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Abstract

Distantly-Supervised Named Entity Recogni-001
tion (DS-NER) uses knowledge bases or dictio-002
naries for annotations, reducing manual efforts003
but facing challenges like false positives and004
negatives in training data. In this paper, we005
re-examined existing DS-NER methods in real-006
world scenarios and found that many of them007
rely on large validation sets and some used008
test set for tuning inappropriately. We intro-009
duced a new dataset named QTL, where the010
training data is annotated using domain dictio-011
naries and the test data is annotated by domain012
experts. This dataset has a small validation013
set, reflecting real-life scenarios. We also pro-014
pose a new approach, token-level Curriculum-015
based Positive-Unlabeled Learning (CuPUL),016
which uses curriculum learning to order train-017
ing samples from easy to hard. This method018
stabilizes training, making it robust and effec-019
tive on small validation sets. CuPUL also ad-020
dresses false negative issues using the Positive-021
Unlabeled learning paradigm, demonstrating022
improved performance in real-life applications.023

1 Introduction024

Distantly-Supervised Named Entity Recognition025

(DS-NER) is a task to leverage existing knowledge026

bases (KBs) or dictionaries to provide annotations027

for named entity recognition tasks. This approach028

significantly reduces the need for labor-intensive029

manual annotations, but it faces challenges due to030

issues in automated annotations, such as false posi-031

tives and false negatives. To address the annotation032

errors, various methods are proposed. Some studies033

focus on false negative issues (Shang et al., 2018;034

Peng et al., 2019; Zhou et al., 2022). Others pro-035

pose to tackle general noisy annotations through036

noise removal processes (Meng et al., 2021; Liang037

et al., 2020; Hedderich and Klakow, 2018; Zhang038

et al., 2021a; Liu et al., 2021).039

Existing DS-NER approaches have been success-040

fully applied to NER benchmark datasets, such as041

CoNLL2003, achieving competitive performances 042

with fully supervised methods. However, the DS- 043

NER scenarios mimicked by distantly labeling 044

benchmark datasets often deviate from real-world 045

scenarios. In the current DS-NER works, the train- 046

ing set annotations are often crudely replaced with 047

distantly labeled annotations, thus converting a 048

fully supervised (FS) dataset into a distantly su- 049

pervised dataset, but the validation set remains the 050

same. This approach overlooks the significant man- 051

ual labor required to obtain a validation set for 052

parameter tuning in real-life scenarios. Ignoring 053

this issue leads to a decline in the performance 054

of existing methods when applied to real-world 055

problems, thereby undermining the reliability of 056

existing approaches. 057

To assess the effect of the validation set, we re- 058

examined existing DS-NER approaches and found 059

several issues. Some approaches do not follow 060

the DS-NER setting and directly use the test set 061

for hyperparameter tuning, resulting in unreliable 062

performance. Some approaches rely on large val- 063

idation sets to achieve good performance. Some 064

approaches train models using fixed hyperparam- 065

eters, yet their models fail to perform well across 066

all datasets. These findings demonstrate that cur- 067

rent DS-NER approaches fall short in addressing 068

real-life DS-NER problems effectively. 069

To further evaluate the effect, we introduce a real- 070

life DS-NER dataset, QTL, which is annotated for 071

trait entities in the animal science domain. Unlike 072

previous datasets, QTL has a very small validation 073

set, consisting of only 21 sentences, avoiding the 074

significant manual effort required to obtain large 075

validation sets in real-life scenarios. Additionally, 076

unlike previous benchmark datasets, where entity 077

mentions contain high portion of proper nouns, trait 078

entities in QTL dataset are descriptive, such as “tail 079

size” and “hoof color”. 080

We further present a simple yet effective 081

approach inspired by Curriculum learning and 082
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Positive-Unlabeled (PU) learning , named CuPUL.083

The motivation behind curriculum learning is that084

deep learning models are non-convex and trained085

using batches of samples, so the order of training086

data can significantly impact model performance.087

Curriculum learning rearranges the batches of train-088

ing samples such that the model learns from easy to089

hard samples and revisits easier samples more fre-090

quently. With this new arrangement, models tend091

to converge to a better local optimum. Furthermore,092

we design a token-level curriculum arrangement to093

address token-level noise in DS-NER tasks. We094

observe that "easy samples" are usually cleaner,095

and learning from these first can initially avoid096

label noise, making the model more robust. To097

tackle false negative issues, we adopt the Positive-098

Unlabeled learning paradigm.099

In summary, our main contributions are:100

• We present a real-life DS-NER dataset, QTL,101

and test the performance of the existing state-102

of-the-art methods. We observe that many103

methods do not follow the practical DS-NER104

setting and have unsatisfactory performance.105

• We propose a simple method CuPUL to ad-106

dress the noise issue in DS-NER. We em-107

pirically demonstrate that CuPUL can sig-108

nificantly outperform the state-of-the-art DS-109

NER method on the QTL dataset and different110

benchmark datasets.111

2 Preliminary112

2.1 DS-NER methods113

We collected DS-NER methods published in major114

conferences in 2023 and their compared baselines.115

We categorize the existing DS-NER methods in116

three groups. 1)DS-NER with Self-training. To117

improve model performance, many DS-NER meth-118

ods often incorporate a self-training step, utilizing119

mechanisms such as soft-label retraining and multi-120

model teacher-student frameworks. This group in-121

cludes BOND (Liang et al., 2020), RoSTER (Meng122

et al., 2021), SCDL (Zhang et al., 2021b), ATSEN123

(Qu et al., 2023) and DesERT (Wang et al., 2023).124

2)DS-NER without Self-training. This group125

of methods focuses on addressing the model’s ef-126

fectiveness in handling noise or false positives in127

DS-NER. While these methods can incorporate128

self-training mechanisms, it is not the primary fo-129

cus of these methods.This group include AutoNER130

(Shang et al., 2018), Conf-MPU (Zhou et al., 2022),131

MProto (Wu et al., 2023) . 3) Span-based DS- 132

NER. The final group of methods differs from the 133

previous two, as it is based on span-based predic- 134

tion rather than sequence labeling. These methods 135

treat each span within a sentence as the predic- 136

tion target. Previous work (Li et al., 2023) has 137

shown that span-based NER models often outper- 138

form sequence-based NER methods in terms of ef- 139

fectiveness, albeit at the cost of increased algorith- 140

mic complexity. This group includes Top-Neg (Xu 141

et al., 2023), CLIM (Li et al., 2023) and SANTA 142

(Si et al., 2023). More details can be found in 143

Appendix A. 144

2.2 Method Analysis 145

We first analyze the feasibility and usability of exist- 146

ing DS-NER methods in real-life applications. For 147

a method to be considered feasible, it must provide 148

runnable code and instructions for hyperparameter 149

tuning if necessary. Table 1 presents our feasibility 150

analysis results base on the manuscripts and code 151

repositories (accessed in April 2024). We find that 152

1) MProto and SANTA do not provide hyperparam- 153

eter tuning instructions; 2) CLIM and Top-Neg do 154

not provide runnable code; and 3) BOND, SCDL, 155

and ATSEN selected their inference model based 156

on performance on the test set according to their 157

released repositories. Thus in our empirical studies, 158

for a fair comparison, we only re-examine feasi- 159

ble methods and update some methods to select 160

the inference model based on performance on the 161

validation set only. 162

The motivation of DS-NER methods is that the 163

manual annotations are too costly to obtain. There- 164

fore, to reduce the amount of manual annotation, 165

the annotations in the training set come from knowl- 166

edge bases or dictionaries, and the validation set 167

should not be large either. Existing methods focus 168

on the first setting while neglecting the importance 169

of the second setting. We analyzed the feasible 170

methods in Table 1 based on these DS-NER set- 171

tings and have the following observations. First, 172

AutoNER and RoSTER use fixed hyperparameters. 173

These approaches do not require hyperparameter 174

tuning, thereby avoiding the need for a validation 175

set. Second, Conf-MPU provides a strategy for pre- 176

selecting hyperparameters, so it does not require a 177

validation set either. However, the remaining meth- 178

ods (BOND, SCDL, ATSEN, and DesSERT) need 179

a validation set for hyperparameter tuning. The size 180

of the validation set may affect their performance. 181

We present a detailed analysis of this impact in 182
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Method Code Provided Code Runable Hyperparameter Tuning required Tuning Instruction Inference model Feasible
DS-NER without Self-training
AutoNER ✓ ✓ Fixed ✗ - Model at Final Epoch ✓

Conf-MPU ✓ ✓ Not Fixed ✗ - Model at Final Epoch ✓

MProto ✓ ✓ Not Fixed ✓ ✗ Model at Final Epoch ✗

DS-NER with Self-training
BOND ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

RoSTER ✓ ✓ Fixed ✗ - Model at Final Epoch ✓

SCDL ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

ATSEN ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

DesERT ✓ ✓ Not Fixed ✓ ✓ First Student Model ✓

Span-based DS-NER models
SANTA ✓ ✓ Not Fixed ✓ ✗ Model at Final Epoch ✗

Top-Neg ✓ ✗ - - - - ✗

CLIM ✗ - - - - - ✗

Table 1: Feasibility Analysis of Exist Methods for DS-NER tasks.

Section 5.183

3 QTL Benchmark184

We first present QTL, a real-life DS-NER applica-185

tion in the animal science domain. The entity type186

to recognize is “trait”, an important task in the con-187

struction of genotype-phenotype databases for ad-188

vancing livestock genomics research and breeding189

methodologies. Different from previous DS-NER190

benchmark datasets, where entities consist of many191

proper nouns, trait entities consist of descriptive192

expressions.193

To establish the QTL dataset, we collected a194

corpus with 1,717 abstracts, which were meticu-195

lously selected from PubMed1 by domain experts196

for quantitative trait locus (QTL) studies related197

to six species: cattle, pig, goat, sheep, chicken,198

and rainbow trout. For the distant annotation pro-199

cess, the domain experts gathered a specialized200

dictionary of 3,884 trait names from four estab-201

lished domain ontologies2. Among these abstracts,202

1,609 were used in training data, which consisted203

of 18,706 sentences with 514,176 tokens.204

A well-trained domain curator provided annota-205

tions for 108 randomly selected abstracts, which206

covered all six species of interest. A second domain207

curator randomly checked 10 abstracts and had a to-208

tal agreement with the first curator. Therefore, we209

used the annotations as ground truth. More annota-210

tion details can be found in Appendix B. Among211

all the human-annotated sentences, we randomly212

selected 21 sentences (with 952 tokens) to form the213

validation set and the rest sentences formed the test214

set, which contains 1,044 sentences with 32,251215

tokens and 1,219 entities.216

1https://pubmed.ncbi.nlm.nih.gov/
2Vertebrate Trait (VT) Ontology, Livestock Product Trait

(LPT) Ontology, Livestock Breed Ontology (LBO), and Clini-
cal Measurement Ontology (CMO)

Figure 1: Overview of CuPUL

Notably, the validation set is quite small in the 217

QTL dataset. This practice followed the motivation 218

of DS-NER tasks, where the human effort should 219

be minimized. This limited size of the validation 220

set may impact the tuning of hyperparameters dur- 221

ing the model training process, potentially affect- 222

ing the model’s performance. This issue reflects a 223

realistic challenge encountered in DS-NER appli- 224

cations, which requires the model to be robust and 225

not sensitive to hyperparameters. 226

Annotation Limitations: Due to the cost of hir- 227

ing domain curators, the majority of the annotations 228

are provided by a single curator. Another observa- 229

tion from the curators is that there is a considerable 230

amount of discontinued trait entities. For example, 231

in “milk protein, lactose, and fat percentage”, there 232

are three entities: milk protein percentage, milk 233

lactose percentage, and milk fat percentage. Due 234

to the annotation software limitation, this example 235

was annotated as “milk protein”, “lactose”, and “fat 236

percentage”. 237
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4 Methodology238

In this section, we introduce a simple DS-NER239

method that combines the advantages of curricu-240

lum learning and PU learning. Figure 1 shows241

the overview of the proposed method CuPUL. The242

method starts by training several voters using the243

distantly annotated data to calculate token difficulty244

scores. Then CuPUL trains a NER classifier fol-245

lowing the curriculum scheduler using confidence-246

based positive-unlabeled learning risk estimation.247

Problem Formulation: We denote an input sen-248

tence with M tokens as x = [x1, x2, · · · , xM ]249

and denote corresponding annotations as y =250

[y1, y2, · · · , yM ], yi ∈ {0, 1, · · · , k}, where 0 de-251

notes the unlabeled type and 1, · · · , k denote k en-252

tity types. For the models, a pre-trained language253

model such as RoBERTa is used to encode token254

representations and followed by a softmax function255

to forward the prediction of entity labels for each256

token in the sentence.257

4.1 Difficulty Estimation258

Curriculum learning has two main steps: difficulty259

estimation and curriculum scheduler (Kocmi and260

Bojar, 2017). More details and related work of261

curriculum learning are discussed in Appendix C.262

Motivated by the token-level noises in DS-NER263

tasks, we design the difficulty estimator and the264

curriculum scheduler at the token level as well. It265

allows the model to learn from one sentence by266

ignoring the noisy tokens. For example, in the sen-267

tence “Peter(PER) lives(O) in(O) America(ORG)”,268

“Peter”, “lives”, and “in” are clean samples, and269

“America” is a noisy sample. The model can learn270

from “Peter lives in X” by ignoring the noise in271

the sentence. The token’s difficulty score should272

reflect its inherent learnability. These scores are273

estimated using the disagreements between basic274

NER models or voters.275

4.1.1 Voters276

For training the voters, a neural network for NER277

classification is used. The design of the voters de-278

mands simplicity and variability. Thus, the voters279

are trained using a regular multi-class classifica-280

tion risk function. The training process follows281

the Positive-Negative setting, where 0 represents282

non-entity type. Label imbalance in NER tasks283

is mitigated by sampling negative samples. Note284

that the performance of the voter itself does not285

affect the final outcomes of CuPUL, which we will286

introduce in the section 4.2.287

4.1.2 Difficulty Scores 288

After training V voters, each token x receives V 289

predicted class probabilities f(x,θ1), ..., f(x,θV ), 290

where θ1...θV are the voters’ parameters. The pre- 291

diction f(x,θi) is a vector that represents the class 292

distribution of each token x denoted as Pri(x). 293

The difficulty of the token is assessed based on the 294

disagreement among these distributions. Specifi- 295

cally, we use Kullback-Leibler (KL) divergence, a 296

measurement for dissimilarities of two distributions 297

Pri(x) and Prj(x), to calculate the disagreement 298

level of two voters. Mathematically, it is: 299

Hij =
1

2
{DKL(Pri(x)||Prj(x)))+ 300

DKL(Prj(x))||Pri(x))}, (1) 301

where DKL(·) denotes the KL divergence. KL 302

divergence is asymmetric. By taking the average 303

of Hij and Hji, we derive a symmetric difficulty 304

score H{ij}. 305

Given that there are V voters, the final difficulty 306

score for each token x is defined as the average of 307

the non-identical pairs among all voters: 308

H =

∑V
i=1

∑V
j=i+1H{ij}

V · (V − 1)/2
. (2) 309

Eq.(2) defines the token difficulty scores as an arith- 310

metic mean of disagreements between pair-wise 311

voters. Consequently, a token’s difficulty score is 312

low when all voters agree, and it increases with 313

greater disagreement. 314

4.2 Curriculum Design 315

To avoid overfitting negative samples, we adopt 316

Positive-Unlabeled (PU) learning based risk esti- 317

mation, treating data labeled with 0 as unlabeled 318

rather than non-entity. PU learning assumes the 319

unlabeled data represents the entire dataset’s distri- 320

bution (Zhou et al., 2022). To meet this assumption, 321

we include all unlabeled data in the first curriculum, 322

scheduling only the labeled positive data. 323

Our curriculum is based on token difficulty 324

scores H , which follow a long-tail distribution, 325

making most tokens “easy” (Figure 3). Previous 326

research (Platanios et al., 2019; Gnana Sheela and 327

Deepa, 2013) indicates that a uniform difficulty 328

range may render curriculum learning ineffective. 329

Therefore, we propose a power-law selector for a 330

more effective curriculum scheduler. 331

To build the curricula, we first arrange all Tu 332

unlabeled tokens followed by Tp positive-labeled 333
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tokens sorted by their difficulty scores in ascend-334

ing order. The first curriculum consists of all un-335

labeled tokens and the first τTp labeled positive336

tokens, where τ (0 < τ < 1) is a selective factor.337

The second curriculum consists of the first τ2T338

tokens from the remaining (1− τ)Tp tokens. This339

selection process continues until the penultimate340

curriculum. The remaining tokens are placed in341

the final curriculum. These curricula are denoted342

as C1, C2, ..., Cη. For example, suppose Tp = 20,343

Tu = 80, τ = 0.5, and η = 3. Then, C1 consists of344

tokens indexed from 1 to 90 (80 unlabeled tokens345

and the 10 easiest positive tokens), C2 consists of346

tokens indexed from 91 to 95, and C3 consists of347

tokens indexed from 96 to 100.348

4.3 Curriculum-based PU Learning349

We train the NER classifier across η curricula using350

the “Baby Step” training schedule(Spitkovsky et al.,351

2010; Cirik et al., 2017). Starting with C1, we add352

each subsequent curriculum after a fixed number353

of epochs, training through all curricula until com-354

pletion. The training stages ({Si, 1 < i ≤ η})355

correspond to the number of curricula, with the356

model trained over multiple epochs in each stage.357

Each stage is treated as an independent training seg-358

ment, with earlier curricula being reviewed more359

frequently, enhancing learning under PU assump-360

tions and resulting in a robust curriculum learning361

framework.362

Specifically, we adopt the Conf-MPU loss func-363

tion, proposed by Zhou et al. (2022), as the back-364

bone PU loss function in the curriculum-based365

training. Details of Conf-MPU can be found in366

Appendix D. Instead of having entity confidence367

score λ(x) estimated by another binary PU model,368

the only difference we make is to reuse the voters369

trained in Section 4.1 to ensemble the confidence370

score for each token x. We use the soft-label en-371

semble as372

Pr(x) =

∑V
j=1 f(x,θj)

V
, (3)373

where Pr(x) is the ensemble probability distribu-374

tion over all classes.375

The confidence score of a token x being an entity376

token is then calculated as377

λ(x) =
k∑

j=1

Prj(x). (4)378

For the neural network of the NER classifier, we379

choose the same structure with voters, which is 380

defined at the beginning of Section 4. 381

4.4 Self-Training 382

Several studies (Liang et al., 2020; Peng et al., 383

2019; Meng et al., 2021) have shown that self- 384

training can effectively upgrade the performance 385

of a trained DS-NER model. We apply the self- 386

training method in Meng et al. (2021), which uses 387

soft labels to conduct self-training and a masked 388

language model to conduct contextual data augmen- 389

tation simultaneously. Self-training is used directly 390

after CuPUL, and we call the classifier with self- 391

training “CuPUL+ST”. 392

5 Experimental Studies 393

5.1 Baseline Methods 394

We use feasible methods mentioned in Section 2 395

as baseline methods. First, we report distant su- 396

pervision results as KB-Matching. We classify 397

feasible DS-NER methods into two groups. 1) 398

DS-NER without Self-training consists of Au- 399

toNER (Shang et al., 2018) and Conf-MPU (Zhou 400

et al., 2022). CuPUL is directly comparable with 401

these methods. We also include an ablation version 402

of CuPUL (CuPUL-curr), which removes Curricu- 403

lum Learning, as a baseline. 2) DS-NER with 404

Self-training includes BOND (Liang et al., 2020), 405

RoSTER (Meng et al., 2021), SCDL (Zhang et al., 406

2021b) and ATSEN (Qu et al., 2023) and DesERT 407

(Wang et al., 2023). These methods apply teach- 408

student or training augmentation steps to further 409

boost the DS-NER performance. CuPUL+ST is 410

directly comparable with these methods. 411

To ensure a fair comparison, we made some nec- 412

essary code modifications to the baseline methods. 413

For Conf-MPU, we updated the encoding model 414

to RoBERTa. For BOND, SCDL, ATSEN, and 415

DesSERT, we modified the hyperparameter tuning 416

process to use the validation set instead of the test 417

set. We employed early stopping to select the in- 418

ference model. RoSTER uses fixed parameters, 419

but the max_seq_length did not meet the require- 420

ments for some datasets, so we adjusted it accord- 421

ingly. Specific parameters are detailed in Appendix 422

F. 423

5.2 QTL Experiments 424

Evaluation Metrics: Due to the annotation lim- 425

itation and the fact that none DS-NER methods 426

can handle discontinued spans, we include relaxed 427
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Method QTL-strict QTL-relax
DS-NER without Self-training
KB-Matching 37.15 (82.95/23.93) 41.86 (93.46/26.97)

AutoNER 41.67 (69.07/29.83) 55.49 (83.17/41.64)
Conf-MPU 52.07 (76.30/45.37) 60.58 (91.15/51.28)

CuPUL-curr 54.75 (75.40/42.99) 62.94 (86.76/49.38)
CuPUL 56.84 (73.03/46.51) 66.18 (85.31/54.06)

DS-NER with Self-training
BOND 53.08 (60.89/47.04) 65.57 (77.97/56.57)

RoSTER 47.80 (73.12/35.51) 55.43 (91.35/39.79)
SCDL 43.62 (79.57/30.05) 50.18 (89.85/34.81)

ATSEN 46.23 (66.98/35.30) 51.64 (86.21/36.86)
DesERT 54.41 (69.20/44.83) 64.23 (82.41/51.50)

CuPUL+ST 58.87 (58.28/59.47) 73.57 (73.07/74.08)

Table 2: Performance on QTL dataset: F1 Score (Pre-
cision/Recall) (in %). The best results are in bold, and
the runner-up results are underlined.

Precision, Recall, and F1 scores to evaluate the428

performance on the QTL dataset, in addition to the429

strict span-level Precision, Recall, and F1 scores430

used in previous studies. For relaxed metrics, it431

deems a predicted span correct if there is at least432

one overlapping word with the ground truth anno-433

tation. According to the curator’s feedback, the434

relaxed metrics can meet the practical need as iden-435

tifying potential entities is more important than436

identifying precise boundaries.437

Table 2 presents the results for all methods on438

the QTL dataset. Note that CuPUL without curricu-439

lum learning (CuPUL-curr) is essentially equiva-440

lent to Conf-MPU when there is one entity type.441

KB matching reveals that QTL annotations suffer442

from low recall but have relatively high precision.443

We observe that DS-NER baselines without self-444

training have limited recall improvement, result-445

ing in weak performance. DS-NER baselines with446

self-training improve recall compared to AutoNER,447

but still generally under-perform compared to PU-448

based methods. CuPUL+ST can further boost the449

recall compared to CuPUL, significantly outper-450

forming all baseline methods. Specifically, strict451

F1 and relaxed F1 of CuPUL+ST outperform the452

runner-up by 5.79% and 8.00%, respectively.453

5.3 Benchmark Experiments454

We also re-examine all methods on existing bench-455

mark datasets.456

5.3.1 Datasets and Metrics457

Datasets: We conduct experiments on six ex-458

isting benchmark datasets including CoNLL03459

(Liang et al., 2020), Twitter (Liang et al., 2020),460

OntoNotes5.0 (Liang et al., 2020), Wikigold (Liang461

et al., 2020), Webpage (Liang et al., 2020), and 462

BC5CDR (Shang et al., 2018). The first five are 463

open-domain datasets, and BC5CDR is the bio- 464

medical domain. More details and the statistics of 465

these datasets are summarized in Appendix B. 466

Metrics: We use span-level Precision (P), Recall 467

(R), and F1 scores as the evaluation metrics for all 468

the datasets. These metrics require exact matches 469

between predicted and actual entities. A continuous 470

span with the same label is considered a single 471

entity during inference. 472

Settings: For the benchmark dataset, we use small 473

subsets of the validation set to tune the hyperpa- 474

rameters including learning rate, epochs, etc, to 475

simulate the real-life DS-NER application scenar- 476

ios. Detailed settings and statistics of the validation 477

set can be found in Appendix F. 478

5.3.2 Results on Benchmark Datasets 479

Table 3 presents the overall span-level F1 scores for 480

all feasible and proposed methods on benchmark 481

datasets. Note that RoSTER was tested on a dif- 482

ferent version of the OntoNotes5.0 dataset (Meng 483

et al., 2021). Therefore, we re-run the code on 484

OntoNotes5.0 too. We also add the results reported 485

from previous papers for methods BOND, SCDL, 486

ATSEN, and DesERT as a reference to the re-run 487

results. We have the following observations. 488

DS-NER Without Self-training. From Table 3, 489

it is obvious that KB-Matching generally exhibits 490

low recall and on four of the benchmark datasets, 491

low precision as well. In contrast, noise-aware 492

DS-NER models, like CuPUL, significantly outper- 493

form KB-Matching. This is confirmed in the table 494

where CuPUL achieves the best F1 scores on all 495

datasets compared to all DS-NER models without 496

self-training. The results of CuPUL-curr are very 497

similar to those of Conf-MPU, except for the Twit- 498

ter dataset. This difference is due to CuPUL using 499

a different loss function to train the model obtain- 500

ing the confidence score for each token. For NER 501

tasks with more than 10 entity types (Twitter and 502

OntoNotes5.0), we opted for cross-entropy, instead 503

of MAE, as the loss function, which has proven to 504

be effective. A detailed discussion can be found in 505

Appendix E. 506

DS-NER With Self-training. The results for 507

CuPUL+ST shown in Table 3 further verify that 508

adding a self-training phase tends to enhance over- 509

all performance. When compared with DS-NER 510

models that incorporate self-training, CuPUL+ST 511

demonstrates superior performance on five datasets. 512
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Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
DS-NER Without Self-training
KB-Matching ∗ 71.40 35.83 59.51 47.76 52.45 64.32

AutoNER ∗ 67.00 26.10 67.18 47.54 51.39 79.99
Conf-MPU † 82.39 43.21 66.04 66.58 63.32 80.06

CuPUL-curr 83.18 50.12 67.76 66.43 65.15 79.29
CuPUL 85.09 54.34 68.06 70.53 73.10 80.19

DS-NER With Self-training
RoSTER 85.40∗ 43.91† 69.10† 58.34∗ 56.80† 79.78†

BOND † 79.89 45.98 66.86 57.81 48.76 76.91
∗ 81.15 48.01 68.35 60.07 65.74 -

SCDL † 82.47 44.76 68.50 47.62 41.29 77.72
∗ 83.69 51.10 68.61 64.13 68.47 -

ATSEN † 79.39 49.38 68.22 60.72 43.03 79.95
∗ 85.59 52.46 68.95 - 70.55 -

DesERT † 80.57 48.21 67.94 60.32 62.88 78.21
∗ 86.95 52.26 69.17 65.99 72.73 -

CuPUL+ST 86.64 54.78 68.20 70.19 74.48 80.87

Table 3: Performance on benchmark datasets with small validation: F1 Score (in %). ∗ marks the row of results
reported from the original papers and † marks results we run. The best results are in bold.

This indicates that the CuPUL model benefits from513

the self-training approach, making it a versatile514

and effective tool for various datasets. On the515

OntoNotes5.0 dataset, almost all noise-aware DS-516

NER models have similar performances, implying517

that distant annotations may contain biases difficult518

for the models to address.519

When comparing the results of BOND, SCDL,520

ATSEN, and DesSERT from their original papers521

with our re-run results, we can observe a signifi-522

cant decline, especially on Twitter, Wikigold, and523

Webpage datasets. Because these datasets are rel-524

atively small, it leads to instability in the training525

process and difficulty in selecting an appropriate526

inference model using a small validation set. The527

results indicate that these methods may not be ro-528

bust in real-life applications. However, curriculum529

learning, which progresses from “easy” to “hard”530

samples, could stabilize the training process, mak-531

ing it more robust and less parameter sensitive.532

5.4 Further Analysis533

To further validate the effectiveness of CuPUL,534

we conduct additional analyses using benchmark535

datasets. We are unable to use the QTL dataset536

for this purpose due to the lack of ground truth537

annotations on training data.538

5.4.1 Difficulty Score Estimation539

For CuPUL, one assumption adopted is that diffi-540

culty scores can reflect the quality of distant super-541

vision, where “easier” tokens have “cleaner” labels.542

Figure 2: Token Level Positive Error Rate and Mean Dif-
ficulty Scores for Each Curriculum on Wikigold Dataset.

To validate this assumption and evaluate the quality 543

of the difficulty score estimation, we examine the 544

correlation between the difficulty scores and the 545

quality of distant labels. We use Wikigold as the 546

testbed, and the results are illustrated in Figure 2. 547

For each training curriculum, we compute the 548

token-level positive error rate (positive errors in- 549

clude false positives and positive type errors), and 550

plot the rate using the left y-axis in Figure 2. We 551

also compute the average difficulty scores for to- 552

kens in each curriculum shown with the right y-axis 553

in Figure 2. 554

It is clear to see that both the average token dif- 555

ficulty scores and positive error rate have a clear 556

increase with respect to the order of curricula. The 557

figure also illustrates a strong correlation between 558

the difficulty scores and the positive error rate of 559

distant labels. Specifically, as the difficulty score 560

7



Figure 3: Distribution of the Difficulty Scores for La-
beled Positives on Wikigold Dataset

increases, the quality of the distant labels decreases.561

This result validates our assumption that “easy”562

data have cleaner labels and “hard” data have nois-563

ier labels. The clean data can initialize the model564

with a better starting point and improve the model’s565

robustness to noise in the latter curricula.566

Another important assumption we adopt for the567

design of curricula is that the difficulty scores568

follow a long-tail distribution. We illustrate the569

distribution of difficulty scores estimated on the570

Wikigold dataset in Figure 3. It clearly demon-571

strates the long-tail phenomenon, with most tokens572

having low difficulty scores. This phenomenon can573

be observed in other datasets, too. Due to the space574

limit, we omit the plots for other datasets.575

The ablation study is discussed in Appendix I.576

6 Related Work577

6.1 Benchmark Datasets578

To reduce the cost of human-annotated training data579

for NER tasks, DS-NER uses professional dictio-580

naries or knowledgebases for annotations. Existing581

DS-NER benchmark datasets use NER benchmark582

datasets to simulate the distant supervision setting583

by replacing the human annotations on training584

datasets with knowledge base annotations (Liang585

et al., 2020; Shang et al., 2018; Zhou et al., 2022).586

There are some potential biases of current DS-NER587

benchmarks. 1) Only BC5CDR (Shang et al., 2018)588

dataset comes from professional domains where589

DS-NER tasks are in high demand. 2) A series of590

hand-crafted procedures were applied to the cur-591

rent DS-NER benchmarks. Such procedures are592

entity-type dependent and require substantial hu-593

man effort, and thus may not be generalizable to594

other DS-NER tasks. 3) The major entity types595

in existing DS-NER benchmarks consist of many596

proper nouns (such as person’s names, location,597

and gene names), but in many applications, the 598

entities to recognize need not be proper nouns. 599

6.2 DS-NER Methods 600

Handling annotation errors in DS-NER tasks has 601

drawn special attention. Here we briefly discuss a 602

few representative approaches. 603

One line of work assumes that distant supervi- 604

sion often has high-quality positive labels, there- 605

fore focusing on alleviating the impact of false neg- 606

ative errors. Some methods address this issue by 607

detecting potential entity candidates (Shang et al., 608

2018; Xu et al., 2023). Some methods adopt posi- 609

tive and unlabeled learning to tackle false negative 610

errors from the loss estimation perspective without 611

separate detection steps (Peng et al., 2019; Zhou 612

et al., 2022). Due to its superiority in tolerating 613

false negative errors, we embed Conf-MPU (Zhou 614

et al., 2022) into our proposed method. 615

Another line of work simultaneously considers 616

annotation errors of all types. Some methods pro- 617

pose to train an initial model and apply a self- 618

training framework to reduce the impact of noise 619

(Liang et al., 2020; Liu et al., 2021; Zhang et al., 620

2021b; Qu et al., 2023; Li et al., 2023). Methods 621

such as RoSTER (Meng et al., 2021) and SANTA 622

(Si et al., 2023) endeavor to diminish noise effects 623

using loss functions tailored for noise resilience. 624

These DS-NER approaches obtain promising 625

performance on existing DS-NER benchmark 626

datasets. However, in a real-life DS-NER applica- 627

tion, we observe that they fail to obtain satisfactory 628

performances. These methods are trained on noisy 629

labels initially, so the noise detection may have 630

unknown biases and cause irreparable damage. 631

7 Conclusion and Future Work 632

In this paper, we introduce a real-life DS-NER 633

dataset, named QTL, from the animal science do- 634

main application. We reveal the limitations of 635

current DS-NER methods in practical DS-NER 636

settings on the QTL dataset. To solve this is- 637

sue, we propose a simple yet effective token-level 638

curriculum-based PU learning (CuPUL) method, 639

which strategically orders the training data from 640

easy to hard. Our experiments show that CuPUL 641

not only mitigates the adverse effects of noisy la- 642

bels but also achieves state-of-the-art DS-NER on 643

many datasets. Through CuPUL, we demonstrate 644

the effectiveness of curriculum learning in improv- 645

ing the performance of DS-NER systems. 646
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Limitations647

The limitations of the new benchmark dataset, QTL,648

are discussed in Section 3.649

The "Baby Step" strategy in curriculum learning650

involves multiple repetitions of the first curriculum.651

Coupled with our power-law selector and curricu-652

lum scheduler, which tends to choose a larger initial653

curriculum, this may negatively impact efficiency654

if many curricula are established since the larger655

curriculum is repeatedly trained.656

Ethics Statement657

We comply with the ACL Code of Ethics.658
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Appendix875

A Baselines876

Here, we give a short description of all the baseline877

methods: KB-Matching distantly labels the test878

sets using distant supervision, serving as a refer-879

ence to illustrate the performance improvements880

given by other advanced DS-NER methods.881

AutoNER (Shang et al., 2018) trains the neural882

model with a “Tie or Break” tagging scheme for883

entity boundary detection and then predicts entity884

type for each candidate.885

Conf-MPU (Zhou et al., 2022) treats the NER886

task as a Positive-Unlabeled learning problem and887

utilizes the pre-learned confidence scores to en-888

hance the model’s performance.889

CLIM (Li et al., 2023) addresses the imbal-890

ance problem in the high-performance and low-891

performance classes by improving the candidate892

selection and label generation.893

SANTA (Si et al., 2023) dealing with inaccurate894

and incomplete annotation noise in DS-NER by895

utilizing separate strategies.896

Top-Neg (Xu et al., 2023) selectively uses neg-897

ative samples with high similarity to positives of898

the same entity type, improving performance by899

effectively distinguishing false negatives.900

BOND (Liang et al., 2020) trains a RoBERTa901

model on distantly labeled data with early stop-902

ping and then uses a teacher-student framework to903

iteratively self-train the model.904

RoSTER (Meng et al., 2021) employs a noise-905

robust loss function and a self-training process with906

contextual augmentation to train a NER model.907

SCDL (Zhang et al., 2021b) conducts self-908

collaborative denoising with teacher-student frame-909

work. It trains two teacher-student networks, and910

the final reports come from the best model (teacher911

or student).912

ATSEN (Qu et al., 2023) develops a teacher-913

student framework with adaptive teacher learning914

and fine-grained student ensembling.915

MProto (Wu et al., 2023) represents each entity916

type with multiple prototypes to characterize the917

intra-class variance among entity representations918

and propose a noise-robust prototype network.919

DesERT (Wang et al., 2023) propose a novel920

self-training framework which augments the NER921

predicative pathway to solve innate distributional-922

bias in DS-NER.923

B Datasets 924

To annotate the QTL dataset, domain experts use 925

an online tool named TeamTat3. The screenshot of 926

the tool is shown in Figure 4. 927

Here, we give a short description of the six 928

benchmark datasets as follows: 929

• CoNLL03 (Tjong Kim Sang and De Meulder, 930

2003) is built from 1393 English news arti- 931

cles and consists of four entity types: person, 932

location, organization, and miscellaneous. 933

• Twitter (Godin et al., 2015) is from the WNUT 934

2016 NER shared task and consists of 10 en- 935

tity types. 936

• OntoNotes5.0 (Weischedel et al., 2013) is 937

built from documents of multiple domains 938

like broadcast conversations, web data, etc. 939

It consists of 18 entity types. 940

• Wikigold (Balasuriya et al., 2009) is built from 941

a set of Wikipedia articles (40k tokens). They 942

are randomly selected from a 2008 English 943

dump and manually annotated with four entity 944

types same as CoNLL03. 945

• Webpage (Ratinov and Roth, 2009) comprises 946

personal, academic, and computer science 947

conference web pages. It consists of 20 web 948

pages that cover 783 entities with four entity 949

types same as CoNLL03 too. 950

• BC5CDR comes from the biomedical domain. 951

It consists of 1,500 articles, containing 15,935 952

Chemical and 12,852 Disease mentions. 953

The statistics of the baseline datasets are shown 954

in Table 4. 955

C Curriculum Learning 956

Curriculum learning was first proposed by Ben- 957

gio et al. (2009) under the assumption that learn- 958

ing with reordering from “easy” samples to “hard” 959

samples would boost performance. It has been 960

applied in various applications, including neural 961

machine translation (Zhou et al., 2020; Platanios 962

et al., 2019; Zhou et al., 2020; Wang et al., 2018), 963

relation extraction (Huang and Du, 2019), reading 964

comprehension (Tay et al., 2019), natural language 965

understanding (Xu et al., 2020) and named entity 966

recognition (Jafarpour et al., 2021; Lobov et al., 967

2022; Wenjing et al., 2021). 968

3https://www.teamtat.org/
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Several studies aim to adopt curriculum learning969

philosophy for textual data and propose various970

difficulty-scoring functions and curriculum sched-971

ulers. Some methods measure sample difficulty972

with features derived from lexical statistics, e.g.,973

sentence length and word rarity (Platanios et al.,974

2019; Jafarpour et al., 2021), where longer sen-975

tences and rarer words are considered “hard”. Oth-976

ers use features from pre-trained language models977

(Zhou et al., 2020; Wang et al., 2018; Liu et al.,978

2020). Most schedulers select samples with dif-979

ficulty scores lower than a threshold (Platanios980

et al., 2019). While Zhou et al. (2020) design a981

sample selecting function based on model uncer-982

tainty. Our approach, unique in applying token-983

level curriculum learning to DS-NER tasks, di-984

verges from common sentence-level methods by985

utilizing Transformer-based models like BERT for986

context-aware token-specific predictions and gradi-987

ent learning.988

D Conf-MPU Risk Estimation989

Conf-MPU loss function has been shown to be990

more robust to PU assumption violation in practice.991

Conf-MPU estimates the risk as992

R(f) =

k∑
i=1

πi

(
R+

Pi
(f) + R−

P̃i
(f)− R−

Pi
(f)

)
+R−

Ũ
(f),

(5)993

For stage S∗, the number of token selected for class994

i is TS∗
i . For simplification, we denote it as T ∗

i . The995

empirical estimator of Eq.(5) is996

R̂Conf−MPU(f) =
k∑

i=1

πi

T ∗
i

T∗
i∑

j=1

max

{
0, ℓ(f(x

T∗
i

j ,θ), i)997

+ 1
λ̂(x

T∗
i

j )>ϵ
ℓ(f(x

T∗
i

j ,θ), 0)
1

λ̂(x
T∗
i

j )
− ℓ(f(x

T∗
i

j ,θ), 0)

}
998

+
1

T ∗
0

T∗
0∑

j=1

[
1
λ̂(x

T∗
0

j )≤ϵ
ℓ(f(x

T∗
0

j ,θ), 0)

]
, (6)999

with a non-negative constraint inspired by Kiryo1000

et al. (2017) ensuring the risk on the negative class.1001

We follow Zhou et al. (2022) and set ϵ to 0.5 by1002

default.1003

E Discussion of Loss Function1004

Two loss functions are popularly used for the DS-1005

NER tasks. The first loss function is cross entropy1006

(CE) loss:1007

ℓCE = log fi,yi(x;θ), (7)1008

where fi,yi(x;θ) is the prediction of token xi on1009

class j.1010

Another commonly used loss function is mean 1011

absolute error (MAE): 1012

ℓMAE = |yi − fi,yi(x;θ)|, (8) 1013

where | · | is L-1 norm of the vector and yi denotes 1014

the one hot vector of yi. 1015

Comparing the two loss functions, ℓCE is un- 1016

bounded, and it grants better model convergence 1017

when trained with clean data (i.e., y are ground truth 1018

labels) because more emphasis is put on difficult to- 1019

kens. However, when the labels are noisy, training 1020

with the cross-entropy loss can cause overfitting to 1021

the wrongly labeled tokens. ℓMAE is more noise- 1022

robust than ℓCE. It is bounded and treats every 1023

token more equally for gradient update, allowing 1024

the learning process to be dominated by the correct 1025

majority in distant labels. However, using ℓMAE for 1026

training deep neural models generally worsens the 1027

convergence efficiency and effectiveness due to the 1028

inability to adjust for challenging training samples. 1029

Considering the different characteristics of these 1030

two loss functions, in practice, we suggest using 1031

ℓCE loss for tasks with more entity types and using 1032

ℓMAE loss for tasks with fewer number of entity 1033

types. 1034

F Hyperparameters and Experiment 1035

Settings 1036

Detailed hyper-parameter settings for each dataset 1037

are shown in Table 5. We tune hyperparameters 1038

with Grid-Search over the small validation sets 1039

shown in Table 4. Specifically, we first tune voter 1040

hyperparameters with one voter. The learning rates 1041

are set as 1e-5 for all datasets. Voter drop negative 1042

ratios are chosen from {0.1, 0.3, 0.5}, voter training 1043

epochs from {1, 5, 10, 15}, γ from {10, 20}. Then 1044

we tune curriculum learning hyperparameters. The 1045

stage epochs are chosen from {1, 2, 3} and learning 1046

rates are chosen from {1e-5, 3e-5, 5e-5, 7e-5, 9e- 1047

5}. Other hyperparameters are set without tuning 1048

accordingly. For example, for datasets CoNLL03, 1049

OntoNotes5.0, Webpage, Twitter, Wikigold, QTL 1050

and BC5CDR, the maximum sequence length is set 1051

as 150, 230, 120, 160, 120, 180, 280 respectively, 1052

to ensure the algorithm works correctly. For all 1053

the datasets, we train them with a batch size of 32 1054

sentences and apply Adam optimizer (Kingma and 1055

Ba, 2014). The number of voters K and the num- 1056

ber of curricula C are set as 5 and 5, respectively. 1057

The curriculum selective factor τ is set to 0.5 and 1058

random seed to 42. We apply cross-entropy loss 1059
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Figure 4: Screenshot for online annotation tool TeamTat.

Dataset Train Valid Test Types

CoNLL03
Sentence 14041 20 3453

4
Token 203621 475 46435

Twitter
Sentence 2393 50 3844

10
Token 44076 719 58064

OntoNotes5.0
Sentence 115812 50 12217

18
Token 2200865 1090 230118

Wikigold
Sentence 1142 20 274

4
Token 25819 579 6538

Webpage
Sentence 385 20 135

4
Token 5293 120 1131

BC5CDR
Sentence 4560 20 4797

2
Token 118170 533 124750

QTL
Sentence 18706 21 1044

1
Token 514176 952 32251

Table 4: The statistics of involved DS-NER datasets,
the valid set comprises a small subset from the original
dataset, whereas the train set and test set utilize the
entire original dataset.

to OntoNotes5.0 and Twitter since they have more1060

entity types and apply MAE loss to other datasets.1061

We use the pre-trained RoBERTa as the back-1062

bone model for both the Voter and NER classifier4.1063

For all datasets, we use roberta-base5. We report1064

single-run results for the model performance and1065

the random seed is set to 42. We employ PyTorch61066

and conduct all experiments on a server with a1067

Tesla A100 GPU (32G).1068

G Re-Examine Baseline Methods on QTL1069

We have explored various DS-NRE methods for1070

QTL dataset. Our first attempt is AutoNER, which1071

requires not only a dictionary for entity annota-1072

tion but also a larger dictionary, called full-dict,1073

4We will release code upon paper acceptance.
5https://huggingface.co/roberta-base
6https://pytorch.org/

for marking unknown labels, which leads to in- 1074

creased manual effort. To address this, we gath- 1075

ered a comprehensive dictionary of 26,620 poten- 1076

tial trait entities. Unlike traditional machine learn- 1077

ing approaches, AutoNER uses both a validation 1078

set and a test set during training and eliminates the 1079

need for hyperparameter tuning. In our exploration 1080

of RoBERTa-ES and BOND, we encountered the 1081

practice of using the test set for hyperparameter 1082

tuning during training. To rectify this, we mod- 1083

ified the code to perform hyperparameter tuning 1084

on the validation set and conducted tests on the 1085

test set, focusing on hyperparameter tuning of early 1086

stop criteria and self-training period. For SCDL 1087

and ASTEN, we applied the hyperparameter tuning 1088

strategies outlined in the paper. Note that CuPUL 1089

without curriculum learning is essentially equiva- 1090

lent to Conf-MPU when there is one entity type. 1091

Therefore, Conf-MPU is not presented in the re- 1092

sults. 1093

H DS-NER with Small Validation Set 1094

We evaluated the performances of BOND, SCDL, 1095

and ATSEN models when trained on a smaller vali- 1096

dation set. RoSTER and AutoNER were excluded 1097

from this evaluation as they employ a uniform pa- 1098

rameter set across all datasets. Additionally, Conf- 1099

MPU was not considered because its training strat- 1100

egy is stopping training after a predefined number 1101

of epochs, leading to it being unaffected by the 1102

validation set size. 1103

Table 3 shows the performance of BOND, 1104

SCDL, and ATSEN. It indicates a noticeable de- 1105

cline for all datasets when utilizing small validation 1106

sets. The reductions in small datasets are more sig- 1107
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hyper-parameter CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR QTL
train set sentence # 14041 2393 115812 1142 385 4560 18706
voter drop negative 0.3 0.1 0.3 0.1 0.1 0.3 0.3
voter learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

voter learning epochs 1 5 1 10 15 5 1
Conf-MPU γ 20 10 20 10 10 20 20

curriculum learning stage epochs 1 2 1 2 2 1 1
curriculum learning learning rate 1e-5 7e-5 3e-5 1e-5 5e-5 1e-5 5e-5

Table 5: The hyper-parameters used in CuPUL

nificant as we can observe on the wikigold and1108

webpage. This phenomenon suggests that machine1109

learning models trained on small datasets tend to1110

be less stable and more susceptible to the influ-1111

ence of validation set size. In terms of methodol-1112

ogy, BOND exhibited a smaller reduction in per-1113

formance, possibly because a smaller validation1114

set could lead to stopping at an incorrect position.1115

But, the subsequent teacher-student training could1116

mitigate this issue to some extent. The significant1117

performance drop in SCDL and ATSEN can be at-1118

tributed to their reliance on the validation set for1119

selecting the optimal model, thereby increasing the1120

likelihood of choosing a less effective model for1121

the test set when the validation set is small.1122

I Ablation Study1123

Curriculum Learning To evaluate the effectiveness1124

of curriculum learning in CuPUL, we compare it1125

with two variations of itself. First, we use the five1126

voters trained using positive and sampled negative1127

examples and take the average of their soft label1128

predictions as the result. The results are shown as1129

voter ensemble in Table 7. Second, we include the1130

result of CuPUL-curr from Table ?? since it is an-1131

other variation. To evaluate the effectiveness of the1132

Conf-MPU loss estimation for curriculum learn-1133

ing in CuPUL, we use the regular loss estimation,1134

which considers unlabeled tokens as non-entity to-1135

kens, denoted as w/o Conf-MPU in Table 7.1136

Our analysis reveals the critical role of each com-1137

ponent, as removing any of them results in a signif-1138

icant drop in the F1 score. Compared CuPUL-curr1139

with w/o Conf-MPU, we find that CuPUL-curr con-1140

sistently achieves higher recall. This is attributed to1141

Conf-MPU primarily addressing false positives and1142

partial false positives (Zhou et al., 2022), leading1143

to more tokens being predicted as entities, thereby1144

enhancing recall. Conversely, w/o Conf-MPU ex-1145

hibits higher precision since it tackles both false1146

positives and positive type errors. Addressing posi-1147

tive type errors benefits both precision and recall, 1148

but the increase in precision is more pronounced 1149

compared to CuPUL-curr. 1150

Distant Labels. In previous methods, a moder- 1151

ately well-trained model is often used to detect 1152

label noise, and the confidently predicted soft la- 1153

bels from the moderately well-trained model are 1154

often used to replace the noisy distant labels. Based 1155

on our previous experiments, the ensembled voters 1156

can be viewed as a moderately well-trained model, 1157

and the earlier curricula are formed with data that 1158

the moderately well-trained model can confidently 1159

predict. We study which labels should be used for 1160

curriculum learning in CuPUL, the voters’ ensem- 1161

bled soft labels or the noisy distant labels. Note that 1162

the ensembled labels used here are the soft labels 1163

of the voters’ ensemble. We use KL-divergence 1164

as the loss function in curriculum learning to learn 1165

from soft labels. 1166

Figure 5 plots the results regarding F1 scores 1167

on test data with respect to incremental curriculum 1168

stages. We can see that CuPUL learns in almost all 1169

stages of the curricula, and the F1 value is steadily 1170

improving until the second last curriculum. How- 1171

ever, using ensembled soft labels, the model has a 1172

good start but reaches the upper bound quickly. We 1173

have the following insights from this experiment. 1174

1) A model that only learns from the confidently 1175

predicted labels and ignores the potential noisy data 1176

may converge faster but can be impacted by the per- 1177

formance bottleneck of the initial model. 2) the last 1178

curricula may contain high label noise, so training 1179

on the last curricula may degrade the performance 1180

slightly. However, thanks to the curriculum learn- 1181

ing schedule, the model is overall robust to noise 1182

in the last curricula. 1183

J Parameter Study 1184

Here, we perform parameter studies. Due to the 1185

simplicity of CuPUL, we mainly study two param- 1186

eters: the number of voters V and the number of 1187
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Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
Fully Supervised

RoBERTa# 90.11 (89.14/91.10) 52.19 (51.76/52.63) 86.20 (84.59/87.88) 86.43 (85.33/87.66) 72.39 (66.29/79.73) 90.99 (-/-)†

Span-based DS-NER models
SANTA3 86.59 (86.25/86.95) - 69.72 (69.24/70.21) - 71.79 (78.40/66.72) 79.23 (81.74/76.88)
Top-Neg3 80.55 (81.07/80.23) 52.86 (52.30/53.55) - - - 80.39 (82.09/78.90)

CLIM3 85.4 (-/-) 53.8 (-/-) 69.6 (-/-) 70 (-/-) 67.9 (-/-) -
DS-NER without Self-training
KB-Matching# 71.40 (81.13/63.75) 35.83 (40.34/32.22) 59.51 (63.86/55.71) 47.76 (47.90/47.63) 52.45 (62.59/45.14) 64.32 (86.39/51.24)†

AutoNER# 67.00 (75.21/60.40) 26.10 (43.26/18.69) 67.18 (64.63/69.95) 47.54 (43.54/52.35) 51.39 (48.82/54.23) 79.99 (82.63/77.52)†

RoBERTa-ES# 75.61 (83.76/68.90) 46.61 (53.11/41.52) 68.11 (66.71/69.56) 51.55 (49.17/54.50) 59.11 (60.14/58.11) 73.66 (80.43/67.94)†

Conf-MPU† 79.16 (78.58/79.75) - - - - 77.22 (69.79/86.42)†

CuPUL-curr 83.18 (83.69/82.68) 50.12 (47.48/53.07) 67.76 (65.66/70.00) 66.43 (58.89/76.18) 65.15 (62.89/67.57) 79.91 (75.07/85.43 )
CuPUL 85.09 (84.64/85.53) 54.34 (54.47/54.20) 68.06 (66.31/69.91) 70.53 (67.06/74.39) 73.10 (74.65/71.62) 81.57 (77.02/86.70)

DS-NER with Self-training
BOND# 81.15 (82.00/80.92) 48.01 (53.16/43.76) 68.35 (67.14/69.61) 60.07 (53.44/68.58) 65.74 (67.37/64.19) -

RoSTER¶ 85.40 (85.90/84.90) - - 67.80 (64.90/71.00) - -
SCDL‡ 83.69 (87.96/79.82) 51.10 (59.87/44.57) 68.61 (67.49/69.77) 64.13 (62.25/66.12) 68.47 (68.71/68.24) -

ATSEN‡ 85.59 (86.14/85.05) 52.46 (62.32/45.30) 68.95 (66.97/71.05) - 70.55 (71.08/70.55) -
CuPUL+ST 86.64 (86.02/87.27) 54.78 (57.32/52.46) 68.20 (66.57/69.11) 70.19 (66.96/73.74) 74.48 (76.06/72.97) 80.92 (75.45/87.26)

Table 6: Performance on benchmark datasets: F1 Score (Precision/Recall) (in %). # marks the row of results
reported by Liang et al. (2020). ¶ marks the row of results reported by Meng et al. (2021), where results for Twitter,
OntoNote5.0 and Webpage are not reported in Meng et al. (2021). ‡ marks the row of results reported by Zhang
et al. (2021b). 3 marks the row of results from the method proposed paper respectively. † marks the results from
Zhou et al. (2022). The best results are in bold, second best results are in underline.

Method Wikigold Twitter
Precision Recall F1 Precision Recall F1

CuPUL 67.06 74.39 70.53 54.47 54.20 54.34
w/o Curriculum Learning

voter ensemble 56.88 74.88 64.65 35.52 49.52 41.37
CuPUL-curr 58.89 76.18 66.43 47.48 53.07 50.12

w/o Conf-MPU 59.31 75.86 66.57 58.91 47.04 52.53

Table 7: Ablation study on Wikigold and Twitter datasets.
CuPUL is compared with variations without Curriculum
Learning (voter ensemble only and Conf-MPU only) and with-
out Conf-MPU loss in Curriculum Learning.

Figure 5: F1 scores of CuPUL on test data of Wikigold
trained with Distant Labels (red) and Ensembled Labels from
voters (blue) after each curriculum training stage.

curricula η. To ensure comparability of experimen-1188

tal results, we keep all other parameters fixed and1189

only change the corresponding parameter (V or η)1190

to demonstrate their impact. The experiments are1191

carried out on Wikigold.1192

J.1 Number of Voters V1193

Figure 6 shows the effect of the number of voters1194

V to CuPUL performance. From the figure, we1195

Figure 6: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Voters V .

can see that when there are only two voters, the 1196

performance of CuPUL is poor. This is understand- 1197

able because, with too few voters, the difficulty 1198

scores estimated are unreliable, which leads to a 1199

low-quality curriculum scheduler. As the number 1200

of voters increases, the performance of CuPUL also 1201

rapidly improves. When the number of voters is 4, 1202

it reaches a local maximum. Then, as the number 1203

of voters increases, the new voters can no longer 1204

provide new information for difficulty estimation, 1205

and the results of CuPUL are stabilized around 0.7. 1206

Therefore, with the consideration of computation 1207

efficiency, a moderate number greater than or equal 1208

to 4 can be chosen for the number of voters. 1209

J.2 Number of Curricula η 1210

Figure 7 shows the effect of the number of curricula 1211

to CuPUL performance. Like the number of voters, 1212

when the number of curricula is small, the perfor- 1213
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Index 1 2 3 4 5 6 7 8 9
Token the regiment was attached to Howe ’s Brigade of · · ·

Ground Truth O O O O O ORG ORG ORG O
Distant Label O O O O O ORG ORG ORG ORG
Curriculum # 0 0 0 0 0 2 3 2 4

Index 10 11 12 13 14 15 16 17 18
Token the IV Corps of the Army of the Potomac

Ground Truth O ORG ORG O O ORG ORG ORG ORG
Distant Label O ORG ORG ORG O ORG ORG O O
Curriculum # 0 2 2 2 0 2 2 0 0

Table 8: Case study on Wikigold. The selected sentence is "After burying the dead on the field of Second Battle of
Bull Run, the regiment was attached to Howe ’s Brigade of Couch ’s Division of the IV Corps of the Army of the
Potomac where it replaced De Trobriand ’s 55th New York, Gardes Lafayette regiment on September 11, 1862."
This table shows two pieces of this sentence.

Figure 7: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Curricula η.

BOND RoSTER SCDL Conf-MPU CuPUL CuPUL-ST

Run Time
978s 2397s 4319s 732s 819s 1733s

16m18s 39m57s 71m59s 12m12s 13m39s 28m53s

Table 9: Efficiency analysis on CoNLL03, m means
minute, s means second

mance of CuPUL is poor. Too few curricula can1214

reduce the ability to distinguish between easy and1215

difficult tokens, leading to ineffective curriculum1216

learning. With the increase of η, the performance1217

of CuPUL also improves and reaches the best per-1218

formance at η = 5. After that, as the number of1219

curricula increases, the performance of CuPUL is1220

relatively stable. The performance of CuPUL be-1221

gins to decline after η > 8. The decline may be1222

caused by the data having been trained too many1223

rounds, and the model starts to overfit to noisy la-1224

bels.1225

K Efficiency Analysis1226

In order to evaluate the efficiency of CuPUL, we un-1227

dertook performance timing of the principal meth-1228

ods on CoNLL03, with the results displayed in1229

Table 9. All tests were performed on an identi-1230

cal computing infrastructure. The training epochs 1231

for BOND and SCDL were preset to 5, while 1232

the parameter configurations for RoSTER adhered 1233

strictly to those detailed in their respective paper. 1234

The data in the table reveals that Conf-MPU had 1235

the least time requirement. Our approach, CuPUL, 1236

demonstrated competitive performance in this re- 1237

gard. Even when the self-training procedure was 1238

incorporated into CuPUL-ST, it maintained a sub- 1239

stantial efficiency advantage relative to both RoS- 1240

TER and SCDL. 1241

L Case Study 1242

To gain an intuitive understanding of how the cur- 1243

riculum helps CuPUL, we selected a sentence from 1244

the Wikigold corpus to show how CuPUL learns. 1245

As shown in Table 8, we give the tokens, ground 1246

truth labels, the distant labels, and the Number of 1247

Curricula for each token in the sentence. We assign 1248

each token an index for ease of discussion. We dis- 1249

play a sentence in two lines and omit some repeated 1250

parts. As can be seen from Table 8, the two “of” 1251

(token 9 and token 16) are learned in different cur- 1252

ricula. The one with the false positive label (token 1253

9) is arranged in the fourth curriculum, whereas 1254

the one with the correct label (token 16) is learned 1255

early (the second curriculum). This shows that the 1256

pre-trained language model has the capability of 1257

providing prediction results for each token while re- 1258

taining context information, and thus, the difficulty 1259

scores can be determined at the token level. 1260
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