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ABSTRACT

Humans possess an extraordinary ability to selectively focus on the sound source
of interest amidst complex acoustic environments, commonly referred to as cock-
tail party scenarios. In an attempt to replicate this remarkable auditory atten-
tion capability in machines, target speaker extraction (TSE) models have been
developed. These models leverage the pre-registered cues of the target speaker
to extract the sound source of interest. However, the effectiveness of these mod-
els is hindered in real-world scenarios due to the unreliable or even absence of
pre-registered cues. To address this limitation, this study investigates the inte-
gration of natural language description to enhance the feasibility, controllabil-
ity, and performance of existing TSE models. Specifically, we propose a model
named LLM-TSE, wherein a large language model (LLM) extracts useful seman-
tic cues from the user’s typed text input. These cues can serve as independent
extraction cues, task selectors to control the TSE process or complement the pre-
registered cues. Our experimental results demonstrate competitive performance
when only text-based cues are presented, the effectiveness of using input text as
a task selector, and a new state-of-the-art when combining text-based cues with
pre-registered cues. To our knowledge, this is the first study to successfully incor-
porate LLMs to guide target speaker extraction, which can be a cornerstone for
cocktail party problem research. Demos are provided at https://github.com/LLM-
TSE/llm-tse.github.io1

1 INTRODUCTION

The “Cocktail Party Problem” (E. Colin, 1953) – a term coined to describe a scenario where multi-
ple sound sources are engaged in simultaneous conversation, yet a listener can selectively concen-
trate on a single sound source. This scenario represents a complex challenge in auditory percep-
tion (Haykin & Chen, 2005; Mesgarani & Chang, 2012; Bizley & Cohen, 2013) and serves as a
remarkable demonstration of the intricate sound processing that occurs within the human auditory
system. The human auditory system manages this complexity with remarkable efficacy, seemingly
with ease. However, machines, such as hearing-aid devices (Shinn-Cunningham & Best, 2008),
teleconferencing systems (Chen et al., 2020; Raj et al., 2021; Yoshioka et al., 2018), and hands-
free human-machine interfaces (e.g., TVs, smartphones) (Gannot et al., 2017), encounter significant
challenges in the context where multiple speakers talk at the same time.

Studies on computational auditory scene analysis (CASA) (Lyon, 1983; Meddis & Hewitt, 1991;
Seltzer et al., 2003; Wang & Brown, 2006), non-negative matrix factorization (NMF) (Cichocki
et al., 2006; Virtanen, 2007; Parry & Essa, 2007), and factorial Hidden Markov Models and Gaus-
sian Mixture Models (HMM-GMM) (Virtanen, 2006; Stark et al., 2011) provide invaluable insights
into solving the cocktail party problem. However, these methods are often limited by the represen-
tation power of their models, resulting in poor performance in complex acoustic environments. The
advent of deep learning has paved the way for the application of deep neural networks (DNNs) in
addressing this challenging problem. These existing DNN-based techniques can be broadly classi-
fied into two main categories: blind source separation (BSS) (Pal et al., 2013; Hershey et al., 2016;
Yu et al., 2017; Luo & Mesgarani, 2019) and target speaker extraction (TSE) (Luo et al., 2018;
Žmolı́ková et al., 2019; Xu et al., 2020; Ge et al., 2020; Pan et al., 2022; Zmolikova et al., 2023).

1Source code and datasets will be publicly available after review.
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Figure 1: Comparison between the conventional TSE system and our proposed Text-Guided TSE
system. The conventional systems rely on the pre-registered voiceprint of the target speaker as an
extraction cue, while our system offers the flexibility to incorporate text-based cues to facilitate the
target speaker extraction.

BSS techniques usually adopts DNNs to estimate an auditory mask for each speaker. The mask is
then leveraged to separate each speaker’s voice into an individual stream from the mixture speech
captured by a microphone. A difficulty in this process is the problem of global permutation am-
biguity (Hershey et al., 2016), which occurs when attempting to accurately assign the output of a
multi-source separation system to the correct source. To address this ambiguity problem, deep clus-
tering (DC) techniques (Hershey et al., 2016; Isik et al., 2016; Wang et al., 2018) were proposed
to group the spectro-temporal features belonging to the same speaker together through a clustering
scheme. Permutation invariant training (PIT) (Yu et al., 2017; Kolbæk et al., 2017) was invented by
finding the minimal loss over all the permutations between the extracted streams and the reference
speeches. Typically, these methods require prior knowledge or estimation of the number of speak-
ers in the mixture. However, in real-world scenarios, the number of speakers is hard to predict in
advance.

Target speaker extraction provides an alternative solution to address the challenges of the unknown
number of speakers and global permutation ambiguity. This approach involves providing a cue
that is related to the desired speaker, such as a pre-recorded speech describing the voice characteris-
tics (Xu et al., 2020), a spatial cue indicating the speaker’s direction (Ge et al., 2022), or synchronous
lip movement (Pan et al., 2022). By using these specified cues, only the target speaker’s voice is
extracted, thereby avoiding the issue of the unknown number of speakers and global permutation
ambiguity. However, these pre-registered cues may vary substantially or even be absent in real
environments, limiting the effectiveness of these systems.

To overcome the aforementioned limitation, as shown in Figure 1, we propose a novel text-guided
TSE model, LLM-TSE, incorporating text descriptions as additional cues to enhance the feasibil-
ity, controllability, and performance of existing TSE models. Specifically, we leverage the power
of large language models (LLMs) to extract meaningful semantic cues from the user’s typed text
input. These text descriptions encompass various aspects of human auditory perception, including
speaker characteristics, language, conversation contents, room characteristics, etc. These cues can
serve as independent extraction cues, task selectors to control the TSE process or complement the
pre-registered cues. By incorporating text descriptions as additional cues, we demonstrate that the
performance of TSE models is significantly enhanced in various scenarios. The contributions of this
work can be summarised as follows:

• To the best of our knowledge, this is the first study to utilize natural language description as
extraction cues for target speaker extraction. We show these semantic cues possess high discrim-
inative power and, therefore, can significantly enhance the feasibility of existing TSE methods.

• Our system implements a control mechanism through the natural language description to facil-
itate the speaker extraction process. This approach enables us to selectively retain or remove
the source of interest based on the semantic concepts expressed in the text. By using text as a
control mechanism, our system becomes a unified and flexible approach that eliminates the need
for training multiple systems.

• Our system represents a significant advancement in TSE by integrating context-dependent in-
formation from typed descriptions with pre-registered cues. Unlike traditional cues, typically
pre-recorded and isolated from the current acoustic environment, Our system captures comple-
ment cues from human perception. By incorporating additional cues that align with human
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Figure 2: New application scenarios enabled by the proposed LLM-TSE model.

perception, our system achieves a more accurate and comprehensive representation of speech
mixtures, thereby improving the effectiveness of TSE in practical scenarios.

2 TEXT-GUIDED TARGET SPEAKER EXTRACTION

The proposed LLM-TSE model opens up a plethora of novel application scenarios, surpassing the
capabilities of traditional TSE techniques. As depicted in Figure 2, these application scenarios can
be divided into the following four categories:

Use text as transcription snippets: Humans utilize discernible cues in relatively clean speech
segments to enhance the perception of highly corrupted speech segments. Analogously, the LLM-
TSE model can leverage distinguishable acoustic cues, in the form of transcription snippets, to
facilitate speaker extraction, surpassing the capabilities of current TSE models.

Use text as semantic description: Apart from the above content-based cues, humans employ many
other perceptual cues based on the distinguishing characteristics between competing speakers, such
as gender, language, loudness level, and reverberation in the audio signal. The LLM-TSE model
enables users to incorporate such perceptual cues as text-based semantic descriptions to exert control
over the process of target speaker extraction. Notably, these perceptual cues can be considered as
independent pre-registered cues.

Use text as a task selector: During a conversation involving multiple speakers, humans often switch
their focus from one speaker to another. In addition, the speaker of interest at one moment may
become a distraction at a later moment. In contrast to existing TSE systems that can only concentrate
on a pre-registered speaker, the proposed LLM-TSE model empowers users with the flexibility to
decide whether to retain or exclude the pre-registered speaker from the audio mixture, expanding
the capabilities beyond what is currently achievable.

Use text to complement the pre-registered cues. In conventional TSE systems, the voice of the
target speaker is typically pre-recorded in an acoustic environment that may differ substantially from
the actual deployment environments. This discrepancy significantly affects the robustness of con-
ventional TSE systems. In contrast, the proposed LLM-TTS model has the ability to compensate
for these differences by providing complementary cues in addition to the pre-registered ones, such
as the speaker’s location, language, loudness level, etc. Consequently, it generates a more compre-
hensive and accurate representation of the target speaker that can significantly enhance the system’s
robustness.
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Figure 3: Overview of the proposed LLM-TSE model architecture.

3 LLM-TSE MODEL

As illustrated in Figure 3, the proposed LLM-TSE model follows a processing pipeline of Encoding-
Fusion-Extraction-Decoding. In the encoding phase, three distinct encoders are employed to convert
the pre-registered speech, text prompts, and input audio mixture into corresponding embeddings.
Leveraging the fused embeddings representing the enrolled speech and text cues, the extractor then
selectively extracts the desired sound source from the input audio mixture. Finally, the frequency-
domain feature representation obtained from the extractor is transformed back into the time-domain
and output as the extracted speech.

Mixture Encoder and Decoder: The mixture encoder transforms the input audio mixture from the
time domain into the feature representation, which can be more effectively handled by the extractor.
This transformation is realized by convolving each audio frame of length L with a set of N 1-D
convolution filters {un(t)}n={0...N−1}, which can be expressed as follows:

X(k, n) =

L−1∑
t=0

x(t+ kH)un(t), n ∈ {0, . . . , N − 1}, (1)

where x(t) is the input signal, k ∈ {0, . . . ,K−1} is the frame index, H is the hop size, and X(k, n)
is the result of the convolution operation. Similarly, the decoder maps the extracted feature, denoted
as Y(k, n), back to the time domain via a transposed 1-D convolution operation with N synthesis
filters {vn(t)}n={0...N−1}, and each has a length of L:

ŷ(t) =

K−1∑
k=0

N−1∑
n=0

Y(k, n)vn(t− kH), (2)

where ŷ(t) is the extracted audio signal in time domain.

Text Cue Encoder: We utilize the LLaMA-2 7B Chat LLM, a dialogue-fine-tuned version of the
LLaMA-2 (Touvron et al., 2023), to obtain discriminative semantic embeddings from the user’s text
input. LLaMA-2 is pre-trained on a combination of natural language and programming language
corpora in a self-supervised manner. LLaMA-2 7B Chat LLM is further fine-tuned from LLaMA-
2 via instruction-tuning, which significantly enhances its performance on various reasoning and
generation tasks. During our model training, instead of performing full fine-tuning on the adopted
LLM text encoder, we adopt the parameter-efficient Low-Rank Adaptation (LoRA) technique (Hu
et al., 2021). LoRA introduces a small set of parameters into the frozen LLaMA-2 7B Chat LLM,
which are referred to as LoRA adapters. Specifically, one LoRA adapter is attached to each LLM
layer, modifying its frozen parameter by adding a low-rank learnable matrix of the same size. In
the proposed LLM-TSE model, we apply the LoRA adapters to only modify keys and queries in
each self-attention layer. Ultimately, we only add 12% more trainable parameters. This approach
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not only helps to prevent the overfitting problem that is often encountered with a small fine-tuning
dataset but also improves the training efficiency.

Audio Cue Encoder: The primary role of the audio cue encoder is to encode the optional pre-
registered speech into a discriminative speaker embedding. The first step in this process involves
transforming the time domain input signal, using the above-mentioned learnable 1-D convolutional
filters, into the frequency domain. Following this transformation, we utilize a series of Temporal
Convolutional Network (TCN) blocks (Pandey & Wang, 2019; Luo & Mesgarani, 2019) to extract
speaker-related feature representation. These TCN blocks are designed to capture the temporal
dependencies in the speech signal, which are crucial for distinguishing different speakers. Finally,
we take the average along the temporal dimension to generate a speaker embedding vector, which
effectively captures the unique vocal attributes of the pre-registered speech that can differentiate one
speaker from others.

Fusion Layer: Here, we follow a simple concatenation approach to fuse the audio and text cues,
which has shown to be effective in many other TSE systems (Žmolı́ková et al., 2019; Ge et al., 2020).
Specifically, we transform the text cue and audio cue embeddings into the same dimensionality
through two linear projection layers, and then directly concatenate them to form a multi-modal
representation.

Extractor: The last part of our model is the target extractor, which serves to estimate the target
signal. We adopt the widely used time-frequency masking-based extractor (Luo & Mesgarani, 2019;
Isik et al., 2016), whose operations can be summarized as follows:

M = MaskNet(Z; θMask),

X̂ = M⊗X,
(3)

where Z is the fused embedding generated from the fusion layer, MaskNet(·) is a TCN-based NN
that estimates the time-frequency mask M ∈ RD×N for the target speaker, where D is the feature
dimension of each time step. θMask is the network parameter, and ⊗ denotes the element-wise
Hadamard product. X̂ is the estimated target speech signal in the frequency domain.

Loss function: The parameters of the proposed LLM-TSE model are optimized by minimizing the
following Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) (Roux et al., 2019) loss function:

LSI-SDR = −10 log10

 ∥ ŷTy
∥y∥2y∥2

∥ ŷTy
∥y∥2y − ŷ∥2

 . (4)

The SI-SDR loss is computed directly in the time domain, which forces the model to learn how to
precisely estimate the magnitude and the phase of the target speech signals.

4 EXPERIMENTAL EVALUATION

In this paper, our primary objective is to integrate text-based cues to enhance the target speaker
extraction systems. In the following sections, we initially delve into the method of simulating the
overlapped mixture of speech data. Subsequently, we will explore the generation of text questions.

4.1 OVERLAPPED SPEECH SIMULATION

Our experiment uses two speech datasets: LibriSpeech (Panayotov et al., 2015) and Multilingual
LibriSpeech (MLS) (Pratap et al., 2020). LibriSpeech, a 1000-hour corpus of English audiobook
speech, is known for its diverse speaker identities. MLS, an extension of LibriSpeech, adds multiple
languages, including French, German, Spanish, etc. Due to it having too much data, we randomly
selected 400 speakers per language from MLS with up to 20 utterances each. We adhered to Lib-
riSpeech’s standard training, validation, and test set division. For MLS, we randomly assigned 5%
of speakers from each language to validation and test sets, respectively, with the rest for training.

Our experiments cover a variety of attributes, including transcription snippets, gender, language,
loudness, and far-near. For transcription snippets extraction, we only use the LibriSpeech dataset
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and the corresponding pre-extracted forced alignment (Chodroff, 2023) data 2 to identify the word
timestamps from LibriSpeech. The remainder of the data for simulation is randomly selected from
the LibriSpeech and MLS datasets. For generating the mixture speech, we adopt online simulation,
generating the data needed for each iteration beforehand. The number of speakers in the mixture
of speech is limited to two, stipulating that the two speakers have different attributes for gender,
language, loudness, or far-near. When generating a mixture of speech for the loudness task, our
signal-to-noise ratio is randomly selected from -3 dB to -2 dB and 2 dB to 3 dB. The other tasks
span from -3 dB to 3 dB. In the case of the distance task, we include both near (target speaker) - far
(interference speaker) and far (interference speaker) - near (target speaker) scenarios. For the other
tasks, near and far combinations are randomized. Room dimensions are randomly selected from
lengths of 9 to 11 m, widths of 9 to 11 m, and heights of 2.6 to 3.5 m. The reverberation time ranges
from 0.3 to 0.6 seconds. We use Pyroomacoustics 3 to generate Room Impulse Responses (RIRs),
and the microphone’s position is defaulted to the center of the room. The sound source distance
from the microphone varies between 0.3 to 0.5 m and 1.5 to 2.5 m for near or far fields, respectively.
The angle ranges from 0 to 180 degree, and the sound source’s height varies between 1.6 to 1.9 m.

The mixture and pre-registered speeches are set to a duration of 6 seconds, with a randomly deter-
mined overlap ratio between 40% and 70%. The pre-registered speech is randomly selected from
the remaining target speaker’s speech. If the training objective is to remove the target speaker, the
other speaker’s speech from the mixture serves as the training target. We assume that each gener-
ated mixture speech sample should exhibit a distinguishable attribute throughout the training. All
experimental data is sampled at 16,000 Hz to ensure high-quality audio.

4.2 TEXT GENERATION

We include three types of texts to explore using LLMs to enrich target speaker extraction systems.
We first create ten foundational question templates for each type of task. These templates will then
be rephrased and expanded using ChatGPT-4-32K 4 to produce 100 diverse text prompts. We adopt
a non-overlapped 80/10/10% partitioning for training, validation, and testing sets. The text prompts
used in the testing set are unseen during the training.

Text as an independent extraction cue: In this type, the text is used as an independent extraction
cue. The texts of this task are like: “Extracting a voice with ⟨ specific characteristic ⟩ from a mixture
of speech”, e.g., scenarios 1&2 in Figure 2. The text description outlines the features of the voice to
be extracted, including the transcription snippets of the mixture of speech, the speaker’s language,
gender, loudness, and far-near. For the transcription snippet task, we used 100% of the target speech
text length as cues for training, testing with 50%, 80%, and 100% of the target speech text length
to evaluate generalizability. This setup is highly functional, i.e., by informing the system about the
audible part of the speech, the system can utilize both semantic and acoustic information to track
and extract the desired speaker. It’s crucial to note that the attributes utilized in this study are not
exhaustive. In real-world situations, humans employ a variety of other cues, e.g., emotion, pitch,
etc., to extract the sound source of interest (Haykin & Chen, 2005; Shinn-Cunningham & Best,
2008). However, exploring these additional cues extends beyond the scope of this current study and
is reserved for future research.

Text as a task selector: We propose one task type where texts can influence the system’s output:
target speaker extraction or removal. The text serves as a directive for the system to either extract a
given speaker’s voice or remove it from the mixture of audio. The generated texts are like “please
remove the given voice from this audio.”

Text as a complement to human perception in the audio-based extraction system: We integrate
the human understanding and interpretation of the mixture of speech into the extraction process,
which can significantly enhance the system’s performance. Here, we cover all semantic types men-
tioned above, i.e., transcription snippets, gender, language, loudness, and far-near. The generated
questions are like “Extracting a speaker based on the given pre-registered speech, where the speaker
possesses a ⟨specific characteristic⟩ within the mixture speech.”

2https://github.com/CorentinJ/librispeech-alignments
3https://github.com/LCAV/pyroomacoustics
4https://platform.openai.com/docs/models
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Table 1: Evaluation of SI-SDR (dB ↑) metric across different methods. For the transcription snippet
task, we use 100% of the target speech text as cues during training and test the model with a different
amount of text transcriptions, including 50%, 80%, and 100%.

Entry
Inputs Transcription Snippet

Gender Language Far-near Loudness
Audio Text 50% 80% 100%

Unproc. - -0.02 -0.02 -0.03 -0.01 -0.10

TD-SpeakerBeam ! % 7.21 10.15 8.38 9.38 7.57

LLM-TSE
(LoRA Adapters,

LLaMA-2 7B Chat)

! % 7.30 10.17 8.87 9.77 7.75

% One-Hot No Support 10.54 8.88 10.25 8.96

% ! 2.70 3.97 7.48 10.40 9.38 10.57 8.89

! One-Hot No Support 10.62 10.18 10.32 8.99

! ! 7.96 9.81 10.05 10.87 9.72 10.66 9.41

No LoRA Adapters
(only Linear Projection)

% ! 1.66 3.38 5.38 8.76 7.38 8.45 5.46

! ! 4.85 7.60 7.98 9.02 7.97 8.67 7.11

Use Vicuna-7b-v1.3
(Zheng et al. (2023))

% ! 2.23 3.31 8.79 9.44 8.29 9.27 5.75

! ! 7.41 9.05 9.35 10.15 9.01 9.94 6.47

4.3 RESULTS

Efficacy of Using Input Text as Independent Cues: Table 1 demonstrates a notable performance
enhancement when text alone is employed as an extraction cue, compared to unprocessed mixture
speech. The proposed LLM-TSE model is built on TD-SpeakerBeam (Delcroix et al., 2020), a state-
of-the-art (SOTA) open-source target speaker extraction model. Compared to TD-SpeakerBeam, the
only modification in the LLM-TSE model is the additional text-prompt encoder. This enhancement
is further corroborated by Figure 4. These findings suggest that the LLM-TSE model effectively
interprets the provided text descriptions, which fundamentally serve as human interpretations of
auditory object differences within a speech mixture. This innovative strategy represents a signifi-
cant leap in harnessing natural language processing techniques for complex auditory tasks, thereby
enhancing the scope of potential applications for speaker extraction methodologies.

Efficacy of Using Input Text as Task Selector: In this task, our objective is to control the training
targets of the separation system using natural language. The corresponding textual queries could
resemble “Is there a way to remove the given voice from this mixture audio?” In Figure 4, we
illustrate the capacity of our system to determine whether to extract or suppress the sound source
corresponding to the provided pre-registered speech when using text descriptions. Notably, the
samples displayed in the third row exemplify this capability, as they successfully suppress the target
sound source associated with the pre-registered speech. Our explorations in this area are somewhat
limited at this stage. More broadly, these controls could be configured with greater flexibility. For
instance, they could manipulate the degree of reverberation in the extracted speech (since individual
preferences for reverberation vary) or dictate the impact range of the separation system (to avoid
unnecessary non-linear-processing distortion). We intend to delve deeper into these aspects in our
future work.

Efficacy of Using Input Text to Complement the Pre-registered Cues: Pre-registered speech
primarily only encodes the speaker’s vocal characteristics regardless of any time or acoustic envi-
ronmental context. We aim to introduce this contextual information into the target speaker extraction
system utilizing text descriptions. For this purpose, a typical text description is like: “Separate the
target speaker’s audio based on the provided pre-registered speech as a reference, bearing in mind
that I am the speaker who employs a louder tone in the mixed speech.” The relevant experimental
outcomes are presented in the middle section of Table 1. Upon integrating descriptions delineating
auditory object differences, we noted a significant improvement in the system’s performance. This
enhancement was particularly prominent in the “loudness” task, where the dataset contained a pro-
nounced loudness disparity between the two sound sources. The challenge posed by identifying the
target speaker using only the pre-registered speech was substantially mitigated upon implementing
our approach, producing the most substantial performance increase within this task.
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Figure 4: Samples generated from the proposed LLM-TSE model. The text box contains information
about the input audio mixture. The term “w/o” indicates the absence of a certain input.

Ablation Studies on Text Encoder Selection: Here, we present the results of a sequence of ab-
lation experiments executed on the text encoder component. The outcomes are summarized at the
bottom of Table 1. At the outset, we assessed the functionality of the text cue encoder in the absence
of the LoRA adaptors, where only the projection layer of the LLM model was permitted to train,
effectively freezing all other parameters of the LLM. This configuration aimed to determine if the
LLM’s generic understanding of diverse text corpora could offer sufficient discriminative informa-
tion. However, our findings suggest that relying solely on embeddings, which are derived from the
LLM’s interpretation of various text descriptions, is insufficient to accomplish the task whether an
audio encoder was integrated into the system or not. In subsequent experiments, we employed the
Vicuna 7B model (Zheng et al., 2023) as our text encoder. This model, which was fine-tuned on
data from “shareGPT.com” and based on the LLaMA-v1 model, exhibited marginally inferior per-
formance in natural language benchmark tasks compared to the LLAMA-2 7B Chat. Further, the
Vicuna model underperformed in our target speaker separation task compared to the LLAMA-2 7B
Chat. This observation supports the premise that employing a more powerful LLM as a text cue
encoder can significantly enhance the discriminative capabilities of the overall system.

5 RELATED WORKS

Audio-Language Multimodal Model: Audio-language multimodal currently represents a signifi-
cant research area with many application scenarios (Huang et al., 2023c; Zhang et al., 2023; Gong
et al., 2023). The primary focus has revolved around audio events, with most tasks and datasets
originating from automatic audio caption (Drossos et al., 2017; Wu et al., 2019; Mei et al., 2022),
which aims to assign meaningful textual descriptions to audio content. Leveraging these datasets,
related studies have been conducted on synthesizing audio based on text descriptions, which find
applications in diverse scenarios such as film production, game design, and more. Among these,
the Contrastive Language-Audio Pretraining (CLAP) (Elizalde et al., 2022) model is a large-scale
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pre-training model that employs a contrastive learning approach similar to the Contrastive Language-
Image Pretraining (CLIP) (Radford et al., 2021) model for aligning text and audio modalities. This
model has pushed the boundaries in tasks that involve synthesizing audio based on text descrip-
tions (Huang et al., 2023b; Kreuk et al., 2023; Liu et al., 2023a;b). Furthermore, the works conducted
by Wang et al. (2023); Zhang et al. (2023); Le et al. (2023) expands the input modality to encom-
pass audio and text instead of text only for audio generation. However, it’s important to note that the
underlying logic is based on generative models that take audio and specific control inputs to handle
various speech transformation tasks. These works are more like controlled speech/audio/music syn-
thesis, not requiring the length of input and output to be strictly aligned. This is entirely different
from the field of our study.

Audio-Language-Vison Multimodal Target Source Separation: Among all these audio-language
multimodal models, those most relevant to our research involve separating or detecting audio events
based on text description (Kilgour et al., 2022; Liu et al., 2022; 2023c; Li et al., 2023). These studies
employ models like BERT (Devlin et al., 2019) (mini), CLAP, or other pre-trained models to com-
prehend descriptions of sound events, subsequently separating the sound sources consistent with
the target description. However, they are not specifically designed for speech signals. In contrast
to audio event classes, speech signals are considerably similar when observed from spectrograms,
lacking clear acoustic spectral patterns to follow. Instead, they rely more on perceptual differences
in auditory objects and semantic information. In addition to sound events, these models also focus
on separating musical instruments (Chen et al., 2023; Huang et al., 2023a; Chen et al., 2023). It’s
important to note that while these previous works have made significant strides in the field, the spe-
cific challenges and nuances of speech signal separation present a unique problem space that our
work aims to address. Labels, particularly those implemented via one-hot vectors, can be seen as
a distinctive type of human language. In the realm of label-based audio/music/speech extraction
systems (Manilow et al., 2020; Delcroix et al., 2021; Tzinis et al., 2022; Delcroix et al., 2023; Li
et al., 2023; Ochiai et al., 2020), the works of Manilow et al. (2020) and Tzinis et al. (2022) are
most closely aligned with ours. These systems, like ours, endeavor to integrate human subjective
intentions into the separation process through attribute labels. Yet, they solely rely on one-hot vec-
tors, resulting in a lack of flexibility within human-computer dialogue systems. In addition, they
cannot understand the vast array of human language inputs and struggle significantly when dealing
with open-ended queries. By contrast, we employ LLMs to understand cues that extend beyond hu-
man descriptions of auditory object differences, which offers increased flexibility in cue extraction.
Furthermore, we’ve investigated control capabilities and made a connection between the perceptual
differences of auditory objects in mixture and voiceprint systems. Another method utilizes semantic
cues, such as images Ohishi et al. (2022), to extract speakers’ speech discussing a particular concept.
However, the necessity for corresponding images constrains its potential application domains.

6 CONCLUSION AND FUTURE WORKS

In this study, we proposed a novel paradigm for target speaker extraction, namely LLM-TSE, a sig-
nificant departure from previous methodologies. Our approach uniquely introduces text to provide
useful speaker extraction cues, which is an innovation that has demonstrated notable success and
improvement in our experimental results. Our investigations have illuminated the potential of nat-
ural language to provide a rich source of discriminative features. These features can be leveraged
independently as extraction cues, showcasing the versatility and effectiveness of natural language in
this context. Furthermore, natural language is useful for performing task selection, which represents
a promising approach to achieving auditory attention switching. Moreover, our paradigm augments
the performance of audio-only systems by integrating contextual information from the present acous-
tic environment, which is often overlooked in traditional methods. This addition provides a more
comprehensive and accurate representation of the target speaker’s context, further enhancing the ex-
traction process. In summary, our proposed paradigm signifies an important advancement for target
speaker extraction systems, extending accessibility and improving performance. Not only does it
provide a fresh perspective on the extraction process, but it also lays the groundwork for potential
future studies on the cocktail party problem. Moving forward, we plan to persist in this direction,
enhancing machines’ ability to understand the foundations of human perception of multiple auditory
objects within complex acoustic environments using natural language cues. Specifically, we aim to
incorporate a range of mutually exclusive or non-exclusive auditory attributes, label flexible and
open-ended text descriptions, and develop the capability for multi-round separation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Model Architecture: The LLM-TSE model incorporates a text cue encoder derived from the
LLaMA-2 7B model, a transformer decoder architecture. We generate the text cue embedding us-
ing the averaging results of the outputs of the last four self-attention layers. Subsequently, a linear
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projection layer is employed to map its dimensions to match the embedding output of the audio cue
encoder model. The construction of the audio cue encoder and extractor is built upon an open source
of the time-domain SpeakerBeam (TD-SpeakerBeam) 5. The default model hyperparameters from
TD-SpeakerBeam are employed in this process.

Optimization: We use the AdamW optimizer for optimization, with an initial learning rate of 1e-4,
which has proven effective for various tasks in our preliminary experiments. Our model is trained
using ten NVIDIA 3090 GPUs, each with a batch size of 1. For stable training, we employ gradient
accumulation, with backpropagation performed every two interactions, culminating in a valid batch
size of 40 per iteration. A linear warmup scheduler is used for the first 1000 iteration steps, during
which the learning increases from 0 to 1e-4 and remains constant. This strategy aims to gradually
prepare the model for more complex tasks and improve overall learning stability. Finally, based on
our preliminary experiments on the current dataset, we use the gradient normalization with a value
of 30. This operation controls the weight update step and prevents gradient explosion.

LoRA Adaptor: We adopt the LoRA approach for efficient fine-tuning. The hyperparameters of the
LoRA matrix, rank r, and scaling weight α are set to 16 and 16. The LoRA dropout is set to 0.05.
These LoRA adaptors are applied to the linear projection layers of the query and key calculation in
the self-attention layers.

Generation of Prompts: We will first write ten question sentences by hand for each task. Then, we
used ChatGPT-4-32K to rephrase and generate more questions for each task. The prompt of rephrase
is: “Keep it short, limit to 8 words. Feel free to vary sentence structures, but avoid duplications, and
synonyms can be replaced. Imitate the tone of a casual conversation, don’t be too rigid. Maintain
the existing JSON format when outputting.”

A.2 LIMITATIONS

While our study introduces a paradigm for speaker extraction, it does not encompass all the acous-
tical characteristics and contextual cues that can be utilized for this purpose. Indeed, numerous
features assist humans in distinguishing auditory objects that we have not fully explored in this re-
search. For instance, pitch, timbre, speech speed rate, and rhythm can provide significant cues for
differentiating between speakers (Haykin & Chen, 2005; Mesgarani & Chang, 2012; Popelka et al.,
2016). High-level Semantic Information, such as the topic of conversation (e.g., “the person talking
about the topic of weather”), can also serve as a powerful identifier. Furthermore, the speaker’s
age often influences the characteristics of their speech and can thus be a valuable cue for speaker
extraction. These are all potent cues that could be further explored and integrated into our system.
Future work could focus on extending the model’s capability to handle these additional attributes,
refining the methodology for incorporating such diverse information and evaluating the subsequent
improvements in system performance. Moreover, while our proposed system shows promise, there
are potential challenges in implementing and testing the system in real-world scenarios, such as in
noisy environments or situations with multiple concurrent speakers. Further research is therefore
needed to evaluate the system under such conditions and to develop strategies for dealing with these
challenges.

In the future, we aim to delve into more open-ended perceptual concepts. Currently, our work is
constrained by a reliance on predefined categories, and we cannot handle relatively abstract percep-
tual descriptions of auditory objects. For example, a description such as “The first speaker’s voice is
quite resonant, but after discussing basketball, the voice gradually diminishes” is beyond our current
system’s capacity. However, we believe that dealing with more open-ended and advanced problems
necessitates a foundational understanding of the basic attributes of auditory objects. This under-
standing forms the core of our future work. We are committed to exploring how to integrate more
open and detailed descriptions of auditory object differences into speech separation scenarios.

5https://github.com/BUTSpeechFIT/speakerbeam
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