𝑗 = 1 . . .𝑚

2: Evaluate each O𝑖, 𝑗 by true labels y𝑖 to get perf.
matrix P ∈ R𝑛×𝑚 , where P𝑖, 𝑗 := perf(O𝑖, 𝑗 |y𝑖 )

3: Get meta-features (MF) per task, m𝑖 := 𝜓 (X𝑖 )
4: Compute internal performance measures (IPM),

I𝑖, 𝑗 := 𝜙 (O𝑖, 𝑗 )
5: Train proxy performance evaluator (PPE) 𝑓 (·) to

predict the performance P𝑖, 𝑗 from the respective
{HP 𝝀 𝑗 , MF m𝑖 , IPMs I𝑖, 𝑗 } ▶ §3.3.1

6: Train eachmeta-surrogate function (MSF) 𝑡 (·) per
meta-train dataset T = {𝑡1, . . . , 𝑡𝑛} to predict the
performance P𝑖, 𝑗 from the its {HP 𝝀 𝑗 } ▶ §3.3.2

7: SaveMF extractor𝜓 , IPM extractor 𝜙 , PPE 𝑓 , and
MSF T
▶ (Online) HPO on a new task: Iteratively iden-
tify promising HPs and output the best one (§3.4)

8: Extract meta-features of the testmtest := 𝜓 (Xtest)
9: Init. surrogate function 𝑠 (1) and the evaluation

set 𝝀eval by the meta-train and PPE ▶ §3.4.1
10: for 𝑒 = 1 to 𝐸 do ▶ §3.4.2
11: Transfer meta-surrogate func. T to surrogate

𝑠 (𝑒 ) by perf. sim. to meta-train ▶ §3.5.2
12: Get the promising HP to evaluate by EI

on surrogates’ prediction, where 𝝀 (𝑒 ) :=
argmax𝝀𝑘 ∈𝝀sample

𝐸𝐼 (𝝀𝑘 |𝑠 (𝑒 ) )
13: Build𝑀 with 𝝀 (𝑒 ) , and get the corresponding

outlier scores O (𝑒 )
test and IPMs I (𝑒 )

test
14: Predict performance of 𝝀 (𝑒 ) with 𝑓 (·), i.e.,

P̂(𝑒 )
test := 𝑓 (𝝀 (𝑒 ) ,mtest,I (𝑒 )

test)
15: Add 𝝀 (𝑒 ) to the eval. set 𝝀eval := 𝝀eval ∪ 𝝀 (𝑒 )

16: Update to 𝑠 (𝑒+1) with new pairs of information
⟨𝝀 (𝑒 ) , P̂(𝑒 )

test⟩
17: end for
18: Output 𝝀∗ ∈ 𝝀eval w/ the highest predicted perf.

It is infeasible to evaluate an infinite number of configurations with continuous HP domain(s), and
thus a key challenge is efficiently searching the space. As HPO for OD does not have access to
ground truth labels ytest, HP performance (perf.) cannot be evaluated directly.

3.2 Overview of HPOD

In HPOD, we use meta-learning to enable (originally supervised) Sequential Model-based Bayesian
Optimization for efficient HPO for OD, where the key idea is to transfer useful information from
historical tasks to a new test task. As such, HPOD takes as input a collection of historical tasks
Dtrain = {D1, . . . ,D𝑛}, namely, a meta-train database with ground-truth labels where {D𝑖 =

(X𝑖 , y𝑖)}𝑛𝑖=1. Given an OD algorithm 𝑀 for HPO, we define a finite meta-HP set by discretizing
continuous HP domains (if any) to get their cross-product, i.e., 𝝀meta = {𝝀1, . . . ,𝝀𝑚} ∈ 𝚲. We use
𝑀 𝑗 to denote detector𝑀 with the 𝑗-th HP setting 𝝀 𝑗 ∈ 𝝀meta. HPOD usesDtrain to compute:
• the historical output scores of each detector𝑀 𝑗 on each meta-train dataset D𝑖 ∈ Dtrain, where
O𝑖, 𝑗 := 𝑀 𝑗 (D𝑖) refers to the output outlier scores using the 𝑗-th HP setting for the points in the
𝑖-th meta-train dataset D𝑖 ; and

• the historical performance matrix P ∈ R𝑛×𝑚 of each detector𝑀 𝑗 , where P𝑖, 𝑗 := perf(O𝑖, 𝑗 ) is𝑀 𝑗 ’s
performance1 on meta-train dataset D𝑖 .
HPOD consists of two phases. During the (offline) meta-learning, it leverages meta-train

database with labels to build a proxy performance evaluator (PPE), which can predict HP performance
of OD algorithm on a new task without labels. Also, it trains a meta-surrogate function (MSF) for
each meta-train dataset to facilitate later HPO on a new dataset. In the (online) HP Optimization
for a new task, HPOD uses PPE to predict its HPs’ performance without using any labels, under
the SMBO framework to identify promising HP settings in iteration effectively. Also, we improve
the surrogate function in HPOD by transferring knowledge from similar meta-train datasets. An
outline of HPOD is given in Algo. 1, where we show the details of offline meta-training and online
HPO for OD on a new task in §3.3 and §3.4, respectively.
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3.3 Meta-Training (Offline) 
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Figure 2: HPOD overview: modules we transfer from offline (meta-learning) to online (HPO) in blue;
namely meta-feature extractor (𝜙), IPM extractor (𝜙), and proxy performance evaluator (𝑓 (·)).
In online phase, input Xtest and output HP 𝝀 depicted in yellow, surrogate func. 𝑠 (in green)
approximates 𝑓 (·) for fast prediction on large set 𝝀sample at every SMBO iteration.

3.3 (Offline) Meta-training

In principle, meta-learning carries over the prior experience of historical (meta-train) tasks to do
better on a new task, given the latter at least resembles some of the historical tasks. Due to the lack
of ground truth labels and/or a reliable internal objective function, the key challenge in HPO for OD
is to evaluate the performance of HP settings. Thus, the core of HPOD’s meta-learning is learning
the mapping from HP settings onto ground-truth performance by the supervision from the meta-train
database. The first part (lines 1-7) of Algo. 1 and Fig. 2 (top) describe the core steps, and we discuss
how to learn this mapping (§3.3.1) and transfer additional information for a new task (§3.3.2) in the
following. Notably, offline meta-training is one-time and amortized over many test tasks.

3.3.1 Proxy Performance Evaluator (PPE). In HPOD, we learn a regressor 𝑓 (·) across all meta-train
datasets Dtrain, named Proxy Performance Evaluator (PPE), that maps their {HP settings, data
characteristics, additional signals} onto ground truth performances. If 𝑓 (·) only uses HP
settings as the input feature, it fails to capture the performance variation of an HP across meta-train
datasets. We need additional input features to enable 𝑓 (·) for quantifying dataset similarity, so that
𝑓 (·) makes similar HP performance predictions on similar datasets, and vice versa.

How can we capture dataset similarity in OD? Recent work by Zhao et al. (2021) introduced
specialized ODmeta-features (MF) to describe general characteristics of OD datasets; e.g., number of
samples, basic statistics, output statistics by certain detectors, etc. With the meta-feature extractor,
both meta-train datasets and (later) the test dataset can be expressed as fixed-length vectors, and
thus any similarity measure applies, e.g., Euclidean distance. To build 𝑓 (·), we extract meta-features
from each meta-train dataset as M = {m1, . . . ,m𝑛} = 𝜓 ({X1, . . . ,X𝑛}) ∈ R𝑛×𝑑 , where 𝜓 (·) is the
extraction module, and 𝑑 is the dimension of meta-features (see Zhao et al. (2021) for details).
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Although meta-features describe general characteristics of OD datasets, their similarity does
not necessarily correlate with the actual performance. Thus, we enrich the input features of 𝑓 (·)
with internal performance measures (IPMs) (Ma et al., 2023), which are more “performance-driven”.
IPMs have been proven effective in unsupervised OD model selection (Zhao et al., 2022). More
specifically, IPMs are noisy/weak unsupervised signals that are solely based on the input samples
and/or a given model’s output (e.g., outlier scores) that can be used to compare two models (Goix,
2016b; Marques et al., 2020). In HPOD, we make the best use of these weak signals by learning in
𝑓 (·) to regress the IPMs of a given HP setting (along with other signals) onto its true performance
with supervision. To build 𝑓 (·), we extract IPMs of each detector𝑀 𝑗 with HP setting 𝝀 𝑗 ∈ 𝝀meta on
each meta-train dataset D𝑖 ∈ Dtrain, where I𝑖, 𝑗 := 𝜙 (O𝑖, 𝑗 ) refers to the IPMs using the 𝑗-th HP for
the 𝑖-th meta-train dataset, and 𝜙 (·) is the IPM extractor. See more of IPMs in Appx. B.1.

Putting these together, we build Proxy Performance Evaluator 𝑓 (·) as shown in Fig. 2 (top) to
map {HP setting, meta-features, IPMs} of HP 𝝀 𝑗 ∈ 𝝀meta on the 𝑖-th meta-train dataset onto its
ground truth performance, i.e., 𝑓 (𝝀 𝑗 ,m𝑖 , I𝑖, 𝑗 ) ↦→ P𝑖, 𝑗 . We provide details of 𝑓 (·) in Appx. B.2.

We want to remark that provided 𝜓 (·), 𝜙 (·), and the trained 𝑓 (·) at test time, predicting the
detection performance of HPs becomes possible for the new task without using ground-truth labels.

3.3.2 Meta-Surrogate Functions (MSF). Different from 𝑓 (·) that trains on all meta-train datasets and
leverages rich input features (i.e., HPs, MFs, and IPMs) to predict HP performance, we also train 𝑛

independent regressors with only HPs as input, T = {𝑡1, . . . , 𝑡𝑛}. That is, for each meta-train dataset
D𝑖 ∈ Dtrain, we train a separate regressor 𝑡𝑖 (·) that simply maps the 𝑗-th HP setting 𝝀 𝑗 ∈ 𝝀meta to
its detection performance on the 𝑖-th meta-train dataset, i.e., 𝑡𝑖 (𝝀 𝑗 ) ↦→ P𝑖, 𝑗 .

Since these independent regressors only use HP settings as input, they can be transferred to the
online HPO to improve HP performance evaluation on Xtest. We defer specifics to §3.4.2 & §3.5.2.

3.4 (Online) HPO on a New OD Task
After the meta-training phase, HPOD is ready to optimize HPs for a new dataset. In short, it outputs
the HP with the highest predicted performance by 𝑓 (·), the trained performance evaluator (§3.4.1).
To explore better HPs efficiently, within time budget. HPOD leverages Sequential Model-based
Optimization to iteratively select promising HPs for evaluation (§3.4.2). Lines 8-18 of Algo. 1 and
Fig. 2 (bottom) show the core steps.

3.4.1 Hyperparameter Optimization via Proxy Performance Evaluator. Given a new datasetDtest, we
can sample a set of HPs (termed as the evaluation set 𝝀eval ∈ 𝚲), and use the proxy performance
evaluator 𝑓 (·) from meta-training to predict their performance, based on which we can output the
one with the highest predicted value as follows.

argmax
𝝀𝑘 ∈𝝀eval

𝑓 (𝝀𝑘 ,mtest, Itest,𝑘 ) (2)

By setting 𝝀eval to some randomly sampled HPs and plugging it into Eq. (2), we have the “version
0" of HPOD, referred as HPOD_0. However, 𝑓 (·) needs IPMs (i.e., Itest,𝑘 in Eq. (2)) as part of the
input, requiring detector building at test time. Thus, we should construct 𝝀eval carefully to ensure
it captures promising HPs, where random sampling is insufficient. Thus we ask: how to efficiently
identify promising HPs for model building and evaluation at test time?

3.4.2 Identifying Promising HPs by Sequential Model-based Optimization (SMBO). As we briefly
described in §2, SMBO can iteratively optimize an expensive objective (Hutter et al., 2011), and
has been widely used in supervised model selection and HPO (Bergstra et al., 2015). Other than
sampling HPs randomly, learning-based SMBO shows better efficiency in finding promising HPs
to evaluate in iterations. In short, SMBO constructs a cheap regression model (called surrogate
function 𝑠 (·)) and uses it for identifying the promising HPs to be evaluated by the (expensive) true
objective function. It then iterates between fitting the surrogate function with newly evaluated
HP information and gathering new information based on the surrogate function. We provide the
pseudo-code of the supervised HPO by SMBO in Appx. Algo. A1, and note that it does not directly
apply to HPO for OD as performance cannot be evaluated without ground truth labels (line 4).
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We thus enable (originally supervised) SMBO for unsupervised outlier detection HPO by plugging
the PPE𝑓 (·) from the meta-train in place of HP performance evaluation as shown in Fig. 2 (bottom).
Surrogate Function and Initialization. As an approximation of the expensive objection function,
surrogate function 𝑠 (·) only takes HP settings as input, aiming for fast performance evaluation
on a large collection of sampled HPs. For the new task Xtest without access to true performance
evaluation, HPOD lets 𝑠 (·) learn a mapping from an HP 𝝀𝑘 to its predicted performance, i.e.,
𝑠 (𝝀𝑘 ) ↦→ 𝑓 (𝝀𝑘 ,mtest, Itest,𝑘 ). To enable 𝑓 (·) on Xtest, HPOD needs one-time computation for the
corresponding meta-features as mtest := 𝜓 (Xtest) ∈ R𝑑 . We want to remark that 𝑠 (·) differs from
𝑓 (·) in two aspects. First, 𝑠 (·) can make fast performance predictions on HPs as it only needs HPs
as input, while 𝑓 (·) is more costly since IPMs require model building. Second, 𝑠 (·) is a regression
model that can measure both the predicted performance of HP settings and uncertainty (potential)
around the prediction simultaneously. A popular choice for 𝑠 (·) is the Gaussian Process (GP)3.

To initialize 𝑠 (·), we train it on a small number of HPs. More specifically, we train 𝑠 (·) with
pairs of HPs and their corresponding predicted performance by 𝑓 (·) on Xtest, and also initialize the
evaluation set 𝝀eval to these HPs. Although we can randomly sample the initial HPs, we propose to
set them to top-performing HPs from similar meta-train tasks (Feurer et al., 2015). Consequently,
our initial 𝑠 (·) is more accurate in predicting likely well-performing HPs on Xtest. We defer the
details of this meta-learning-based surrogate initialization to §3.5.1.
Iteration: Identifying Promising HPs. Although we can already output an HP from 𝝀eval with
the highest predicted perf. after initialization, we aim to use 𝑠 (·) to identify “better and better” HPs.

In each iteration, we use 𝑠 (·) to predict the performance (denoted as 𝑢𝑘 := 𝑠 (𝝀𝑘 )) and the
uncertainty around the prediction (denoted as 𝜎𝑘 ) of sampled 𝝀𝑘 ∈ 𝝀sample and then select the most
promising one to be “evaluated” by 𝑓 (·). Note that 𝝀sample is a HP candidate set that is randomly
sampled from the full (continuous) HP space 𝚲 (see details in Appx. C.1). Since 𝑠 (·) can make
fast predictions, 𝝀sample’s size can be large, e.g., 10,000 as in (Hutter et al., 2011). Intuitively, we
would like to evaluate the HPs with both high predicted performance 𝑢𝑘 (i.e., exploitation) and
high potential/prediction uncertainty 𝜎𝑘 (i.e., exploration), which is widely known as “exploitation-
exploration trade-off” (Shahriari et al., 2015). Too much exploitation (i.e., always evaluating similar
HPs) will fail to identify promising HPs, while too much exploration (i.e., only considering high
uncertainty HPs) may lead to low-performance HPs. Also, note that the quality of identified
HPs depends on the prediction accuracy of 𝑠 (·), where we propose to transfer knowledge from
meta-surrogate functions (MSF) T by performance similarity (see technical details in §3.5.2.)

How can we effectively balance the trade-off between exploitation and exploration in HPOD?
Adapting the idea of SMBO, we use the acquisition function 𝑎(·) to factor in the trade-off and
pick a promising HP setting based on the outputs of the surrogate function. The acquisition
function quantifies the “expected utility” of HPs by balancing their predicted performance and the
uncertainty. Thus, we output the most promising HP to evaluate by maximizing 𝑎(·):

𝝀 := argmax
𝝀𝑘 ∈𝝀sample

𝑎(𝑠 (𝝀𝑘 )) (3)

One of the most prominent choices of 𝑎(·) is Expected Improvement (EI) (Jones et al., 1998),
which is used in HPOD and can be replaced by other choices. EI has a closed-form expression
under the Gaussian assumption, and the EI value of HP setting 𝝀𝑘 is shown below.

𝐸𝐼 (𝑠 (𝝀𝑘 )) := 𝜎𝑘 · [𝑢𝑘 · Φ(𝑢𝑘 ) + 𝜑 (𝑢𝑘 )], where

𝑢𝑘 =

{
𝑢𝑘−P̂∗test

𝜎𝑘
if 𝜎𝑘 > 0 and

{
0 if 𝜎𝑘 = 0 (4)

3We use Gaussian Process (GP) (Williams and Rasmussen, 1995) here; one may use any regressor with prediction
uncertainty estimation, e.g., random forests (Breiman, 2001).

7



In the above, Φ(·) and 𝜑 (·) respectively denote the cumulative distribution and the probability
density functions of a standard Normal distribution, 𝑢𝑘 and 𝜎𝑘 are the predicted performance and
the uncertainty around the prediction of 𝝀𝑘 by the surrogate function 𝑠 (·), and P̂∗test is the highest
predicted perf. by 𝑓 (·) on 𝝀eval so far. We compare EI with other selection criteria in Appx. D.7.

At iteration 𝑒 , we plug the surrogate 𝑠 (𝑒 ) (·) into Eq. (3), which returns 𝝀 (𝑒 ) to evaluate. Next,
we train the ODmodel𝑀 with 𝝀 (𝑒 ) to get its scoresO (𝑒 )

test and IPMs I (𝑒 )
test, and predict its performance

by 𝑓 (·): P̂(𝑒 )
test := 𝑓 (𝝀 (𝑒 ) ,mtest,I (𝑒 )

test). Finally, we add 𝝀 (𝑒 ) to the evaluation set 𝝀eval := 𝝀eval ∪ 𝝀 (𝑒 ) ,
and update the surrogate function to 𝑠 (𝑒+1) with newly evaluated HP information ⟨𝝀 (𝑒 ) , P̂(𝑒 )

test⟩.
As shown in Fig. 2 (bottom), HPOD alternates between (i) identifying the next promising HP by

the surrogate function 𝑠 (·) and (ii) updating 𝑠 (·) based on newly evaluated HP and 𝑓 (·)’s outputs.
Continuous HP search. Recall that an outstanding property of HPOD compared to the baselines
is its capability for continuous HP search (Table 1). 𝝀sample can be any subset of the full HP space 𝚲
and not restricted to the discrete 𝝀meta.
Time Budget. HPOD is an anytime algorithm: at any time the user asks for a result, it can always
output the HP with the highest predicted performance in the evaluation set 𝝀eval at the current
iteration (Eq. (2)). HPOD uses 𝐸 to denote the max number of iterations.

3.5 Details of (Online) HPO
3.5.1 Meta-learning-based Surrogate Initialization. Other than initializing on randomly sampled HPs,

we adapt a meta-learning initialization strategy for the surrogate function 𝑠 (·) (Feurer et al., 2015).
The goal is for 𝑠 (·) to make accurate predictions on the top-performing HPs of the test dataset,
while the accuracy of the under-performing HP regions is less important. To this end, we use the
meta-features (see §3.3.1) to calculate the similarity between the test dataset to each meta-train
task D𝑖 ∈ Dtrain, and initialize 𝑠 (·) with the top performing HPs from the most similar meta-train
dataset. Comparison of this scheme to random initialization can be found in Appx. D.7.

3.5.2 Surrogate Transfer by Performance Similarity. As introduced in §2.2, meta-learning can be used to
improve the surrogate function 𝑠 (·) in SMBO by transferring knowledge from meta-train datasets.
In HPOD, we train 𝑛 independent Meta-Surrogate Functions (see §3.3.2) for 𝑛 meta-train datasets,
T = {𝑡1, . . . , 𝑡𝑛}; each with the same regression function as 𝑠 (·) (i.e., Gaussian Process). To this end,
we identify the most similar meta-train dataset D𝑖 in iteration 𝑒 , and use the test surrogate 𝑠 (·) and
D𝑖 ’s meta-surrogate 𝑡𝑖 together to predict the performance of HP 𝝀𝑘 , i.e.,

𝑢𝑘 := 𝑠 (𝑒 ) (𝝀𝑘 ) +𝑤 (𝑒 )
𝑖

· 𝑡𝑖 (𝝀𝑘 ) (5)
where 𝑤 (𝑒 )

𝑖
is the similarity between the test dataset and D𝑖 measured in iteration 𝑒 . While we

could use meta-features to measure the dataset similarity, its value does not change in iterations
and finds the same meta-train dataset to transfer (even for different OD algorithms).

Instead, we (re-)calculate the performance similarity every iteration based on the HPs in 𝝀eval
between each meta-train task and the test dataset, and dynamically transfer the most similar meta-
train dataset’s MSF. HPOD computes a rank-based similarity by weighted Kendall tau (Shieh, 1998))
between each meta-train dataset’s ground truth perf. and the test dataset’s predicted performance
by 𝑓 (·) on 𝝀eval (updated in every iteration). See the effect of surrogate transfer in Appx. D.7.

3.6 Limitations

HPOD is designed to leverage extensive historical data to maximize its efficacy. The one-time,
offline meta-training phase, though resource-intensive, is a necessary investment that significantly
enhances the adaptability and performance of HPOD across diverse OD tasks. During the online
phase, HPOD calculates IPMs to enable 𝑓 (·) to predict HP performance with high precision. This
step, crucial for fine-tuned optimization, does introduce additional computational demands.

Looking ahead, we will enhance its computational efficiency, e.g., refining the approximation
methods for model building and exploring more efficient algorithms for performance evaluation.
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(a) Results on RAE
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(b) Results on LOF
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(c) Results on iForest
Figure 3: Comparison of avg. rank (lower is better) of algorithm performance across datasets on three

algorithms. HPOD outperforms all w/ the lowest avg. algo. rank. The numbers on each
line are the top q% value (lower is better) of the employed HP (or the avg.) by each method.
HPOD shows the best performance in all three experiments.

4 Experiments
4.1 Experiment Setting

OD Algorithms and Testbeds. We show the results of HPO on (a) deep RAE in §4.2.1 and (b)
LOF and (c) iForest in §4.2.2. Each OD algorithm is evaluated on a 39-dataset testbed (Appx. §D.2,
Table D1). Details of each algorithm’s HP spaces and the meta-HP set is provided in Appx. D.3.
Experiments are conducted on an AMD 5900x@3.7GhZ, 64GB RAM workstation with RTX A6000.
Baselines. Table 1 summarizes the baselines with categorization. We include (i) Simple methods:
(1) Default employs the same default/popular HP setting (only if specified in the literature) (2)
Random choice of HPs and (3) MinLoss outputs the HP with the lowest internal loss (only applicable
to the algorithms with an objective/loss function) and (ii) Complex methods: (4) HyperEnsemble
(HyperEns or HE) that averages the results of randomly sampled HPs (Wenzel et al., 2020) (5)
Global Best (GB) selects the best performing HP on meta-train database on average (6) ISAC
(Kadioglu et al., 2010) (7) ARGOSMART (AS) (Nikolic et al., 2013) and (8) MetaOD (Zhao et al.,
2021). Additionally, we include (9) HPOD_0, a variant of HPOD that directly uses 𝑓 (·) to choose
from randomly sampled HPs (see §3.4.1). Note that the unsupervised OD model selection baselines
(5)-(8) are not for HPO for OD, i.e., they are infeasible with continuous HP spaces. We adapt them
for HPO by selecting from the discrete meta-HP set in §3.2. See baseline details in Appx. D.4.
Evaluation. We split the meta-train/test by leave-one-out cross-validation (LOOCV). Each time we
use one dataset as the input dataset for HPO, and the remaining datasets as meta-train. We run
five independent trials and report the average for the baselines with randomness. We use Average
Precision (AP) as the performance measure, while it can be substituted with any other measure1. As
the raw performance like AP is not comparable across datasets with varying magnitude, we report
the normalized AP rank of an HP, ranging from 1 (the best) to 0 (the worst)—thus, the higher the
better. Also, we provide an additional metric called “top q%”, denoting that an HP’s performance
has no statistical difference from the top q% HP from the meta HP-set, ranging from 0 (the best) to
1 (the worst)—thus lower the better. To compare two methods, we use the paired Wilcoxon signed
rank test across all 39 datasets (significance level 𝑝<0.05). We give the full performance results in
Appx. D.5. Also, we provide a case study on how HPOD adaptively finds better HPs in Appx. D.6.
HPOD Hyperparameters. During meta-training, regressor 𝑓 (·) (a LightGBM)’s, HPs are chosen
via cross-validation over meta-train datasets. During HPO phase, the user time budget caps the
number of online iterations 𝐸, as described in §3.4.2; we use a 30-minute budget for RAE and a
10-minute budget for LOF and iForest. The number of initial HPs for SMBO is set to 10.

4.2 Key Experiment Results (See Ablation Studies and Additional Analysis in Appx. D.7)
4.2.1 Results on (Deep) Robust Autoencoder. Fig. 1a (right) and 3a show that HPOD outperforms all

baselines w.r.t. both the best avg. normalized AP rank and the top q% value. Furthermore, HPOD
is also statistically better than all baselines as shown in Table 2a, including strong meta-learning
baseline MetaOD (𝑝=0.0398). Its advantages can be credited to two. First, meta-learning-based
HPOD leverages prior knowledge on similar historical tasks to predict HP perf. on the new dataset,
whereas simple baselines like Random and MinLoss cannot. Second, only HPOD and HPOD_0 can
select HPs from continuous spaces, while other meta-learning baselines are limited to finite discrete
HPs as specified for the meta-train which may be too few to capture optimal HPs (especially for
deep models with huge HP spaces).
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Ours baseline p-value Ours baseline p-value

HPOD AS 0.0309 HPOD ISAC 0.0028
HPOD Random 0.0014 HPOD MetaOD 0.0398
HPOD HyperEns 0.0382 HPOD MinLoss 0.0003
HPOD GB 0.0002 HPOD HPOD_0 0.0201

(a) RAE

Ours baseline p-value Ours baseline p-value

HPOD AS 0.0023 HPOD ISAC 0.0246
HPOD Random 0.0001 HPOD MetaOD 0.0088
HPOD HyperEns 0.0607 HPOD Default 0.0029
HPOD GB 0.0017 HPOD HPOD_0 0.0016

(b) LOF

Ours baseline p-value Ours baseline p-value

HPOD AS 0.0055 HPOD ISAC 0.0088
HPOD Random 0.0003 HPOD MetaOD 0.0289
HPOD HyperEns 0.0484 HPOD Default 0.0013
HPOD GB 0.0027 HPOD HPOD_0 0.003

(c) iForest
Table 2: Pairwise statistical test results between HPOD and baselines by Wilcoxon signed rank test.

Statistically better method shown in bold (both marked bold if no significance). (a) On RAE,
HPOD is statistically better than all baselines; (b) On LOF, HPOD is statistically better than
all (except HyperEnsemble (HE)), including the default HP setting; (c) On iForest, HPOD is
statistically better than all baselines, including the default HP setting.

HPO by the internal objective(s) is insufficient. Fig. 3a shows that selecting HP by minimal loss
(i.e., MinLoss) has the worst perf. for RAE, even if it can work with continuous spaces. This suggests
that internal loss does not necessarily correlate with external performance. On avg., HPOD has 37%
higher normalized AP rank, showing the benefit of transferring supervision via meta-learning.

4.2.2 Results on LOF with Mixed HP Spaces and (Ensemble-based) iForest. In addition to deep RAE, HPOD
shows generality on diverse OD algorithms, including non-deep LOF (Fig. 1b and 3b) with mixed
HP spaces (see details in Appx. Table D2b) as well as ensemble-based iForest (Fig. 1c and 3c). HPOD
achieves the best performance in both with the best norm. AP rank and top q%.
HPOD is statistically better than the default HPs of LOF (𝑝=0.0029) and iForest (𝑝=0.0013) (see
Table 2b and 2c). More specifically, we find that HPOD provides +58% and +66% performance (i.e.,
normalized AP rank) improvement over using the default HPs of LOF (Fig. 1b (right)) and iForest
(Fig. 1c). In fact, note that the default HPs rank the lowest for both LOF (Fig. 3b) and iForest (Fig.
3c), justifying the importance of HPO methods in unsupervised OD.
HyperEns that averages outlier scores from randomly sampledHPs yield reasonable performance,
which agrees with the observations in the literature (Ding et al., 2022). However, it has a higher
inference cost as it needs to save and use all base models, not ideal for time-critical applications.
Using a single model with the selected HPs by HPOD offers better accuracy and efficiency.

5 Conclusion
We introduce (to our knowledge) the first systematic continuous hyperparameter optimization (HPO)
approach for unsupervised outlier detection (OD). The proposed HPOD is a meta-learner, and builds
on an extensive pool of existing OD benchmark datasets based on which it trains a performance
predictor (offline). Given a new task without labels (online), it capitalizes on the performance
predictor to enable (originally supervised) sequential model-based optimization for identifying
promising HPs iteratively. Notably, HPOD stands out from all prior work on HPO for OD in being
capable of handling both discrete and continuous HPs. Extensive experiments on three (including
both deep and shallow) OD algorithms show its generality, where it significantly outperforms
a diverse set of baselines. Future work will consider joint algorithm selection and continuous
hyperparameter optimization for unsupervised outlier detection.

6 Broader Impact Statement

Automating HP-tuning for OD via HPOD offers significant benefits, especially for practitioners
struggling to select suitable HPs for their unlabeled tasks. In practice, many users resort to pre-
set default HP values specified in OD software packages, which we have shown significantly
underperform compared to the hyperparameters as optimized by HPOD.

OD is utilized in various sectors including security and surveillance, finance, manufacturing, and
healthcare. These include adversarial applications such as fraud detection, wherein adversaries may
adjust to evade optimally tuned detectors. This adversarial dynamic continues the “cat-and-mouse”
cycle, driving the development of new algorithms to counteract evasion. HPOD can HP-tune any
detector, and we expect it will continue to be useful for future detectors in unsupervised settings.
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Supplementary Material for HPOD
Details on algorithm design and experiments.

A Details on Supervised SMBO

Algorithm A1 shows the pseudo-code of classical SMBO for HPO. In each iteration, the surrogate
function 𝑠 (·) predicts the performance and uncertainty of a group of sampled HP settings, where
the acquisition function 𝑎(·) selects the best one to be evaluated next by the objective function
L(·). With the newly evaluated pair of HP settings and the objective value, the surrogate function
is updated to be more accurate in iteration.

Algorithm A1 SMBO for Supervised Hyperparameter Optimization
Input: learning algorithm𝑀 , surrogate function 𝑠 (·), input task Dtest = {Xtest, ytest}, objective function L(·),

number of iterations 𝐸
Output: selected hyperparameter setting 𝝀∗ for Dtest

1: Initialize surrogate function 𝑠 (1)

2: for 𝑒 = 1 to 𝐸 do
3: 𝝀 (𝑒 ) := argmax𝝀∈𝚲 𝐸𝐼 (Xtest),𝝀 |𝑀, 𝑠 (𝑒 )

4: L(𝑒 ) := evaluate L(𝑀𝝀 (𝑒 ) ,Xtest, ytest) ▶ infeasible for HPO for OD
5: Update to 𝑠 (𝑒+1) with new information ⟨𝝀 (𝑒 ) ,L(𝑒 )⟩
6: end for
7: Output 𝝀∗ ∈ 𝝀 (1) , . . . ,𝝀 (𝑒 ) with the highest evaluated objective function values

Clearly, the classical SMBO does not apply to HPO for OD directly since the objective function
L(·) cannot be evaluated without ground truth labels (line 4). The proposed HPOD uses meta-
learning to train a regressor 𝑓 (·) to predict the performance of an HP on the new dataset without
any labels (§3.3), and thus enables (originally supervised) SMBO for HPO for OD (§3.4).

B (Offline) Meta-training Details

B.1 Internal Performance Measures (IPMs)

As described in §3.3.1, IPMs are used as part of the input features of the proxy performance evaluator
𝑓 (·). In HPOD, we use three consensus-based IPMs (i.e., MC, SELECT, and HITS) which carry useful
and noisy signals in unsupervised OD model selection (Ma et al., 2023). in short, consensus-based
IPMs consider the resemblance to the overall consensus of outlier scores as a sign of a better
(performance of) model. Thus, a group of models is needed to compute these IPMs for resemblance
measure.

In (Ma et al., 2023), they use all models in M for building IPMs (i.e., M = {𝑀1, . . . , 𝑀𝑚} by
pairing detector𝑀 with each HP in meta-HP set 𝝀meta = {𝝀1, . . . ,𝝀𝑚} ∈ 𝚲), leading to high cost in
generating outlier scores and then IPMs. To reduce the cost, we instead identify a small subset of
representative modelsM𝐴 ∈ M called the anchor set (i.e., |M𝐴 | ≪ |M|), for calculating IPMs.
That is, we generate the IPMs of a model with regard to its consensus to M𝐴 rather than M, for
both the meta-train database and the input dataset. The construction of the anchor set can be done
by cross-validation in a forward selection way.

B.2 Building Proxy Performance Evaluator (PPE)

As outlined in §3.3.1, we build Proxy Performance Evaluator 𝑓 (·) tomap {HP setting, meta-features,
IPMs} of HP 𝝀 𝑗 ∈ 𝝀meta on the 𝑖-th meta-train dataset onto its ground truth performance, i.e.,
𝑓 (𝝀 𝑗 ,m𝑖 , I𝑖, 𝑗 ) ↦→ P𝑖, 𝑗 . Given we have 𝑛 meta-train datasets and the meta-HP set with |𝝀meta | =𝑚

HP settings, 𝑓 (·) is trained on𝑚𝑛 samples by pairing 𝝀meta with meta-train datasets.
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To construct the training samples of 𝑓 (·), we first extract meta-features from each meta-train
dataset as M = {m1, . . . ,m𝑛} = 𝜓 ({X1, . . . ,X𝑛}) ∈ R𝑛×𝑑 , where𝜓 (·) is the extraction module, and
𝑑 is the dimension of meta-features.

We also need to extract IPMs of each detector𝑀 𝑗 with HP setting 𝝀 𝑗 ∈ 𝝀meta on each meta-train
dataset D𝑖 ∈ Dtrain, where I𝑖, 𝑗 := 𝜙 (O𝑖, 𝑗 ) refers to the IPMs using the 𝑗-th HP setting the 𝑖-th
meta-train dataset and 𝜙 is the extractor.

Putting these together, we train 𝑓 (·) with (𝑚 ·𝑛) samples. In implementation we use LightGBM
(Ke et al., 2017) for 𝑓 (·), while it is flexible to choose any other.

B.3 Meta-surrogate Functions (MSF)

As described in §3.3.2, we also train𝑛 independent regressors with only HPs as input, T = {𝑡1, . . . , 𝑡𝑛}.
That is, for each meta-train dataset D𝑖 ∈ Dtrain, we train a regressor 𝑡𝑖 (·) that simply maps the 𝑗-th
HP setting 𝝀 𝑗 ∈ 𝝀meta to its detection performance on the 𝑖-th meta-train dataset, i.e., 𝑡𝑖 (𝝀 𝑗 ) ↦→ P𝑖, 𝑗 .
Thus, 𝑡𝑖 (·) only trains on the 𝑚 HP settings’ performance on the 𝑖-th meta-train dataset. In
implementation, we use Gaussian Process (GP) (Williams and Rasmussen, 1995) for MSF 3, and we
suggest using the same regressor as the surrogate 𝑠 (·) in §3.4 for easy knowledge transfer in §3.5.2.

C (Online) Model Selection Details

C.1 Sampling Range

Given the PPE, 𝑓 (·), is trained on the meta-HP set 𝝀meta of the meta-train database, it is more
accurate in predicting the HPs from a similar range for the new dataset. Thus, HPOD samples HPs
within the range of 𝝀meta in SMBO (see §3.4.2). For instance, given the meta-HP set of iForest shown
in Appx. Table D2c, we sample HPs in range of: (i) n_estimators in [10, 150] (ii) max_samples
in [0.1, 0.9] and (iii) max_features in [0.2, 0.8] for 𝝀sample. We provide more details on the fast
simulation of sampling in Appx. D.3.

D Additional Experiment Settings and Results

D.1 Code and Reproducibility

We foster future research by fully releasing the code and the testbed at repo: https://github.com/
yzhao062/HPOD.

D.2 Datasets

In Table D1, we describe the details of the 39 benchmark datasets used in the experiments—it is
composed by 18 datasets from DAMI library (Campos et al., 2016) and 21 datasets from ODDS
library (Rayana, 2016).

Note that HPOD can be extended with more benchmark datasets, and we expect its performance
can be further improved.

D.3 OD Algorithms and Hyperparameter Spaces

We demonstrate the HPOD effectiveness on three OD algorithms, namely RAE, LOF, and iForest.
For RAE, we adapt the author’s code with seven key HPs. For LOF and iForest, we use the imple-
mentation from Python Outlier Detection (PyOD) library. For fast simulation, we also precompute
the outlier scores and IPMs for the inner-HP set (denoted as 𝝀inner), which is within the range of the
meta-HP set and serving as additional HPs sampled from continuous HP spaces. In the experiment,
HPOD sets 𝝀sample = 𝝀meta ∪ 𝝀inner, and uses 𝑠 (·) to score all the HPs in 𝝀sample that are not yet
evaluated by 𝑓 (·) yet (see §3.4), thus simulating the advantage of sampling from larger “continuous”
HP spaces. Table D2 and the code show details of HP spaces, the meta-HP set, and the inner-HP set.
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Table D1: Testbed composed of 18 datasets from DAMI library and 21 datasets from ODDS library.

Dataset Source #Samples #Dims %Outlier

DAMI_ALOI DAMI 49534 27 3.04
DAMI_Annthyroid DAMI 7129 21 7.49
DAMI_Arrhythmia DAMI 450 259 45.78
DAMI_Cardiotocography DAMI 2114 21 22.04
DAMI_Glass DAMI 214 7 4.21
DAMI_HeartDisease DAMI 270 13 44.44
DAMI_InternetAds DAMI 1966 1555 18.72
DAMI_PageBlocks DAMI 5393 10 9.46
DAMI_PenDigits DAMI 9868 16 0.2
DAMI_Pima DAMI 768 7 34.9
DAMI_Shuttle DAMI 1013 9 1.28
DAMI_SpamBase DAMI 4207 57 39.91
DAMI_Stamps DAMI 340 9 9.12
DAMI_Waveform DAMI 3443 21 2.9
DAMI_WBC DAMI 223 9 4.48
DAMI_WDBC DAMI 367 30 2.72
DAMI_Wilt DAMI 4819 5 5.33
DAMI_WPBC DAMI 198 33 23.74

ODDS_annthyroid ODDS 7200 6 7.42
ODDS_arrhythmia ODDS 452 274 14.6
ODDS_breastw ODDS 683 9 34.99
ODDS_glass ODDS 214 9 4.21
ODDS_ionosphere ODDS 351 33 35.9
ODDS_letter ODDS 1600 32 6.25
ODDS_lympho ODDS 148 18 4.05
ODDS_mammography ODDS 11183 6 2.32
ODDS_mnist ODDS 7603 100 9.21
ODDS_musk ODDS 3062 166 3.17
ODDS_optdigits ODDS 5216 64 2.88
ODDS_pendigits ODDS 6870 16 2.27
ODDS_pima ODDS 768 8 34.9
ODDS_satellite ODDS 6435 36 31.64
ODDS_satimage-2 ODDS 5803 36 1.22
ODDS_speech ODDS 3686 400 1.65
ODDS_thyroid ODDS 3772 6 2.47
ODDS_vertebral ODDS 240 6 12.5
ODDS_vowels ODDS 1456 12 3.43
ODDS_wbc ODDS 378 30 5.56
ODDS_wine ODDS 129 13 7.75

D.4 Baselines

We provide the details of baselines presented in Table 1 and §4.1, namely simple methods and
complex methods.
Simple methods:

(1) Default always employs the same default/popular HP setting of the underlying OD algorithm
(only applicable to the algorithms with recommended HPs).

(2) Random denotes selecting HPs randomly.

(3) MinLoss outputs the HP with the lowest internal loss (only applicable to the algorithms with
an internal objective/loss) from a group of random samples HPs.

Complex methods:

(4) Hyperensemble (HyperEns or HE) that averages the outlier scores of randomly sampled HPs
(Wenzel et al., 2020). Strictly speaking, HE is not an HPO method.

(5) Global Best (GB) selects the best performing HP on meta-train database on average.
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Table D2: Key HPs optimized by HPOD, and the meta-HP set and the inner-HP set used in this study.

HP Name Type Meta-HP Set Inner-HP Set

1 # EncodeLayers int (continuous) {2,4} {2,4}
2 Lambda float (continuous) {5e-5, 5e-3, 5e-1} {1e-4, 1e-3, 1e-1}
3 Learning Rate float (continuous) {1e-3, 1e-2} {1e-3, 1e-2}
4 # Inner Epochs int (continuous) {20, 50} {30, 40}
5 # Outer Epochs int (continuous) {20, 50} {30, 40}
6 Shrinkage Decay int (continuous) {2,4} {2,4}
7 Dropout float (continuous) {0, 0.1, 0.3, 0.5} {0, 0.1, 0.2, 0.4}

(a) Key HPs optimized by HPOD for RAE. Both meta-HP set and inner-HP set include 2 × 3 × 2 × 2 ×
2 × 2 × 3=388 HP settings.

HP Name Type Meta-HP Set Inner-HP Set

1 n_neighbors int (continuous) {1,3,5,. . . ,80} {2,4,6,. . . ,81}
2 distance metric str (categorical) {’chebyshev’, ’minkowski’, ’cosine’, ’euclidean’,’manhattan’} Same

(b) Key HPs optimized by HPOD for LOF. Both meta-HP set and inner-HP set include 40 × 5=200 HP
settings.

HP Name Type Meta-HP Set Inner-HP Set

1 n_estimators int (continuous) {10,20,30,40,50,75,100,150} {10,20,30,40,50,75,100,150}
2 max_samples float (continuous) {0.1, 0.2, . . . , 0.9} {0.1, 0.2, . . . , 0.9}
3 max_features float (continuous) {0.2, 0.4, 0.6, 0.8} {0.3, 0.5, 0.7, 0.75}

(c) Key HPs optimized by HPOD for iForest. Both meta-HP set and inner-HP set include 8 × 9 × 4=288
HP settings.

(6) ISAC (Kadioglu et al., 2010) first groups meta-train datasets into clusters, and assigns the best
performing HP in the meta-HP set to each cluster. During the online HPO phase, it first assigns
the new dataset to one of the clusters and uses the group-based HP for the new dataset.

(7) ARGOSMART (AS) (Nikolic et al., 2013) identifies the most similar meta-train dataset of the
new task, and outputs the best performing HP on the meta-task for the new task.

(8) MetaOD (Zhao et al., 2021) uses matrix factorization to capture the dataset similarity and HPs’
performance similarity, which is the SOTA unsupervised outlier model selection method.

Additionally, we include (9) HPOD_0, a variant of HPOD that directly uses 𝑓 (·) to choose from
randomly sampled HPs (see §3.4.1). Note that these unsupervised OD model selection baselines
(5-8) are not original for HPO for OD, and could not work with continuous HP spaces. We adapt
them for HPO by selecting an HP from the meta-HP set described in §3.2.

D.5 Full Performance Results

In addition to the avg. rank plot in Fig. 3, we provide the full performance of RAE in Table D3, as
well as the results for LOF and iForest in Table D4 and D5, respectively.
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Table D3: Method evaluation on RAE (normalized AP rank). The best performingmethod is highlighted
in bold. The algo. rank is provided in parenthesis (lower ranks denote better performance).
HPOD achieves the best performance among all baselines.

datasets Random GB ISAC AS HyperEns MetaOD MinLoss HPOD_0 HPOD

DAMI_ALOI 0.8234 (3) 0.6445 (4) 0.6445 (4) 0.0612 (8) 0.6286 (6) 0.0612 (8) 0.3747 (7) 0.9206 (2) 0.974 (1)
DAMI_Annthyroid 0.5506 (5) 0.0404 (9) 0.4336 (6) 0.5508 (4) 0.2499 (8) 0.8659 (2) 0.5651 (3) 0.3211 (7) 0.9883 (1)
DAMI_Arrhythmia 0.4688 (9) 0.8112 (5) 0.7435 (6) 0.9987 (1) 0.4836 (8) 0.9036 (3) 0.7013 (7) 0.9451 (2) 0.9036 (3)
DAMI_Cardiotocography 0.6519 (5) 0.5951 (6) 0.819 (3) 0.1432 (9) 0.6727 (4) 0.2786 (8) 0.5544 (7) 0.949 (2) 0.9688 (1)
DAMI_Glass 0.6403 (3) 0.5781 (6) 0.4036 (7) 0.1823 (9) 0.7065 (1) 0.6094 (5) 0.2651 (8) 0.6549 (2) 0.6354 (4)
DAMI_HeartDisease 0.5156 (3) 0.3958 (6) 0.5156 (2) 0.056 (8) 0.5662 (1) 0.1901 (7) 0.4128 (5) 0.4487 (4) 0.056 (8)
DAMI_InternetAds 0.6623 (2) 0.5156 (7) 0.5156 (7) 0.5221 (6) 0.6743 (1) 0.5404 (5) 0.3419 (9) 0.6549 (3) 0.651 (4)
DAMI_PageBlocks 0.7584 (5) 0.7591 (3) 0.7591 (3) 0.9779 (1) 0.6078 (7) 0.3047 (8) 0.7544 (6) 0.3047 (8) 0.9505 (2)
DAMI_PenDigits 0.4909 (4) 0.0391 (9) 0.1289 (7) 0.4909 (5) 0.8 (1) 0.4909 (5) 0.5247 (3) 0.619 (2) 0.1289 (7)
DAMI_Pima 0.4117 (8) 0.8698 (3) 0.8698 (3) 0.9779 (1) 0.7792 (5) 0.4115 (9) 0.6865 (6) 0.5247 (7) 0.9779 (1)
DAMI_Shuttle 0.3195 (2) 0.319 (3) 0.319 (3) 0.319 (3) 0.3849 (1) 0.319 (3) 0.2464 (7) 0.0784 (8) 0.056 (9)
DAMI_SpamBase 0.3208 (6) 0.1276 (8) 0.1276 (8) 0.9323 (1) 0.4618 (4) 0.7214 (2) 0.5242 (3) 0.194 (7) 0.3364 (5)
DAMI_Stamps 0.6727 (5) 0.6302 (6) 0.1133 (9) 0.5924 (7) 0.7777 (4) 0.9844 (1) 0.5318 (8) 0.9026 (3) 0.9714 (2)
DAMI_Waveform 0.687 (8) 0.7018 (7) 0.8242 (5) 0.8932 (2) 0.5257 (9) 0.8932 (2) 0.7977 (6) 0.9513 (1) 0.8932 (2)
DAMI_WBC 0.3403 (4) 0.3398 (5) 0.8242 (1) 0.1628 (8) 0.6966 (2) 0.6328 (3) 0.0648 (9) 0.2628 (6) 0.2435 (7)
DAMI_WDBC 0.5896 (5) 0.3542 (7) 0.0378 (9) 0.9115 (2) 0.5849 (6) 0.3542 (7) 0.7099 (4) 0.7219 (3) 0.9935 (1)
DAMI_Wilt 0.5013 (8) 0.5013 (1) 0.5013 (1) 0.5013 (1) 0.0026 (9) 0.5013 (1) 0.5013 (1) 0.5013 (1) 0.5013 (1)
DAMI_WPBC 0.5039 (5) 0.2943 (8) 0.5846 (4) 0.737 (2) 0.2899 (9) 0.6354 (3) 0.7562 (1) 0.4445 (7) 0.5039 (5)
ODDS_annthyroid 0.6351 (7) 0.3112 (8) 0.9922 (1) 0.9701 (2) 0.8379 (5) 0.8307 (6) 0.131 (9) 0.8703 (4) 0.9312 (3)
ODDS_arrhythmia 0.4753 (9) 0.6432 (7) 0.9714 (2) 0.9596 (4) 0.5143 (8) 0.7344 (5) 0.6883 (6) 0.969 (3) 0.9844 (1)
ODDS_breastw 0.139 (6) 0.0716 (9) 0.6719 (2) 0.138 (7) 0.9818 (1) 0.138 (7) 0.2052 (5) 0.6719 (2) 0.6714 (4)
ODDS_glass 0.4584 (6) 0.6589 (3) 0.6693 (2) 0.375 (8) 0.5475 (4) 0.7865 (1) 0.1318 (9) 0.3802 (7) 0.5312 (5)
ODDS_ionosphere 0.7039 (9) 0.8047 (6) 0.8216 (5) 0.9844 (1) 0.7143 (8) 0.7969 (7) 0.8307 (4) 0.9096 (3) 0.9351 (2)
ODDS_letter 0.5013 (3) 0.0872 (7) 0.0182 (8) 0.0182 (8) 0.5273 (2) 0.918 (1) 0.4492 (4) 0.1643 (6) 0.2591 (5)
ODDS_lympho 0.7506 (8) 0.7695 (7) 0.8802 (5) 0.9583 (3) 0.6545 (9) 0.974 (2) 0.7805 (6) 0.9177 (4) 1 (1)
ODDS_mammography 0.4844 (6) 0.3607 (9) 0.4844 (7) 0.3841 (8) 0.5896 (4) 0.9349 (1) 0.7328 (3) 0.531 (5) 0.7865 (2)
ODDS_mnist 0.6052 (6) 0.9818 (1) 0.7786 (3) 0.2513 (9) 0.5496 (7) 0.6406 (5) 0.4677 (8) 0.7279 (4) 0.9401 (2)
ODDS_musk 0.5584 (8) 0.901 (2) 0.6289 (6) 0.9857 (1) 0.5922 (7) 0.7018 (5) 0.1414 (9) 0.8112 (4) 0.8516 (3)
ODDS_optdigits 0.5286 (5) 0.1406 (8) 0.5977 (3) 0.2122 (7) 0.6509 (2) 0.5977 (3) 0.794 (1) 0.2721 (6) 0.0755 (9)
ODDS_pendigits 0.626 (3) 0.5169 (6) 0.5299 (5) 0.1445 (8) 0.8119 (1) 0.0924 (9) 0.318 (7) 0.7096 (2) 0.613 (4)
ODDS_pima 0.713 (4) 0.7135 (3) 0.569 (7) 0.569 (7) 0.6312 (6) 0.569 (7) 0.6779 (5) 0.9247 (2) 0.9987 (1)
ODDS_satellite 0.8714 (4) 0.8503 (6) 0.8685 (5) 0.9909 (1) 0.7813 (7) 0.2865 (9) 0.7471 (8) 0.9471 (2) 0.9323 (3)
ODDS_satimage-2 0.9143 (3) 0.8333 (6) 0.8737 (5) 0.987 (1) 0.7927 (7) 0.3997 (9) 0.481 (8) 0.9063 (4) 0.9506 (2)
ODDS_speech 0.6299 (7) 0.9714 (3) 0.4154 (9) 0.9792 (2) 0.4842 (8) 0.8177 (4) 0.6773 (6) 0.699 (5) 0.9909 (1)
ODDS_thyroid 0.6468 (8) 0.9245 (4) 0.8633 (6) 0.9453 (2) 0.9647 (1) 0.7305 (7) 0.2867 (9) 0.9164 (5) 0.9247 (3)
ODDS_vertebral 0.6974 (8) 0.6979 (3) 0.6979 (3) 0.6979 (3) 0.4649 (9) 0.6979 (3) 0.7487 (2) 0.8133 (1) 0.6979 (3)
ODDS_vowels 0.7506 (7) 0.9349 (4) 0.4648 (9) 0.9974 (1) 0.6987 (8) 0.8581 (6) 0.869 (5) 0.9846 (2) 0.9818 (3)
ODDS_wbc 0.6195 (6) 0.9401 (1) 0.8815 (3) 0.5443 (7) 0.6566 (5) 0.5443 (7) 0.456 (9) 0.9117 (2) 0.8727 (4)
ODDS_wine 0.4818 (4) 0.4818 (5) 0.4818 (5) 0.4818 (5) 0.9403 (2) 0.9714 (1) 0.5797 (3) 0.387 (9) 0.4818 (5)

Average 0.5821 (7) 0.567 (8) 0.5981 (6) 0.6047 (5) 0.6226 (3) 0.6082 (4) 0.5258 (9) 0.6622 (2) 0.7216 (1)
STD 0.1580 0.2884 0.2630 0.3478 0.1937 0.2647 0.2261 0.2718 0.3103

Avg. Rank 5.5641 5.4103 4.8462 4.4359 5.0513 4.7949 5.7949 4.0256 3.3333
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Table D4: Method evaluation on LOF (normalized AP rank). The best performing method is highlighted
in bold. The algo. rank is provided in parenthesis (lower ranks denote better performance).
HPOD achieves the best performance among all baselines.

datasets Random GB ISAC AS HyperEns MetaOD Default HPOD_0 HPOD

DAMI_ALOI 0.6418 (5) 0.6825 (4) 0.625 (6) 0.95 (1) 0.005 (9) 0.1319 (8) 0.905 (2) 0.8975 (3) 0.3433 (7)
DAMI_Annthyroid 0.5224 (7) 0.6175 (5) 0.565 (6) 0.0275 (8) 0.8836 (3) 0.9236 (2) 0.97 (1) 0.0125 (9) 0.6841 (4)
DAMI_Arrhythmia 0.3134 (8) 0.4125 (5) 0.4 (6) 0.98 (1) 0.8557 (3) 0.2188 (9) 0.335 (7) 0.92 (2) 0.7761 (4)
DAMI_Cardiotocography 0.4776 (4) 0.31 (6) 0.745 (3) 0.19 (8) 1 (1) 0.4583 (5) 0.165 (9) 0.2225 (7) 0.985 (2)
DAMI_Glass 0.5721 (3) 0.3975 (5) 0.725 (2) 0.02 (9) 0.2647 (7) 0.1684 (8) 0.95 (1) 0.3525 (6) 0.5498 (4)
DAMI_HeartDisease 0.5473 (6) 0.7625 (3) 0.4825 (7) 0.035 (9) 1 (1) 0.6319 (4) 0.32 (8) 0.555 (5) 0.8507 (2)
DAMI_InternetAds 0.5174 (5) 0.5675 (3) 1 (1) 0.39 (7) 0.4825 (6) 0.9132 (2) 0.02 (9) 0.2775 (8) 0.5572 (4)
DAMI_PageBlocks 0.4129 (6) 0.4425 (5) 0.985 (1) 0.235 (8) 0.61 (3) 0.5903 (4) 0.24 (7) 0.155 (9) 0.8507 (2)
DAMI_PenDigits 0.3333 (7) 0.3475 (6) 0.69 (4) 0.4 (5) 0.1333 (8) 0.8924 (3) 0.9 (1) 0.075 (9) 0.9 (1)
DAMI_Pima 0.3184 (8) 0.535 (6) 0.9975 (1) 0.47 (7) 0.99 (2) 0.783 (4) 0.02 (9) 0.59 (5) 0.9125 (3)
DAMI_Shuttle 0.5174 (6) 0.2725 (8) 0.52 (5) 0.6925 (3) 0.0229 (9) 0.309 (7) 0.895 (1) 0.7125 (2) 0.6925 (3)
DAMI_SpamBase 0.403 (5) 0.4075 (4) 0.21 (6) 0.17 (8) 1 (1) 0.1823 (7) 0.155 (9) 0.715 (3) 0.8259 (2)
DAMI_Stamps 0.408 (4) 0.4225 (3) 0.8 (2) 0.08 (9) 0.408 (4) 0.1406 (8) 0.195 (6) 0.1625 (7) 0.815 (1)
DAMI_Waveform 0.7761 (3) 0.2025 (6) 0.3425 (5) 0.175 (7) 0.0338 (9) 0.6528 (4) 0.85 (2) 0.0575 (8) 0.975 (1)
DAMI_WBC 0.5522 (5) 0.4175 (6) 0.99 (1) 0.01 (9) 0.9284 (3) 0.9653 (2) 0.195 (7) 0.1775 (8) 0.765 (4)
DAMI_WDBC 0.1592 (8) 0.6575 (3) 0.755 (2) 0.6575 (3) 0.1095 (9) 0.8368 (1) 0.235 (6) 0.6575 (3) 0.2 (7)
DAMI_Wilt 0.4378 (4) 0.645 (3) 0.185 (7) 1 (1) 0.005 (9) 0.4045 (5) 0.2 (6) 0.995 (2) 0.17 (8)
DAMI_WPBC 0.2886 (8) 0.695 (4) 0.7575 (2) 0.54 (6) 0.2527 (9) 0.3385 (7) 0.7275 (3) 0.95 (1) 0.615 (5)
ODDS_annthyroid 0.4428 (8) 0.2525 (9) 0.58 (6) 1 (1) 0.9343 (2) 0.7743 (3) 0.485 (7) 0.61 (5) 0.7475 (4)
ODDS_arrhythmia 0.4328 (6) 0.4425 (5) 0.165 (9) 0.94 (2) 0.7055 (3) 0.6927 (4) 0.205 (7) 0.19 (8) 0.99 (1)
ODDS_breastw 0.6318 (6) 0.0975 (8) 0.8 (3) 0.7025 (4) 1 (1) 0.0556 (9) 0.185 (7) 0.8675 (2) 0.7025 (4)
ODDS_glass 0.5473 (3) 0.5175 (4) 0.105 (8) 0.325 (7) 0.0229 (9) 0.3524 (6) 0.91 (2) 0.9825 (1) 0.4428 (5)
ODDS_ionosphere 0.3781 (5) 0.5125 (4) 0.985 (1) 0.77 (3) 0.205 (7) 0.0694 (8) 0.055 (9) 0.2825 (6) 0.9403 (2)
ODDS_letter 0.5224 (5) 0.7425 (3) 0.055 (7) 0.005 (8) 0.005 (9) 0.9722 (1) 0.95 (2) 0.44 (6) 0.54 (4)
ODDS_lympho 0.4428 (6) 0.8275 (2) 0.03 (9) 0.3 (7) 0.9721 (1) 0.8108 (3) 0.6375 (5) 0.2425 (8) 0.805 (4)
ODDS_mammography 0.4129 (6) 0.4175 (5) 0.9075 (2) 0.215 (7) 1 (1) 0.6563 (4) 0.045 (9) 0.1825 (8) 0.6775 (3)
ODDS_mnist 0.5025 (5) 0.4175 (6) 0.24 (8) 0.055 (9) 0.7522 (2) 0.6302 (3) 0.505 (4) 0.405 (7) 0.79 (1)
ODDS_musk 0.7662 (2) 0.6475 (4) 0.59 (5) 0.155 (8) 1 (1) 0.066 (9) 0.675 (3) 0.3575 (7) 0.3881 (6)
ODDS_optdigits 0.5572 (7) 0.8925 (3) 0.3225 (9) 1 (1) 0.6299 (6) 0.7465 (5) 0.765 (4) 0.905 (2) 0.45 (8)
ODDS_pendigits 0.6219 (8) 0.6625 (6) 0.6275 (7) 0.1725 (9) 1 (1) 1 (1) 0.675 (5) 0.7525 (4) 0.77 (3)
ODDS_pima 0.4776 (6) 0.4225 (7) 0.9525 (1) 0.92 (2) 0.3775 (8) 0.5729 (5) 0.05 (9) 0.8875 (3) 0.86 (4)
ODDS_satellite 0.408 (4) 0.2725 (8) 0.36 (7) 0.905 (3) 1 (1) 0.4063 (5) 0.25 (9) 0.365 (6) 0.985 (2)
ODDS_satimage-2 0.5771 (6) 0.3325 (8) 0.7725 (5) 0.98 (1) 0.855 (4) 0.5226 (7) 0.94 (2) 0.915 (3) 0.005 (9)
ODDS_speech 0.8209 (3) 0.8275 (2) 0.57 (5) 0.3275 (8) 0.8945 (1) 0.349 (7) 0.025 (9) 0.42 (6) 0.6825 (4)
ODDS_thyroid 0.4925 (7) 0.2925 (8) 0.925 (3) 1 (1) 0.999 (2) 0.5556 (6) 0.24 (9) 0.58 (5) 0.91 (4)
ODDS_vertebral 0.3881 (6) 0.6975 (4) 0.045 (9) 0.135 (8) 0.2418 (7) 0.8715 (2) 0.7375 (3) 0.885 (1) 0.49 (5)
ODDS_vowels 0.403 (5) 0.2875 (7) 0.385 (6) 0.63 (3) 0.0259 (9) 0.8403 (2) 0.055 (8) 0.515 (4) 0.9652 (1)
ODDS_wbc 0.3731 (6) 0.5575 (4) 0.435 (5) 0.19 (9) 0.9771 (1) 0.7326 (3) 0.2 (8) 0.32 (7) 0.9478 (2)
ODDS_wine 0.3632 (5) 0.5875 (2) 0.44 (4) 0.055 (8) 0.1512 (7) 0.6806 (1) 0.21 (6) 0.0425 (9) 0.5275 (3)
Average 0.4811 (7) 0.5001 (6) 0.5658 (3) 0.4565 (8) 0.5829 (2) 0.5615 (4) 0.4379 (9) 0.5034 (5) 0.6945 (1)
STD 0.1354 0.1911 0.3005 0.3659 0.3996 0.2903 0.3397 0.3122 0.2457

Avg. Rank 5.5641 4.9744 4.7692 5.5897 4.5897 4.7179 5.6667 5.2564 3.6667
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Table D5: Method evaluation on iForest (normalized AP rank). The best performing method is high-
lighted in bold. The algo. rank is provided in parenthesis (lower ranks denote better
performance). HPOD achieves the best performance among all.

datasets Random GB ISAC AS HyperEns MetaOD Default HPOD_0 HPOD

DAMI_ALOI 0.3979 (3) 0.0191 (8) 0.5208 (2) 0.0868 (7) 0.2789 (5) 0.1319 (6) 0.0035 (9) 0.359 (4) 0.7326 (1)
DAMI_Annthyroid 0.654 (6) 0.9583 (1) 0.0764 (9) 0.7535 (5) 0.5405 (7) 0.9236 (3) 0.8789 (4) 0.5167 (8) 0.9358 (2)
DAMI_Arrhythmia 0.4879 (6) 0.8924 (1) 0.4427 (7) 0.7517 (4) 0.8166 (2) 0.2188 (8) 0.1107 (9) 0.6146 (5) 0.8125 (3)
DAMI_Cardiotocography 0.481 (6) 0.691 (2) 0.9115 (1) 0.6319 (3) 0.5765 (4) 0.4583 (7) 0.5433 (5) 0.4115 (9) 0.4444 (8)
DAMI_Glass 0.6021 (3) 0.2517 (8) 0.4253 (6) 0.3993 (7) 0.5606 (4) 0.1684 (9) 0.9585 (1) 0.5396 (5) 0.7795 (2)
DAMI_HeartDisease 0.526 (8) 0.8681 (3) 0.9028 (2) 0.6997 (5) 0.6042 (7) 0.6319 (6) 0.09 (9) 0.8326 (4) 0.941 (1)
DAMI_InternetAds 0.4498 (7) 0.8438 (3) 0.2465 (8) 0.0174 (9) 0.872 (2) 0.9132 (1) 0.4602 (6) 0.6438 (5) 0.7543 (4)
DAMI_PageBlocks 0.3183 (7) 0.0972 (8) 0.6649 (2) 0.3333 (6) 0.5066 (5) 0.5903 (4) 0.0138 (9) 0.6167 (3) 0.9688 (1)
DAMI_PenDigits 0.481 (4) 0.026 (9) 0.2951 (6) 0.9878 (1) 0.4976 (3) 0.8924 (2) 0.0623 (8) 0.3108 (5) 0.1806 (7)
DAMI_Pima 0.3599 (7) 0.0677 (9) 0.9583 (2) 0.5417 (6) 0.6083 (5) 0.783 (3) 0.1211 (8) 0.6215 (4) 0.9861 (1)
DAMI_Shuttle 0.4844 (5) 0.092 (9) 0.5035 (4) 0.3472 (6) 0.5654 (3) 0.309 (7) 0.1886 (8) 0.7326 (1) 0.6817 (2)
DAMI_SpamBase 0.5433 (6) 0.8958 (4) 0.9028 (3) 0.9479 (2) 0.5772 (5) 0.1823 (9) 1 (1) 0.2563 (7) 0.218 (8)
DAMI_Stamps 0.6298 (5) 0.8941 (2) 0.434 (8) 0.7795 (4) 0.6007 (6) 0.1406 (9) 0.564 (7) 0.8868 (3) 0.9913 (1)
DAMI_Waveform 0.4844 (6) 0.0799 (8) 0.9757 (1) 0.3212 (7) 0.546 (5) 0.6528 (4) 0.0138 (9) 0.8441 (3) 0.872 (2)
DAMI_WBC 0.3737 (7) 0.1372 (9) 0.7569 (4) 0.7917 (2) 0.5273 (6) 0.9653 (1) 0.1592 (8) 0.7563 (5) 0.7917 (2)
DAMI_WDBC 0.526 (8) 0.7188 (4) 0.6354 (7) 0.6389 (6) 0.5038 (9) 0.8368 (2) 0.6903 (5) 0.7955 (3) 0.901 (1)
DAMI_Wilt 0.5467 (4) 0.2882 (8) 0.3264 (6) 0.3264 (6) 0.5827 (3) 0.4045 (5) 0.1125 (9) 0.8028 (1) 0.7889 (2)
DAMI_WPBC 0.4983 (3) 0.0799 (8) 0.2656 (7) 0.0313 (9) 0.4997 (2) 0.3385 (6) 0.4273 (5) 0.4399 (4) 0.7014 (1)
OODS_annthyroid 0.5952 (8) 0.6528 (7) 0.7292 (3) 0.6667 (5) 0.5661 (9) 0.7743 (2) 0.6713 (4) 0.8278 (1) 0.6574 (6)
OODS_arrhythmia 0.4706 (6) 0.3958 (7) 0.5399 (5) 0.0174 (9) 0.6879 (3) 0.6927 (2) 0.2664 (8) 0.5816 (4) 0.8564 (1)
OODS_breastw 0.4152 (7) 0.599 (5) 0.7257 (2) 0.5104 (6) 0.8844 (1) 0.0556 (9) 0.6609 (3) 0.6003 (4) 0.4115 (8)
OODS_glass 0.564 (5) 0.1684 (8) 0.75 (4) 0.0729 (9) 0.517 (6) 0.3524 (7) 0.9308 (1) 0.7594 (3) 0.9201 (2)
OODS_ionosphere 0.3218 (5) 0.0451 (8) 0.1875 (6) 0.941 (1) 0.4637 (4) 0.0694 (7) 0.0035 (9) 0.85 (3) 0.941 (1)
OODS_letter 0.4983 (6) 0.224 (7) 0.1354 (8) 0.7778 (4) 0.5384 (5) 0.9722 (1) 0.0104 (9) 0.7812 (3) 0.8201 (2)
OODS_lympho 0.4152 (5) 0.0556 (9) 0.2951 (6) 0.6233 (4) 0.7772 (2) 0.8108 (1) 0.6522 (3) 0.2455 (7) 0.1597 (8)
OODS_mammography 0.5502 (7) 0.6458 (4) 0.7361 (1) 0.5521 (6) 0.5356 (8) 0.6563 (3) 0.7076 (2) 0.5267 (9) 0.5536 (5)
OODS_mnist 0.4187 (6) 0.1285 (8) 0.8507 (2) 0.2917 (7) 0.618 (5) 0.6302 (4) 0.0035 (9) 0.7674 (3) 0.9152 (1)
OODS_musk 0.2595 (8) 0.9253 (2) 0.9253 (1) 0.3368 (7) 0.7661 (5) 0.066 (9) 0.8443 (4) 0.6722 (6) 0.9239 (3)
OODS_optdigits 0.4879 (7) 0.6215 (4) 0.6597 (3) 0.4861 (8) 0.6118 (5) 0.7465 (2) 0.6003 (6) 0.4281 (9) 0.9325 (1)
OODS_pendigits 0.526 (5) 0.0764 (9) 0.9826 (2) 0.3611 (7) 0.6893 (4) 1 (1) 0.8166 (3) 0.2007 (8) 0.3837 (6)
OODS_pima 0.3737 (7) 0.3802 (6) 0.4514 (4) 0.8628 (1) 0.609 (2) 0.5729 (3) 0.1246 (9) 0.4038 (5) 0.2535 (8)
OODS_satellite 0.4533 (6) 0.9861 (2) 0.3247 (8) 0.2535 (9) 0.51 (5) 0.4063 (7) 0.9965 (1) 0.5608 (4) 0.7274 (3)
OODS_satimage-2 0.436 (3) 0.3854 (5) 0.0069 (9) 0.4132 (4) 0.7848 (1) 0.5226 (2) 0.0138 (8) 0.266 (6) 0.191 (7)
OODS_speech 0.6817 (3) 0.6458 (4) 0.5573 (5) 0.5573 (5) 0.9052 (1) 0.349 (7) 0.0069 (9) 0.259 (8) 0.7024 (2)
OODS_thyroid 0.5294 (7) 0.9549 (1) 0.2309 (9) 0.8646 (3) 0.4976 (8) 0.5556 (6) 0.7197 (5) 0.7222 (4) 0.8819 (2)
OODS_vertebral 0.6367 (7) 0.8333 (6) 0.9549 (3) 0.9757 (2) 0.3239 (8) 0.8715 (5) 0.0208 (9) 0.9125 (4) 0.9861 (1)
OODS_vowels 0.5606 (4) 0.2639 (8) 0.3038 (7) 0.8785 (1) 0.6692 (3) 0.8403 (2) 0.0208 (9) 0.4854 (6) 0.5382 (5)
OODS_wbc 0.4844 (6) 0.1389 (7) 0.559 (5) 0.1007 (8) 0.5599 (4) 0.7326 (3) 0.9308 (1) 0.8899 (2) 0.0313 (9)
OODS_wine 0.5917 (4) 0.9063 (1) 0.059 (8) 0.0104 (9) 0.501 (6) 0.6806 (2) 0.5709 (5) 0.6031 (3) 0.3875 (7)

Average 0.4901 (7) 0.4598 (8) 0.5438 (5) 0.5113 (6) 0.5969 (3) 0.5615 (4) 0.4095 (9) 0.5981 (2) 0.6835 (1)
STD 0.0960 0.3493 0.2904 0.3025 0.1364 0.2903 0.3613 0.2087 0.2790

Avg. Rank 5.7179 5.6923 4.7692 5.3846 4.5641 4.5385 6.0769 4.6410 3.5128
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D.6 Case Study on How HPOD Adaptively Finds Better HPs

We trace how HPOD identifies better HPs over iterations. Example of tuning LOF on
Cardiotocography dataset is provided in Table D6. Among 200 candidate HP settings (see Appx.
Table D2b), the optimal HP setting is {‘Chebyshev’, 79} with AP=0.3609. In 30 iterations, HPOD
gradually identifies better HPs (closer to optimal), i.e., {‘Chebyshev’, 73}. Its AP improves from
0.2866 (1-st iteration) to 0.357 (30-th iteration).

D.7 Ablation Studies and Other Analysis

0.0 0.2 0.4 0.6 0.8 1.0
Normalized AP Rank

Ours (EI)
Greedy

Random

(a) Ablation of acquisition

0.2 0.4 0.6 0.8 1.0
Normalized AP Rank

Ours (meta init.)

random init.

(b) Ablation of initialization

0.0 0.2 0.4 0.6 0.8 1.0
Normalized AP Rank

Ours (w/ Tran.)

No Tran.

(c) Ablation of surrogate transfer
Figure D1: (a) Ablation of EI (med.=0.893) vs. the greedy (med.=0.870) and random acquisition

(med.=0.851) (b) Ablation of meta- (med.=0.893) vs. random-initialization (med. =0.874)
of the surrogate function (c) ours w/ surrogate transfer (med.=0.893) vs. without transfer
(med. =0.872).

The Choices of Acquisition Function. HPOD uses the EI acquisition to select an HP based on the
surrogate function’s prediction (see §3.4.2). We compare it with the random and greedy acquisition
(latter picks the HP with the highest predicted performance, ignoring uncertainty) in Fig. D1a,
where EI-based acquisition performs best.
Surrogate Initialization. HPOD uses meta-learning to initialize the surrogate (see §3.5.1). Fig. D1b
shows its advantage over random initialization with higher performance.
The Effect of Surrogate Transfer. To improve the prediction performance of the surrogate function,
HPOD transfers meta-surrogate functions from similar meta-train tasks (§3.5.2). Fig. D1c shows
the transfer helps find better HPs, demonstrating the added value of meta-learning besides PPE
training of 𝑓 (·) and surrogate initialization.
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Table D6: Full trace of HPOD on Cardiotocography dataset. Over iterations (col. 1), HPOD gradually
identifies better HPs (col. 2 &3), with higher AP (col. 4). The optimal HP on from the
meta-HP set is {’Chebyshev’, 79}, which HPOD gets closer to the optimal HP during its
adaptive search (i.e., finding {’Chebyshev’, 73} in 30 iterations).

# Iter Metrics # Neighbors Norm. AP Rank

1 Manhattan 23 0.2866
2 Manhattan 23 0.2866
3 Manhattan 23 0.2866
4 Manhattan 23 0.2866
5 Cosine 41 0.327
6 Cosine 42 0.327
7 Cosine 55 0.3438
8 Cosine 55 0.3438
9 Cosine 55 0.3438
10 Cosine 55 0.3438
11 Cosine 55 0.3438
12 Cosine 55 0.3438
13 Cosine 55 0.3438
14 Chebyshev 72 0.3569
15 Chebyshev 72 0.3569
16 Chebyshev 72 0.3569
17 Chebyshev 72 0.3569
18 Chebyshev 72 0.3569
19 Chebyshev 72 0.3569
20 Chebyshev 72 0.3569
21 Chebyshev 72 0.3569
22 Chebyshev 73 0.357
23 Chebyshev 73 0.357
24 Chebyshev 73 0.357
25 Chebyshev 73 0.357
26 Chebyshev 73 0.357
27 Chebyshev 73 0.357
28 Chebyshev 73 0.357
29 Chebyshev 73 0.357
30 Chebyshev 73 0.357
31 Chebyshev 73 0.357
32 Chebyshev 73 0.357
33 Chebyshev 73 0.357
34 Chebyshev 73 0.357
35 Chebyshev 73 0.357
36 Chebyshev 73 0.357
37 Chebyshev 73 0.357
38 Chebyshev 73 0.357
39 Chebyshev 73 0.357
40 Chebyshev 73 0.357
41 Chebyshev 73 0.357
42 Chebyshev 73 0.357
43 Chebyshev 73 0.357
44 Chebyshev 73 0.357
45 Chebyshev 73 0.357
46 Chebyshev 73 0.357
47 Chebyshev 73 0.357
48 Chebyshev 73 0.357
49 Chebyshev 73 0.357
50 Chebyshev 73 0.357

Optimal Chebyshev 79 0.3609
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