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Abstract
This paper presents technical details for solv-
ing a multi-modal task, EgoPlan-Bench. Our
model adopts Direct Preference Optimization
(DPO), which is originally developed for a single-
modal task, to be utilized in a multi-modal set-
ting. This DPO adaptation improves predic-
tion accuracy by highlighting positive answers
over negative choices. Additionally, we apply
Retrieval-Augmented Generation (RAG) to fur-
ther enhance generation performance in Multi-
modal Large Language Models (MLLMs). How-
ever, in our settings, the RAG method does not
result in a performance improvement due to the
limited retrieval of similar tasks. Our model utiliz-
ing DPO shows performance improvements and
achieves 53.98% test accuracy compared to base-
line methods of 41.35%. Our code is available
at https://github.com/aailabkaist/
EgoPlan_Challenge_Team_AAILab.

1. Introduction
From the wide utilization of Multi-modal Large Lan-
guage Models (MLLMs), recent innovations focus on us-
ing MLLMs in Embodied AI (EAI), i.e. generating action
plans (Mu et al., 2024). EAI requires a comprehensive un-
derstanding of its designated tasks with fine-grained infor-
mation via visual and textual inputs. For instance, EgoPlan-
Bench (Chen et al., 2023) aims to predict the most probable
action among multiple choices given information of previ-
ous actions, current state images, and task descriptions.

This paper reports our innovations in developing a task
planner for EgoPlan-Bench. Specifically, we adopt Direct
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Preference Optimization (DPO) (Rafailov et al., 2024) and
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020)
to improve the performance of MLLMs. In our experiments,
there is an evident performance improvement with DPO but
no further improvement with RAG.

2. Preliminaries
RLHF Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017) often aligns Large Lan-
guage Models (LLMs) to follow human preference. Typi-
cally, RLHF with Supervised Fine-Tuning (SFT) requires
1) training by a reward model to reflect human preferences
and 2) fine-tuning LLMs using reinforcement learning to
maximize the estimated reward. This procedure suggests
that there can be higher variance if the human preference
changes by periods or by individuals. With a pre-trained
SFT policy function, πSFT ; we construct static preference
dataset DP = {x(i), y

(i)
w , y

(i)
l }Ni=1 where yw and yl de-

note preferred and dis-preferred responses corresponding
to given prompts x, respectively. Then, we train a reward
function, rϕ(x, y), by the guidance from DP .

LR(ϕ) = −E(x,yw,yl)∼DP
[log σ(rϕ(x, yw)− rϕ(x, yl))]

(1)
where σ is the logistic function. According to the Bradley-
Terry model (Bradley & Terry, 1952), we enforce the policy
model to further align with human preferences via reinforce-
ment learning with the below loss function.

LRL(θ) =− Ex∼DP ,y∼πθ(y|x)[rϕ(x, y)]

+ βDKL[πθ(y|x)||πref (y|x)]
(2)

Here, πref is a reference model used for updating policy
model πθ; β is a scale factor controlling the deviation from
the reference model; y ∈ Y is the entire domain dataset of
yw and yl. In the case of EgoPlan-Bench, multi-modal input
x includes both textual input t = (tg, ts) and visual input
v = (vp, vo)

1. The textual input tg and ts
2 correspond to

1This paper will distinguish the bold symbol as a sequence of
such symbol elements. For instance, t will be a text input at a
certain timestep, and t is a sequence of such text inputs.

2Here, t will be a token if it is used in the embedding procedure
by transformers, and it will be a text sentence if used otherwise.
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tokenized task goal g and supplemental text s. Visual input
vp and vo correspond to visual tokens of given previous
video frames and current observation, respectively.

RAG Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) is a technique in natural language processing
that enhances the generation performance of language mod-
els by incorporating a retrieval mechanism. RAG dynami-
cally retrieves relevant information from external databases
or corpus over the answer generation process. This approach
improves the accuracy of generated responses, particularly
when the retrieved information reveals new information that
can validate a generated answer. We assume that RAG is
applicable because there are similar situations in evalua-
tion datasets; and because pseudo-textual directions can be
generated on those evaluation instances. This technique is
applicable in both training and testing stages, so the pre-
viously mentioned fine-tuning can benefit from RAG, as
well.

3. Methodology
Figure 1 illustrates the overview of the proposed model
adopting both DPO and RAG.

3.1. DPO for MLLMs

Let’s say that a given Supervised Fine-Tuning (SFT) model
has a reference policy πref and preference data DP . Di-
rect Preference Optimization (DPO) (Rafailov et al., 2024)
presents a new parameterization of πref to solve the RLHF
problem with only a simple classification loss, without ex-
plicit reward modeling. Following the prior works (Peters
& Schaal, 2007; Korbak et al., 2022; Go et al., 2023), DPO
derives the closed-form optimization solution, Eq. (3), to
minimize the KL-constrained objective in Eq. (2).

πr(y|x) =
1

Z(x)
πref (y|x) exp(

1

β
r(x, y)) (3)

Here, Z(x) =
∑

y πref (y|x) exp( 1β r(x, y)) is the partition
function. Afterward, we hypothesize an optimal policy
function πr, so we derive a closed-form of reward function
r(x, y), Eq. (4), given implicitly from DP .

r(x, y) = β log
πr(y|x)
πref (y|x)

+ β logZ(x) (4)

By substituting rϕ in Eq. (2) with Eq. (4), the alternative
loss-minimization objective is derived without an explicit
definition of the reward model as follows:

LDPO(πθ;πref ,DP ) = −E(x,yw,yl)∼DP

[log σ(β log
πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)]
(5)

To train MLLMs with Eq. (5), the static preference

dataset DP is required. To this end, we utilize EgoPlan-
Bench (Chen et al., 2023) as a training dataset, which in-
cludes a golden answer yw and numbers of negative answers
yl to a given input x described in Section 2. In this tech-
nical report, a policy πθ refers to a classifier from Video-
LLaMA (Zhang et al., 2023) which makes a prediction on
y by computing the product of the predicted probabilities
of the tokens composing response y. To adopt DPO, Eq.
(5) requires a reference policy function, πref . For this, we
duplicate additional πθ and set it as πref . Note that πref is
frozen throughout the training. The details of training and
related loss functions will be discussed in Appendix C.

Iterative DPO Fine-tuning In the original DPO, πSFT is
used as πref , so there is a clear supervision on preferences.
In this challenge, πSFT would be the finetuned model of
EgoPlan-Bench. However, we choose to iteratively finetune
πref from original Video-LLaMA (Zhang et al., 2023), not
from EgoPlan-Bench. The rationale is the consistency over
the MLLM fine-tuning process since the fine-tuning loss
of EgoPlan-Bench is not consistent with DPO Loss of Eq.
(5). In detail, we start from πref and πref , which comes
from the original Video-LLaMA. Then, we finetune πθ with
LDPO under DP . After the loss satuation, we update πref

with πθ. This procedure would be a self-training concept
applied to DPO.

3.2. Retrieval-Augmented Generation

Action Database Construction The action database is
a collection of possible action sequences. Given a query
asking current situational contexts, RAG defines how to
find such similar instances relevant to the query. Hence, we
establish an action database, denoted as B, constructed by
EgoPlan-IT (Chen et al., 2023) and an additional generated
dataset from Ego4D videos.

Each instance in the action database consists of a pair
(q, ta) ∈ B, where q is query, ta := {ta,h}Hh=1 is the action
sequence, ta,h is the h-th action, and H is the number of
actions. We construct two types of databases depending
on the type of query: Bgoal where q is task goal g and Bans

where q is a pair of answer and negative answer (yw, yl).

We first include EgoPlan-IT in the action database. This
dataset comprises task goal g, answer yw, negative answer
yl, and action sequence ta. Therefore, we construct the
Egoplan-IT action database Bgoal

egoplan = {(g(i), t(i)a )}Mi=1 and

Bans
egoplan = {((y(i)w , y

(i)
l ), t

(i)
a )}Mi=1 where M is the number

of instances in EgoPlan-IT.

Additionally, we generate new instances from the Ego4D
videos, whose scenarios are cooking without video IDs
that appear in validation and test data. We follow the
dataset generation process of EgoPlan-Bench (Chen et al.,
2023). Specifically, we utilize the GPT-4o (Achiam et al.,
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Figure 1: Overview of our framework. We primarily adopt the same network structure that is used to finetune Video-
LLaMA (Zhang et al., 2023) in EgoPlan-Bench (Chen et al., 2023). Our framework consists of two distinctive components:
(a) action sequence retrieval and (b) direct preference optimization (DPO). In (a), a query from the data instance is sent to
the action database to extract the relevant action sequence, which is then added to the prompt. In (b), the preferred response
yw and the dispreferred response yl are propagated with multimodal tokens x through both the target LLM and the reference
LLM. Then, we evaluate the rewards r(x, yw) and r(x, yl) for each response and compute the loss LDPO where σ is the
logistic function.

2023) to generate the task goals and their corresponding
time interval. For video j, we utilize the set of actions
in the video and its corresponding timestamp, d(j), and
task goal generation prompt, P , from EgoPlan-Bench. We
generate task goals, g

(j)
k , and an associated time inter-

val, T
(j)
k , using GPT-4o. This process is expressed as

{(g(j)k , T
(j)
k )}N(j)

k=1 = fgpt(d
(j), P ) where fgpt represents the

GPT-4o; and N (j) is the number of task goals for video j.

Using the GPT outputs, we construct the generated Ego4D
dataset, which is detailed in Appendix A. Then, similar
to the EgoPlan-IT action database, we construct the gener-
ated Ego4D action database: Bgoal

ego4d = {(g̃(i), t̃(i)a )}M̃i=1 and

Bans
ego4d = {((ỹ(i)w , ỹ

(i)
l ), t̃

(i)
a )}M̃i=1 where M̃ is the number of

instances in generated Ego4D dataset.

Finally, we combine the Egoplan-IT database and gener-
ated Ego4D database to form the final database: Bgoal =
Bgoal

egoplan ∪ Bgoal
ego4d and Bans = Bans

egoplan ∪ Bans
ego4d.

Retrieval Methods We apply different retrieval methods
depending on the type of database. For goal action database
Bgoal, we focus on the task goal g, and we measure simi-
larity based on the co-occurrence of object and verb within
task goal. We leverage the pos-tagging function provided by
the Natural Language Toolkit (NLTK) (Bird et al., 2009) to
isolate object and action entities from task goal texts. Subse-
quently, these entities are vectorized using NLTK CountVec-
torizer to facilitate the generation of co-occurrence vectors
for each instance. We define the resulting vector as query
embedding q.

For Bans, the approach involves assessing the similarity
between each answer, denoted as y, using BERT embed-
dings (Devlin et al., 2018). For including only action-

relevant information, all prepositional phrases, except for
the verb-object structure, are removed. The result embed-
ding vectors are extracted using BERT and we define it as
query embedding q.

We measure the cosine similarity as cos(qT ,qi) for all i ∈
{1, ...,M + M̃} to identify the retrieval instance, where
qT is the target query and qi represents the query from the
action database. We utilize the retrieved action sequence ta
as the input prompt.

To filter out potentially irrelevant retrieved action sequences,
we set a specific threshold, τ , on the cosine similarity. By in-
cluding only the retrieval instances with a similarity greater
than τ , we assume that this filtering will help in obtaining
only informative sequences while ignoring noisy informa-
tion. The resulting ta is included in ts.

4. Experiment
4.1. Experiment Setting

We use the following settings for model training. The model
training and evaluation are implemented based on the Video-
LLaMA (Zhang et al., 2023) and EgoPlan-Bench (Chen
et al., 2023) code provided by the organizers. For training,
we use 8 A100 GPUs and a batch size of 16.

For RAG training, we use Bgoal with a threshold of 0.96
to retrieve the longest action sequence, covering 24,148 in-
stances. In the validation dataset, from Bans with a threshold
of 0.95, we retrieve 111 out of 923 instances.

Furthermore, as the test dataset and a portion of the valida-
tion dataset consist of the Ego4D dataset, we evaluate the
model performance based on the Ego4D validation dataset,
which has 923 instances, to ensure the accuracy of our test
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Most similar case

Video id: P11_17 

Task goal: Pour vegetables into colander in sink

answer: pour vegetables into colander | negative answers: [pick up pot, pick up colander, put colander in sink, take off lid]

Task progress metadata: 1) pick up pot ⇒ 2) pick up colander ⇒ 3) put colander in sink ⇒ 4) take off lid

Action DB sample_id: 140

Video id: 7f4225ed-a076-4530-91cf-f3903c5d7637

Task goal: Transfer vegetables to cooking pot

choice_a: pour vegetables in pot  |  choice_b: move colander  | choice_c: put colander in sink  | choice_d: knock colander on cooking pot

Validation sample_id: 2504

Task progress metadata: 1) pour vegetables in pot ⇒ 2) knock colander on cooking pot 

⇒ 3) move colander ⇒ 4) knock colander on cooking pot ⇒ 5) wipe vegetables
Current observation frame:

Figure 2: Qualitative analysis on Retrieval-Augmented Generation.

Table 1: Test accuracy with regard to our method component
DPO loss presented in Eq. (5).

Model Base Loss Type Test Acc.(%)

Baseline Original Contrastive 41.35
Ours Original DPO 53.98

Table 2: Validation accuracies for various combinations of
our method components. Base indicates the initial check-
point from which the model is fine-tuned. Results marked
with † are from Chen et al. (2023).

Model Base Loss Type RAG Valid Acc.(%) / Approx. Training Time

Baseline Original − − 30.44† / Given Pre-trained Model
Contrastive ✗ 44.42† / Given Pre-trained Model

Ours

Original DPO ✗ 60.24 / 0.5 days

DPO-Finetuned
Contrastive (Iterative) ✓ 46.05 / 0.5 days

DPO (Iterative) ✗ 61.11 / 0.5 days
DPO (Iterative) ✓ 60.24 / 0.5 days

results.

4.2. Quantitative Analysis

Our best model utilizes DPO, starting from a base model
that is finetuned by the DPO framework prior. Table 1
indicates that the best case achieves a 12.6% increment in
test accuracy compared to the official finetuned model.

Table 2 identifies that DPO fine-tuning achieved higher per-
formance than the official finetuned model trained on the
same training dataset via the original contrastive loss. This
observation suggests that DPO loss of Eq. (5) improves
performance by training MLLMs to choose preferred an-
swer yw more, compared to the reference model of πSFT

in EgoPlan-Bench (Chen et al., 2023). In addition, Table 2
shows the advantage of iterative DPO fine-tuning, which
has been observed in previous works (Gorbatovski et al.,
2024).

The current version of RAG results in a performance de-

crease compared to the DPO-finetuned case. Thus, we con-
duct qualitative analysis to understand the limitations of the
current RAG method.

4.3. Qualitative Analysis

The right side of Figure 2 shows the t-SNE (Van der Maaten
& Hinton, 2008) of the BERT embeddings from 1) candidate
choices of validation instance no. 2504 and those from 2)
concatenation of answer and negative answers of the top
30 instances from Bans whose BERT embeddings show the
highest cosine similarity to validation instance.

From the left side of Figure 2, we observe that answer
candidates of 1) and 2) are actually similar when they are
close to each other in the BERT embedding space. However,
since the task goals of the two instances are different, the
action sequence of the retrieved instance may not be helpful
for predicting the progress of the current validation instance.

As previously mentioned, the task goal is not considered
in the RAG process during testing. From here, we notice
that it is necessary to supplement our retrieval method by
reflecting factors that help explain the instance, such as task
goal. An additional failure case and its potential solution
are discussed in Appendix D.

5. Conclusions
We propose the method to adopt Direct Preference Optimiza-
tion (DPO) and Retrieval-Augmented Generation (RAG) for
fine-tuning MLLMs on the scenarios from EgoPlan-Bench.
We utilize RAG to search for action narrations of similar
situations for a given question instance. However, RAG in
our settings does not show any performance improvement,
which we attribute to the limited retrieval of similar tasks
from the action database. On the other hand, utilizing DPO
achieves test performance surpassing the existing baseline.
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A. Construction of Ego4D-Generated Dataset for Action Database
A.1. Video ID Selection

Figure 3: The EgoPlan Test id and Valid id circles show video IDs of the EgoPlan-IT bench’s test and validation datasets.
The Ego4D Cooking id circle includes cooking scenario IDs from Ego4D. Intersections represent overlapping video IDs
between datasets, while non-overlapping parts are unique IDs. The green area shows the 819 cooking video IDs used to
make the Ego4D-generated dataset, chosen to avoid overlap with test or validation datasets.

We identify 1107 video IDs from Ego4D where the scenario is exclusively cooking to generate new instances. As shown in
Figure 3, we select 819 cooking IDs, represented by the green-shaded area, that do not overlap with video IDs appearing in
the test or validation datasets. For constructing the Ego4D-generated dataset, we use 605 video IDs out of the 819, excluding
214 video IDs that lacked narration text from Ego4D. These 605 video IDs are then utilized for the construction of the action
database.

A.2. Data Generation Using GPT-4o Task Goals

We provide an exhaustive explanation of the methodologies employed to extract, generate, and construct the dataset,
primarily derived from the Ego4D videos.

We extract the corresponding action during T̃
(j)
k as Ã(j)

k = {t̃(j)a,k,h}
l
(j)
a,k

h=1, where t̃
(j)
a,k,h is the h-th action of k-th task goal

in the j-th video. Finally, we form pairs, {(g̃(j)k , Ã
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k=1 , incorporating the identified task goals and their associated
action text sequences. To augment the data pair for the different frames, we randomly sample t ∈ (1, l

(j)
a,k) for each

goal-action pair, and set t̃(j)a,k,t as answer ỹw; and t̃
(j)
a,k,h ̸=t as negative answers ỹl. Finally, the set of action texts t̃a becomes

t̃(j)a,k = {t̃(j)a,k,h}th=1.

Now, we construct the database for each video, and by combining these for all videos, we build the database for the generated
Ego4D dataset:
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B. Sensitivity Analysis
B.1. DPO hyper-parameter

Figure 4 shows the performance depends on DPO hyperparameter β. 0.05 and 0.1 show high performance, while 0.5 yields
lower performance than other values. Although the peak performance of 0.05 and 0.1 were similar, 0.1 shows a slightly
higher performance than 0.05. Therefore, we set the β for DPO training to 0.1.
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Figure 4: Graph of peak performance for each β. 0.1 shows the best peak performance among 0.05 and 0.5.

C. Training Details
We present the details of the training procedure for πθ. To this end, we first define the dataset used during training. First, the
EgoPlan-IT dataset denoted as DP is used to fine-tune for EgoPlan-Bench (Chen et al., 2023). EgoPlan-IT-action dataset3

is adopted for action recognition task, predicting previous actions from video data. We also use other datasets, such as
MiniGPT-4 (3K) (Zhu et al., 2023), LLaVA (150K) (Liu et al., 2024), and VideoChat (11K) (Li et al., 2023), for further
instruction tuning as in the original approach (Chen et al., 2023). For conciseness, we denote a dataset other than EgoPlan-IT
as DE , which includes answers y for given inputs x. We utilize the different loss functions according to the dataset as
follows.

Lθ(D) =

{
LDPO(πθ;πref ,D), if D = DP

−E(x,y)∼D[log πθ(y|x)], if D = DE

(8)

D. Failure Case Analysis

Video id: f735d4bb-d65e-4965-ac0d-270c0b9e5993

Task goal: Cover the frying pan and adjust the cooker

choice_a: put lid  |  choice_b: place wooden spoon  |  choice_c: pick up wooden spoon  |  choice_d: pick up frying pan lid

Current observation frame:Task progress metadata: 1) pick up frying pan lid ⇒ 2) put lid ⇒ 3) turn cooker knob

Video id: P24_09

Task goal: Cover the pan and prepare the wooden spoon

answer: put lid on the pan | negative answers: [open door, pick up lid, pick up wooden spoon, place wooden spoon]

Task progress metadata: 1) open door ⇒ 2) pick up lid

Action DB sample_id: 31504

Validation sample_id: 3206

Most similar case

Figure 5: Qualitative analysis on Retrieval-Augmented Generation.

We show another failure retrieval case where answer candidates of 1) and 2) are actually similar and the task goals of
the two instances are also similar. However, the retrieved action sequence has a shorter length than that of the current
validation instance. In this case, since all tasks specified in the retrieved action sequence are already done in the current
validation instance, the action sequence of the retrieved instance would not be helpful for predicting the next task of the
current instance.

Because we construct an instance-based action database at this time, a fully specified action sequence for each task goal
is not guaranteed. To handle this problem, considering the purpose of the RAG method, there need to be generalized
expressions of task goals and a fully specified action sequence for each task goal.

3In this technical report, we separately define that EgoPlan-IT-action from EgoPlan-IT since its question prompt is changed.
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