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Abstract

In a sequential regression setting, a decision-maker
may be primarily concerned with whether the fu-
ture observation will increase or decrease com-
pared to the current one, rather than the actual
value of the future observation. In this context, we
introduce the notion of parity calibration, which
captures the goal of calibrated forecasting for the
increase-decrease (or “parity") event in a time-
series. Parity probabilities can be extracted from
a forecasted distribution for the output, but we
show that such a strategy leads to theoretical un-
predictability and poor practical performance. We
then observe that although the original task was
regression, parity calibration can be expressed as
binary calibration. Drawing on this connection, we
use an online binary calibration method to achieve
parity calibration. We demonstrate the effective-
ness of our approach on real-world case studies
in epidemiology, weather forecasting, and model-
based control in nuclear fusion.

1 INTRODUCTION

Many tasks in the scope of prediction and decision making
are sequential in nature. A weather forecaster who uses some
procedure to make predictions for tomorrow, may find that
tomorrow’s events falsify these predictions. A good fore-
caster must then update their model before using it on the
following days. In this paper we study the sequential fore-
casting setting where the goal is to make predictions about
a sequence of real-valued outcomes 43, y2,... € Y C R us-
ing informative covariates X1, Xs, ... € X. In the presence
of inherent stochasticity or insufficient data, forecasters who
provide rich predictions in the form of complete distribu-
tions over the output allow us to reason about the inherent
uncertainties in the data stream [Gneiting et al., 2007]. If a

distributional prediction is available, a downstream decision-
maker can account for risks that were unknown at the time
of forecasting.

Often, a distributional forecast for the real-valued y; takes
the form of a predictive cdf (cumulative distribution func-
tion) for y;, which in this paper we typically denote as
F, Y — [0,1]. We sometimes write F} as F}(-|x;) or
Ft(-\xt, Yt—1,Xt—1,---,Y1,X1); this overloaded notation
allows us to be succinct when defining what it means for F
to be calibrated, but explicit when it is necessary to stress
that F, depends on all available knowledge. We also refer
to Ft’s as regression forecasts, as it models a continuous
distribution over the real-valued output.

In this paper, we are interested in the question: can we fore-
cast whether the future outcome y;; will be greater or less
than the current outcome y;? To motivate this question, con-
sider a hospital in the midst of a fast moving pandemic such
as COVID-19. It may be difficult for the hospital to compre-
hend absolute numbers of patients requiring hospitalization.
However, relative numbers are perhaps easier to interpret:
hospitals know the situation today, and would like to know
if it is going to worsen or improve tomorrow.

A domain expert (e.g. epidemiologist) may have produced a
regression forecast F’t for y;. The downstream user (e.g. hos-
pital) can then extract from F} a natural implied probability
of the next observation decreasing:

fort > 2, py = Fi(y_1 | x¢). (D

The hope of the hospital is that the forecasted probabilities
Py are parity calibrated, as defined next.
Definition 1 (Parity calibration). The forecasts {p; €
[0,1]}1=2,... 7 are said to be parity calibrated if
Yoo My < g1 }1{p: = p}
T -
21— H{pe = p}

—p,Vpe[0,1]. (2

In words, whenever a parity calibrated forecaster predicts
with probability p that y; < y;—1, the event 1{y; < ys—1}
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actually occurs with empirical frequency p (in the long
run). To avoid confusion with usage of the term “parity" in
fairness literature, we remark that our context is purely in
comparing two consecutive values.

Our first contribution is showing that even if F} is calibrated
(based on some accepted notions of calibration), the seem-
ingly reasonable strategy mentioned above (1) can have
devastating and unpredictable behavior (Section 1.1). Yet, it
stands to reason that the expert’s rich forecast F} should be
used in some way. Our second contribution is a methodology
for doing this (Sections 2 and 3). Our main methodology
described in Section 2.2 is based on the key observation
that although the parity calibration problem is derived from
a regression problem, it naturally reduces to a problem of
forecasting binary events.

1.1 REGRESSION CALIBRATION DOES NOT
GIVE PARITY CALIBRATION

A popular notion of calibration in regression is probabilistic
calibration [Gneiting et al., 2007]. The sequence F1, F5, ...
is said to be probabilistically calibrated if

1~ -
ZFt(Ft_l(p)) —>pa Vp S [07 1}7 (3)
t=1

el

where F; denotes the ground truth distribution. Probabilistic
calibration is also referred to as quantile calibration, since it
focuses on the quantile function being valid. In other works,
it has also been referred to as average calibration [Zhao et al.,
2020, Chung et al., 2021b, Sahoo et al., 2021], or simply
calibration [Kuleshov et al., 2018, Cui et al., 2020, Charpen-
tier et al., 2022, Marx et al., 2022]. We will henceforth refer
to this notion as quantile calibration.

Another notion of calibration in regression is distributional
calibration [Song et al., 2019], which assesses the con-
vergence of the full distribution of the observations to the
predictive distribution. A distribution calibrated forecaster
satisfies Vp € [0,1], VF € F,

Yo WF = FYR(F ()
S WE = F}
where F is the space of distributions predicted by F}. How-

ever, distributional calibration is an idealistic notion that
cannot be achieved in practice [Song et al., 2019].

- D “)

Recently, Sahoo et al. [2021] paired calibration with the
notion of threshold decisions and proposed threshold cali-
bration. Forecasts are said to be threshold calibrated if,

S Y E(y) < a}F (£ (p))
S H{E(yo) < a}
Yyo € YV, Ya € [0,1],Vp € [0,1].
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Figure 1: Snapshot of the first 300 points from one of our ex-
periment datasets (Pressure from Section 3.2) shows a quan-
tile calibrated forecaster that is highly parity miscalibrated.
(top) The expert forecasts F} are Gaussians, expressed in
the plot as prediction intervals [fi; — 264, i + 26¢]. This
prediction interval almost always contains ¥, and its reliabil-
ity diagram in Figure 4 (plot titled “Quantile Calibration")
confirms that F} is in fact quantile calibrated when con-
sidering the full timeseries. (bottom) For ¢ € [0, 40] and
t € [230,300], the parity probabilities p; = Fy(ys_1) as-
sign > 0.8 probability (red shaded areas) to 1{y; < y;_1}.
But y; actually decreases with much lower frequency dur-
ing these timesteps as can be seen from the top figure. The
parity miscalibration when considering the full timeseries is
confirmed by Figure 4 (plot titled “Prehoc").

Sahoo et al. [2021] show that distribution calibration implies
threshold calibration, but the converse may not hold.

A common aspect of the aforementioned notions of calibra-
tion is that they all assess how well-aligned the predictive
quantiles are to their empirical counterparts. The key differ-
ence among the notions is the conditioning over which this
assessment is performed.

Since calibration is regarded as a desirable quality of distri-
butional forecasts, one may wonder whether a calibrated Ft
is sufficient for parity calibration of the implied probabilities
as per Eq. (1). We show that this is not the case with the
following examples.

Synthetic example. Let N and N, denote the standard
normal distributions truncated at 0, with density functions
fo(@) = I{z < 0}/2/me /2 and f,(z) = 1{z >
0}\/2/me=*"/2 respectively. Let F_ and F, be the cdfs
of N_ and N,. Suppose the target sequence (Y3)52, is
distributed as

N_ iftisodd,
Yy ~ e
N, iftiseven.



Consider the following predictive cdf targeting Y7,

_ { 1P (y),ify <0,

F,=-F_+-F
! - 0.5+ LFy(y), ify > 0.

2 2

We note that when y < 0,3F_(y) € [0,0.5), and when
y >0.5,0.5+ L F (y) € [0.5,1]. It can be verified that the
corresponding quantile function is

Frlp) = F~1(2p),ifp < 0.5
F'(2p—1),if p > 0.5.

We verify that Ft is quantile calibrated (following Eq. (3)).
When tis odd, F; = F_.

* Vp €[0,0.5), K (F; ' (p) = F-(FZ'(2p)) = 2p.
), E7Np) = FRY2p — 1) > 0, thus
=F_(F{ (2p—1))_1.

* Vp € [0.5
Ft(Ffl(p))

When ¢ is even, F; = F.

Therefore, for p € [0,0.5), > F(F ' (p) =
T3 pisodd 2P = P+ O(T) — p, and the same can be
verified for p € [0.5,1], s
brated.

showing that Fyis quantile cali-

We can easily show that F} is also distribution and threshold
calibrated. Since Ft is constant for all ¢, following Eq. (4),
the space of predicted distributions is a singleton. Thus,
measuring distribution calibration is equivalent to measuring
quantile calibration, and Ft is distribution calibrated. Since
distribution calibration implies threshold calibration [Sahoo
et al., 2021], ﬁ‘t is threshold calibrated.

However, as we show next, F} is not parity calibrated.

Whentisodd, Y; ~ F_andY; 1 ~ F;. Thus ¥; <Y,
whereas p; = F3(Y;—1) > 0.5.

When t is even, Yi~Fyand Y,y ~ F_.ThusY; > Y,
whereas p; = F3(Y:—1) < 0.5.

Therefore, Vp; > 0.5, ]l{yt < g1} = 1and Vp; < 0.5,
Wy < yp—1} = 0, thus Fy is parity miscalibrated for all
pr € (0,1),1.e. all p, #Oor 1. O

Intuitively, the sequential aspect of predictions and observa-
tions is central to the notion of parity calibration, whereas
traditional notions of calibration effectively treat the data-
points as an i.i.d. or exchangeable batch of points. Figure 1
provides a visualization of how this pitfall can be manifested
in a practical example.

The implication is that methods designed to achieve tradi-
tional notions of calibration in regression cannot be expected
to provide parity calibration. The following section intro-
duces the posthoc binary calibration framework that can
instead be used to achieve parity calibrated forecasts.

2 PARITY CALIBRATION VIA BINARY
CALIBRATION

Define the parity outcomes as

fort > 2, v := 1{ys < ye1}, (5)

and observe that the parity calibration condition (Eq. (2)) is
equivalently written as,

Zthg v 1{p: = p}
ZtT:Q 1{p: = p}

Thus parity calibration is in fact targeting the binary se-
quence ¥, instead of ;. In this section, we show how this
connection allows us to leverage powerful techniques from
the rich literature of binary calibration that goes back four
decades [DeGroot and Fienberg, 1981, Dawid, 1982, Foster
and Vohra, 1998]. Of specific interest to us will be a class of
methods that have been proposed for posthoc calibration of
machine learning (ML) classifiers, which we review next.

— p,Vp € [0,1]. (6)

2.1 POSTHOC BINARY CALIBRATION

Let f : X — [0, 1] be a binary classifier that takes as input
a feature vector in feature space X and outputs a score in
[0, 1]. Suppose a feature-label pair (X,Y") is drawn from
some distribution P over X’ x {0,1}. Then, f is said to be
calibrated (in the binary sense) if

PY =1]f(X)) = f(X). ©)

The terms on either side of the equal sign are random vari-
ables and the equality is understood almost-surely. The con-
nection between (6) and (7) is evident: p; is like f(X),
conditioning on the random variable f(X) is akin to using
indicators in the numerator/denominator, and ¥ is like Y.

We do not expect ML models to be calibrated “out-of-
the-box™. So, if f is a logistic regression or neural net-
work trained on some training data, it is unlikely to sat-
isfy an approximate version of (7) on unseen data. Posthoc
calibration techniques transform f to a function that is
better calibrated by using a so-called calibration dataset
Dear = {(x1,91), (X2,Y2)s -+ -, (Xes Ye) }- Dear is a set of
points on which f was not trained—in practice D,y is often
just the validation dataset. Dy, is used to a learn a mapping
m : [0,1] — [0,1] so that m o f is better calibrated than
f- By way of an example, we now introduce the popular
Platt scaling technique [Platt, 1999] that will be central to



this paper (henceforth, Platt scaling is referred to as PS).
Given a pair of real numbers (a,b) € R?, the PS mapping
m®®: [0,1] — [0, 1] is defined as,

m®®(z) = sigmoid(a - logit(z) + b).

Here logit(z) = log(7%;) and sigmoid(z) = 1/(1 4 e™?)
are inverses of each other. Thus PS is a logistic model on
top of the f-induced one-dimensional feature logit(f(x)) €
[0, 1], instead of on the raw feature € X In the posthoc
setting, (a, b) are set to the values that minimize log-loss

(equivalently cross entropy loss) on Deq:

Um™P(f(xs)),ys),  (8)

(x5,Ys)EDeal

(6,3) = arg min
(a,b)ER?

where I(p,y) = —ylogp — (1 — y) log(1 — p).

We briefly note some other popular posthoc calibration meth-
ods. These broadly fall under two categories: parametric
scaling methods such as beta scaling [Kull et al., 2017],
temperature scaling [Guo et al., 2017], and PS [Platt, 1999];
and nonparametric methods such as binning [Zadrozny
and Elkan, 2001, Gupta et al., 2020, Gupta and Ramdas,
2021], isotonic regression [Zadrozny and Elkan, 2002], and
Bayesian binning [Naeini et al., 2015].

2.2 PARITY CALIBRATION USING ONLINE
VERSIONS OF PLATT SCALING (PS)

To achieve parity calibration using posthoc techniques, we
start with a base cdf predictor G : X — A(Y) derived from
an expert—such as an epidemiologist, a weather forecaster,
or a stock trader. Here, A())) refers to the space of distribu-
tions over ). If the expert is an ML engineer, such a G can
be obtained using Gaussian processes [Rasmussen, 2004]
or probabilistic neural networks [Nix and Weigend, 1994,
Lakshminarayanan et al., 2017], among other methods. The
test-stream occurs after G has been trained and fixed. This G
gives us a F} as described in the introduction: £}, = G (x¢).
Recall that the strategy Eq. (1) is to forecast p, = Ft (Yt—1)-
If F, were the true cdf of Y+ given the past, the above p;
would be the true probability of §; = 1, and thus the most
useful parity forecast possible.

However, in Section 1.1 we showed that we must modify
p¢ in order to achieve parity calibration. We propose us-
ing PS to perform this modification (any posthoc calibration
method can be used; we focus on PS in this paper). A natural
possibility would be to use an initial part of the test-stream
to learn fixed PS parameters once, as described in the previ-
ous subsection. However, real-world regression sequences
(weather, stocks, etc) have non-stationary shifting behavior
across time. Therefore, a fixed model is unlikely to remain
calibrated over time.

In Algorithm 1 we outline three ways to mitigate this. In-
creasing Window (IW) updates the PS parameters using all

Algorithm 1 Platt scaling (PS) variants for parity calibration

1: Input: Any base forecaster G : X — A()), covariate-
outcome pairs (x1,91), (X2,¥y2), ... € X X Y, update-
frequency uf, moving-window-size ws.

Output: PS forecasts (p}V, pMV, pOPS)22,

Initialize IW, MW, OPS parameters:

(@, bW) = (aMW pMW) = (qOPS 5OPS) « (1,0)

4: fort =2toT do

5 v =y <y}

6: P = G(x¢)[ye—1]

7. PV« sigmoid(a™ - logit(p;) + b™V)

8.

9

MY sigmoid(aMV - logit(p,) + bMY)
. pOPS — sigmoid(a®PS - logit(py) + bOPS)
10:  if ¢ is a multiple of uf then

11: (@™, ™) «— optimal PS parameters
based on (8) setting Dy = (X5, Us )iy
12: (@MW, BMW) < optimal PS parameters

based on (8) setting Dear = (X, Us ) bmy s t1
13:  endif
14: (a®PS,b9%8) <~ OPS((x1,71);- - -, (X¢,t))
15:  (OPS is Algorithm 2 in Appendix D)
16: end for

datapoints until some recent time step, such as every 100
timesteps (¢ = 100, 200, etc). A related alternative, Moving
Window (MW) is to use only the most recent datapoints
when updating the PS parameters (instead of all the points).
The third alternative is Online Platt Scaling (OPS) based on
our own recent work [Gupta and Ramdas, 2023].

In the following section, we compare these online versions
of Platt scaling on three real-world sequential prediction
tasks. We find that OPS performs better than the base model,
MW, and IW, across multiple settings. Further, while MW
and IW involve re-fitting the PS parameters from scratch,
OPS makes a constant time update at each step, hence the
overall computational complexity of OPS is O(T).

Brief note on theory and limitations of OPS. OPS satisfies
a regret bound with respect to the Platt scaling class for log-
loss [Gupta and Ramdas, 2023, Theorem 2.1]. This means
that the OPS forecasts do as well as forecasts of the single
best Platt scaling model in hindsight. However, we note that
OPS could fail if the best Platt scaling model is itself not
good. This limitation can be overcome by combining OPS
with a method called calibeating, as discussed in Gupta and
Ramdas [2023]. We do not pursue calibeating in this paper
since OPS already performs well on the data we considered.

3 REAL-WORLD CASE STUDIES

We study parity calibration in three real-world scenarios:
1) forecasting COVID-19 cases in the United States, 2)
forecasting weather, and 3) predicting plasma state evolution
in nuclear fusion experiments. This diverse set of domains,



datasets, and expert forecasters provides an attractive test-
bed to demonstrate the parity calibration concept and the
performance of the calibration methods from Section 2.2.

In each setting, the prediction target is real-valued, and we
assume an expert forecaster provides regression forecasts F,
for the target. We also refer to I, : ) — [0,1] as the base
regression model. The expert forecaster implicitly provides
parity probabilities p; (following Eq. (1)). We refer to p, as
the prehoc probabilities, in contrast to the posthoc probabil-
ities that the calibration methods produce. We calibrate p;
with the calibration methods from Section 2.2 to produce the
posthoc probabilities p;. Each calibration method requires
a set of hyperparameters, which we tune with a validation
set. Details regarding hyperparameter tuning are provided
in Appendix C.

Metrics. Given a test dataset Diegs = {X;, Y¢ } 11, We ini-
tially assess the quantile calibration of F} and the parity
calibration of p; and p; by visualizing the reliability dia-
grams and measuring calibration errors.

To assess quantile calibration of Ft, we produce the relia-
bility diagram using the Uncertainty Toolbox [Chung et al.,
2021a], which takes a finite set of quantile levels P = {p; €
[0, 1]}, computes the empirical coverage of the predictive
quantile Ft_l(Pi) as Piobs = % ZtT:1 Wy < Ft_l(l’i)}’
and plots each p; against p; . Calibration error is then
summarized into a single scalar with Quantile Calibration
Error (QCE), which is computed as ﬁ i | Disobs — pi |-
In our experiments, we set P to be 100 equi-spaced quantile
levels in [0, 1].

To assess parity calibration of a parity probability p;, we fol-
low the standard method of producing reliability diagrams in
binary calibration [DeGroot and Fienberg, 1981, Niculescu-
Mizil and Caruana, 2005]. Noting that p; is a predicted prob-
ability of the binary parity outcome ¥ := 1{y: < ys+—1},
we first bin j; into a finite set of fixed width bins B = {B,,, },
then for each bin B,,, we compute the average outcome as
obs(Bp,) = lBilm\ > t:peen,, H{yr = 1} and the average
prediction as pred(B,,) = ﬁ > vpieB,, Pr> and finally,
we plot pred(B,,,) against obs(B,,,) to produce the reliabil-
ity diagram. Parity Calibration Error (PCE) summarizes the
diagram following the standard definition of (¢;-)expected
calibration error (ECE): ) % | obs( By, ) —pred(By,) |-
In our experiments, we set B to be 30 fixed-width bins:
[0, 35): [55> 36)> - - - (55, 1.

For the parity probabilities p; and p}, we additionally report
sharpness and two metrics for accuracy: binary accuracy
and area under the ROC curve. Sharpness (Sharp) is com-
putedas ) @ - obs(B,,)? and measures the degree to
which the forecaster can discriminate events with different
outcomes [Brocker, 2009]. Binary accuracy (Acc) and area

Code is available at https://github.com/YoungseogChung/

parity-calibration
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the expert forecasts (left) and OPS calibrated probabilities (right).
Blue bars denote the frequency of predictions in each bin.

Figure 2: The prehoc parity probabilities for the COVID-
19 single-timeseries setting are miscalibrated and un-sharp.
Posthoc calibration via OPS improves both aspects.

under the ROC curve (AUROC) are computed following
their standard definitions in binary classification. Appendix
A provides the full set of details on how each metric is com-
puted. Lastly, in reporting the metrics in numeric tables, we
denote each metric with their orientation, e.g. 1 indicates
that a higher value is more desirable and vice versa.

3.1 CASE STUDY 1: COVID-19 CASES IN THE US

In response to the COVID-19 pandemic, research groups
across the world have created models to predict the short-
term future of the pandemic. The COVID-19 Forecast Hub
[Cramer et al., 2021] solicits and collects quantile forecasts
of weekly incident COVID-19 cases in each US state (plus
Washington D.C.), among other targets. Each week, the Hub
generates an ensemble forecast from the dozens of submit-
ted forecasts. This ensemble has proven to be more reliable
and accurate than any constituent individual forecast in pre-
dicting other targets of interest (e.g. mortality [Cramer et al.,
2022]). Thus, we take the ensemble forecast as the expert
forecast and use its historical forecasts made between 2020-
07-20 and 2022-10-24, which span a total of 119 weeks.
Denoting the target y as the number of cases, there are ef-
fectively 51 timeseries, {y;,}: one for each US state s €
{Alabama, Alaska, Arizona, ..., Wisconsin, Wyoming}, and
t € {1,...,119}. For any given s, t, the expert forecast
is provided by the Hub as seven forecasted quantiles for
the distribution of y, ;. Therefore, we must interpolate the
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Prehoc OPSalpha—order OPSranleO
PCE | 0.0599 0.0216 0.0246 +£ 0.0002
Sharp 1 0.2953 0.3087 0.3090 £ 0.00002
Acc 1 0.6309 0.6727 0.6737 £ 0.0001
AUROC 1 0.6922 0.7355 0.7357 £ 0.00002

Table 1: In the COVID-19 single-timeseries setting, OPS
improves the prehoc parity probabilities w.r.t all metrics. £
indicates mean =+ 1 standard error across 100 state orders.

Prehoc MW W OPS
PCE | 0.0599 0.0748 0.0406 0.0328
Sharp T 0.2953 0.2882 0.2839 0.2993
Acc T 0.6309 0.6237 0.6055 0.6522
AUROC 1 0.6922 0.6622 0.6403 0.7035

Table 2: In the COVID-19 sequential-batch setting, OPS
outperforms prehoc and alternative PS methods. Best value
for each metric is in bold.

quantiles to produce F, (see Appendix B.1 for details).

The observed targets ¥ ; are the incident number of cases
actually reported from each state, for each week. Figure 2a
visualizes a summary of the target timeseries: the total in-
cident number of cases in the US (= ), ys+). We can ob-
serve high non-stationarity, with periods of rapid increases
and falls, and other periods of long monotonic trends.

3.1.1 Parity calibration of expert forecasts and OPS

Note that the underlying timeseries {y, .} is indexed by
both state and time. We transform this to a fully sequential
timeseries by concatenating {y;;} chronologically across ¢
and in alphabetical order across s. In other words, within a
given week, we observe the number of cases for the states
in alphabetical order. We refer to this experiment setting as
the single-timeseries setting.

The reliability diagram in Figure 2b (left) shows that the
prehoc probabilities implied by the expert forecast () are
parity calibrated in the [0.25,0.75] region (i.e. higher pre-
dicted probabilities result in higher empirical frequencies),
but are miscalibrated otherwise. The distribution of p; dis-
played by the blue bars further indicate that p; is centered
around 0.5, an uninformative or less sharp prediction.

Figure 2b (right) displays the reliability diagram of pPFS. We
observe significant improvements in both parity calibration
and sharpness, i.e. pPFS is much more dispersed compared
to p;. The second column of Table 1 (labeled OPS,jpha-order)
show these improvements via the PCE and Sharp metrics,
and we can also observe improvement in accuracy.

One may question whether this improvement by OPS is
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Figure 3: (Decision making on the COVID-19 dataset) (left)
The Bayes optimal action for each predicted probability
of increase in number of cases. (right) Frequency of each
action taken by each method.

specific to the alphabetical order of states. In the third col-
umn of Table 1 (Iabeled OPS;an4100), We show the mean and
standard error of each of the metrics across 100 different ran-
dom orders of the states, and observe that the improvements
provided by OPS over prehoc are fairly robust.

3.1.2 Comparing calibration methods

We perform an additional experiment to compare the perfor-
mance of MW, IW and OPS. In this experiment, we assume
a more realistic test setting for the data-stream. At each
timestep ¢, we assume we observe cases from all 51 states,
{ys.+}5L,, and update the PS parameters with this batch of
data. We then fix the PS parameters and calibrate the next
full batch of predictions for timestep ¢ + 1. This settings as-
sumes that PS parameters are updated once per week based
on all the data observed during the week. We refer to this
experiment setting as the sequential-batch setting.

The first 20 weeks of data (i.e. 20 weeks x 51 states = 1020
datapoints) were used to tune the hyperparameters of each
method. The subsequent 99 weeks of data was used for
testing. Table 2 displays the results of the sequential batch
setting (note that the prehoc values are the same for this
setting as in Table 1). OPS is the best performing method
on all metrics when compared with MW, IW, and prehoc.

3.1.3 Decision-making with parity probabilities

In this section, we demonstrate the utility of OPS in a
decision-making setting where parity outcomes (Eq. (5))
dictate the loss incurred. Using the same COVID-19 dataset,
we assume a setting where a policymaker (i.e. the decision-
maker) at each timestep must decide among three levels of
restrictions for disease spread prevention: Tight, Mild, or
None. For any chosen level of restriction, the loss is dic-
tated by the parity outcome in the number of cases, and
the policymaker’s goal is to minimize cumulative loss. A
Bayes optimal policymaker will always choose an action
which minimizes the expected loss, calculated with a predic-
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Figure 4: OPS significantly improves both parity calibration and sharpness of the base regression model predicting Pressure.
The left two plots display the quantile calibration and parity calibration of the base model (Prehoc): it is nearly perfectly
quantile calibrated, but terribly parity calibrated. Blue bars denote the frequency of predictions in each bin.

tive distribution over the loss [Lehmann and Casella, 2006].
Hence the policymaker will assess the optimality of each
action based on predicted parity probabilities.

We design an exemplar loss function Iy, decision @ follows:

# Cases Tight=1 Mild=2 None =3
Increase=1 ;1 =03 [l12=06 1I;3=1(max)
Decrease=2 lp1 =05 [l32=0.2 I35 =0 (min)

Given this loss function, the Bayes optimal action is visu-
alized in Figure 3 (left). On computing the the cumulative
loss incurred with the predicted parity probabilities, we find
that OPS incurs the lowest cumulative loss.

MW IW  OPS
2177 2196 2050

Prehoc
2119

Loss |

Figure 3 (right) shows the frequency of each action chosen
by each method. We observe that OPS chooses Mild with
relatively low frequency, which is a result of sharper and
more accurate parity probabilities. We further note that IW
results in a worse loss than prehoc despite being better par-
ity calibrated (Table 2). To understand this, notice that IW
is also less sharp and less accurate than Prehoc. Thus cali-
bration, while a desirable quality, is not the only aspect to
assess for good uncertainty quantification—sharpness and
accuracy could also affect decision making.

3.2 CASE STUDY 2: WEATHER FORECASTING

Our second case study examines weather forecasting us-
ing the benchmark Jena climate modeling dataset [2016],
which records the weather conditions in Jena, Germany,
with 14 different measurements, in 10 minute intervals, for
the years 2009—2016. We did not have access to historical
predictions from an expert weather forecaster, so instead we
trained our own base regression model.

We follow the Keras tutorial on Timeseries Forecasting for
Weather Prediction' to define our specific problem setup and

1 . . . . .
https://keras.io/examples/timeseries/timeseries_

weather_forecasting/

1080 40
—— Temperature

1060 4

N
o

1040 4

o

1020 4

|
N
o

1000

Pressure (mbar)
Temperature (degC)

980 F—40

960
F—60

940

200° 2080 200 o 20

Figure 5: Snapshots of 4 years from the Temperature and
Pressure timeseries display noise around a cyclical trend.

train our base regression model. In summary, the regression
model is implemented with an LSTM network [Hochre-
iter and Schmidhuber, 1997] which predicts the mean and
variance of a Gaussian distribution. We trained 7 different
models that each predict one of 7 weather features: Pres-
sure, Temperature, Saturation vapor pressure, Vapor pres-
sure deficit, Specific humidity, Airtight, and Wind speed.
Appendix B.2.1 provides more details on the problem setup.

Lastly, we note that unlike the COVID-19 data, the weather
data (Figure 5) displays high levels of noise around a cycli-
cal, repeating trend.

Results on Pressure timeseries. We first examine results
from one of the 7 models predicting Pressure. Figure 4
displays quantile calibration (i.e. probabilistic calibration) of
the base model, and parity calibration before and after MW,
IW and OPS are applied to the prehoc parity probabilities.
We first note that the base model is almost perfectly quantile
calibrated, but terribly parity calibrated, which corroborates
our argument from Section 1.1, that calibration in regression
does not imply parity calibration. In the same plot, we can
see that MW, IW and OPS are all able to improve parity
calibration, but the numerical results in Table 3 show that
OPS produces superior parity probabilities w.r.t. all of the
metrics considered.

Binary classifiers as expert forecasters. While we have
so far assumed that the expert forecaster provides regres-
sion models F}, one may argue that an expert forecaster
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QCE | PCE | Sharp 1 Acc 1 AUROC 1
Prehoc  0.01812:0.0026 0.349320.0015 0.301940.0004 0.4044-:0.0006 0.35254:0.0012
MW N/A 0.0278-£0.0005 0.300540.0004 0.6124+0.0008 0.6410-20.0012
W N/A 0.0322:£0.0005 0.301320.0004 0.6147+0.0009 0.6450-20.0013
OPS N/A 0.0148-:0.0002 0.31720.0004 0.6525+0.0007 0.7056--0.0010

Table 3: OPS improves the overall quality of parity probabilities from the base regression model predicting Pressure. +
indicates mean + 1 standard error, across 50 test trials. Best value for each metric is in bold.

PCE | Sharp 1 Acc 1 AUROC 1
Prehoc  0.025840.0005 0.3008+0.0007 0.6069+0.0011 0.6474+0.0016
MW 0.020140.0005 0.3002+0.0007 0.6050+0.0012 0.6439+0.0017
W 0.016640.0003 0.3003£0.0008 0.6068+0.0010 0.6456+0.0016
OPS 0.015040.0001 0.3232+0.0006 0.6665+0.0007 0.7275+0.0007

Table 4: While MW, IW, OPS all improve parity calibration of the base classification model for Pressure (Prehoc), OPS is
the only method that improves all metrics simultaneously. & indicates mean =+ 1 standard error, across 50 test trials. Best

value for each metric is in bold.
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Figure 6: The base classification model for Pressure (Prehoc)
is better parity calibrated than the base regression model
(Figure 4 Prehoc), but OPS still improves its parity calibra-
tion and sharpness.

may be well-aware that the downstream user is primarily
concerned with parity probabilities. Accordingly, the expert
may choose to directly model parity probabilities in the
context of a binary classification problem.

In Figure 6 and Table 4, we show results from training a base
binary classifier with parity outcome labels and applying
posthoc calibration. As expected, the prehoc parity prob-
abilities of the binary classification model is significantly
better calibrated than the regression model. Posthoc cali-
bration still improves parity calibration further, especially
in the case of OPS. In fact, OPS is the only method which
improves all of the metrics simultaneously, while MW and
IW notably worsen sharpness and AUROC. The full set of
reliability diagrams is provided in Figure 10 in Appendix
B.2.2.

Results across all 7 timeseries. Table 6 in Appendix B.2.2
shows each metric averaged across all 7 prediction targets:
Table 6a displaying results with the base regression model,
and 6b that of the base classification model. The pattern

observed for the Pressure timeseries tend to hold on average
across all 7 timeseries.

3.3 CASE STUDY 3: MODEL-BASED CONTROL
FOR NUCLEAR FUSION

Nuclear fusion is the physical process during which atomic
nuclei combine together to form heavier atomic nuclei,
while releasing atomic particles and energy. Although fu-
sion is possibly a safe, clean, and fuel-abundant technology
for the future [Morse, 2018], there are various challenges to
realizing fusion power, one of which is controlling nuclear
fusion reactions [Humphreys et al., 2015].

Recently, model-based control methods, where a dynamics
model of the system is learned and used to optimize control
policies, has emerged as an effective control method for fu-
sion devices [Abbate et al., 2023]. To the experimenter utiliz-
ing the dynamics model, it is of significant interest to know
when certain signals will increase, and whether the dynam-
ics model assigns correct probabilities to the events [Char
et al., 2021]. In this section, we consider the problem of
predicting the parity of S, which is a signal indicating
reaction efficiency in a fusion device called a tokamak.

To this end, we design our empirical case study as fol-
lows. We take a pretrained dynamics model which was
trained with a logged database of 10294 fusion experi-
ments (referred to as “shots”) conducted on the DIII-D
tokamak [Luxon, 2002], a device in San Diego, CA, USA.
This pretrained model has been used for model-based policy
optimization for deployment in actual fusion experiments
on this device [Char et al., 2021, Seo et al., 2021, Abbate
et al., 2021]. The model architecture is a recurrent proba-
bilistic neural network (RPNN), which is a recurrent neural
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Figure 7: All methods (MW, IW, OPS) perform equally well in calibrating the Prehoc parity probabilities of the nuclear
fusion dynamics model. The left two plots display the quantile calibration and parity calibration of the base dynamics model.

QCE | PCE | Sharp 1 Acc 1 AUROC 1
Prehoc  0.0108+0.0003 0.257120.0003 0.3243+0.0002 0.7727--0.0003  0.8536--0.0002
MW N/A 0.0266:0.0002  0.3345+0.0002 0.7665--0.0003  0.8463-0.0002
W N/A 0.02910.0002  0.3385£0.0002 0.7726--0.0003 0.8533-:0.0002
OPS N/A 0.0261-:0.0002 0.3334:0.0002 0.7629-:0.0002 0.8440--0.0002

Table 5: MW, IW, and OPS all improve parity calibration and sharpness of the Prehoc fusion dynamics model predicting 5y,
while maintaining roughly the same level of accuracy. & indicates mean =+ 1 standard error, across 50 test trials. Best value

for each metric is in bold.

BetaN State Transitions

0.4

0.2

0.0

Standardized BetaN

-0.4

400 600 800 1000

Timestep

Figure 8: State transitions of the Sy signal during nuclear
fusion experiments (“shots”) concatenated across 50 train-
ing shots resemble trend-less noise.

network with a Gaussian output head. We refer the reader to
Appendix B.3.1 for more details of the dynamics model and
dataset. For testing, we allocate a set of 900 held-out test
shots. On this test set, we produce the model’s distributional
predictions for Sy as the expert forecast. We concatenate
the forecasts and the actual observed 3y values across the
900 test shots in chronological order into a single timeseries
to assess parity calibration.

Figure 7 and Table 5 indicate that the expert forecast (Pre-
hoc) is quantile calibrated but parity miscalibrated. The
accuracy metrics in Table 5 indicate that despite prehoc’s
poor parity calibration, the model is still highly predictive,
with an AUROC > 0.85. MW, IW and OPS significantly
improve parity calibration and sharpness, while maintaining
roughly the same level of accuracy.

We note that the S timeseries, as displayed in Figure 8,
tends to fluctuate rapidly, between timesteps and between
shots, almost resembling white noise. The pretrained model
still manages to model the signal well, and assigns correct

tendencies of increases/decreases in Sy : the relibility dia-
gram of prehoc in Figure 7 shows that although the parity
probabilities are not aligned with the empirical frequen-
cies, they predict higher probabilities for actually higher
frequency events. We believe this provides for a relatively
easy posthoc calibration problem, thus all methods (MW,
IW, OPS) perform equally well. Hence, this case study high-
lights the significance of the base model’s initial parity prob-
abilities, especially in alleviating the difficulty of posthoc
calibration.

4 CONCLUSION

We considered the problem of forecasting whether a
continuous-valued sequence is going to increase or decrease
at the next time step. Such scenarios, where relative changes
are more interpretable than actual values, are ubiquitous:
COVID-19 cases per day, weather, or stock prices. In this
context, we proposed the notion of parity calibration. To
be parity calibrated, a forecaster must predict probabilities
for the outcome increasing at the next time step, and these
probabilities should be calibrated in the binary sense.

A decision-maker may attempt to achieve parity calibration
by using regression forecasts produced by an expert fore-
caster. However, this is unlikely to give parity calibration.
Instead, we proposed the usage of posthoc binary calibra-
tion techniques to achieve parity calibration. Specifically,
we advocated for a recently proposed online Platt scaling al-
gorithm (OPS) in this setting. In three real-world empirical
case studies, OPS consistently improves the overall quality
of parity probabilities compared to the expert forecaster.
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