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Abstract

In model inversion attacks (MIAs), adversaries attempt to recover the private train-
ing data by exploiting access to a well-trained target model. Recent advancements
have improved MIA performance using a two-stage generative framework. This ap-
proach first employs a generative adversarial network to learn a fixed distributional
prior, which is then used to guide the inversion process during the attack. However,
in this paper, we observed a phenomenon that such a fixed prior would lead to a
low probability of sampling actual private data during the inversion process due to
the inherent distribution gap between the prior distribution and the private data dis-
tribution, thereby constraining attack performance. To address this limitation, we
propose increasing the density around high-quality pseudo-private data—recovered
samples through model inversion that exhibit characteristics of the private train-
ing data—by slightly tuning the generator. This strategy effectively increases the
probability of sampling actual private data that is close to these pseudo-private data
during the inversion process. After integrating our method, the generative model
inversion pipeline is strengthened, leading to improvements over state-of-the-art
MIAs. This paves the way for new research directions in generative MIAs. Our
source code is available at: https://github.com/tmlr-group/PPDG-MI.

1 Introduction

Currently, machine learning (ML) models, especially deep neural networks (DNNs), have become
prevalent in privacy-sensitive applications such as secure systems [Yin et al., 2020], personal chat-
bots [Ouyang et al., 2022] and healthcare services [Murdoch, 2021]. These applications inevitably
rely on private and confidential datasets during model training, raising concerns about potential pri-
vacy leakages [Liu et al., 2021]. Unfortunately, recent studies reveal that ML models are vulnerable
to various privacy attacks [Fredrikson et al., 2014, Krishna et al., 2019, Choquette-Choo et al., 2021].
Model inversion attacks (MIAs), a category of these attacks, pose significant privacy risks, which aim
to infer and recover original training data by exploiting access to a well-trained model.

In the pioneering work [Fredrikson et al., 2015], MIAs were formulated as a gradient-based opti-
mization problem in the raw data space. The goal was to seek synthetic features that maximize the
prediction score for a targeted class under the target model, exploiting the strong dependency between
inputs and labels established during training. For example, in attack scenarios where the target model
is a facial recognition model trained on private facial images, traditional MIAs would optimize over
the synthetic images to maximize the prediction score for a target identity.
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(a) Test Power (b) Dpublic = FFHQ (c) Dpublic = FaceScrub

Figure 1: Impact of distribution discrepancies on MIAs. (a) The test power of maximum mean
discrepancy (MMD) test increases with the sample number, indicating significant differences between
the distributions of Dprivate (CelebA) and Dpublic (CelebA, FFHQ and FaceScrub). (b) & (c) The
proxy public datasets D′

public are crafted using the method outlined in Eq. (4). The attack performance
consistently diminishes as the discrepancy between the Dprivate (CelebA) and D′

public increases. For
detailed setups and additional results of the motivation-driven experiments, refer to Appx. C.6.

However, when the target models are DNNs, and the private features to be reconstructed reside in
high-dimensional and continuous data spaces (e.g., facial images), the direct optimization in the
input space without any constraints is substantially ill-posed. Traditional MIAs could easily produce
semantically meaningless adversarial examples [Szegedy et al., 2014], which nevertheless achieve
high prediction scores under DNNs. Zhang et al. [2020] addressed this problem by employing a
generative adversarial network (GAN) [Goodfellow et al., 2014, Radford et al., 2016] to learn a
distributional prior, subsequently constraining the attack optimization space to a meaningful manifold
during the inversion process. This methodology, called generative model inversion (MI), lays the
groundwork for more effective model inversion of DNNs trained on high-dimensional data [Chen
et al., 2021, Wang et al., 2021a, Kahla et al., 2022, Struppek et al., 2022, Nguyen et al., 2023].

Generative MIAs have shown marked improvements by incorporating a fixed prior in the inversion
pipeline (cf. left panel of Fig. 2). However, this approach is fundamentally limited due to the
inherent distribution discrepancy between the prior distribution and the unknown private training
data distribution (cf. Fig. 1(a)). This discrepancy arises because the public auxiliary dataset, used to
learn the distributional prior, does not intersect in labels with the private training dataset. Therefore,
there is a low probability that the original private training data can be accurately sampled during the
inversion process, leading to suboptimal attack performance (cf. Figs. 1(b) and 1(c)).

Thus, we raise a critical research question: How can the discrepancy between the prior distribution
and the unknown private training data distribution be mitigated? Addressing this distribution gap is
challenging in the MI context, where we only have access to a well-trained target model. Nevertheless,
the target model still encapsulates information about the private training data. By performing model
inversion on the target model, we can generate what we called pseudo-private data, which are
reconstructed samples that reveal the characteristics of the private training data and can serve as its
surrogate. Consequently, enhancing the density of pseudo-private data under the prior distribution
indirectly increases the density of the private training data. This, in turn, raises the probability of
accurately sampling the actual private training data (cf. right panel of Fig. 2).

To this end, we propose a novel model inversion methodology, termed pseudo-private data guided
MI (PPDG-MI). The efficacy of PPDG-MI is demonstrated through a simple example using a 2D
dataset (Sec. 3.3), where we increase the density of the pseudo-private data by directly minimizing the
distribution discrepancy between the prior distribution and empirical pseudo-private data distribution,
as measured by conditional transport [Zheng and Zhou, 2021] that is amenable to mini-batch based
optimization and straightforward to implement. For the density enhancement of high-dimensional
data, we introduce a nuanced tuning strategy involving three iterative steps: 1⃝ Conduct a round
of MIAs to produce pseudo-private samples. 2⃝ Select high-quality pseudo-private samples based
on prediction scores. 3⃝ Fine-tune the generator to increase the density around these high-quality
samples, thereby increasing the probability of sampling the original private training data.

In summary, our contributions and findings are as follows:

• Conceptually, we identify a fundamental limitation common to state-of-the-art (SOTA)
generative MIAs [Zhang et al., 2020, Chen et al., 2021, Kahla et al., 2022, Struppek et al.,
2022, Han et al., 2023, Nguyen et al., 2023], i.e., the utilization of a fixed prior during the
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inversion process. We argue that this approach is sub-optimal for MIAs and introduce a
novel strategy, termed pseudo-private data guided MI, to mitigate this limitation, thereby
paving the way for future research and advancements in generative MIAs.

• Technically, we provide multiple implementations of PPDG-MI to validate the effectiveness
of our proposed strategy. For low-resolution MIAs, we introduce PPDG-vanilla. For more
complex high-dimensional MIAs, we offer PPDG-PW, which employs point-wise tuning,
and two batch-wise tuning strategies: PPDG-MI with conditional transport (PPDG-CT) and
PPDG-MI with maximum mean discrepancy (PPDG-MMD) (Sec. 3).

• Empirically, through extensive experimentation, we demonstrate that our solution signifi-
cantly improves the performance of the SOTA MI methods across various settings, including
white-box, black-box, and label-only MIAs (Sec. 4). Our findings emphasize the increasing
risks associated with MIAs and further highlight the urgent need for more robust defenses
against the leakage of private information from DNNs.

2 Problem Setup and Preliminary

2.1 Model Inversion Attacks

Problem Setup. Let X ⊂ RdX be the feature space, and Yprivate = {1, . . . , C} be the private label
space. The target model, M: X → [0, 1]

C , is a classifier well-trained on the private training dataset
Dprivate sampled from P(Xprivate,Yprivate). In standard settings, for a specific class y in Yprivate, MIAs
aim to reconstruct synthetic samples by exploiting access to the target model M to uncover sensitive
features of class y. In this context, the adversary is limited to querying M, and also possesses
knowledge of the target data domain but lacks specific details about Dprivate.

Mathematically, MI is formulated as an optimization problem: Given a target class y, the goal is to
find a sample x that maximizes the model M’s prediction score for class y. In high-dimensional data
settings, traditional MIAs [Fredrikson et al., 2015] use direct input space optimization, often leading
to adversarial samples [Szegedy et al., 2014] that, despite high prediction scores, lack meaningful
features. To mitigate this issue, Zhang et al. [2020] propose a generative MI approach, which learns a
distributional prior to constrain the optimization to a low-dimensional, meaningful manifold.

Current generative MIAs primarily concentrate on either the initial training process of GANs [Chen
et al., 2021, Yuan et al., 2023, Nguyen et al., 2024] or the optimization techniques used in the
attacks [Zhang et al., 2020, Wang et al., 2021a, Struppek et al., 2022, Kahla et al., 2022, Nguyen et al.,
2023]. In this paper, we take another direction and introduce a novel approach by fine-tuning the
GAN’s generator based on the attack results from previous runs. This method introduces a dynamic
and iterative dimension to model inversion attacks, expanding the current understanding and research
direction of generative MIAs. For detailed related work, please refer to Appx. A.1.

Specifically, the generative MI approach consists of two stages. Initially, a GAN learns a prior from
public auxiliary datasets, in which Ypublic ∩Yprivate = ∅. This process involves a generator, denoted as
G(·;θ) : Z → Xprior, parameterized by θ, that transforms a low-dimensional latent code, z ∈ Z , into
a high-dimensional image, x ∈ Xprior. Concurrently, a discriminator D(·;ϕ) : X → R, which can
distinguish between generated and real images. Subsequently, the MI optimization can be constrained
to the latent space Z of the fixed prior G, which can be formulated as:

z∗ = argmin
z

Lid(z; y,M,G) + λLprior(z; G,D), (1)

whereLid(·) denotes the identity loss, e.g., the cross-entropy loss− logPM(y|G(z)), which optimizes
for an optimal synthetic sample x∗ = G(z∗). Additionally, Lprior(·) serves as a regularizer for the
latent code z, and the parameter λ balances the trade-off between the identity loss and the regularizer.

2.2 Distribution Discrepancy Measure

To effectively align distributions in our methods, it is essential to introduce metrics that can accurately
quantify the differences between them. Two commonly used measures for this purpose are maximum
mean discrepancy (MMD) and conditional transport (CT). MMD focuses on mean differences
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using kernel methods, while CT incorporates cost-based transport distances, offering complementary
perspectives on distributional discrepancies. This section introduces the empirical estimation of
MMD and CT. For more details on these discrepancy measures, please refer to Appx. A.2.

Estimation of MMD. Given distributions P and Q, and sample sets SX = {xi}ni=1 ∼ P and
SY = {yj}mj=1 ∼ Q, MMD can be estimated with the following estimator [Gretton et al., 2012b]:

M̂MD
2

u(SX , SY ; k) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

k(xi,xj) +
1

m(m− 1)

m∑
i=1

m∑
j=1,j ̸=i

k(yi,yj)

− 2

mn

n∑
i=1

m∑
j=1

k(xi,yj). (2)

where k is a kernel function, xi,xj ∈ SX and yi,yj ∈ SY .

Estimation of CT. Similarly, for sample sets SX = {xi}ni=1 and SY = {yj}mj=1, the CT measure
can be approximated as follows [Zheng and Zhou, 2021]:

CT(SX , SY ) =

n∑
i=1

m∑
j=1

c(xi,yj)

(
e−dψ(xi,yj)∑m

j′=1 e
−dψ(xi,yj′ )

+
e−dψ(xi,yj)∑n

i′=1 e
−dψ(xi′ ,yj)

)
. (3)

Here, dψ(x,y) is a function parameterized by ψ that measures the similarity between x and y, and
c(x,y) is a cost function that measures the distance between the points x and y.

3 Pseudo-private Data Guided Model Inversion

This section introduces our proposed methodology, i.e., pseudo-private data guided MI (PPDG-MI).
First, we present and discuss the critical motivation that inspires our method (Sec. 3.1). Second,
we introduce the general framework of PPDG-MI (Sec. 3.2). Third, to ease understanding, we
demonstrate and illustrate the rationality of our solution on a simple toy dataset (Sec. 3.3). Fourth,
we present a more nuanced and detailed strategy for tuning the generator to enhance density in
high-dimensional image spaces, accompanied by multiple algorithmic implementations (Sec. 3.4).

3.1 Motivation: Effect of Distribution Discrepancies on MIAs

Collecting public auxiliary datasets that closely resemble the private dataset remains challenging.
This difficulty arises because the MI adversary lacks knowledge of specific class information, and
only understands the general data domain about P(Xprivate). Thus, we hypothesize a significant
distribution discrepancy between the prior distribution P(Xprior) and the private data distribution
P(Xprivate). This claim is supported by Fig. 1(a), where we quantify the distribution discrepancy
between commonly adopted public auxiliary datasets and private training datasets using the MMD
measure [Borgwardt et al., 2006], showcasing a substantial gap between these two distributions.

To evaluate the impact of this distribution discrepancy on MI performance, we create a series of proxy
prior distributions through linear interpolation, where a mixing coefficient α ∈ [0, 1] determines the
proportion of samples drawn from each distribution. Specifically, a fraction α of samples is drawn
from P(Xprior), and the remaining (1− α) is drawn from P(Xprivate). This process is represented as:

P(X ′
prior) = αP(Xprior) + (1− α)P(Xprivate). (4)

We apply these proxy prior distributions to constrain the MI optimization as outlined in Eq. (1). As
illustrated in Figs. 1(b) and 1(c), the MI performance decreases monotonically as the MMD value
between P(X ′

prior) and P(Xprivate) increases. This leads us to pose a critical research question:

How can the discrepancy between the prior distribution and the unknown private
data distribution be mitigated to enhance MI performance?

In response to this, a revised inversion pipeline is required, wherein G is dynamically adjusted
throughout the inversion process. This adjustment aims to progressively narrow the distribution gap
between P(Xprior) and P(Xprivate), thereby potentially improving MI performance.
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Figure 2: Overview of traditional generative MI framework vs. pseudo-private data guided MI
(PPDG-MI) framework. PPDG-MI leverages pseudo-private data x̂ generated during the inversion
process, which reveals the characteristics of the actual private data, to fine-tune the generator G. The
goal is to enhance the density of x̂ under the learned distributional prior P(Xprior), thereby increasing
the probability of sampling actual private data x∗ during the inversion process.

3.2 PPDG-MI Framework

This section presents a novel model inversion pipeline that dynamically adjusts the generator G to
mitigate the distribution discrepancy between P(Xprior) and P(Xprivate) (cf. Fig. 2 for the framework
overview). As aforementioned, in the MI context, while the specific details of Dprivate remain
unknown, we have access to the target model M, which is well-trained on Dprivate, still encapsulates
information about Dprivate. Therefore, by conducting MI on the target model M, we can generate
a set of pseudo-private samples (i.e., reconstructed samples), denoted as Ds

private, which reveal the
characteristics of the private dataset Dprivate and can serve as its surrogate. Thus, the key insight is
that by enhancing the density of the prior distribution P(Xprior) around Ds

private, we indirectly increase
the density around Dprivate as well. Consequently, the probability of sampling data from P(Xprivate)
could be increased. This strategy is termed pseudo-private data guided MI (PPDG-MI).

To this intuition, the proposed MI framework consists of the following three iterative steps:

Step-1: Pseudo-private Data Generation by Conducting MI on the Target Model. Specifically,
in generative MI, optimization is restricted to the latent space Z . Initially, we sample a set of latent
codes, Z = {zi | zi ∈ Z, i = 1, . . . , N}. Then, by leveraging Eq. (1), these initial latent codes are
optimized to produce Ẑ = {ẑ = argminLid(z) + λLprior(z) | z ∈ Z}. Subsequently, this optimized
set Ẑ is utilized to generate a pseudo-private dataset Ds

private = {x̂ = G(ẑ) | ẑ ∈ Ẑ}.

Step-2: Selection of High-Quality Pseudo-private Data. In this step, we aim to select high-quality
data from Ds

private that closely resemble the characteristics of samples in Dprivate, serving as their
proxy. An intuitive method is to select samples with high prediction scores. Thus, following Struppek
et al. [2022], we opt to select samples with larger expected prediction scores E[PM(y|T (x̂))] under
random image transformations T , indicating that x̂ represents the desired characteristics for target
class y more accurately. Specifically, we select a high-quality subset Ds′

private, consisting of samples
with top K expected prediction scores from Ds

private.

Step-3: Density Enhancement around Pseudo-private Data. In this step, we focus on fine-tuning
G to adjust the prior distribution P(Xprior), aiming to increase the probability of sampling data
from P(Xprivate). In the existing literature, MIAs can be categorized into two types: those targeting
high-resolution tasks [Struppek et al., 2022] and those targeting low-resolution tasks [Zhang et al.,
2020, Chen et al., 2021, Kahla et al., 2022, Nguyen et al., 2023]. In high-resolution MIAs, adversaries
leverage pre-trained GANs without access to training specifics. In contrast, low-resolution MIAs
involve adversaries training GANs from scratch using the public auxiliary dataset Dpublic. This
distinction enables the development of tuning strategies tailored to different attack settings.

For MIAs focusing on low-resolution tasks, where the generator G is less powerful and the low-
resolution image manifold is more susceptible to disruption, we adopt a principled tuning strategy.
Specifically, we fine-tune G and D using the original GAN training objective on Dpublic ∪ Ds′

private, a
strategy termed PPDG-vanilla (cf. Alg. 1). For MIAs focusing on high-resolution tasks, e.g., Plug

5



(a) Baseline (b) PPDG-MI

Figure 3: Illustration of the rationale behind PPDG-MI using a simple 2D example. Training
samples from Class 0-2 are represented by purple, blue, and green, respectively, while public auxiliary
data are shown in yellow. MIAs aim to recover training samples from Class 1, with reconstructed
samples shown in red. (a) Results of the baseline attack with a fixed prior. (b) Left: Pseudo-private
data generation. Middle: Density enhancement of pseudo-private data under prior distribution. Right:
Final attack results of PPDG-MI with the tuned prior, where all the recovered points converge to the
centroid of the class distribution, indicating the most representative features are revealed.

& Play Attacks (PPA) [Struppek et al., 2022], we propose a tuning strategy that leverages only the
high-quality pseudo-private dataset Ds′

private, which can be formalized as follows:

G,D← Fine-tune(G,D,Ds′
private). (5)

This adjustment aims to increase the density of the prior distribution around Ds′
private. The concrete

realizations (cf. Alg. 2) are presented in Sec. 3.4. After fine-tuning the generator, return to Step-1 and
repeat the attack process to further improve the MI performance. Our experiments primarily focus on
PPA, which allows us to investigate a more realistic attack scenario with high-resolution data.

3.3 Understanding PPDG-MI with 2D Data

To illustrate the principles of PPDG-MI, we present a toy example using a 2D dataset with three
classes, each sampled from a class-conditional Gaussian distribution, as shown in Fig. 3. Additionally,
a public dataset is sampled from a separate Gaussian distribution to learn the distributional prior
P(Xprior). We simulate a simple MIA by generating an initial set of samples using generator G and
then optimizing these samples to maximize the model’s prediction score for Class 1. The objective is
to uncover the features of Class 1, primarily the coordinates of the training samples. The closer these
optimized samples are to the centroid of Class 1’s distribution, i.e., the high-density region, the more
effective the attack. See Appx. C.7 for a larger version of Fig. 3 and the experimental details of the
toy example. An animated illustration of the toy demo is available in the supplementary materials.

The baseline attack results are shown in Fig. 3(a), where a fixed G is adopted during the inversion
process. The left panel of Fig. 3(b) illustrates the generation of dataset Ds

private through a round of MI
on model M. Middle panel of Fig. 3(b) shows the enhancement of density around Ds

private under the
prior distribution P(Xprior), achieved by fine-tuning G(·;θ) to align with the empirical distribution of
Ds

private, using the CT measure. The final attack results of PPDG-MI are shown in the right panel of
Fig. 3(b). It is evident that, in comparison to the baseline where only a small fraction of reconstructed
samples fall within the high-density region of the training data distribution, all reconstructed samples
from PPDG-MI are located in this high-density region. See Appx. C.7 for the quantitative results.

Although we initially applied a direct distribution match strategy in this simplified setting to implement
PPDG-MI, the empirical results indicate that this approach is less effective for higher-dimensional
image data, as it would destroy the generator’s manifold (Appx. C.8). We address this issue by
introducing a nuanced tuning strategy tailored for high-dimensional data settings, detailed in Sec. 3.4.

3.4 Nuanced Approach of PPDG-MI for High-Dimensional Image Data

Considering the primary baseline PPA [Struppek et al., 2022] uses StyleGAN [Karras et al., 2020] as
its distributional prior, our approach leverages StyleGAN’s disentangled nature, allowing slight local
changes to its produced appearance without disrupting the manifold. Specifically, we first identify a
high-density neighbor for each pseudo-private sample x̂ (cf. Fig. 4(b)) and adjust this neighbor to be
closer to x̂, thereby enhancing density around x̂ in the generator’s domain (cf. Fig. 4(c)).
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(a) Logit Distribution (b) Locating xp (c) Point-wise Tuning

Figure 4: Illustration of PPDG-MI using a point-wise tuning approach. (a) The distribution of
discriminator logit outputs for randomly generated samples by the generator G, showing that the
discriminator can empirically reflect the density of generated samples. (b) Locating the high-density
neighbor xp by optimizing Eq. (6). Darker colors represent regions with higher density. (c) Increasing
density around the pseudo-private data x̂ by moving xp towards x̂, i.e., optimizing Eq. (7).

Instantiate PPDG-MI with Point-wise Tuning. To this intuition, we detail a two-step method to
increase the density around pseudo-private samples. First, to locate a near neighbor xp of x̂, we
optimize the latent code z to produce xp. The closeness between xp and x̂ is measured using the
LPIPS perceptual loss function [Zhang et al., 2018]. Additionally, to ensure that xp is located in a
high-density region of P(Xprior), we leverage the discriminator D. Although GANs typically do not
provide explicit probability density functions, empirical evidence suggests that D effectively indicates
the density of generated samples (cf. Fig. 4(a)). Overall, the optimization objective is formulated as

zp = argmin
z

LLPIPS(x̂,G(z))︸ ︷︷ ︸
neighborhood constraint

− λ1D(G(z))︸ ︷︷ ︸
high-density constraint

,
(6)

where LLPIPS represents the perceptual loss function, and λ1 is a tuning hyperparameter that balances
the constraints. At this step, the generator remains frozen. After optimizing Eq. (6), we obtain a
high-density neighbor point xp = G(zp;θ) of x̂. We then aim to slightly alter G(·;θ) to pull xp

towards x̂, thereby enhancing the local density around x̂ (cf. Fig. 4(c)). This is accomplished by
fine-tuning the generator with the point-wise loss term:

LPPDG-PW(θ) = LLPIPS(x̂,G(zp;θ)). (7)

At this step, zp remains fixed, and the adjustment is applied exclusively to the generator G. Building
on the point-wise density enhancement, we extend our approach to a batch-wise method using
statistical distribution discrepancy measures [Borgwardt et al., 2006, Zheng and Zhou, 2021], aiming
for a more principled local distribution alignment strategy.

Instantiate PPDG-MI with Batch-wise Tuning. Given the sets Ds′
private = {x̂i}mi=1 and

{G(zj)}nj=1 ∼ P(Xprior), following the point-wise tuning settings, we initially map these sam-
ples to the LPIPS space using a feature extractor f. Denote δ as the distribution discrepancy measure,
the batch-wise tuning strategy adapts the previous point-wise Eqs. (6) and (7) as follows:

{zp
j}

n
j=1 = argmin

{zj}n
j=1

δ({f(x̂i)}mi=1, {f(G(zj))}nj=1)︸ ︷︷ ︸
neighborhood constraint

−λ1
1

n

n∑
i=1

D(G(zj))︸ ︷︷ ︸
high-density constraint

,
(8a)

LPPDG-BW(θ) = δ({f(x̂i)}mi=1, {f(G(zp
j ;θ))}

n
j=1). (8b)

We present two realizations of the batch-wise tuning strategy: PPDG-MMD and PPDG-CT. When δ
is set as MMD with Gaussian kernel k, the optimization objective in Eqs. (8a) and (8b) is realized as

{zp
j}

n
j=1 = argmin

{zj}n
j=1

M̂MD
2

u({f(x̂i)}mi=1, {f(G(zj))}nj=1; k)− λ1
1

n

n∑
i=1

D(G(zj)), (9a)

LPPDG-MMD(θ) = M̂MD
2

u({f(x̂i)}mi=1, {f(G(zp
j ;θ))}

n
j=1; k). (9b)

7



Similarly, when δ is set as CT, the optimization objective in Eqs. (8a) and (8b) is realized as

{zp
j}

n
j=1 = argmin

{zj}n
j=1

CT({f(x̂i)}mi=1, {f(G(zj))}nj=1)− λ1
1

n

n∑
i=1

D(G(zj)), (10a)

LPPDG-CT(θ) = CT({f(x̂i)}mi=1, {f(G(zp
j ;θ))}

n
j=1). (10b)

The cost function in Eq. (3) is implemented as c(x,y) = 1 − cos(f(x), f(y)), while the distance
function is implemented as d(x,y) = f(x)T f(y), which are commonly adopted realization choices
in existing literature [Tanwisuth et al., 2021, 2023].

4 Experiments

In this section, we evaluate the performance of SOTA MI methods before and after integrating them
with PPDG-MI, as well as the robustness against SOTA MI defenses, including BiDO [Peng et al.,
2022] and NegLS [Struppek et al., 2024], to assess the overall effectiveness of PPDG-MI. The
evaluation primarily focuses on real-world face recognition tasks. For high-resolution (224× 224)
tasks, we consider PPA [Struppek et al., 2022] in the white-box setting. For low-resolution (64× 64)
tasks, we consider GMI [Zhang et al., 2020], KEDMI [Chen et al., 2021], LOM [Nguyen et al., 2023],
and PLG-MI [Yuan et al., 2023] in the white-box setting, RLB-MI [Han et al., 2023] in the black-box
setting, as well as BREP-MI [Kahla et al., 2022] in the label-only setting.

4.1 Experimental Setup

This section briefly introduces the experimental setups. For further details, please refer to Appx. C.

Datasets and Models. In line with existing MIA literature on face recognition, we use the
CelebA [Liu et al., 2015], FaceScrub [Ng and Winkler, 2014], and FFHQ datasets [Karras et al.,
2019]. These datasets are divided into two parts: the private training dataset Dprivate and the public
auxiliary dataset Dpublic, ensuring no identity overlap. For high-resolution tasks, we trained ResNet-
18 [He et al., 2016], DenseNet-121 [Huang et al., 2017] and ResNeSt-50 [Zhang et al., 2022] as
target models. For low-resolution tasks, we trained VGG16 [Simonyan and Zisserman, 2015] and
face.evoLVe [Wang et al., 2021b] as target models. The training details of these models are presented
in Appx. C.3. We summarize the attack methods, target models, and datasets adopted in Tab. 4.

Attack Parameters. For all MIAs, we fine-tune the generator G in an identity-wise manner, to
minimize alterations to the generator’s latent space. Thus, adjustments to the attack parameters in
official implementations are required. Detailed attack parameters are provided in Appx. C.4.

Evaluation Metrics. To evaluate the performance of an MIA, we need to assess whether the
reconstructed images reveal private information about the target identity. Following existing litera-
ture [Zhang et al., 2020], we adopt top-1 (Acc@1) and top-5 (Acc@5) attack accuracy, as well as
K-Nearest Neighbors Distance (KNN Dist). Details for these metrics are provided in Appx. C.5.

4.2 Main Results

In the main experiments, we integrate PPDG-MI for density enhancement while still employing the
baseline attack method for MI. We conduct one round of fine-tuning of G and present the resulting
attack results to demonstrate the efficacy of PPDG-MI. The results of multi-round fine-tuning are
reserved for the ablation study (cf. Sec. 4.3). Additional experimental results, including evaluations
on various target models, assessments with PLG-MI, black-box, and label-only MIAs, as well as
comparisons against SOTA MI defenses for low-resolution tasks, are presented in Appx. D.

Comparison with PPA in the high-resolution setting. For each baseline setup, we report results for
three variants: PPDG-PW, PPDG-CT and PPDG-MMD. The results presented in Tab. 1 demonstrate
that our proposed method significantly improves MI performance across all setups, validating its
effectiveness. Notably, integrating our methods with the baseline substantially increases attack
accuracy. The KNN distance results also confirm that our methods more accurately reconstruct data
resembling the private training data. Qualitative results of reconstructed samples from all target
models are provided in Figs. 9 and 10 in Appx. D.3. Additionally, among the three PPDG-MI variants,
the batch-wise tuning strategy consistently outperforms the point-wise tuning strategy. Batch-wise
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Table 1: Comparison of MI performance with PPA in high-resolution settings. Dprivate = CelebA
or FaceScrub, GANs are pre-trained on Dpublic = FFHQ. The symbol ↓ (or ↑) indicates smaller (or
larger) values are preferred, and the green numbers represent the attack performance improvement.
The running time ratio (Ratio) between prior fine-tuning and MI reflects the overhead of fine-tuning.

CelebA FaceScrub
Target Model Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓

ResNet-18

PPA 80.80 91.54 0.7374 / 83.19 95.89 0.7996 /
+ PPDG-PW (ours) 83.15 (+2.35) 94.73 (+3.19) 0.7082 (-0.0292) 2.25 84.44 95.88 0.7939 (-0.0057) 1.70
+ PPDG-CT (ours) 87.32 (+6.52) 96.73 (+5.19) 0.6754 (-0.0620) 1.57 85.70 96.53 0.7768 (-0.0228) 1.19
+ PPDG-MMD (ours) 88.53 (+7.73) 97.15 (+5.61) 0.6795 (-0.0579) 1.13 87.02 97.13 0.7708 (-0.0288) 0.85

DenseNet-121

PPA 76.74 89.04 0.7556 / 77.13 90.47 0.7917 /
+ PPDG-PW (ours) 78.41 (+1.67) 92.88 (+3.84) 0.7219 (-0.0337) 1.67 78.45 92.89 0.7778 (-0.0139) 1.55
+ PPDG-CT (ours) 82.51 (+5.77) 94.81 (+5.77) 0.7003 (-0.0553) 1.14 84.93 96.14 0.7405 (-0.0512) 1.07
+ PPDG-MMD (ours) 84.02 (+7.28) 95.37 (+6.33) 0.6964 (-0.0592) 0.81 85.55 96.20 0.7363 (-0.0554) 0.79

ResNeSt-50

PPA 64.52 82.79 0.8382 / 73.65 90.96 0.8386 /
+ PPDG-PW (ours) 67.66 (+3.14) 86.73 (+3.94) 0.8181 (-0.0201) 1.68 74.98 92.24 0.8190 (-0.0196) 1.58
+ PPDG-CT (ours) 72.57 (+8.05) 89.66 (+6.87) 0.7802 (-0.0580) 1.11 77.77 93.51 0.8045 (-0.0341) 1.07
+ PPDG-MMD (ours) 72.99 (+8.47) 90.01 (+7.22) 0.7874 (-0.0508) 0.80 78.35 93.42 0.8109 (-0.0277) 0.79

Table 2: Comparison of MI performance with white-box MIAs in low-resolution settings. Target
model M = VGG16 trained on Dprivate = CelebA. GANs are trained on Dpublic = CelebA or FFHQ.

CelebA FFHQ
Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓
GMI 17.59 39.20 1720.46 / 8.78 23.42 1777.72 /
+ PPDG-vanilla (ours) 22.66 (+5.07) 45.35 (+6.15) 1697.08 (-23.38) 2.33 9.89 (+1.11) 25.21 (+1.79) 1768.62 (-9.10) 1.62

LOM (GMI) 64.54 86.92 1403.81 / 38.17 64.67 1520.77 /
+ PPDG-vanilla (ours) 76.89 (+12.35) 92.77 (+5.85) 1329.02 (-74.79) 1.61 50.76 (+12.59) 77.18 (+12.51) 1434.71 (-86.06) 1.70

KEDMI 72.82 93.41 1329.12 / 41.15 70.08 1447.15 /
+ PPDG-vanilla (ours) 76.18 (+3.36) 95.48 (+2.07) 1307.42 (-21.70) 28.59 41.48 (+0.33) 73.58 (+3.50) 1440.48 (-6.67) 55.20

LOM (KEDMI) 86.48 98.97 1249.82 / 57.56 85.96 1384.55 /
+ PPDG-vanilla (ours) 87.21 (+0.73) 99.00 (+0.03) 1247.69 (-2.13) 28.09 62.02 (+4.46) 87.21 (+1.88) 1353.36 (-31.19) 56.30

tuning captures characteristics of the local data distribution by handling batches of pseudo-private
data, whereas point-wise tuning focuses on individual data points. Furthermore, batch-wise tuning is
more robust against outliers, leading to a more reliable adjustment of the prior distribution.

Table 3: MI performance against SOTA defense
methods in high-resolution settings. The target
model M = ResNet-152 is trained on Dprivate =
FaceScrub, GANs are pre-trained on Dpublic =
FFHQ. Bold numbers indicate superior results.

Method Acc@1↑ KNN Dist↓

No Def. 77.85 0.8235

BiDO-HSIC 52.50 0.9546
+ PPDG-PW 54.65 0.9270
+ PPDG-CT 57.40 0.9051
+ PPDG-MMD 58.55 0.9017

NegLS 11.35 1.3051
+ PPDG-PW 14.65 1.2234
+ PPDG-CT 16.25 1.2233
+ PPDG-MMD 13.25 1.2187

Comparison with white-box MIAs in the low-
resolution setting. For each baseline setup, we
report results for PPDG-vanilla. The results are
shown in Tab. 2, where PPDG-vanilla consistently
outperforms various baseline white-box attacks.
The improvement is evident in both attack accu-
racy and KNN distance metrics. Notably, even
with a significant distribution shift between the
private training dataset (CelebA) and the public
auxiliary dataset (FFHQ), the principled vanilla
fine-tuning strategy with original GAN training
objectives effectively enhances the density around
pseudo-private samples. As a highlight, PPDG-
vanilla outperforms the baseline LOM (GMI) by
achieving a 12.35% increase in top-1 attack accu-
racy and reducing KNN distance by approximately
75. Qualitative results of the reconstructed sample
are provided in Figs. 11 and 12 in Appx. D.3.

Attacks against SOTA MI defense methods.
We extend our evaluation to include state-of-the-
art model inversion defense methods, specifically
BiDO-HSIC and NegLS, comparing the perfor-
mance of our proposed methods—PPDG-PW, PPDG-CT, and PPDG-MMD—with the baseline PPA.
As summarized in Tab. 3, each proposed method consistently outperforms the baseline. Notably,
PPDG-MMD achieves a 6.05% improvement in top-1 attack accuracy and reduces KNN distance by
0.0529 relative to the baseline against BiDO-HSIC. Similarly, against NegLS, PPDG-CT shows a
4.90% improvement in top-1 attack accuracy and a 0.0818 reduction in KNN distance compared to
the baseline. Additional results for the low-resolution setting are provided in Appx. D.1.
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Figure 5: Ablation study in the high-resolution setting. Left: Impact of iterative fine-tuning. Middle:
Importance of selecting high-quality pseudo-private data for fine-tuning. Right: Effectiveness of
using the discriminator as an empirical density estimator to locate high-density neighbors.

4.3 Ablation Study

In this section, we present part of the ablation study on MIA in the high-resolution setting to further
explore PPDG-MI. The target model is ResNet-18 trained on CelebA; GANs are pre-trained on
FFHQ. Additional ablation results for high- and low-resolution settings are provided in Appx. D.2.
Discussions (e.g., broader impact, failure case analysis and limitations) are provided in Appx. E.

Iterative fine-tuning. The iterative fine-tuning process is crucial for PPDG-MI (cf. Algs. 1 and
2). Its goal is to progressively increase the probability of sampling pseudo-private data with closer
characteristics to the actual private training data. Ideally, if the classifier has learned all discriminative
information of the target identity, this process can continue until it is capable of sampling the actual
training data. As shown in left panel of Fig. 5, the attack performance consistently improves with
additional rounds of fine-tuning, demonstrating the effectiveness of this approach.

Selecting high-quality pseudo-private data for density enhancement. The rationale behind
enhancing the density around high-quality pseudo-private data, rather than random reconstructed
ones, is that the former better reflect the characteristics of the private training data and are semantically
closer. Thus, this increases the probability of sampling the actual training data. The middle panel of
Fig. 5 compares the attack results of enhancing density around high-quality pseudo-private samples
and randomly selected recovered samples, demonstrating the effectiveness of this strategy.

Locating high-density neighbors using the discriminator. We investigate the effect of using the
discriminator D as an empirical density estimator to locate samples in high-density areas in Eqs. (6),
(9a), and (10a). The comparison results, with and without the discriminator, are shown in the right
panel of Fig. 5. The results indicate that MI performance decreases significantly without using the
discriminator, with an approximate 13-22% reduction in attack accuracy across different fine-tuning
methods. This demonstrates the effectiveness of incorporating D as a density estimator.

5 Conclusion

In this paper, we identify a fundamental limitation common to state-of-the-art generative MIAs, i.e.,
the utilization of a fixed prior during the inversion phase. We argue that this approach is sub-optimal
for MIAs. Accordingly, we introduce a novel inversion pipeline called pseudo-private data guided
MI (PPDG-MI), which, for the first time, involves iteratively tuning the distributional prior during
the inversion process using pseudo-private samples. This increases the probability of recovering
actual private training data. We propose multiple realizations of PPDG-MI and demonstrate their
effectiveness through extensive experiments. Our findings pave the way for future research on
generative MIAs and highlight the urgent need for more robust defenses against MIAs.

Acknowledgments

XP and BH were supported by NSFC General Program No. 62376235, Guangdong Basic and Applied
Basic Research Foundation Nos. 2022A1515011652 and 2024A1515012399, HKBU Faculty Niche
Research Areas No. RC-FNRA-IG/22-23/SCI/04, and HKBU CSD Departmental Incentive Scheme.
TLL was partially supported by the following Australian Research Council projects: FT220100318,
DP220102121, LP220100527, LP220200949, and IC190100031. FL is supported by the Australian
Research Council (ARC) with grant numbers DP230101540 and DE240101089, and the NSF&CSIRO
Responsible AI program with grant number 2303037.

10



References
Shengwei An, Guanhong Tao, Qiuling Xu, Yingqi Liu, Guangyu Shen, Yuan Yao, Jingwei Xu, and

Xiangyu Zhang. Mirror: Model inversion for deep learning network with high fidelity. In NDSS,
2022.

Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard Schölkopf,
and Alex J Smola. Integrating structured biological data by kernel maximum mean discrepancy.
Bioinformatics, 2006.

Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. Knowledge-enriched distributional model
inversion attacks. In ICCV, 2021.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In ICML, 2021.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In CCS, 2015.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Ristenpart.
Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In
USENIX Security, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 2012a.

Arthur Gretton, Karsten M Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J. Smola.
A kernel two-sample test. Journal of Machine Learning Research, 2012b.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In NeurIPS, 2017.

Gyojin Han, Jaehyun Choi, Haeil Lee, and Junmo Kim. Reinforcement learning-based black-box
model inversion attacks. In CVPR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via
boundary repulsion. In CVPR, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In CVPR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on sesame street! model extraction of bert-based apis. In ICLR, 2019.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When machine
learning meets privacy: A survey and outlook. ACM Computing Surveys, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

Blake Murdoch. Privacy and artificial intelligence: challenges for protecting health information in a
new era. BMC Medical Ethics, 2021.

11



Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In ICIP,
2014.

Bao-Ngoc Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Man Cheung.
Label-only model inversion attacks via knowledge transfer. In NeurIPS, 2024.

Ngoc-Bao Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Cheung.
Re-thinking model inversion attacks against deep neural networks. In CVPR, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, 2022.

Xiong Peng, Feng Liu, Jingfeng Zhang, Long Lan, Junjie Ye, Tongliang Liu, and Bo Han. Bilateral
dependency optimization: Defending against model-inversion attacks. In KDD, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, 2015.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
In ICLR, 2015.

Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correia, Antonia Adler, and Kristian
Kersting. Plug & play attacks: Towards robust and flexible model inversion attacks. In ICML,
2022.

Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Be careful what you smooth for: Label
smoothing can be a privacy shield but also a catalyst for model inversion attacks. In ICLR, 2024.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shujian Zhang, Hao Zhang, Bo Chen, and Mingyuan
Zhou. A prototype-oriented framework for unsupervised domain adaptation. NeurIPS, 2021.

Korawat Tanwisuth, Shujian Zhang, Huangjie Zheng, Pengcheng He, and Mingyuan Zhou. Pouf:
Prompt-oriented unsupervised fine-tuning for large pre-trained models. In ICML, 2023.

Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, and Alireza Makhzani. Variational
model inversion attacks. In NeurIPS, 2021a.

Qingzhong Wang, Pengfei Zhang, Haoyi Xiong, and Jian Zhao. Face.evolve: A high-performance
face recognition library. arXiv preprint arXiv:2107.08621, 2021b.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In CVPR, 2017.

Xi Yin, Ying Tai, Yuge Huang, and Xiaoming Liu. Fan: Feature adaptation network for surveillance
face recognition and normalization. In ACCV, 2020.

Xiaojian Yuan, Kejiang Chen, Jie Zhang, Weiming Zhang, Nenghai Yu, and Yang Zhang. Pseudo
label-guided model inversion attack via conditional generative adversarial network. In AAAI, 2023.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He,
Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. In CVPR, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer:
Generative model-inversion attacks against deep neural networks. In CVPR, 2020.

Huangjie Zheng and Mingyuan Zhou. Exploiting chain rule and bayes’ theorem to compare probability
distributions. In NeurIPS, 2021.

12



Appendix

A Detailed Related Work and Preliminary 14

A.1 Model Inversion Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.2 Distribution Discrepancy Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B The Algorithmic Realizations of PPDG-MI 17

C Experimental Details 17

C.1 Hard- and Software Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2 Evaluation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.3 Target Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.4 Attack Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.6 Experimental Details for Fig. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.7 Experimental Details for Toy Example From Sec. 3.3 . . . . . . . . . . . . . . . . 19

C.8 Investigate Distribution Alignment on High-dimensional Image Data . . . . . . . . 20

D Additional Experimental Results 21

D.1 Additional Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.2 Additional Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D.3 Visualization of Reconstructed Images . . . . . . . . . . . . . . . . . . . . . . . . 25

E Discussion 26

13



A Detailed Related Work and Preliminary

A.1 Model Inversion Attacks

Model inversion attacks (MIAs) were first introduced by Fredrikson et al. [2014] as a method
to reconstruct private data from outputs in simple regression tasks with shallow models. This
groundbreaking research highlighted the privacy risks of exposing sensitive data via model predictions.
Based on this foundation, Zhang et al. [2020] extended MIAs to more complex DNNs. They developed
a methodology that involved learning a distributional prior from a publicly available auxiliary dataset,
allowing for effective MIAs in a constrained latent space of the generator. Since these foundational
studies, MIAs have received increased attention, particularly in the realm of high-dimensional image
data. Recent research divides MIAs into three types based on the attacker’s access to the model:
white-box, black-box, and label-only settings. Each category represents varying levels of accessibility
and potential risk, which informs the ongoing development of defensive strategies in this area.

In the white-box setting, attackers have full access to the model, including its architecture and weights.
The first white-box attack on DNNs, generative model inversion attack [Zhang et al., 2020], utilized
generative adversarial networks (GANs) to learn a distributional prior and optimize within the latent
space. Subsequently, the knowledge-enriched distributional model inversion (KEDMI) attack [Chen
et al., 2021] employed a specialized GAN with an advanced discriminator that leverages information
from the target model. Wang et al. [2021a] proposed variational model inversion (VMI), which
uses a probabilistic approach with a variational objective to ensure both diversity and accuracy. This
evolution culminated in the Plug & Play Attack (PPA) [Struppek et al., 2022], which enhances the
recovery of images ranging from low to high resolution. Additionally, Nguyen et al. [2023] introduced
logit maximization (LOM) loss as an alternative to the cross-entropy (CE) identity loss previously
used in [Zhang et al., 2020, Chen et al., 2021, Wang et al., 2021a] and addressed issues of model
overfitting with the model augmentation technique. Moreover, Yuan et al. [2023] advanced MIAs
with the pseudo label-guided model inversion (PLG-MI), employing a conditional GAN (cGAN) and
max-margin loss, and using pseudo-labels to decouple the search space for different classes.

In the black-box setting, attackers lack direct access to the model’s internals but can still query the
target model a predetermined number of times to observe outputs for specific inputs, using this data
to infer sensitive information indirectly. An et al. [2022] adopted a genetic search algorithm as an
alternative to gradient descent in the black-box setting. While Han et al. [2023] developed the
reinforcement learning-based model inversion (RLB-MI) algorithm, formulating the latent vector
optimization as a Markov decision process (MDP) using reinforcement learning.

The label-only setting poses the greatest challenge in model inversion attacks, where attackers only
have access to the hard labels produced by the model, without any confidence scores or other related
information. Kahla et al. [2022] tackled this issue using the boundary-repelling model inversion
(BREP-MI) algorithm, which effectively utilizes the labels to simulate a gradient through max-margin
loss. This method effectively navigates toward the concentrated areas of the target class in the data
distribution by estimating model predictions across a conceptual sphere. Inspired by transfer learning
(TL), Nguyen et al. [2024] proposed the label-only via knowledge transfer (LOKT) method for
label-only model inversion, transferring knowledge from the target model to a target model-assisted
ACGAN (T-ACGAN), effectively turning the label-only scenario into a white-box setting.

A.2 Distribution Discrepancy Measure

This section introduces two measures used to evaluate the closeness between distributions P and Q:
maximum mean discrepancy (MMD) and conditional transport (CT).

Maximum Mean Discrepancy (MMD). Given two random variables X ∼ P, Y ∼ Q, the MMD
measure is defined as follows:

MMD(P,Q;F) := sup
f∈F
|E[f(X)]− E[f(Y )]|, (11)

where F is a class of functions [Gretton et al., 2012a]. This class is often restricted to a unit ball in a
reproducing kernel Hilbert space (RKHS) to facilitate analytical solutions [Gretton et al., 2012a],
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leading to the kernel-based MMD defined in the following,

MMD(P,Q;Hk) := sup
f∈H,∥f∥Hk

≤1

|E[f(X)]− E[f(Y )]|, (12)

where k is a bounded kernel chosen based on the specific properties of the RKHS Hk. The use of
RKHS allows for the effective computation of MMD, leveraging kernel functions to measure the
distance between the distributions in a high-dimensional feature space.

Estimation of MMD. Given sample sets SX = {xi}ni=1 ∼ P and SY = {yj}mj=1 ∼ Q, MMD
(Eq. (12)) can be estimated with the U -statistic estimator, which is unbiased for MMD2 [Gretton
et al., 2012a]:

M̂MD
2

u(SX , SY ; k) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

k(xi, xj) +
1

m(m− 1)

m∑
i=1

m∑
j=1,j ̸=i

k(yi, yj)

− 2

mn

n∑
i=1

m∑
j=1

k(xi, yj). (13)

where xi,xj ∈ SX and yi,yj ∈ SY . This estimator efficiently computes the MMD by aggregating
kernel evaluations over pairs of samples from both distributions.

Conditional Transport (CT). The CT measure provides a complementary approach to MMD by
focusing on the transport cost between distributions. It consists of two components:

CT(P,Q) := LX→Y + LY→X , (14)

where LX→Y and LY→X represent the transport costs for the forward and backward CT, respectively.
They are defined as follows:

LX→Y := Ex∼P(X)Ey∼Π(· |x)[c(x,y)], (15a)

LY→X := Ey∼Q(Y )Ex∼Π(· |y)[c(x,y)], (15b)

where Π(Y |X) = e−dψ(X,Y )Q(Y )∫
e−dψ(X,Y )Q(Y )dY

, and Π(X |Y ) = e−dψ(X,Y )P (X)∫
e−dψ(X,Y )P (X)dX

represent the condi-

tional distributions of Y given X and X given Y , respectively. Here, dψ(X,Y ) is a function
parameterized by ψ that measures the distance between X and Y , and c(x,y) is a cost function that
measures the distance between the points x and y.

Estimation of CT. Given sample sets SX = {xi}ni=1 ∼ P and SY = {yj}mj=1 ∼ Q, the CT measure
can be approximated as follows:

CT(SX , SY ) = LX→Ŷ + LY→X̂

= E
y1:m

iid∼ Q(Y )
Ex∼P(X)

 m∑
j=1

c(x,yj)Π̂(yj |x)


+ E

x1:n
iid∼ P(X)

Ey∼Q(Y )

[
n∑

i=1

c(xi,y)Π̂(xi |y)

]

=

n∑
i=1

m∑
j=1

c(xi,yj)

(
e−dψ(xi,yj)∑m

j′=1 e
−dψ(xi,yj′ )

+
e−dψ(xi,yj)∑n

i′=1 e
−dψ(xi′ ,yj)

)
. (16)

The CT measure evaluates the cost of transporting samples from one distribution to another, providing
a detailed assessment of how closely the distributions align.
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Algorithm 1 Pseudo-Private Data Guided Model Inversion with Vanilla Tuning.
Input: Target model M, pre-trained generator G(·;θ), pre-trained discriminator D(·;ϕ), public
auxiliary dataset Dpublic, number of fine-tuning rounds R, and the set of identities to be reconstructed
C.

1: θold ← θ;
2: reconstructed_samples = [];
3: for each target identity y in C do
4: θ ← θold;
5: for round = 1, . . . , R do
6: # Step-1. Model inversion on target model M
7: Initialize latent codes: Z = {zi | zi ∈ Z, i = 1, . . . , N};
8: Obtain optimized latent codes Ẑ using Eq. (1);
9: # Step-2. Select high-quality pseudo-private samples

10: Select pseudo-private samples with top-K stable prediction scores: Ds′
private =

TopK{E[PM(y|T (x̂))] | x̂ ∈ Ds
private};

11: # Step-3. Enhance density around Ds′
private

Fine-tune G(·;θ) and D(·;ϕ) to enhance density around Ds′
private by directly fine-tuning

them with the original GAN training objective on Dpublic ∪ Ds′
private;

12: end for
13: reconstructed_samples += Ds

private;
14: end for
15: Output: reconstructed_samples.

Algorithm 2 Pseudo-Private Data Guided Model Inversion with Point-wise or Batch-wise Tuning.
Input: Target model M, pre-trained generator G(·;θ), pre-trained discriminator D, number of fine-
tuning rounds R, identity set to be reconstructed C; point-wise tuning flag PW_Flag, distribution
discrepancy measure δ.

1: θold ← θ;
2: reconstructed_samples = [];
3: for each target identity y in C do
4: θ ← θold;
5: for round = 1, . . . , R do
6: # Step-1. Model inversion on target model M
7: Initialize latent codes: Z = {zi | zi ∈ Z, i = 1, . . . , N};
8: Obtain optimized latent codes Ẑ using Eq. (1);
9: Generate pseudo-private dataset: Ds

private = {x̂ = G(ẑ) | ẑ ∈ Ẑ};
10: # Step-2. Select high-quality pseudo-private samples
11: Select pseudo-private samples with top-K stable prediction scores: Ds′

private =

TopK{E[PM(y|T (x̂))] | x̂ ∈ Ds
private};

12: # Step-3. Enhance density around Ds′
private

13: if PW_Flag then
14: # Point-wise tuning
15: Locate high-density neighbors Zp by optimizing Eq. (6);
16: Fine-tune G(·;θ) to enhance density around Ds′

private by optimizing Eq. (7);
17: else
18: # Batch-wise tuning
19: if δ is MMD then
20: Locate high-density neighbors Zp by optimizing Eq. (9a);
21: Fine-tune G(·;θ) to enhance density around Ds′

private by optimizing Eq. (9b);
22: else if δ is CT then
23: Locate high-density neighbors Zp by optimizing Eq. (10a);
24: Fine-tune G(·;θ) to enhance density around Ds′

private by optimizing Eq. (10b);
25: end if
26: end if
27: end for
28: reconstructed_samples += Ds

private;
29: end for
30: Output: reconstructed_samples. 16



B The Algorithmic Realizations of PPDG-MI

This section presents the detailed algorithmic realization of the pseudo-private data guided model
inversion (PPDG-MI) method. We describe two variants of the PPDG-MI method, each tailored
for different MI scenarios. The first variant utilizes vanilla tuning (cf. Alg. 1), applicable for low-
resolution MIAs where the adversary trains a GAN from scratch. The second variant employs nuanced
point-wise or batch-wise tuning (cf. Alg. 2), suitable for high-resolution MIAs (i.e., PPA) where
pre-trained generators are provided without access to the original training details. These methods
are designed to enhance the density of pseudo-private samples under the prior distribution, thereby
increasing the probability of sampling from the private data distribution.

C Experimental Details

Table 4: A summary of experimental setups.

Type MIAs Private Dataset Public Dataset Target Model Evaluation Model

White-box

GMI /
KEDMI /
LOM

CelebA
CelebA /
FFHQ

VGG16 /
face.evoLVe

face.evoLVe

PPA
CelebA /
FaceScrub

CelebA
ResNet-18 /
DenseNet-121 /
ResNeSt-50

Inception-v3

Black-box RLB-MI CelebA CelebA VGG16 face.evoLVe

Label-only BREP-MI CelebA CelebA VGG16 face.evoLVe

C.1 Hard- and Software Details

In our experiments with Plug & Play Attacks (PPA), we conducted all of them on Oracle Linux Server
8.9 using NVIDIA Ampere A100-80G GPUs. The hardware operated under CUDA 11.7, Python
3.9.18, and PyTorch 1.13.1. For MIAs targeting low-resolution facial recognition tasks, we executed
these experiments on Ubuntu 20.04.4 LTS, equipped with NVIDIA GeForce RTX 3090 GPUs. This
setup utilized CUDA 11.6, Python 3.7.12, and PyTorch 1.13.1.

C.2 Evaluation Models

For experiments based on PPA, we train Inception-v3 evaluation models, following the
code and guidelines available at the repository https://github.com/LukasStruppek/
Plug-and-Play-Attacks. For training details, please refer to [Struppek et al., 2022]. These models
achieve test accuracies of 96.53% on FaceScrub and 94.87% on CelebA. In addition, We use the pre-
trained FaceNet [Schroff et al., 2015] from https://github.com/timesler/facenet-pytorch
to compute the K-nearest neighbors distance, providing a measure of similarity between training
samples and the reconstructed samples on the facial recognition tasks.

In experiments involving classifiers trained on the 64 × 64 resolution CelebA dataset, we
utilize an evaluation model available for download at repository https://github.com/
sutd-visual-computing-group/Re-thinking_MI. This model is built upon the face.evoLVe
model [Wang et al., 2021b], incorporating a modified ResNet50 backbone, and achieves a stated test
accuracy of 95.88%. For training details, please refer to Zhang et al. [2020].

C.3 Target Models

For training target models on 224 × 224 resolution CelebA and FaceScrub images, we adapt the
training scripts and hyperparameters provided in the corresponding code repository and described in
[Struppek et al., 2022]. The only training parameter we modify is the smoothing factor of the label
smoothing loss. All models are trained for 100 epochs using the Adam optimizer [Kingma and Ba,
2015], with an initial learning rate of 10−3 and β = (0.9, 0.999), and a weight decay of 10−3. We
reduce the learning rate by a factor of 0.1 after 75 and 90 epochs. The batch size is set to 128. All
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data samples are normalized with µ = σ = 0.5 and resized to 224× 224. The training samples are
then augmented by random cropping with a scale of [0.85, 1.0] and a fixed ratio of 1.0. Crops are
resized back to 224× 224, and samples are horizontally flipped in 50% of the cases.

For training target models on 64×64 resolution CelebA images, we use the training script provided at
https://github.com/sutd-visual-computing-group/Re-thinking_MI. These models are
trained for 50 epochs using the SGD optimizer with an initial learning rate of 10−2, a momentum
term of 0.9, and a weight decay of 10−4. The batch size is set to 64. The learning rate decay schedule
varies depending on the model; please refer to the training script for details.

C.4 Attack Parameters

PPA consists of three stages: pre-attack latent code selection, MIA optimization, and final results
selection. During pre-attack latent code selection, we choose 100 candidates for each target identity
from a search space of 500 latent codes for both CelebA and FaceScrub. In the MIA optimization
phase, we maintain an equal number of queries to the target model M to ensure a fair comparison for
both the baseline attack and PPDG-MI. Thus, samples are optimized for 70 steps for both CelebA and
FaceScrub in the baseline attack and 35 steps for each round of MIA in PPDG-MI. The final results
selection stage is omitted. We target the first 100 identities and generate 100 samples per identity.
Nonetheless, after some consideration, we believe that maintaining an equal number of queries to
the target model M in each round of MIA for both PPDG-MI and the baseline attack may be a more
reasonable approach to evaluate the performance of the proposed method.

For low-resolution attacks, we generate 1, 000 samples per identity for CelebA and 2, 000 samples per
identity for FFHQ, as training GANs typically require more samples. Specifically, for low-resolution
white-box attacks, we target the first 100 identities for CelebA and the first 50 identities for FFHQ.
Samples in GMI and LOM (GMI) are optimized for 2, 400 steps on the VGG16 target model and
1, 200 steps on face.evoLVe, while KEDMI and LOM (KEDMI) optimize samples for 1, 200 steps
on both target models. For PLG-MI, we target 50 identities of the CelebA dataset, generating 200
samples per identity. Samples are optimized for 80 iterations on VGG16 and face.evoLVe target
models. For black-box and label-only attacks, we limit our selection to the first 10 identities due to
the extremely time-consuming nature of point-wise optimization in these settings. In the black-box
attack (i.e., RLB-MI), samples undergo 10, 000 optimization steps in the baseline attack and in each
round of PPDG-MI. For the label-only attack (BREP-MI), the maximum number of optimization
steps is set to 1, 000 for both the baseline and each round of PPDG-MI.

Due to the significant time required for MIAs, we perform a single attack against each target model.
To reduce randomness, we generate at least 100 samples for each target class across various setups.

C.5 Evaluation Metrics

Attack Accuracy (Attack Acc). Following Zhang et al. [2020], we use an evaluation model
(typically more powerful than the target model) trained on the target model’s training data to identify
reconstructed images (cf. Tab. 4). Intuitively, it can be viewed as a proxy for a human evaluator.
Attack accuracy is calculated as the proportion of predictions matching the target identity; top-1
(Acc@1) and top-5 (Acc@5) attack accuracy is adopted.

K-Nearest Neighbors Distance (KNN Dist). KNN Dist represents the l2 distance between recon-
structed images and the nearest samples from the target model’s training data in the embedding space,
indicating visual similarity between faces. For PPA [Struppek et al., 2022], we use the penultimate
layer of pre-trained FaceNet [Schroff et al., 2015], whereas for other low-resolution MIAs, we adopt
the penultimate layer of the evaluation model. Lower distances indicate a closer resemblance between
the reconstructed samples and the training data.

C.6 Experimental Details for Fig. 1

We present the experimental details for generating Fig. 1. In the motivation-driven experiments, we
evaluate the distribution discrepancy between commonly adopted private training datasets and public
auxiliary datasets, and investigate the impact of distribution discrepancy on attack performance of
MIAs using various public auxiliary datasets and target models.
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(a) (b) (c) (d)

Figure 6: Impact of distribution discrepancies on MIAs across various settings. The attack
performance of MIAs is analyzed under four distinct combinations of public auxiliary datasets Dpublic
and target models M, with the same private training dataset Dprivate = CelebA: (a) Dpublic = FFHQ and
M = face.evoLVe, (b) Dpublic = FFHQ and M = IR152, (c) Dpublic = FaceScrub and M = face.evoLVe,
and (d) Dpublic = FaceScrub and M = IR152. The attack performance consistently diminishes as the
discrepancy between the Dprivate (CelebA) and D′

public increases.

In Fig. 1(a), we employ kernel-based two-sample tests to evaluate the distributional discrepancy
between public auxiliary datasets (FFHQ and FaceScrub) and the private dataset (CelebA). A p-value
of 0 signifies no statistical basis to reject the null hypothesis, indicating no discernible distribution
difference between the datasets. Conversely, a p-value of 1 implies definitive evidence to reject the
null hypothesis. We utilize a Gaussian Kernel-based test to calculate p-values at the feature level,
extracting a 512-dimensional feature vector from each image using the face.evoLVe feature extractor.
We analyze subsets of N feature vectors, with N varying from 1, 000 to 10, 000. Each subset is
sampled 20 times from both datasets, and the results represent the average of these samples.

In Figs. 1(b) and 1(c), we investigate the impact of distribution discrepancy on the attack performance
of MIAs (LOM and KEDMI) using VGG16 as the target model and face.evoLVe as the evaluation
model. The private dataset is CelebA, and the public auxiliary datasets are FFHQ and FaceScrub.
We construct the proxy public auxiliary dataset by incrementally integrating the private data into the
public auxiliary dataset, increasing the private data ratio by 20% at each interval, from 20% to 80%.
To manage computational demands, we measure MMD across batches of 250 images each, using
Gaussian kernels with a bandwidth of 1024. The final MMD value is the average result across all
batches. Additional results involving IR152 and face.evoLVe target models are shown in Fig. 6.

C.7 Experimental Details for Toy Example From Sec. 3.3

The target model used in the toy example is a simple 3-layer multilayer perceptron (MLP). This
MLP comprises two hidden layers, with the first containing 100 neurons and the second 200 neurons.
Each hidden layer is followed by a rectified linear unit (ReLU) activation function to introduce
non-linearity. The model is trained on a dataset sampled from a 3-class class-conditional Gaussian
distribution, employing standard cross-entropy for loss calculation. Training is performed for 6, 000
epochs using standard stochastic gradient descent (SGD) with an initial learning rate of 0.5, enhanced
by a linear warm-up schedule to increase the learning rate gradually.

The public auxiliary dataset, distinct from the training dataset to prevent distribution overlap, is
generated from a separate Gaussian distribution. The distributional prior is learned using a GAN,
where both the generator and discriminator are structured as MLPs with three hidden layers of 400
neurons each. All layers in both models are followed by ReLU activations. The GAN is trained
under the Wasserstein GAN with gradient penalty (WGAN-GP) [Gulrajani et al., 2017] framework to
ensure a stable training process and reliable generation of new data samples.

We employ the learned prior to guide the attack targeting Class 1. Initially, we randomly generate
1, 000 initial points and iteratively update them to maximize the model’s prediction score for Class 1
through minimizing an identity loss (i.e., cross-entropy loss), following the approach proposed by
Zhang et al. [2020]. We optimize this process using SGD with a learning rate of 0.1.

To ensure a fair comparison between the baseline and PPDG-MI, we ensure that both attacks make the
same number of queries to the model. Specifically, we query the model 1, 000 times in the baseline
attack. For PPDG-MI, we first conduct one round of model inversion, making 500 queries to the
target model to generate 1, 000 pseudo-private data points. Subsequently, we enhance the density of
the pseudo-private data under the prior distribution by directly aligning the distribution between the
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Figure 7: Illustration of the rationale behind PPDG-MI using a simple 2D example (larger
version). Training samples from Class 0-2 are represented by purple circles, blue triangles, and green
squares, respectively, while public auxiliary data are depicted as yellow diamonds. MIAs aim to
recover training samples from Class 1. Reconstructed samples by MIAs are shown as red circles.
(a) Attack results of the baseline attack with a fixed prior. (b) Pseudo-private data generation. (c)
Enhancing the density of pseudo-private data under prior distribution. (d) The final attack results of
PPDG-MI with the tuned prior, where all the recovered points converge to the centroid of the class
distribution, indicating the most representative features are revealed.

prior distribution and the empirical pseudo-private data distribution by minimizing the distribution
discrepancy between them. Then, we apply the fine-tuned prior to guide the second round of model
inversion, making 500 queries to the model.

The baseline attack results are shown in Fig. 7(a) and the final attack results of PPDG-MI are
shown in Fig. 7(d). It is evident that, in comparison to the baseline where only a small fraction
of the reconstructed samples fall within the high-density regions of the training data distribution,
all reconstructed samples from PPDG-MI are located in these high-density regions. Quantitatively,
the attack performance is evaluated by measuring two metrics: the average distance between the
reconstructed samples and the mean of the target class distribution, and the proportion of reconstructed
samples that lie in three standard deviations (3σ) of the mean. In comparison, the baseline achieves an
average distance of 0.34 and attack accuracy of 22.60%, and PPDG-MI achieves an average distance
of 0.04 and attack accuracy of 100.00%.

C.8 Investigate Distribution Alignment on High-dimensional Image Data

Table 5: Enhance density of pseudo-private data un-
der the prior distribution by distribution alignment.

Method Acc@1↑ KNN Dist↓

PPA 84.30 0.7136
+ PPDG with distribution alignment 17.62 1.1718

In this experiment, we aim to extend the den-
sity enhancement strategy from the toy exper-
iment to high-dimensional image data. We
use the pre-trained StyleGAN on FFHQ as the
distributional prior, with ResNet-18 trained on
the CelebA dataset as the target model. We
generate the pseudo-private dataset Ds

private by
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Table 6: Comparison of MI performance with representative white-box MIAs in the low-resolution
setting. The target model M is face.evoLVe trained on Dprivate = CelebA. GANs are trained on Dpublic
= CelebA or FFHQ. The symbol ↓ (or ↑) indicates smaller (or larger) values are preferred, and
the green numbers represent the attack performance improvement. The running time ratio (Ratio)
between prior fine-tuning and MI reflects the relative overhead of fine-tuning.

CelebA FFHQ
Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓

GMI 26.86 50.96 1646.93 / 11.77 28.96 1748.30 /
+ PPDG-vanilla (ours) 28.29 (+1.43) 51.83 (+0.87) 1635.62 (-11.31) 0.99 12.37 (+0.60) 30.04 (+1.08) 1739.78 (-8.52) 0.80

LOM (GMI) 67.96 87.26 1412.14 / 38.66 65.78 1539.27 /
+ PPDG-vanilla (ours) 72.35 (+4.39) 89.15 (+1.89) 1378.67 (-33.47) 1.02 48.32 (+9.66) 73.31 (+7.53) 1489.34 (-49.93) 1.03

KEDMI 87.16 98.14 1230.81 / 55.99 82.23 1406.98 /
+ PPDG-vanilla (ours) 87.82 (+0.66) 98.19 (+0.05) 1225.32 (-5.49) 17.65 57.54 (+1.55) 83.57 (+1.34) 1397.32 (-9.66) 66.44

LOM (KEDMI) 91.82 99.33 1275.39 / 71.81 94.00 1379.06 /
+ PPDG-vanilla (ours) 92.11 (+0.29) 98.52 (-0.81) 1249.85 (-25.54) 15.39 60.54 (-11.27) 80.04 (-13.96) 1441.34 (+62.28) 64.50

Table 7: Comparison of MI performance with PLG-MI in the low-resolution setting. Target model M
= VGG16 or face.evoLVe trained on Dprivate = CelebA. GANs are trained on Dpublic = FaceScrub.

VGG16 face.evoLVe
Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓

PLG-MI 33.59 56.54 1496.94 / 53.83 83.35 1430.78 /
+ PPDG-vanilla (ours) 34.70 (+1.11) 59.32 (+2.78) 1487.07 (-9.87) 3.26 56.08 (+2.25) 84.15 (+0.80) 1405.68 (-25.10) 2.74

conducting MIA on target identities 1-100, recovering 100 samples per identity, resulting in a total of
10,000 samples in Ds

private. We then increase the density around Ds
private under the prior distribution

P(Xprior) by fine-tuning G(·;θ) to align with the empirical distribution of Ds
private, using the CT

measure. The results are shown in Tab. 5, where we observe a dramatic decrease in MI performance
after fine-tuning the generator. This indicates that direct distribution alignment is less effective for
higher-dimensional image data, as it disrupts the generator’s manifold. Therefore, we need to employ
a nuanced tuning strategy with smaller perturbations to the image manifold.

D Additional Experimental Results

D.1 Additional Main Results

Comparison with white-box MIAs in the low-resolution setting. In this experiment, we utilize
the face.evoLVe as the target model. The results are presented in Tab. 6, where PPDG-vanilla
consistently outperforms various baseline white-box attacks, offering notable improvements in
both attack accuracy and KNN distance metrics across two public auxiliary datasets, CelebA and
FFHQ. For instance, in the LOM (GMI) setup, adding PPDG-vanilla results in an increase in top-1
attack accuracy from 68.09% to 71.39% for CelebA, and top-5 attack accuracy from 87.31% to
88.12%. Additionally, there is a reduction in KNN distance from 1417.23 to 1385.10 for CelebA.
Similarly, significant improvements are observed for FFHQ, where attack accuracy increases and
KNN distances decrease, indicating enhanced data density around pseudo-private samples. However,
there is a failure case involving the setup where the target model is face.evoLVe trained on CelebA,
with the public dataset as FFHQ. We attribute this failure to multiple factors, which are analyzed
in Appx. E. Generally, these results suggest that even with substantial distribution shifts between
the private dataset CelebA and the public dataset FFHQ, our principled vanilla fine-tuning strategy,
which retains the original GAN training objectives, can effectively improve MIA performance.

Comparison with PLG-MI in the low-resolution setting. In this setting, we use the state-of-the-art
white-box attack PLG-MI [Yuan et al., 2023] as the baseline for comparison. PLG-MI leverages the
target model to generate pseudo-labels for public auxiliary datasets, enabling the training of a cGAN
(conditional GAN) on this labeled data. This further decouples the search space across different
classes. However, the poor visual quality of samples generated by PLG-MI results in failure cases
(refer to Appx. E), limiting the effectiveness of PPDG-MI. Therefore, we manually select 50 identities
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Table 8: Comparison of MI performance with RLB-MI and BREP-MI in the low-resolution setting.
The target model M is VGG-16 trained on Dprivate = CelebA, GANs are trained on Dpublic = CelebA.
The symbol ↓ (or ↑) indicates smaller (or larger) values are preferred, and the green numbers represent
the attack performance improvement. The running time ratio (Ratio) between prior fine-tuning and
MI reflects the relative overhead of fine-tuning.

Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓

RLB-MI (black-box) 38.50 65.10 1431.93 /
+ PPDG-vanilla (ours) 61.60 (+23.10) 85.30 (+20.20) 1337.09 (-94.84) 0.02

BREP-MI (label-only) 66.40 92.20 1171.16 /
+ PPDG-vanilla (ours) 71.10 (+4.70) 93.10 (+0.90) 1165.17 (-5.99) 0.03

Table 9: Comparison of MI performance against state-of-the-art defense methods in the low-resolution
setting. The target model M is VGG16 trained on Dprivate = CelebA, GANs are trained on Dpublic =
CelebA. Bold numbers indicate superior results.

Method
LOM (GMI) KEDMI LOM (KEDMI)

Acc@1↑ KNN Dist↓ Acc@1↑ KNN Dist↓ Acc@1↑ KNN Dist↓

No Def. 63.19 1416.80 75.54 1297.79 84.10 1255.15

BiDO-HSIC 47.71 1521.50 37.69 1547.35 68.63 1417.85
+ PPDG-vanilla 58.74 1455.31 44.09 1512.79 69.68 1392.19

NegLS 25.40 1529.62 27.15 1576.57 64.73 1320.38
+ PPDG-vanilla 45.44 1415.76 30.82 1532.74 68.94 1308.09

with high-quality samples from 100 identities and present the quantitative results in Tab. 7. Integrating
PPDG-vanilla significantly improves MI performance. This improvement can be attributed to the
robust selection strategy, which identifies high-quality samples from all pseudo-private data, along
with fine-tuning using the original GAN training objectives to enhance density around high-quality
pseudo-private samples. These results indicate that even with a different GAN prior (i.e., cGAN),
PPDG-MI shows effectiveness with strong compatibility and outperforms SOTA white-box attack.

Comparison with Black-box MIAs in the low-resolution setting. In this setting, we use the SOTA
RLB-MI [Han et al., 2023] as the baseline for comparison, the results are shown in the upper part of
Tab. 8. Han et al. [2023] formulate the latent space search problem as a Markov decision process and
solve it using reinforcement learning, which requires tens of thousands of iterations for optimization,
leading to inefficiency and a low probability of sampling representative samples. Integrating PPDG-
vanilla significantly improves MI performance. This improvement can be attributed to the fine-tuning
of the GAN, which effectively enhances the density around the pseudo-private samples, thereby
increasing the probability of sampling representative samples. Our experiments demonstrate that
PPDG-vanilla boosts the top-1 attack accuracy from 38.50% to 61.60% and the top-5 attack accuracy
from 65.10% to 85.30% in the black-box setting, with a substantial reduction in KNN distance from
1431.93 to 1337.09. Additionally, the running time ratio indicates a minimal overhead of just 0.02.
These results highlight the effectiveness of our method in improving MI performance in the black-box
setting with minimal additional computational cost.

Comparison with Label-only MIAs in the low-resolution setting. In this setting, we use the
state-of-the-art BREP-MI [Kahla et al., 2022] as the baseline for comparison. The quantitative
results are presented in the upper part of Tab. 8. Kahla et al. [2022] introduces a boundary-repelling
algorithm to search for representative samples. This algorithm estimates the direction towards the
target class’s centroid using the predicted labels of the target model over a sphere. Typically, under a
radius threshold where the gradient estimator still works reliably, a larger sphere radius indicates a
higher-likelihood region around the sphere’s centroid. A qualitative illustration of the progression of
the reconstructed images towards the actual training images is depicted in Fig. 8. The upper part of
Fig. 8 shows the results of BREP-MI, while the lower part shows the results after integrating BREP-
MI with PPDG-vanilla. It is evident that with PPDG-vanilla, BREP-MI can find more representative
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Figure 8: A comparison of the progression of BREP-MI and BREP-MI integrated with PPDG-vanilla
from the initial random point to the algorithm’s termination, indicating that the latter achieves faster
convergence in the search process.

samples at a smaller radius. This demonstrates that our method effectively increases the density of
these regions, leading to faster convergence of the search process.

Attacks against SOTA model inversion defense methods. In the low-resolution setting, we evaluate
SOTA white-box attacks LOM (GMI), KEDMI, and LOM (KEDMI) against SOTA model inversion
defense methods, such as BiDO-HSIC [Peng et al., 2022] and NegLS [Struppek et al., 2024]. The
results, summarized in Tab. 9 demonstrate that our PPDG-MI consistently outperforms baseline
against BiDO-HSIC and NegLS. For instance, when using NegLS as the defense, PPDG-vanilla
significantly enhances both the top-1 attack accuracy and the KNN distance metrics. For the LOM
(GMI) attack, PPDG-vanilla improves the Acc@1 from 25.40% to 45.44%, and for KEDMI, it
increases it from 27.15% to 30.82%. Additionally, PPDG-vanilla shows improvements compared
with LOM (KEDMI) by enhancing Acc@1 from 64.73% to 68.94%, and decreasing KNN Distance
from 1320.38 to 1308.09. The enhanced MI performance on the target model trained with SOTA
defense methods further underscores the effectiveness of PPDG-MI.
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Table 10: Ablation study on the number K of
high-quality samples selected for fine-tuning.
"Time" (seconds per identity) denotes the time
required for fine-tuning a single identity .

Method K Acc@1↑ KNN Dist↓ Time↓

PPDG-PW
3 80.50 0.74 149
5 85.40 0.72 242
7 85.65 0.72 334
10 86.50 0.71 470

PPDG-MMD

5 88.30 0.70 70
10 89.90 0.70 119
15 88.75 0.69 174
20 87.60 0.69 240
25 86.95 0.69 298
30 87.30 0.703 344

PPDG-CT

5 86.95 0.69 96
10 88.15 0.69 167
15 87.45 0.68 238
20 88.75 0.68 305
25 86.60 0.68 378
30 86.35 0.68 451

Table 11: Ablation study on fine-tuning different
layers of the StyleGAN synthesis network. "Time"
(seconds per identity) denotes the time required for
fine-tuning a single identity.

Method Layers Acc@1↑ KNN Dist↓ Time↓

PPDG-PW
42 − 162 67.00 0.82 237
42 − 1282 84.65 0.73 242
42 − 10242 85.40 0.72 242

PPDG-MMD
42 − 162 73.35 0.77 111
42 − 1282 88.05 0.71 116
42 − 10242 89.90 0.70 119

PPDG-CT
42 − 162 64.90 0.83 165
42 − 1282 84.20 0.71 165
42 − 10242 88.15 0.69 167

D.2 Additional Ablation Study

D.2.1 MIAs in the High-resolution setting

Number K of high-quality pseudo-private samples. The choice of the number K of high-quality
pseudo-private samples affects the tuning intensity of the generator G, the informativeness of the
empirical local distribution, and the computational cost. In Tab. 10, we illustrate the MI performance
for different choices of K. As K increases, MI performance initially improves, reaching an optimal
point before it starts to decline. This trend can be attributed to two main factors. First, A higher
number of samples provides more detailed information about the local data distribution, allowing
the generator G to better capture the underlying characteristics of the data. This leads to an initial
improvement in MI performance. Second, As K becomes larger, the generator requires more
extensive tuning to accommodate the additional samples. This can result in significant changes
to the manifold, potentially disrupting the learned data structure and decreasing MI performance.
Additionally, larger K values substantially increase computational cost. Thus, considering all these
factors, we highlight the K values chosen for various fine-tuning methods in Tab. 10.

Fine-tune different layers. Given that the synthesis network in the StyleGAN generator consists of
18 layers—two for each resolution 42 − 10242—with earlier layers controlling higher-level features
(e.g., general hairstyle, face shape), and later layers controlling more fine-grained features (e.g., finer
hairstyle details), we investigate the effect of tuning subsets of these layers. In Tab. 11, we present the
results of incrementally adding layers for fine-tuning. Our study reveals that tuning layers with spatial
resolutions from 42 − 1282 achieves comparable results to tuning all layers, i.e., spatial resolutions
from 42−10242. This finding suggests that successful MIAs rely more on inferences about high-level
features (e.g., face shape) rather than fine-grained details, aligning with the main goals of MIAs.

D.2.2 MIAs in the Low-resolution Setting

Table 12: Ablation study on the number of
rounds of fine-tuning.

Rounds Acc@1↑ Acc@5↑ KNN Dist↓

Baseline 58.86 85.32 1341.36
1 67.55 89.24 1294.40
2 77.23 93.82 1237.87
3 80.59 94.29 1231.55
4 78.07 93.32 1259.94

In this section, we present all ablation studies
on MIA in the low-resolution setting to further
explore PPDG-MI. The target model, VGG16,
and the evaluation model, face.evoLVe, are both
trained on CelebA private dataset. GANs are also
trained from scratch on CelebA public dataset.
Unless otherwise specified, we use KEDMI as the
attack method and perform one round of GAN
fine-tuning. The size of the pseudo-private dataset
is 1, 000, and we fine-tune the GAN for 10 epochs.

Iterative fine-tuning. Fine-tuning the GAN with generated pseudo-private data increases the
probability of sampling data with characteristics closer to the actual private training data. We examine
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the impact of iterative fine-tuning on MI performance through experiments with different fine-tuning
rounds. We use LOM (GMI) as the attack method and present the results in Tab. 12. The results show
that MI performance improves with more fine-tuning rounds, suggesting that pseudo-private data
increasingly approximates private training data. However, after the third round, further fine-tuning
does not further improve MI performance as observed in earlier rounds. This decline could be due to
excessive fine-tuning, which may distort the image manifold and degrade MI performance.

Table 13: Ablation study on the number of
pseudo-private data used in GAN fine-tuning,
where |Ds

private| represents the size of the pseudo-
private dataset.

|Ds
private| Acc@1↑ Acc@5↑ KNN Dist↓

1000 81.99 97.36 1224.18
2000 84.43 98.73 1231.73
3000 88.64 99.05 1222.43
4000 79.65 97.57 1249.33
5000 78.26 98.50 1286.53

Impact of the size of the pseudo-private dataset
in GAN fine-tuning. In iterative GAN fine-tuning,
the pseudo-private data generated in each round
can potentially increase the probability of sam-
pling data with characteristics similar to the real
private data in subsequent rounds. This process
highlights the importance of determining an ap-
propriate size for the pseudo-private dataset to
achieve improved MI performance with an accept-
able level of fine-tuning overhead. We investigate
how MI performance is affected by varying the
size of the pseudo-private dataset, with the results
presented in Tab. 13. The results indicate a trend
where the MI performance initially improves and
then degrades. This suggests that increasing the size of the pseudo-private dataset up to a certain point
(e.g., 3, 000) can enhance MI performance. The observed decline in performance could be attributed
to the large amount of pseudo-data adopted, which increases the intensity level of fine-tuning and
thus disrupts the image manifold.

Table 14: Ablation study on the number of
epochs in GAN fine-tuning. "Time" (seconds
per identity) denotes the time required for fine-
tuning a single identity.

Epoch Acc@1↑ Acc@5↑ KNN Dist↓ Time

5 75.85 95.97 1251.84 553
10 77.79 96.19 1245.14 1130
15 80.29 97.24 1243.65 1690
20 81.15 97.35 1235.93 2260
25 83.59 98.38 1220.47 2822

Impact of the number of epochs in GAN fine-
tuning. During iterative GAN fine-tuning, effec-
tively utilizing pseudo-private data while reducing
computational overhead is essential. Therefore,
the number of tuning epochs is a crucial hyper-
parameter. This experiment examines the impact
of fine-tuning epochs on MI performance. Tab. 14
shows that MI performance consistently improves
as the number of GAN fine-tuning epochs in-
creases, indicating that the GAN effectively learns
and utilizes pseudo-private data. However, while
MI performance improves, the computational over-
head (i.e., fine-tuning time for each identity) in-
creases linearly with the number of epochs.

Table 15: Ablation study on identity-wise fine-
tuning vs. multi-identity fine-tuning.

Fine-tuning method Acc@1↑ Acc@5↑ KNN Dist↓

Single-identity 85.37 98.50 1207.53
Multi-identity 81.40 94.45 1225.42

Comparison of identity-wise fine-tuning vs.
multi-identity fine-tuning. Compared to fine-
tuning the GAN using a single identity, which is
specific to one identity and increases overhead,
fine-tuning with multiple identities as a whole can
significantly reduce computational costs. Thus,
we aim to investigate the MI performance of fine-
tuning the GAN based on both single-identity and
multi-identity approaches, respectively. The re-
sults, presented in Tab. 15, indicate that the MI performance of multi-identity fine-tuning decreases
by 4% compared to single-identity fine-tuning. Despite the reduction in computational overhead,
fine-tuning the GAN using multiple identities results in poorer MI performance. This is because
fine-tuning with multiple identities induces more intensive changes to the generator.

D.3 Visualization of Reconstructed Images

In this section, we provide qualitative evidence to demonstrate the effectiveness of our proposed
PPDG-MI. Results for high-resolution settings are illustrated in Figs. 9 and 10. Specifically, Fig. 9
presents a visual comparison of reconstructed samples for the first ten identities from three target
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models—ResNet-18, DenseNet-121, and ResNeSt-50—trained on the CelebA, using GANs pre-
trained on FFHQ. Fig. 10 shows a similar comparison for the same target models trained on the
FaceScrub, also using GANs pre-trained on FFHQ. For low-resolution settings, the results are shown
in Figs. 11 and 12. Fig. 11 illustrates reconstructed samples for the first ten identities from VGG16
trained on the CelebA private dataset, using GANs trained from scratch on the CelebA public dataset.
Fig. 12 depicts reconstructed samples for the first ten identities from VGG16 trained on the CelebA
private dataset, using GANs trained from scratch on the FFHQ public dataset.

E Discussion

Scope and Applicability of Model Inversion Attacks. Model inversion attacks (MIAs) have become
a critical area of research in assessing privacy risks, especially for discriminative models that handle
sensitive data. While MIAs can be effective in certain data types, tasks, and specific contexts, they
also face significant limitations, particularly in cases where the data lacks clear identity markers.

A notable limitation arises in their applicability to biomedical imaging, where MIAs face distinct
challenges. For instance, unlike identity-rich data like facial images, chest X-rays generally lack
identifiable features that can be easily linked to individuals. This absence of clear personal markers
complicates privacy risk evaluation, making it harder to assess the impact of MIAs.

Moreover, even in experimental settings using datasets like ChestXray8 [Wang et al., 2017], where the
primary goal is classification tasks such as diagnosing medical conditions, challenges persist. One key
concern is whether a reconstructed chest X-ray would represent a generic "average" image or contain
identifiable features unique to specific training samples. This issue arises from the inherent complexity
of chest X-rays, which often require specialized medical expertise for accurate interpretation.

In summary, MIAs are more effective in domains where data includes explicit identity markers,
leading to higher privacy risks as reconstructed images can closely resemble individuals from
the training data. However, in fields like biomedical imaging, where data lacks evident identity
characteristics, privacy risks are harder to quantify but remain an important area of concern.

Broader Impacts. In this paper, we propose a novel model inversion pipeline to enhance the
performance of generative model inversion attacks (MIAs), potentially providing new insights and
paving the way for future research. From a social perspective, our research on MIAs reveals significant
privacy vulnerabilities in machine learning models that, if misused, could compromise sensitive
training data. By revealing these risks, we aim to raise awareness and drive the development of robust
defense mechanisms and privacy-preserving algorithms that are crucial for enhancing the security of
machine learning systems. Overall, although our findings could be misused, the benefits of raising
awareness and improving security practices in machine learning systems far outweigh these concerns.

Failure Case Analysis. To better assess the feasibility of our proposed method, we closely examined
the reconstructed samples. In high-resolution scenarios, we observed that with a single fine-tuning
round, PPDG-MI exhibited minimal failures. However, with continued fine-tuning, the visual quality
of certain identities significantly deteriorated, indicating substantial alterations in the generator’s
manifold. Notably, these reconstructed samples still performed well on standard metrics despite poor
visual quality, suggesting potential overfitting to these metrics. This finding underscores a limitation
in current metrics, such as attack accuracy, which may lack robustness in such cases. Developing
more effective and resilient evaluation metrics is an important direction for future research.

In low-resolution scenarios, we observed a decline in visual quality and performance on standard
metrics for certain identities after a single round of attack, particularly in the case of LOM (KEDMI)
and PLG-MI. We hypothesized that this failure stems from the baseline attack that generates samples
with poor visual quality and insufficiently representative features of the target identities. These low-
quality samples negatively impact the quality of the samples produced by the fine-tuned generator.
With each subsequent fine-tuning round, these negative effects accumulated, progressively degrading
the generator’s manifold and leading to poorer visualization and MI performance. These findings
indicate that the generator’s capabilities may be insufficient to produce high-quality samples that
positively influence subsequent rounds of GAN fine-tuning, thereby impacting the effectiveness of
PPDG-MI. Therefore, utilizing more advanced generators represents a potential direction for better
demonstrating the advancements of PPDG-MI.
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Limitations of PPDG-MI. Conducting model inversion attacks is time-consuming, and the iterative
fine-tuning in our proposed PPDG-MI adds further overhead, as shown by the running time ratios
between the fine-tuning phase and model inversion phase in our experiments. However, our proposed
prior distribution tuning methodology provides a promising solution to mitigate the fundamental
distribution discrepancies between private and prior distributions. We hope our work will inspire
future research to develop more efficient and effective tuning methods.
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Figure 9: Visual comparison in high-resolution settings. We illustrate reconstructed samples for the
first ten identities in Dprivate = CelebA using GANs pre-trained on Dpublic = FFHQ.
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Figure 10: Visual comparison in high-resolution settings. We illustrate reconstructed samples for the
first ten identities in Dprivate = FaceScrub using GANs pre-trained on Dpublic = FFHQ.
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Figure 11: Visual comparison in low-resolutions settings. We illustrate reconstructed samples for the
first ten identities in Dprivate = CelebA using GANs trained from scratch on Dpublic = CelebA.
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Figure 12: Visual comparison in low-resolutions settings. We illustrate reconstructed samples for the
first ten identities in Dprivate = CelebA using GANs trained from scratch on Dpublic = FFHQ.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We reveal limitations of previous work in Section 3.1 through experimental
verifications. We propose a novel algorithm with several concrete implementations in
Section 3. The effectiveness of our approach is validated by extensive experiments presented
in Section 4 and further supported by additional results in Appendix D.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We primarily discuss the limitations of the proposed method in Section E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setups are briefly introduced at the beginning of Section 4,
and detailed in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our well-organized source code, complete with a detailed README, is
available at: https://github.com/tmlr-group/PPDG-MI.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the detailed experimental setups in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the significant time required for MIAs, we conduct a single attack
against each target model. To reduce randomness, we generate at least 100 samples for each
target class across various setups.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information about the hardware and software configurations in
Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We only utilize publicly available datasets to develop machine learning algo-
rithms aimed at promoting community development.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We primarily discuss the broader impacts of this work in Section E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers that produced the code packages or datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our well-organized source code, complete with a detailed README, is
available at: https://github.com/tmlr-group/PPDG-MI.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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