
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QCIRCUITNET: A LARGE-SCALE HIERARCHICAL
DATASET FOR QUANTUM ALGORITHM DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantum computing is an emerging field recognized for the significant speedup it
offers over classical computing through quantum algorithms. However, designing
and implementing quantum algorithms pose challenges due to the complex nature
of quantum mechanics and the necessity for precise control over quantum states.
Despite the significant advancements in AI, there has been a lack of datasets
specifically tailored for this purpose. In this work, we introduce QCircuitNet, the
first benchmark and test dataset designed to evaluate AI’s capability in designing
and implementing quantum algorithms in the form of quantum circuit codes. Unlike
using AI for writing traditional codes, this task is fundamentally different and
significantly more complicated due to highly flexible design space and intricate
manipulation of qubits. Our key contributions include:

1. A general framework which formulates the key features of quantum algorithm
design task for Large Language Models.

2. Implementation for a wide range of quantum algorithms from basic primitives
to advanced applications, with easy extension to more quantum algorithms.

3. Automatic validation and verification functions, allowing for iterative evalua-
tion and interactive reasoning without human inspection.

4. Promising potential as a training dataset through primitive fine-tuning results.
We observed several interesting experimental phenomena: fine-tuning does not
always outperform few-shot learning, and LLMs tend to exhibit consistent error
patterns. QCircuitNet provides a comprehensive benchmark for AI-driven quantum
algorithm design, offering advantages in model evaluation and improvement, while
also revealing some limitations of LLMs in this domain.

1 INTRODUCTION

Quantum computing is an emerging field in recent decades because algorithms on quantum computers
may solve problems significantly faster than their classical counterparts. From the perspective of
theoretical computer science, the design of quantum algorithms have been investigated in various
research directions - see the survey (Dalzell et al., 2023) and the quantum algorithm zoo (Zoo, 2024).
However, the design of quantum algorithms on quantum computers has been completed manually
by researchers. This process is notably challenging due to highly flexible design space and extreme
demands for a comprehensive understanding of mathematical tools and quantum properties.

For these reasons, quantum computing is often considered to have high professional barriers. As the
discipline evolves, we aim to explore more possibilities for algorithm design and implementation
in the quantum setting. This is aligned with recent advances among AI for Science, including
AlphaFold (Jumper et al., 2021), AlphaGeometry (Trinh et al., 2024), etc. Recently, large language
models (LLMs) have also become widely applicable among AI for science approaches (Yang et al.,
2024; Zhang et al., 2024; Yu et al., 2024). LLMs represent the best practice of sequential modeling
methods at current stage. They have an edge over other models in possessing abundant pre-training
knowledge and providing human-friendly interfaces which support human-machine collaboration.
Therefore, we gear LLMs for quantum algorithm design.

As far as we know, there has not been any dataset for AI in quantum algorithm design. Existing
work combining quantum computing and AI mostly targets at exploiting quantum computing for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

AI; there are some papers applying AI for quantum computing, but they either consider niche
problems (Nakayama et al., 2023; Schatzki et al., 2021) or limited functions (Tang et al., 2023;
Fürrutter et al., 2024), not quantum algorithm datasets of general interest (see Section 2). However,
unlike classical code generation where abundant data exist, the most challenging aspect for quantum
algorithm design is the lack of sufficient data, and hence the difficulty of generalization in training AI
models. Therefore, datasets for quantum algorithm design are solicited.

Descriptions of quantum algorithms in natural language could be verbose and vague. Mathematical
formulas, while precise and succinct, are difficult to verify automatically. To accommodate with
LLMs, we make a change of perspective by formulating quantum algorithms as programming lan-
guages. This allows for precise representation of a quantum algorithm, enables automatic verification
procedure, and bridges the gap between theoretical design and circuit implementations. Furthermore,
meaningful quantum algorithms which can be efficiently implemented have no more than polyno-
mially many gates (Poulin et al., 2011), and thus such formulations have the theoretical benefits
allowing for scalable representations.

Key Contributions. In this work, We propose QCircuitNet, the first comprehensive, structured
dataset for quantum algorithm design. Technically, QCircuitNet has the following key contributions:

• It formulates the task for Large Language Models (LLMs) with a carefully designed framework
encompassing the key features of quantum algorithm design, including problem description,
quantum circuit codes, classical post-processing, and verification functions. It maintains the
black-box nature of oracles and characterizes query complexity properly.

• It implements a wide range of quantum algorithms from basic primitives and textbook-level
algorithms to advanced applications. We demonstrate the compatibility with complex algorithms
through Generalized Simon’s Problem and showcase the easy extension to advanced algorithms.

• It has automatic validation and verification functions, allowing for iterative evaluation without
human inspection. This further enables interactive reasoning which may improve the performance.

• It showcases the potential as a training dataset through primitive fine-tuning results. As we expand
the dataset to include more algorithms and explore novel fine-tuning methods, it will hopefully
contribute to interactive quantum algorithm design and implementation significantly.

2 RELATED WORK

Quantum Machine Learning. To the best of our knowledge, QCircuitNet is the first dataset
tailored specifically for quantum algorithm design. Previous efforts combining quantum computing
with AI primarily fall under the category of Quantum Machine Learning (QML), which aims at
leveraging the unique properties of quantum systems to enhance machine learning algorithms and
achieve improvements over their classical counterparts (Schuld et al., 2015; Biamonte et al., 2017;
Ciliberto et al., 2018). Corresponding datasets often focus on encoding classical data into quantum
states. For instance, MNISQ (Placidi et al., 2023) is a dataset of quantum circuits representing the
original MNIST dataset (LeCun et al., 1998) generated by the AQCE algorithm (Shirakawa et al.,
2021). Considering the intrinsic nature of quantum properties, another category of datasets focuses
on collecting quantum data to demonstrate quantum advantages since classical machine learning
methods can fail to characterize particular patterns of quantum data. For example, Nakayama et al.
(2023) created a VQE-generated quantum circuit dataset for classification of variational ansatzes
and showed its quantum supremacy. NTangled (Schatzki et al., 2021) further investigated different
types of entanglement and composed quantum states with various multipartite entanglement for
classification. While these datasets successfully demonstrate the supremacy of quantum computing,
they address relatively niche problems whose practical applications are unclear.

AI for Quantum Computing. This research direction explores the possibility of leveraging AI to
facilitate the advancement of quantum computing. QDataSet (Perrier et al., 2022) collects data from
simulations of one- and two-qubit systems and targets training classical machine learning algorithms
for quantum control, quantum tomography, and noise mitigation. LLM4QPE (Tang et al., 2023) is
a large language model style paradigm for predicting quantum system properties with pre-training
and fine-tuning workflows. While the paradigm is interesting, the empirical experiments are limited

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to two downstream tasks: quantum phase classification and correlation prediction. Fürrutter et al.
(2024) studied the application of diffusion models (Sohl-Dickstein et al., 2015; Rombach et al., 2022)
to quantum circuit synthesis (Saeedi & Markov, 2013; J. et al., 2022). Scalability issues must be
addressed to achieve practical and meaningful unitary compilation through this methodology.

Quantum Circuit Benchmarks. The aforementioned works represent meaningful explorations
at the intersection of AI and quantum computing. However, none of them considers the task
which interests the quantum computing community (from the theoretical side) the most: quantum
algorithm design. Our work aims to take the first step in bridging this gap. It is worth noting
that several quantum algorithm circuit benchmarks already exist, such as QASMBench (Li et al.,
2023), MQTBench (Quetschlich et al., 2023), and VeriQBench (Chen et al., 2022). However, these
benchmarks are designed to evaluate the performance of NISQ (Noisy Intermediate-Scale Quantum)
(Preskill, 2018) machines or quantum software tools, rather than for training and evaluating AI models.
For instance, QASMBench includes a diverse variety of quantum circuits based on OpenQASM
representation (Cross et al., 2022), covering quantum circuits with qubit sizes ranging from 2 to 127.
However, it fails as a dataset for AI in that it does not capture the design patterns of each algorithm
and ignores the post-processing procedure and construction of different oracles, which are crucial to
quantum algorithm design. Similar limitations apply to MQTBench and VeriQBench.

3 PRELIMINARIES FOR QUANTUM COMPUTING

In this section, we will introduce necessary backgrounds for quantum computing related to this paper.
Additional preliminaries can also be found in Appendix B. A more detailed introduction to quantum
computing can be found in the standard textbook by Nielsen & Chuang (2000).

Quantum States. In classical computing, the basic unit is a bit. In quantum computing, the basic
unit is a qubit. Mathematically, n (n ∈ N) qubits forms an N -dimensional Hilbert space for N = 2n.
An n-qubit quantum state |ϕ⟩ can be written as

|ϕ⟩ =
N−1∑
i=0

αi|i⟩, where
N−1∑
i=0

|αi|2 = 1. (1)

Here |·⟩ represents a column vector, also known as a ket state. The tensor product of two quantum
states |ϕ1⟩ =

∑N−1
i=0 αi|i⟩ and |ϕ2⟩ =

∑M−1
j=0 βj |j⟩ with M = 2m, m ∈ N is defined as

|ϕ1⟩ ⊗ |ϕ2⟩ =
N−1∑
i=0

M−1∑
j=0

αiβj |i, j⟩, (2)

where |i, j⟩ is an (n+m)-qubit state with first n qubits being the state |i⟩ and the last m qubits being
the state |j⟩. When there is no ambiguity, |ϕ1⟩ ⊗ |ϕ2⟩ can be abbreviated as |ϕ1⟩|ϕ2⟩.

Quantum Oracles. To study a Boolean function f : {0, 1}n → {0, 1}m, we need to gain its access.
Classically, a standard setting is to being able to query the function, in the sense that if we input an
x ∈ {0, 1}n, we will get the output f(x) ∈ {0, 1}m. In quantum computing, the counterpart is a
quantum query, which is instantiated by a quantum oracle. Specifically, the function f is encoded as
an oracle Uf such that for any x ∈ {0, 1}n, z ∈ {0, 1}m,

Uf |x⟩|z⟩ = |x⟩|z ⊕ f(x)⟩, (3)
where ⊕ is the plus modulo 2. Note that a quantum query to the oracle is stronger than a classical
query in the sense that the quantum query can be applied to a state in superposition: For an input
state

∑
i ci|xi⟩|zi⟩ with

∑
i |ci|2 = 1, the output state is

∑
i ci|xi⟩|zi ⊕ f(xi)⟩; measuring this state

gives xi and zi ⊕ f(xi) with probability |ci|2. A classical query for x can be regarded as the special
setting with c1 = 1, x1 = x, z1 = 0m, and ci = 0 for all other i.

Quantum Gates. Similar to classical computing that can stem from logic synthesis with AND, OR,
and NOT, quantum computing is also composed of basic quantum gates. For instance, the Hadamard

H is the matrix 1√
2

[
1 1
1 −1

]
, satisfying H|0⟩ = 1√

2
(|0⟩ + |1⟩) and H|1⟩ = 1√

2
(|0⟩ − |1⟩). In

general, an n-qubit quantum gate is a unitary matrix from C2n×2n .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 QCIRCUITNET DATASET

4.1 TASK SUITE

For the general purpose of quantum algorithm design, we consider three categories of tasks: oracle
construction, algorithm design, and random circuit synthesis. These three tasks are crucial for
devising and implementing quantum algorithms, with oracle construction serving as the premise for
algorithm design, and random circuits serving as a main demonstration for quantum supremacy.

4.1.1 TASK I: ORACLE CONSTRUCTION

The construction of such an oracle Uf using quantum gates is deeply rooted in the research topic
of reversible quantum logic synthesis, which remains a challenge for complex Boolean functions.
In this dataset, we mainly focus on the construction of textbook-level oracles: Bernstein-Vazirani
Problem (Bernstein & Vazirani, 1993), Deutsch-Jozsa Problem (Deutsch & Jozsa, 1992), Simon’s
Problem (Simon, 1997), and Grover’s algorithm for unstructured search (Grover, 1996) (including
constructions of both the oracle and the diffusion operator). There is another category of more flexible
oracle construction tasks which we refer to as "Problem Encoding". For example, one can apply
Grover’s oracle to solving constraint problems such as SAT and triangle finding (Ambainis, 2004).
Formulating problem encoding tasks for LLMs slightly differs from quantum logic synthesis, and we
refer the readers to Appendix A.2 for more detailed discussion.

4.1.2 TASK II: QUANTUM ALGORITHM DESIGN

There are several challenges to address in order to formulate quantum algorithm design task precisely:

• From a theoretical perspective, the oracle is usually provided as a blackbox gate since the goal of
many algorithms is to determine the property of the function f(x) encoded by the oracle Uf . If
the model has access to the gate implementation of the oracle, it can directly deduce the property
from the circuit, failing the purpose of designing a quantum algorithm to decode the information.
However, for all experimental platforms, a quantum circuit needs to be explicitly constructed to
compile and run successfully, i.e., the oracle should be provided with exact gate implementation.
Most tutorials and benchmarks (especially those based on Qiskit and OpenQASM) simply merge
the circuit implementation of the oracle and the algorithm as a whole for demonstration purposes.
When we gear LLMs for quantum algorithm design, how to separate the algorithm circuits from
oracle implementation to avoid information leakage is a critical point to consider.

• A quantum algorithm constitutes not only the quantum circuit, but also its interpretation of mea-
surement results. For example, in Simon’s algorithm, the measurement results yi are not the direct
answer s to the problem, but rather satisfies the property s · yi = 0. Linear equations need to be
solved to obtain the final answer. In this case, for a complete algorithm design, the model should
also specify the the post-process steps to derive the answer to the original problem.

• Quantum circuits for the same algorithm vary with different qubit number n. Although this is trivial
for theoretical design, it needs to be considered when implementing concrete quantum circuits.

In this category, we cover a wide range of quantum algorithms with varying complexity, from
fundamental primitives and textbook-level algorithms to advanced applications. For example, we
implemented Generalized Simon’s Problem (Ye et al., 2021), a more advanced version of the standard
Simon’s problem and an active area of research in recent years (Ye et al., 2021; Wu et al., 2022). The
setting is formally stated as follows: given an (unknown) function f : Zn

p → X where X is a finite set
and a k is a positive integer satisfying k < n, it is guaranteed that there exists a subgroup S ≤ Zn

p of
rank k such that for any x, y ∈ Zn

p , f(x) = f(y) iff x− y ∈ S. The goal is to find S. Intuitively, the
generalized Simon’s problem extends the standard Simon’s problem from binary to p-ary bases and
from a single secret string to a subgroup of rank k. Beyond universal quantum algorithms, we also
consider quantum teleportation and quantum key distribution, two widespread protocols in quantum
information. We cover their details in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1.3 TASK III: RANDOM CIRCUIT SYNTHESIS

The third task we consider is random circuit synthesis. On the one hand, random circuit sampling is
the first algorithm for showing quantum supremacy by Google in 2019 (Arute et al., 2019), and is
still widely applied to demonstrate the power of quantum algorithms in recent research (Wu et al.,
2021; Bluvstein et al., 2024; DeCross et al., 2024). On the other hand, this also naturally enlarges our
dataset. To be more specific, we generate the dataset by randomly sampling gates from a Clifford
gate set {H, S, CNOT} and a universal set {H, S, T, CNOT} separately. We then simulate the circuits
to obtain the final quantum states. In each task, the problem description provides the vector of the
final state, and the model is required to generate quantum circuits that reproduce this state using the
specified gate set.

4.2 DATASET STRUCTURE

The overall structure of QCircuitNet is illustrated as follows (more details are given in Appendix A):

Figure 1: Structure of QCircuitNet. The components of QCircuitNet are presented in the frame on
the top-right. As a showcase, this figure presents the components for Simon’s problem (Simon, 1997),
including its problem description in natural language, post-processing function in python code, circuit
in a .qasm file, and oracle definition in a .inc file.

Design Principles. As discussed in Section 4.1, a critical consideration in formulating the frame-
work is the dilemma between providing the oracle as a black box for quantum algorithm design and
the need for its explicit construction to execute the circuit and interpret the results, making the algo-
rithm design complete. Additionally, model training and reference present challenges, particularly
for LLMs in generating complex and precise composite gates and evaluating the results efficiently.
To address these obstacles, we highlight the following construction principles, which are specially
designed to adapt to these tasks:

• For algorithm design tasks, as discussed in Section 4.1.2, we provide the oracle as a black-box gate
named "Oracle" with the explicit definition in a separate "oracle.inc" library, which is supported by
the OpenQASM 3.0 grammar. In this way, we make sure that the model can use the oracle without
accessing its underlying function, which solves the problem of isolating oracle definition from the
algorithm circuit.

• For oracle construction tasks, we ask the model to directly output the quantum circuit in QASM
format. For algorithm design task, we require both a quantum circuit and a post-processing function
to derive the final answer from circuit execution results. Moreover, we ask the model to explicitly

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

set the shots needed to run the circuit itself in order to characterize the query complexity, which is
critical in the theoretical analysis of algorithms.

• For available quantum gates, we provide the definition of some important composite gates not
included in the standard QASM gate library in a "customgates.inc". Hierarchical definition for
multi-controlled X gate contains 45060 lines for qubit number n = 14 in OpenQASM format,
which is impossible for AI models to accurately generate at the time. Providing these as a .inc file
guarantees the correctness of OpenQASM’s grammar while avoiding the generation of complicated
gates, which is a distraction from the original design task.

• To verify models’ output automatically without human evaluation, we compose verification func-
tions to validate the syntax of QASM / Qiskit and the functionality of the implemented circuits
/ codes. Since comprehensive Logic Equivalence Checking (LEC) might be inefficient for the
throughput of LLM inference, we perform the verification by directly checking the correctness of
output with extensive test cases.

Based on theses principles, we proposed the framework of QCircuitNet. Below is a more detailed
explanation for the 7 components of the dataset:

1. Problem Description: carefully hand-crafted prompts stating the oracle to be constructed or the
target problem to be solved in natural language and latex math formulas. If the problem involves
the usage of a quantum oracle or composite gates beyond the standard gate library, the interfaces
of the oracle / gate will also be included (input qubits, output qubits, function mechanism).

2. Generation Code: one general Qiskit (Javadi-Abhari et al., 2024) code to create quantum circuits
for oracles or algorithms of different settings, such as distinct secret strings or various qubit
numbers. We choose Qiskit as the main experiment platform because it is a general quantum
programming software widely used for the complete workflow from creating quantum circuits to
transpiling, simulation, and execution on real hardware.

3. Algorithm Circuit: a .qasm file storing the quantum circuit for each specific setting. We choose
OpenQASM 3.0 (Cross et al., 2022) as the format to store the quantum circuits, because Qiskit,
as a python library, can only create quantum circuits at runtime instead of explicitly saving the
circuits at gate level.1

4. Post-Processing Function: this is for Algorithm Design task only, see Section 4.1.2. The function
takes a complete quantum circuit as input, uses the Qiskit AerSimulator to execute the circuit,
and returns the final answer to the original problem according to the simulation results. For state
preparation problems such as creating a GHZ state of n qubits, this function returns the qubit
indices of the generated state.

5. Oracle / Gate Definition: a .inc file to provide definitions of composite gates or oracles. For
oracle construction tasks, this only includes the definition of composite gates required to build the
oracle. For algorithm design tasks, we also provide the gate definition of the oracle in this file,
which successfully delivers the oracle in a black-box way.

6. Verification Function: a function to evaluate whether the implemented oracle / algorithm achieves
the desired purpose with grammar validation and test cases verification. If there exist grammar
errors, the function returns -1 and provides detailed error message, which can be used as feedback
for the LLM to improve through interactive reasoning. If the program can execute successfully,
the function returns a score between [0, 1] indicating the success rate on test cases.2

7. Dataset Creation Script: the script to create the dataset from scratch in the format suitable for
benchmarking / fine-tuning LLMs. It contains the following functions: 1. generate primitive
QASM circuits. 2. extract gate definitions and add include instructions to create algorithm circuit,
the direct output of model. 3. validate and verify the correctness of the data points in the dataset. 4.
concatenate algorithm circuit with problem description as a json file for the benchmark pipeline.

This structure of QCircuitNet provides a general framework to formulate quantum algorithm design
for large language models, with an easy extension to more advanced quantum algorithms.

1Although currently the Qiskit APIs for importing and dumping OpenQASM 3.0 files are still in experimental
stage, we choose to adopt version 3.0 over 2.0 in that it supports saving parameterized circuits, which allows for
extending the framework to variational quantum algorithms (Cerezo et al., 2021).

2The verification function explicitly integrates the oracle / gate definition library with output algorithm circuit
since Qiskit importer for OpenQASM 3.0 does not support non-standard gate libraries currently.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 BENCHMARKING LLMS ON QCIRCUITNET

We benchmark the quantum algorithm design capabilities of leading closed-source and open-source
large language models using QCircuitNet. The workflow of our benchmark is illustrated in Figure 2.
The total computation cost is approximately equivalent to two days on an A100 GPU.

Figure 2: Flowchart of benchmarking QCircuitNet.

Models. Recently, the GPT series models have become the benchmark for generative models due
to their exceptional performance. Specifically, we include two models from OpenAI, GPT-3.5-turbo
(Brown et al., 2020) and GPT-4 (OpenAI et al., 2024), in our benchmark. Additionally, the LLAMA
series models (Touvron et al., 2023a;b) are widely recognized as leading open-source models, and
we have selected LLAMA-3-8B for our study. For a comprehensive evaluation, we also benchmark
Phi-3-medium-128k (Abdin et al., 2024) and Mistral-7B-v0.3 (Jiang et al., 2023).

Prompts. We employ a few-shot learning framework, a prompting technique that has shown
considerable success in generative AI (Xie et al., 2021). In this approach, we utilize either 1 or 5
examples, followed by a problem description. To ensure we do not train and test on the same quantum
algorithm, we implement k-fold validation. This method involves using one problem as the test set
while the remaining problems serve as the training set, rotating through each problem one at a time.

Evaluation Metrics. We use three evaluation metrics (see Appendix C.1 for more details):

1. BLEU Score: this metric measures how closely the generated code matches the reference code,
with a higher BLEU score indicating greater similarity.

2. Verification function: this function checks the syntax validation and the result correctness of the
code produced by the language model.

3. Byte Perplexity: this metric evaluates the model’s ability to predict the next byte in a sequence.
Lower byte perplexity indicates better performance by reflecting the model’s predictive accuracy.

The results for BLEU and verification function score are shown in Figure 3, Table 1, and Table 2. We
include the results of Byte Perplexity in Appendix C.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80

BLEU Score

Bernstein-Vazirani

Deutsch-Jozsa

Grover

Phase Estimation

Quantum Fourier Transform

Simon

GHZ State

Random Number Generator

Swap Test

W State

Generalized-Simon(multi-str)

Generalized-Simon(ternary)

Average

Algorithm Design

Models
gpt-4o-2024-05-13
(1-shot)
gpt-4o-2024-05-13
(5-shot)
Meta-Llama-3-8B
(1-shot)
Meta-Llama-3-8B
(5-shot)
gpt-3.5-turbo-0125
(1-shot)
gpt-3.5-turbo-0125
(5-shot)
Phi-3-medium-128k-instruct
(1-shot)
Phi-3-medium-128k-instruct
(5-shot)
Mistral-7B-v0.3
(1-shot)
Mistral-7B-v0.3
(5-shot)

0 10 20 30 40 50 60 70 80

BLEU Score

Bernstein Vazirani

Deutsch Jozsa

Diffusion Operator

Grover

Simon

Generalized-Simon(multi-str)

Average

Oracle Construction

Models
gpt-4o-2024-05-13
(1-shot)
gpt-4o-2024-05-13
(5-shot)
Meta-Llama-3-8B
(1-shot)
Meta-Llama-3-8B
(5-shot)
gpt-3.5-turbo-0125
(1-shot)
gpt-3.5-turbo-0125
(5-shot)
Phi-3-medium-128k-instruct
(1-shot)
Phi-3-medium-128k-instruct
(5-shot)
Mistral-7B-v0.3
(1-shot)
Mistral-7B-v0.3
(5-shot)

Figure 3: Benchmarking algorithm design and oracle construction in BLEU scores.

Table 1: Benchmarking algorithm design in verification function scores.
Model Shot Bernstein

Vazirani
Deutsch

Jozsa Grover Phase
Estimation QFT Simon GHZ

Random
Number

Generator

Swap
Test

W
State

Generalized
Simon

(multi-str)

Generalized
Simon

(ternary)
Avg

gpt4o 1
-0.8462 -0.5538 -0.7089 -0.8423 -1.0000 -0.6692 -0.8462 -1.0000 -1.0000 -1.0000 -0.8844 -0.6667

-0.8348(±0.1042) (±0.1986) (±0.1879) (±0.0000) (±0.0000) (±0.1447) (±0.1538) (±0.0000) (±0.0000) (±0.0000) (±0.1156) (±0.3333)

gpt4o 5
-0.3054 0.0135 -0.2071 -0.5846 -0.6154 -0.3692 -0.1538 -0.4967 -0.8700 -0.9231 -0.4889 0.0000

-0.4167(±0.2086) (±0.2070) (±0.2089) (±0.3107) (±0.1804) (±0.1443) (±0.2738) (±0.2210) (±0.1300) (±0.0769) (±0.2077) (±0.0000)

Llama3 1
-0.2308 -0.7692 -0.7143 -1.0000 -0.9231 -1.0000 -0.6154 -0.9285 -1.0000 -0.3846 -1.0000 -1.0000

-0.7972(±0.2571) (±0.1216) (±0.1844) (±0.1429) (±0.0769) (±0.0000) (±0.1804) (±0.0715) (±0.0000) (±0.1404) (±0.0000) (±0.0000)

Llama3 5
0.0769 -0.2308 -0.5393 -0.9231 -0.7692 -0.8462 -0.3846 -0.7276 -1.0000 -0.1538 -0.8889 -1.0000

-0.6155(±0.2107) (±0.1662) (±0.2185) (±0.0000) (±0.1662) (±0.1042) (±0.1404) (±0.1468) (±0.0000) (±0.1042) (±0.1111) (±0.0000)

gpt3.5 1
-0.8462 -0.7154 -0.5679 -1.0000 -1.0000 -0.6231 -0.8462 -1.0000 -1.0000 -1.0000 -0.7778 -1.0000

-0.8647(±0.1042) (±0.1503) (±0.2037) (±0.0000) (±0.0000) (±0.1680) (±0.1538) (±0.0000) (±0.0000) (±0.0000) (±0.1470) (±0.0000)

gpt3.5 5
-0.6154 -0.0571 -0.0500 -0.9154 -0.6538 -0.1646 -0.2308 -0.4513 -0.8778 -0.8462 -0.3311 0.0000

-0.4328(±0.1404) (±0.1934) (±0.1687) (±0.0000) (±0.1538) (±0.1395) (±0.2809) (±0.2410) (±0.1222) (±0.1042) (±0.1672) (±0.0000)

Phi3 1
-0.8462 -0.7750 -1.0000 -1.0000 -1.0000 -1.0000 -0.3846 -1.0000 -0.8878 -0.8462 -1.0000 -1.0000

-0.8950(±0.1538) (±0.1527) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.2130) (±0.0000) (±0.1122) (±0.1042) (±0.0000) (±0.0000)

Phi3 5
-0.6577 -0.3821 -0.8286 -0.6923 -1.0000 -0.6100 -0.9231 -0.3569 -0.8333 -0.8462 -0.8889 -1.0000

-0.7516(±0.1891) (±0.2342) (±0.1714) (±0.0000) (±0.0000) (±0.1425) (±0.0769) (±0.2402) (±0.1667) (±0.1042) (±0.1111) (±0.0000)

Mistral 1
-0.8462 -0.8590 -0.7107 -1.0000 -1.0000 -0.9192 -0.7692 -1.0000 -1.0000 -0.6923 -0.8889 -1.0000

-0.8905(±0.1042) (±0.1410) (±0.1868) (±0.0000) (±0.0000) (±0.0808) (±0.1662) (±0.0000) (±0.0000) (±0.1332) (±0.1111) (±0.0000)

Mistral 5
-0.6246 -0.6667 -0.4071 -1.0000 -0.9231 -0.9115 -0.6923 -0.8820 -1.0000 -0.5385 -0.8889 -0.6667

-0.7668(±0.1664) (±0.1820) (±0.2106) (±0.1429) (±0.0769) (±0.0885) (±0.1332) (±0.1180) (±0.0000) (±0.1439) (±0.1111) (±0.3333)

Table 2: Benchmarking oracle construction in verification function scores.
Model Shot Bernstein-Vazirani Deutsch-Jozsa Diffusion-Operator Grover Simon Generalized-

Simon (multi-str) Avg

gpt4o 1
-0.3200 -0.0100 -0.8462 -0.9885 -0.4674 -0.3750

-0.5012(±0.0530) (±0.0438) (±0.1538) (±0.0115) (±0.0545) (±0.0870)

gpt4o 5
-0.1100 0.0800 -0.3077 -0.9540 -0.0870 -0.3125

-0.2819(±0.0399) (±0.0506) (±0.2083) (±0.0279) (±0.0295) (±0.0832)

Llama3 1
-0.7300 -0.5000 -0.3846 -1.0000 -0.6848 -0.9375

-0.7061(±0.0468) (±0.0704) (±0.1404) (±0.0000) (±0.0487) (±0.0435)

Llama3 5
-0.0500 0.1700 -0.8462 -1.0000 -0.6413 -0.6875

-0.5092(±0.0359) (±0.0551) (±0.1042) (±0.0000) (±0.0503) (±0.0832)

gpt3.5 1
-0.3500 -0.0400 -0.8462 -1.0000 -0.3696 -1.0000

-0.6010(±0.0539) (±0.0470) (±0.1538) (±0.0000) (±0.0529) (±0.0000)

gpt3.5 5
-0.1100 0.0200 -0.3077 -0.9770 -0.1087 -0.4063

-0.3149(±0.0373) (±0.0531) (±0.2083) (±0.0162) (±0.0326) (±0.0989)

Phi3 1
-0.6800 -0.6100 -0.9231 -1.0000 -0.7500 -1.0000

-0.8272(±0.0510) (±0.0584) (±0.0769) (±0.0000) (±0.0454) (±0.0000)

Phi3 5
-0.5400 -0.4300 -1.0000 -1.0000 -0.8370 -0.9063

-0.7855(±0.0521) (±0.0685) (±0.0000) (±0.0000) (±0.0387) (±0.0524)

Mistral 1
-0.4000 -0.4300 -0.9231 -0.9540 -0.6087 -0.9375

-0.7089(±0.0512) (±0.0640) (±0.0769) (±0.0279) (±0.0512) (±0.0435)

Mistral 5
-0.3700 -0.1300 -1.0000 -0.9195 -0.2391 -0.9063

-0.5942(±0.0506) (±0.0734) (±0.0000) (±0.0373) (±0.0447) (±0.0524)

The results illustrate that most models achieve better scores in the five-shot setting, which indicates
their ability to learn effectively from contextual examples. Notably, models perform well on tasks
like Bernstein-Vazirani and Deutsch-Jozsa but struggle with more complex algorithms such as
Grover, phase estimation, and quantum Fourier transform, highlighting differences in task difficulty.
Furthermore, although the BLEU scores show a general trend of consistency with verification scores,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

some discrepancies arise, such as the swap test showing relatively high BLEU scores but incorrect
algorithm generation by most models. This observation emphasizes the need for complementary
evaluation metrics beyond BLEU to accurately assess model performance, which highlights the
importance of our verification function. Additionally, GPT-4o and GPT-3.5 consistently excel in
long-context comprehension, significantly outperforming other models across tasks, which highlights
their superior in-context learning capabilities. For more detailed analysis of the experimental results,
we refer to Appendix C.1.

Types of Errors Made by LLMs. In Appendix C.3, we include several case studies to illustrate
and analyze various types of errors made by LLMs. For example, GPT-4o tends to use advanced
OpenQASM 3.0 features unsupported by Qiskit yet and novel namespace which might result in global
conflicts in one-shot setting. This tendency to improvise by drawing on pre-trained knowledge rather
than closely following the syntax of the example leads to avoidable "errors" and low verification
scores. This issue is significantly alleviated in the 5-shot setting, highlighting GPT-4o’s strong
in-context learning ability.

5.2 FINE-TUNING ON QCIRCUITNET

Although QCircuitNet is targeted as a benchmark dataset at current stage, we consider fine-tuning /
training from scratch based on our dataset as an interesting and important research direction. The
unique nature of quantum data requires novel fine-tuning methods and model architecture designs,
which could serve as a standalone topic. For a primitive demonstration, we present fine-tuning results
on data from the oracle construction task here.

Following Dettmers et al. (2024), we quantize the model to 8-bits and then train it with LORA (Hu
et al., 2022). In our experiments, we use fp16 computational datatype. We set LoRA r = 16, α = 32
and add LoRA modules on all the query and value layers. We also use AdamW (Loshchilov & Hutter,
2019) and LoRA dropout of 0.05. The results are shown as follows:

Table 3: Fine-tuning oracle construction scores.
Score Model Setting Bernstein-

Vazirani
Deutsch-

Jozsa Grover Simon Clifford Universal Avg

BLEU

gpt4o few-
shot(5)

95.6388 91.0564 92.0620 80.3390 39.5469 33.3673
72.0017(±0.3062) (±0.6650) (±0.6288) (±2.0900) (±3.6983) (±3.1007)

Llama3
few-

shot(5)
53.5574 69.8996 61.3102 26.3083 13.0729 13.4185

39.5945(±5.2499) (±5.7812) (±5.4671) (±2.0048) (±0.9907) (±1.2299)

Llama3 finetune
76.0480 71.8378 67.7892 43.8469 10.8978 7.1854

46.2675(±7.9255) (±2.4179) (±7.8900) (±3.2998) (±0.6169) (±0.5009)

Verification

gpt4o few-
shot(5)

0.0000 0.4300 0.0000 -0.0200 -0.0333 -0.1023
0.0457(±0.0246) (±0.0590) (±0.1005) (±0.0141) (±0.0401) (±0.0443)

Llama3
few-

shot(5)
-0.2700 0.0900 -0.5200 -0.6600 -0.7303 -0.5056

-0.4327(±0.0468) (±0.0668) (±0.0858) (±0.0476) (±0.0473) (±0.0549)

Llama3 finetune
-0.1300 -0.2000 -0.3300 -0.7400 -0.8741 -0.9342

-0.5347(±0.0485) (±0.0402) (±0.0900) (±0.0441) (±0.0343) (±0.0262)

PPL
Llama3

few-
shot(5)

1.1967 1.1174 1.1527 1.1119 1.4486 1.4975
1.2541(±0.0028) (±0.0015) (±0.0021) (±0.0017) (±0.0054) (±0.0051)

Llama3 finetune
1.0004 1.1090 1.0010 1.1072 1.2944 1.3299

1.1403(±0.0002) (±0.0014) (±0.0006) (±0.0011) (±0.0053) (±0.0055)

We compare the performance of Llama3-8B before and after fine-tuning with case studies. Take
oracle construction of Bernstein-Vazirani Problem as an example, we observed that before fine-
tuning, the model would indiscriminately apply CX gates to all qubits. After fine-tuning, it began
to selectively apply CX gates to qubits with ’1’s in the secret string. In some cases, the positions
were still counted incorrectly; however, in certain instances, the model accurately identified all the
positions for applying the CX gates, which is highly impressive. This improvement significantly
contributed to higher scores, suggesting that the model is starting to learn the pattern for constructing
certain oracles through fine-tuning. Regarding the interesting performance decrease on Clifford
and universal random circuits, we conducted additional experiments on temperature and refer to
Appendix C.2 for more details.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose QCircuitNet, the first comprehensive, structured universal quantum algo-
rithm dataset and quantum circuit generation benchmark for AI models. This framework formulates
quantum algorithm design from the programming language perspective and includes detailed de-
scriptions and implementation of most established and important quantum algorithms / primitives,
allowing for automatic verification methodologies. Benchmarking of QCircuitNet on up-to-date
LLMs is systematically conducted. Fine-tuning results also showcase the potential of QCircuitNet
as a training dataset. As shown by these benchmarking and fine-tuning results, QCircuitNet helps
guide LLMs for reasoning and implementation. As we gradually extend the dataset, it will hopefully
contribute to interactive quantum algorithm design.

We also highlight the challenges and opportunities as follows, ranging from scalability on the quantum
algorithm side to data contamination on the AI side:

Scalability of the Approach. Our framework is designed to scale with increasing qubit numbers and
support complex quantum algorithms as long as they are efficiently implementable with polynomial
gates. The dataset generation scripts are written in a generic way which can be easily extended to
arbitrarily large qubit numbers. The implementation of Generalized Simon’s Problem mentioned in
Section 4.1.2 showcases the compatibility of our framework with more complex algorithms. The main
bottleneck for scalability in the pipeline lies in the simulation process in verification function. For
simplicity of demonstration and consideration of hardware noise, all the verification functions were
run with classical simulations in our experiments. But the APIs we implemented are compatible with
IBM hardware and can be easily adapted to quantum computers, which reduces the cost of classical
simulation. As quantum hardware becomes widespread and the capabilities of large language models
continue to advance, the dataset can be easily expanded to accommodate scaling.

Data Contamination in AI Learning. We observe a performance separation between writing
general Qiskit codes and explicit gate-level circuits in QASM. Since Qiskit provides detailed tutorial
with general codes for several algorithms, this may imply a data contamination phenomenon where
LLMs rely on memorization and retrieval rather than genuine algorithm design (see Appendix C.4
for more details). Similarly, current benchmarks for AI code generation and syntax learning may
also suffer from this unseen bias. Our dataset, based on QASM files created from scratch, may help
circumvent this issue and serve as a stable and fair method for benchmarking AI syntax learning.

Our work leaves several open questions for future investigation:

• QCircuitNet is a benchmarking dataset for LLMs. It is of general interest to extend benchmarking
to training, which will help LLMs better maneuver quantum algorithm design. We have imple-
mented advanced algorithms such as the Generalized Simon’s Problem, but this in general needs
implementations of more advanced algorithms to make it a more meaningful training dataset.

• Since quantum algorithms have fundamental difference from classical algorithms, novel fine-
tuning methods to attempt quantum algorithm design and quantum circuit implementation, or even
developments of new quantum algorithms by LLMs are solicited.

• Currently, variational quantum algorithms (Cerezo et al., 2021) can already be implemented on near-
term NISQ machines (Preskill, 2018). It would be also of general interest to extend QCircuitNet to
contain the design and implementation of variational quantum algorithms.

REFERENCES

Quantum algorithm zoo. https://quantumalgorithmzoo.org/, 2024. Accessed: 2024-
05-30.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Ben-
haim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Qin Cai, Martin Cai, Caio César Teodoro
Mendes, Weizhu Chen, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Yen-Chun Chen, Yi-
Ling Chen, Parul Chopra, Xiyang Dai, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen
Eldan, Victor Fragoso, Dan Iter, Mei Gao, Min Gao, Jianfeng Gao, Amit Garg, Abhishek Goswami,

10

https://quantumalgorithmzoo.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Java-
heripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Ce Liu,
Mengchen Liu, Weishung Liu, Eric Lin, Zeqi Lin, Chong Luo, Piyush Madan, Matt Mazzola,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy,
Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning
Shang, Hiteshi Sharma, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Xin Wang,
Lijuan Wang, Chunyu Wang, Yu Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Haiping Wu,
Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Sonali Yadav, Fan Yang, Jianwei Yang,
Ziyi Yang, Yifan Yang, Donghan Yu, Lu Yuan, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A
highly capable language model locally on your phone, 2024. arXiv:2404.14219

Andris Ambainis. Quantum search algorithms. ACM SIGACT News, 35(2):22–35, 2004.
arXiv:quant-ph/0504012

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun
Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks
Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger,
Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S.
Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian
Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike
Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen,
Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman,
Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C.
Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank,
Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher,
Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven,
and John M. Martinis. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, 2019. doi: 10.1038/s41586-019-1666-5. URL https://doi.
org/10.1038/s41586-019-1666-5.

Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin
tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal
Processing, Bangalore, pp. 175–179, 1984.

Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle operators
on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–2884, Nov 1992. doi: 10.1103/
PhysRevLett.69.2881. URL https://link.aps.org/doi/10.1103/PhysRevLett.
69.2881.

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K.
Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels. Physical Review Letters, 70(13):1895, 1993.

Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, pp. 11–20, 1993.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017. arXiv:1611.09347

Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun Zhou, Tom Manovitz,
Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter, J. Pablo Bonilla Ataides,
Nishad Maskara, Iris Cong, Xun Gao, Pedro Sales Rodriguez, Thomas Karolyshyn, Giulia Se-
meghini, Michael J. Gullans, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Logical
quantum processor based on reconfigurable atom arrays. Nature, 626(7997):58–65, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/quant-ph/0504012
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
https://arxiv.org/abs/1611.09347

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. arXiv:2005.14165

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii,
Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational
quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021. arXiv:2012.09265

Kean Chen, Wang Fang, Ji Guan, Xin Hong, Mingyu Huang, Junyi Liu, Qisheng Wang, and
Mingsheng Ying. VeriQBench: A benchmark for multiple types of quantum circuits, 2022.
arXiv:2206.10880

Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto,
Simone Severini, and Leonard Wossnig. Quantum machine learning: a classical perspective.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):
20170551, 2018. arXiv:1707.08561

Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S. Bishop, Steven
Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and Blake R. Johnson.
OpenQASM 3: A broader and deeper quantum assembly language. ACM Transactions on Quantum
Computing, 3(3):1–50, 2022. arXiv:2104.14722

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András
Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica,
Grant Salton, Samson Wang, and Fernando G.S.L. Brandao. Quantum algorithms: A survey of
applications and end-to-end complexities, 2023. arXiv:2310.03011

Matthew DeCross, Reza Haghshenas, Minzhao Liu, Enrico Rinaldi, Johnnie Gray, Yuri Alexeev,
Charles H. Baldwin, John P. Bartolotta, Matthew Bohn, Eli Chertkov, Julia Cline, Jonhas Colina,
Davide DelVento, Joan M. Dreiling, Cameron Foltz, John P. Gaebler, Thomas M. Gatterman,
Christopher N. Gilbreth, Joshua Giles, Dan Gresh, Alex Hall, Aaron Hankin, Azure Hansen,
Nathan Hewitt, Ian Hoffman, Craig Holliman, Ross B. Hutson, Trent Jacobs, Jacob Johansen,
Patricia J. Lee, Elliot Lehman, Dominic Lucchetti, Danylo Lykov, Ivaylo S. Madjarov, Brian
Mathewson, Karl Mayer, Michael Mills, Pradeep Niroula, Juan M. Pino, Conrad Roman, Michael
Schecter, Peter E. Siegfried, Bruce G. Tiemann, Curtis Volin, James Walker, Ruslan Shaydulin,
Marco Pistoia, Steven. A. Moses, David Hayes, Brian Neyenhuis, Russell P. Stutz, and Michael
Foss-Feig. The computational power of random quantum circuits in arbitrary geometries, 2024.
arXiv:2406.02501

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceedings
of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558,
1992.

Florian Fürrutter, Gorka Muñoz-Gil, and Hans J Briegel. Quantum circuit synthesis with diffusion
models. Nature Machine Intelligence, pp. 1–10, 2024. arXiv:2311.02041

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, 1996.
arXiv:quant-ph/9605043

Edward J. Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. arXiv:2106.09685

Abhijith J., Adetokunbo Adelana Adedoyin, John Joseph Ambrosiano, Petr Mikhaylovich Anisi-
mov, William Riley Casper, Gopinath Chennupati, Carleton James Coffrin, Hristo Nikolov
Djidjev, David O. Gunter, Satish Karra, Nathan Wishard Lemons, Shizeng Lin, Alexander Ma-
lyzhenkov, David Dennis Lee Mascarenas, Susan M. Mniszewski, Balusubramanya T. Nadiga,
Daniel O’Malley, Diane Adele Oyen, Scott D. Pakin, Lakshman Prasad, Randy Mark Roberts,

12

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2012.09265
https://arxiv.org/abs/2206.10880
https://arxiv.org/abs/1707.08561
https://arxiv.org/abs/2104.14722
https://arxiv.org/abs/2310.03011
https://arxiv.org/abs/2406.02501
https://arxiv.org/abs/2311.02041
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/2106.09685

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Phillip R. Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter Johan Swart, James G. Wendel-
berger, Boram Yoon, Richard James Zamora, Wei Zhu, Stephan Johannes Eidenbenz, Andreas
Bärtschi, Patrick Joseph Coles, Marc Denis Vuffray, and Andrey Y. Lokhov. Quantum algorithm
implementations for beginners. ACM Transactions on Quantum Computing, 3(4), 7 2022. doi:
10.1145/3517340. arXiv:1804.03719

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien
Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and
Jay M. Gambetta. Quantum computing with Qiskit, 2024. arXiv:2405.08810

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio
Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. Mistral 7B, 2023. arXiv:2310.06825

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873):583–589, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. QASMBench: A low-level quantum
benchmark suite for NISQ evaluation and simulation. ACM Transactions on Quantum Computing,
4(2):1–26, 2023. arXiv:2005.13018

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Akimoto Nakayama, Kosuke Mitarai, Leonardo Placidi, Takanori Sugimoto, and Keisuke Fujii.
VQE-generated quantum circuit dataset for machine learning, 2023. arXiv:2302.09751

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cam-
bridge University Press, 2000.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy

13

https://arxiv.org/abs/1804.03719
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2005.13018
https://arxiv.org/abs/2302.09751

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. GPT-4 technical report, 2024. URL https://openai.com.
arXiv:2303.08774

Elija Perrier, Akram Youssry, and Chris Ferrie. QDataSet, quantum datasets for machine learning.
Scientific Data, 9(1):582, 2022. arXiv:2108.06661

Leonardo Placidi, Ryuichiro Hataya, Toshio Mori, Koki Aoyama, Hayata Morisaki, Kosuke Mitarai,
and Keisuke Fujii. MNISQ: A large-scale quantum circuit dataset for machine learning on/for
quantum computers in the NISQ era, 2023. arXiv:2306.16627

David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete. Quantum simulation of time-
dependent hamiltonians and the convenient illusion of hilbert space. Phys. Rev. Lett., 106:170501,
Apr 2011. doi: 10.1103/PhysRevLett.106.170501. URL https://link.aps.org/doi/10.
1103/PhysRevLett.106.170501.

John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.
arXiv:1801.00862

Nils Quetschlich, Lukas Burgholzer, and Robert Wille. MQT Bench: Benchmarking Software and
Design Automation Tools for Quantum Computing. Quantum, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022. arXiv:2112.10752

Mehdi Saeedi and Igor L. Markov. Synthesis and optimization of reversible circuits—a survey. ACM
Computing Surveys (CSUR), 45(2):1–34, 2013. arXiv:1110.2574

Louis Schatzki, Andrew Arrasmith, Patrick J. Coles, and Marco Cerezo. Entangled datasets for
quantum machine learning, 2021. arXiv:2109.03400

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum machine
learning. Contemporary Physics, 56(2):172–185, 2015. arXiv:1409.3097

Tomonori Shirakawa, Hiroshi Ueda, and Seiji Yunoki. Automatic quantum circuit encoding of a
given arbitrary quantum state, 2021. arXiv:2112.14524

Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):
1474–1483, 1997.

14

https://openai.com
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2108.06661
https://arxiv.org/abs/2306.16627
https://link.aps.org/doi/10.1103/PhysRevLett.106.170501
https://link.aps.org/doi/10.1103/PhysRevLett.106.170501
https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1110.2574
https://arxiv.org/abs/2109.03400
https://arxiv.org/abs/1409.3097
https://arxiv.org/abs/2112.14524

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine learning,
pp. 2256–2265. PMLR, 2015. arXiv:1503.03585

Yehui Tang, Hao Xiong, Nianzu Yang, Tailong Xiao, and Junchi Yan. Q-TAPE: A task-agnostic
pre-trained approach for quantum properties estimation. In The Twelfth International Conference
on Learning Representations, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a. arXiv:2302.13971

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023b.
arXiv:2307.09288

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving Olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun
Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo,
Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li,
Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun,
Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen
Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming
Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng,
Xiaobo Zhu, and Jian-Wei Pan. Strong quantum computational advantage using a superconducting
quantum processor. Physical review letters, 127(18):180501, 2021.

Zhenggang Wu, Daowen Qiu, Jiawei Tan, Hao Li, and Guangya Cai. Quantum and classical query
complexities for generalized simon’s problem. Theoretical Computer Science, 924:171–186, 2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021. arXiv:2111.02080

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36, 2024.
arXiv:2306.15626

Zekun Ye, Yunqi Huang, Lvzhou Li, and Yuyi Wang. Query complexity of generalized simon’s
problem. Information and Computation, 281:104790, 2021.

Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. LlaSMol: Advancing large language
models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset,
2024. arXiv:2402.09391

Zhengde Zhang, Yiyu Zhang, Haodong Yao, Jianwen Luo, Rui Zhao, Bo Huang, Jiameng Zhao, Yipu
Liao, Ke Li, Lina Zhao, et al. Xiwu: A basis flexible and learnable LLM for high energy physics,
2024. arXiv:2404.08001

15

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2402.09391
https://arxiv.org/abs/2404.08001

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DETAILS OF QCIRCUITNET

The QCircuitNet Dataset, along with its Croissant metadata, is available on Anonymous GitHub at
the following link: https://anonymous.4open.science/r/QCircuitNet-62DF/

QCircuitNet has the following directory structure:
QCircuitNet

Oracle ConstructionAll data for the oracle construction task
Quantum Logic SynthesisTextbook-level and advanced oracles
Problem EncodingOracles encoding application scenarios

Algorithm DesignAll data for the quantum algorithm design task
Quantum ComputingUniversal quantum computing algorithms
Quantum InformationQuantum information tasks and protocols

Random CircuitsAll data for the random circuit synthesis task
CliffordRandom circuits with the Clifford gate set
UniversalRandom circuits with the universal gate set

In each subdirectory, there is a folder for each specific algorithm. For instance, the folder structure
for Simon’s algorithm is as follows:

Algorithm Design
Quantum Computing

simon ..All data for the Simon’s Problem
simon-dataset.pyDataset creation script
simon-generation.pyQiskit generation code
simon-post-processing.pyPost-processing function
simon-utils.pyUtility functions for verification
simon-verification.pyVerification function
simon-description.txtProblem description
simon-verification.txtVerification results of the data points
full circuitRaw data of quantum circuits

simon-n2
simon-n2-s11-k11.qasmFull circuit for a concrete setting

simon-n3
simon-n3-s011-k001.qasm
simon-n3-s011-k101.qasm

...
test oracleExtracted oracle definitions

n2
trial1

oracle.incOracle definition as a .inc file
oracle-info.txtOracle information (such as key strings)

n3
trial1

oracle.inc
oracle-info.txt

trial2
oracle.inc
oracle-info.txt

...
simon-n2.qasmAlgorithm circuit for model output
simon-n3.qasm
...

We expect to extend QCircuitNet under this general structure.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.1 FORMAT

In this subsection, we provide concrete examples to illustrate the different components of QCircuitNet.
We use the case of Simon’s Problem throughout the demonstration to achieve better consistency. For
further details, please check the code repository.

1. Problem Description: this is the carefully hand-crafted description of the task in natural language
and latex math formulas. The description is provided as one template for each algorithm, and the
concrete settings (such as the qubit number) are replaced when creating the data points in json.
The file is named as "{algorithm_name}_description.txt".

Problem Description Template for Simon’s Problem

Given a black box function f : {0, 1}n 7−→ {0, 1}n. The function is guaranteed to be
a two-to-one mapping according to a secret string s ∈ {0, 1}n, s ̸= 0n, where given
x1 ̸= x2, f(x1) = f(x2) ⇐⇒ x1 ⊕ x2 = s. Please design a quantum algorithm
to find s. The function is provided as a black-box oracle gate named "Oracle" in the
"oracle.inc" file which operates as Of |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩. The input qubits |x⟩ are
indexed from 0 to n−1, and the output qubits |f(x)⟩ are indexed from n to 2n−1. Please
provide the following components for the algorithm design with n ={qubit number}:
1. the corresponding quantum circuit implementation with {QASM / Qiskit}. 2. the
post-processing code run_and_analyze(circuit, aer_sim) in python which simulates the
circuit (QuantumCircuit) with aer_sim (AerSimulator) and returns the secret string s
according to the simulation results.

2. Generation Code: one general Qiskit code to create quantum circuits of different settings. Note
that the oracle for the problem is provided as a black-box gate "oracle" here. This code is used to
generate the raw data, but can also be used as a testing benchmark for writing Qiskit codes. The
file is named as "{algorithm_name}_generation.py".

from Qiskit import QuantumCircuit

def simon_algorithm(n, oracle):
"""Generates a Simon algorithm circuit.

Parameters:
- n (int): number of qubits
- s (str): the secret string of length n

Returns:
- QuantumCircuit: the Simon algorithm circuit
"""
Create a quantum circuit on 2n qubits
simon_circuit = QuantumCircuit(2 * n, n)

Initialize the first register to the |+> state
simon_circuit.h(range(n))

Append the Simon’s oracle
simon_circuit.append(oracle, range(2 * n))

Apply a H-gate to the first register
simon_circuit.h(range(n))

Measure the first register
simon_circuit.measure(range(n), range(n))

return simon_circuit

Listing 1: Qiskit generation code for Simon’s algorithm.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

3. Algorithm Circuit: the OpenQASM 3.0 format file storing the quantum circuit in gate level for
each specific setting. Note that the explicit construction of "Oracle" is provided separately in
"oracle.inc" file, which guarantees the usage of oracle in a black-box way. This filed is named as
"{algorithm_name}_n{qubit_number}.qasm".

OPENQASM 3.0;
include "stdgates.inc";
include "oracle.inc";
bit[3] c;
qubit[6] q;
h q[0];
h q[1];
h q[2];
Oracle q[0], q[1], q[2], q[3], q[4], q[5];
h q[0];
h q[1];
h q[2];
c[0] = measure q[0];
c[1] = measure q[1];
c[2] = measure q[2];

Listing 2: OpenQASM 3.0 Code for Simon’s algorithm with n = 3.

4. Post-Processing Function: this function simulates the quantum circuit and derives the final
answer to the problem. The file is named as "{algorithm_name}_post_processing.py".

from sympy import Matrix
import numpy as np
from Qiskit import transpile

def mod2(x):
return x.as_numer_denom()[0] % 2

def solve_equation(string_list):
"""
A^T | I
after the row echelon reduction, we can get the basis of the

↪→ nullspace of A in I
since we just need the string in binary form, so we can just use

↪→ the basis
if row == n-1 --> only one
if row < n-1 --> get the first one (maybe correct or wrong)
"""
M = Matrix(string_list).T

Augmented : M | I
M_I = Matrix(np.hstack([M, np.eye(M.shape[0], dtype=int)]))

RREF row echelon form , indices of the pivot columns
If x % 2 = 0, it will not be chosen as pivot (modulo 2)
M_I_rref = M_I.rref(iszerofunc=lambda x: x % 2 == 0)

Modulo 2
M_I_final = M_I_rref[0].applyfunc(mod2)

Non-Trivial solution
if all(value == 0 for value in M_I_final[-1, : M.shape[1]]):

result_s = "".join(str(c) for c in M_I_final[-1, M.shape[1] :])

Trivial solution
else:

result_s = "0" * M.shape[0]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

return result_s

def run_and_analyze(circuit, aer_sim):
n = circuit.num_qubits // 2
circ = transpile(circuit, aer_sim)
results = aer_sim.run(circ, shots=n).result()
counts = results.get_counts()
equations = []
for result, count in counts.items():

if result != "0" * n: # We don’t use all 0 string
y = [int(bit) for bit in result]
equations.append(y)

if len(equations) == 0:
prediction = "0" * n

else:
prediction = solve_equation(equations)

return prediction

Listing 3: Post-processing code for Simon’s algorithm.

5. Oracle / Gate Definition: this .inc file provides the definitions of composite gates or oracles. The
file is named "customgates.inc" for oracle construction tasks and "oracle.inc" for algorithm design
tasks.

gate Oracle _gate_q_0, _gate_q_1, _gate_q_2, _gate_q_3, _gate_q_4,
↪→ _gate_q_5 {

cx _gate_q_0, _gate_q_3;
cx _gate_q_1, _gate_q_4;
cx _gate_q_2, _gate_q_5;
cx _gate_q_2, _gate_q_5;
x _gate_q_3;

}

Listing 4: One test case oracle for Simon’s algorithm with n = 3.

For algorithm design tasks, this .inc file is accompanied with an "oracle_info.txt" file to describe
the encoded information of the oracle. This helps the verification function to check the correctness
of the derived answer by the model. The above test case is equipped with the following information
text:

oracle_info.txt for Simon’s Problem with qubit number 3 and test case 2.

Secret string: 100
Key string: 001

6. Verification Function: the function to evaluate the output with grammar validation and test cases
verification. The file is named as "{algorithm_name}_verification.py".

from simon_utils import *

def check_model(qasm_string, code_string, n):
"""Check the Simon model."""
Verify the syntax of the QASM code with the first test case

↪→ oracle
t = 1
with open(f"test_oracle/n{n}/trial{t}/oracle.inc", "r") as file:

oracle_def = file.read()
full_qasm = plug_in_oracle(qasm_string, oracle_def)
circuit = verify_qasm_syntax(full_qasm)
if circuit is None:

return -1
try:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

exec(code_string, globals())
aer_sim = AerSimulator()
total_success = 0
total_fail = 0
t_range = min(10, 4 ** (n - 2))
shots = 10
for t in range(1, 1 + t_range):

print(f" Running Test Case {t}")
with open(f"test_oracle/n{n}/trial{t}/oracle.inc", "r") as

↪→ file:
oracle_def = file.read()

full_qasm = plug_in_oracle(qasm_string, oracle_def)
circuit = loads(full_qasm)
with open(f"test_oracle/n{n}/trial{t}/oracle_info.txt", "r"

↪→) as file:
content = file.read()

match = re.search(r"Secret string: ([01]+)", content)
if match:

secret_string = match.group(1)
else:

raise ValueError("Secret string not found in the file."
↪→)

cnt_success = 0
cnt_fail = 0
for shot in range(shots):

prediction = run_and_analyze(circuit.copy(), aer_sim)
if not isinstance(prediction, str):

raise TypeError("Predicted secret string should be
↪→ a string.")

if prediction == secret_string:
cnt_success += 1

else:
cnt_fail += 1

print(f" Success: {cnt_success}/{shots}, Fail: {
↪→ cnt_fail}/{shots}")

total_success += cnt_success
total_fail += cnt_fail

print(f"Total Success: {total_success}; Total Fail: {total_fail
↪→ }")

return total_success / (total_fail + total_success)

except Exception as e:
print(f"Error: {e}")
return -1

Listing 5: Verification function for Simon’s algorithm.

This verification function is accompanied with an "{algorithm_name}_utils.py" file to provide
necessary utility functions.

from Qiskit.qasm3 import loads
from Qiskit_aer import AerSimulator
import re

def print_and_save(message, text):
print(message)
text.append(message)

def plug_in_oracle(qasm_code, oracle_def):
"""Plug-in the oracle definition into the QASM code."""
oracle_pos = qasm_code.find(’include "oracle.inc";’)
if oracle_pos == -1:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

raise ValueError("Oracle include statement not found in the
↪→ file")

full_qasm = (
qasm_code[:oracle_pos]
+ oracle_def
+ qasm_code[oracle_pos + len(’include "oracle.inc";’) :]

)
return full_qasm

def verify_qasm_syntax(output):
"""Verify the syntax of the output and return the corresponding

↪→ QuantumCircuit (if it is valid)."""
assert isinstance(output, str)
try:

Parse the OpenQASM 3.0 code
circuit = loads(output)
print(

" The OpenQASM 3.0 code is valid and has been
↪→ successfully loaded as a QuantumCircuit."

)
return circuit

except Exception as e:
print(f" Error: The OpenQASM 3.0 code is not valid. Details:

↪→ {e}")
return None

Listing 6: Utility functions for verification of Simon’s algorithm.

7. Dataset Creation Script: this script involves all the code necessary to create the data points from
scratch. The file is named as "{algorithm_name}_dataset.py". The main function looks like this:

def main():
parser = argparse.ArgumentParser()
parser.add_argument(

"-f",
"--func",
choices=["qasm", "json", "gate", "check"],
help="The function to call: generate qasm circuit, json dataset

↪→ or extract gate definition.",
)
args = parser.parse_args()
if args.func == "qasm":

generate_circuit_qasm()
elif args.func == "json":

generate_dataset_json()
elif args.func == "gate":

extract_gate_definition()
elif args.func == "check":

check_dataset()

Listing 7: Main function of the dataset script for Simon’s algorithm.

Here the "generate_circuit_qasm()" function generates the raw data of quantum circuits in Open-
QASM 3.0 format where the algorithm circuit and the oracle definition are blended, then "ex-
tract_gate_definition()" function extracts the definition of oracles and formulates the algorithm
circuits into the format suitable for model output. The "check_dataset()" function is used to check
the correctness of the created data points and "generate_dataset_json()" function to combine the
data into json format for easy integration with the benchmarking pipeline.

A.2 DISCUSSION OF MORE TASKS

Problem Encoding. In Section 4.1.1, we mentioned another category of oracle construction tasks
referred to as "Problem Encoding", which involves applying quantum algorithms, such as Grover’s

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

algorithm, to solve practical problems such as SAT and triangle finding. The crux of this process
is encoding the problem constraints into Grover’s oracle, thereby making this a type of oracle
construction task. Unlike quantum logic synthesis, which encodes an explicit function f(x) as a
unitary operator Uf , this task involves converting the constraints of a particular problem into the
required oracle form. We provide implementations of several concrete problems in this directory as
demonstrations and will include more applications in future work.

Quantum Information Protocols. In the "Quantum Information" section of the "Algorithm De-
sign" task, we have also implemented three important quantum information protocols: Quantum
Teleportation, Superdense Coding, and Quantum Key Distribution (BB84). A brief introduction to
these protocols can be found in Appendix B. We did not include the experiments for these protocols
as they involve communication between two parties, which is challenging to characterize with a single
OpenQASM 3.0 file. We recommend revising the post-processing function as a general classical
function to schedule the communication and processing between different parties specifically for these
protocols. The fundamental quantum circuits and processing codes are provided in the repository.

A.3 DATASHEET

Here we present a datasheet for the documentation of QCircuitNet.

Motivation

• For what purpose was the dataset created? It was created as a benchmark for the capability of
designing and implementing quantum algorithms for LLMs.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The authors of this paper.

• Who funded the creation of the dataset? We will reveal the funding resources in the Acknowledge-
ment section of the final version.

Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-
tries)? The dataset comprises problem description, generation code, algorithm circuit, post-
processing function, oracle / gate definition, verification function, and dataset creation script for
various quantum algorithms.

• How many instances are there in total (of each type, if appropriate)? The dataset has 5 algorithms
for oracle construction task and 10 algorithms for algorithm design task used for experiments.
There are 3 quantum information protocols and additional problem encoding tasks not included for
experiments.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? The dataset contains instances with restricted qubit numbers due to the
current scale of real quantum hardware.

• What data does each instance consist of? Qiskit codes, OpenQASM 3.0 codes, python scripts, and
necessary text information.

• Are relationships between individual instances made explicit? Yes, the way to create different
instances are clearly described in Appendix A.1.

• Are there recommended data splits? Yes, we recommend splitting the data according to different
algorithms in algorithm design task.

• Are there any errors, sources of noise, or redundancies in the dataset? There might be some small
issues due to the dumping process of Qiskit and programming mistakes (if any).

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? The dataset is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)? No.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? No.

Collection Process

• How was the data associated with each instance acquired? The data is created by first com-
posing Qiskit codes for each algorithm and then converting to OpenQASM 3.0 files using
Qiskit.qasm3.dump function, with additional processing procedure.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? Manual human programming
and Qiskit APIs.

• Who was involved in the data collection process (e.g., students, crowd workers, contractors), and
how were they compensated (e.g., how much were crowd workers paid)? Nobody other than the
authors of the paper.

• Over what timeframe was the data collected? The submitted version of the dataset was created in
May and June 2024.

Uses

• Has the dataset been used for any tasks already? It has been used in this paper to benchmark
LLM’s ability for quantum algorithm design.

• Is there a repository that links to any or all papers or systems that use the dataset? The only paper
which uses the dataset for now is this paper.

Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset will be made publicly
available on the Internet after the review process.

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? It will be distributed
on the GitHub platform.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? The dataset is distributed under CC BY 4.0.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

Maintenance

• Who will be supporting/hosting/maintaining the dataset? The authors of this paper.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The email
for contact will be provided after the review process.

• Is there an erratum? Not at this time.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes, it will be continually updated.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them
to do so? Yes, they can do so with the GitHub platform.

A.4 COPYRIGHT AND LICENSING TERMS

This work is distributed under a CC BY 4.0 license. The implementation of the code references
open-source projects such as Qiskit, QuantumKatas, Cirq, and NWQBench. We bear responsibility
in case of violation of rights.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B ADDITIONAL PRELIMINARIES FOR QUANTUM COMPUTING AND QUANTUM
INFORMATION

Quantum Circuit Diagram. A quantum algorithm is composed of a series of quantum gates. By
default, a quantum algorithm starts from the all-0 state |0n⟩. A quantum algorithm can be illustrated
by its quantum gate diagram, drawn from left to right. The initial all-0 state is placed at the left side
of the diagram. After that, whenever we apply a quantum gate, it is placed on the corresponding
qubits, from left to right. At the end of the quantum gates, we need to measure and read the outputs,
and these measurements are placed at the right side of the diagram. See Figure 4 for the quantum
gate diagram of Simon’s algorithm (Simon, 1997).

|0⟩ H

Uf

H

... · · · · · · ...
|0⟩ H H

|x⟩

|0⟩
... · · · · · · ...

|y⟩

|0⟩

Figure 4: Quantum gate diagram of Simon’s algorithm.

Superdense Coding. Superdense coding (Bennett & Wiesner, 1992) is a quantum communication
protocol that allows Alice to transmit two classical bits of information to Bob by sending only one
qubit, given that they share a pair of entangled qubits. The protocol can be divided into five steps:

1. Preparation: Charlie prepares a maximally entangled Bell state, such as |β00⟩ = 1√
2
(|00⟩+

|11⟩).
2. Sharing: Charlie sends the qubit 1 to Alice and the qubit 2 to Bob. Alice and Bob can be

separated by an arbitrary distance.

3. Encoding: Depending on the two classical bits zx ∈ {00, 01, 10, 11} that Alice wants to
send, she applies the corresponding quantum gate operation to her qubit, transforming the
Bell state |β00⟩ into one of the four Bell states:

|β00⟩ =
1√
2
(|00⟩+ |11⟩) if zx = 00

|β01⟩ =
1√
2
(|01⟩+ |10⟩) if zx = 01

|β10⟩ =
1√
2
(|00⟩ − |11⟩) if zx = 10

|β11⟩ =
1√
2
(|01⟩ − |10⟩) if zx = 11

Alice achieves these transformations by applying the operation ZzXx to her qubit, where Z
is the phase-flip gate, X is the bit-flip gate. Specifically:

• If zx = 00, Alice applies Z0X0 = I (identity gate).
• If zx = 01, Alice applies Z0X1 = X (bit-flip gate).
• If zx = 10, Alice applies Z1X0 = Z (phase-flip gate).
• If zx = 11, Alice applies Z1X1 = ZX = iY gate.

4. Sending: Alice sends her qubit to Bob through a quantum channel.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

|0⟩ H • ZzXx • H

|0⟩

Figure 5: Quantum circuit diagram for superdense coding.

5. Decoding: Bob applies a CNOT gate followed by a Hadamard gate to the two qubits,
transforming the entangled state into the corresponding computational basis state |zx⟩. By
measuring the qubits, Bob obtains the two classical bits zx sent by Alice.

Superdense coding exploits the properties of quantum entanglement to transmit two classical bits of
information using only one qubit. The quantum circuit diagram for superdense coding is shown in
Figure 5.

Quantum Teleportation. Quantum teleportation (Bennett et al., 1993) is a technique for transfer-
ring quantum information from a sender (Alice) to a receiver (Bob) using shared entanglement and
classical communication. The protocol can be described as follows:

1. Preparation: Telamon prepares a maximally entangled Bell state, such as |β00⟩ =
1√
2
(|00⟩+ |11⟩).

2. Sharing: Alice has qubit 1 in the state |ψ⟩ = α|0⟩+ β|1⟩, which she wants to teleport to
Bob. Telamon shares qubit 2 with Alice and qubit 3 with Bob, creating the shared entangled
state |β00⟩23.

3. Encoding: Alice wants to teleport an unknown quantum state |ψ⟩ = α|0⟩+ β|1⟩ to Bob.
She applies a CNOT gate to qubits 1 and 2, with qubit 1 as the control and qubit 2 as the
target. Then, she applies a Hadamard gate to qubit 1. The resulting state of the three-qubit
system is:

|Ψ⟩ = 1

2
[|β00⟩(α|0⟩+ β|1⟩) + |β01⟩(α|1⟩+ β|0⟩)

+ |β10⟩(α|0⟩ − β|1⟩) + |β11⟩(α|1⟩ − β|0⟩)].
4. Measurement: Alice measures qubits 1 and 2 in the Bell basis and obtains one of four

possible outcomes: |β00⟩, |β01⟩, |β10⟩, or |β11⟩. This measurement collapses the three-qubit
state into one of the following:

|β00⟩ ⊗ (α|0⟩+ β|1⟩)
|β01⟩ ⊗ (α|1⟩+ β|0⟩)
|β10⟩ ⊗ (α|0⟩ − β|1⟩)
|β11⟩ ⊗ (α|1⟩ − β|0⟩)

5. Classical Communication: Alice sends the result of her measurement (two classical bits)
to Bob via a classical channel.

6. Reconstruction: Depending on the classical information received from Alice, Bob applies
the operation ZzXx to qubit 3, where z and x correspond to the two classical bits sent by
Alice:

• If Alice measured |β00⟩, she sends zx = 00, and Bob applies Z0X0 = I (identity
operation).

• If Alice measured |β01⟩, she sends zx = 01, and Bob applies Z0X1 = X (bit-flip).
• If Alice measured |β10⟩, she sends zx = 10, and Bob applies Z1X0 = Z (phase-flip).
• If Alice measured |β11⟩, she sends zx = 11, and Bob applies Z1X1 = ZX = iY

(bit-flip and phase-flip).
After applying the appropriate operation, Bob’s qubit 3 will be in the state |ψ⟩ = α|0⟩+β|1⟩,
which is the original state that Alice wanted to teleport.

The quantum circuit diagram for quantum teleportation is shown in Figure 6.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

|ψ⟩ • H •

|β00⟩A •

|β00⟩B Xx Zz

Figure 6: Quantum circuit diagram for quantum teleportation

Quantum Key Distribution. Quantum key distribution (QKD) (Bennett & Brassard, 1984) is a
secure communication protocol that allows two parties, Alice and Bob, to produce a shared random
secret key, which can then be used to encrypt and decrypt messages. The security of QKD is based
on the fundamental principles of quantum mechanics that measuring a qubit can change its state. One
of the most well-known QKD protocols is the BB84 protocol, which works as follows:

1. Alice randomly generates a bit string and chooses a random basis (X or Z) for each bit. She
then encodes the bits into qubits using the chosen bases and sends them to Bob through a
quantum channel.

2. Bob measures the received qubits in randomly chosen bases (X or Z) and records the results.

3. Alice and Bob communicate over a public classical channel to compare their basis choices.
They keep only the bits for which their basis choices coincide and discard the rest.

4. Alice and Bob randomly select a subset of the remaining bits and compare their values. If
the error rate is below a certain threshold, they conclude that no eavesdropping has occurred,
and the remaining bits can be used as a secret key. If the error rate is too high, they abort the
protocol, as it indicates the presence of an eavesdropper (Eve).

The security of the BB84 protocol relies on the fact that any attempt by Eve to measure the qubits
during transmission will introduce detectable errors, alerting Alice and Bob to the presence of an
eavesdropper.

C ADDITIONAL EXPERIMENT RESULTS

In this section, we include detailed analysis of the experiments and additional experiment results.
In Section C.1, we introduce the metrics: BLEU score, verification score, and byte perplexity, and
provide a detailed analysis for the experiments on BLEU and verification score. In Section C.2, we
include additional experiments on perplexity score and temperatures. In Section C.3, we present
concrete cases of typical patterns observed in model outputs. In Section C.4, we analyze the data
contamination phenomenon revealed by our benchmark.

C.1 METRICS

BLEU Score. Bilingual Evaluation Understudy (BLEU) score is a metric used to evaluate the
quality of machine-translated text compared to human-translated text. It measures how close the
machine translation is to one or more reference translations. The BLEU score evaluates the quality
of text generated by comparing it with one or more reference texts. It does this by calculating the
n-gram precision, which means it looks at the overlap of n-grams (contiguous sequences of n words)
between the generated text and the reference text. Originally the BLEU score ranges from 0 to 1,
where 1 indicates a perfect match with the reference translations. Here rescaling the score makes it
ranges from 0 to 100.

The BLEU score, originally designed for machine translation, can also be effectively used for
evaluating algorithm generation tasks. Just as BLEU measures the similarity between machine-
translated text and human reference translations, it can measure the similarity between a generated
algorithm and a gold-standard algorithm. This involves comparing sequences of tokens to assess how
closely the generated output matches the reference solution. In the context of algorithm generation, n-
grams can represent sequences of tokens or operations in the code. BLEU score captures the precision

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

of these n-grams, ensuring that the generated code aligns closely with the expected sequences found
in the reference implementation.

The formula for BLEU score is given by:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
.

where BP is the acronym for brevity penalty, wn is the weight for the n-gram precision (typically 1
N

for uniform weights), pn is the precision for n-grams. BP is calculated as:

BP =

{
1 if c > r

e1−
r
c if c ≤ r

.

where c is the length of the generated text and r is the length of the reference text. Furthermore,
n-gram precision pn is calculated as:

pn =

∑
C∈Candidates

∑
n−gram∈C min(Count(n− gram in candidate),Count(n− gram in references))∑

C∈Candidates
∑

n−gram∈C Count(n− gram in candidate)
.

This formulation ensures that the BLEU score takes into account both the precision of the generated
n-grams and the overall length of the translation, providing a balanced evaluation metric.

In our experiments, the BLEU scores for various quantum algorithm design tasks are illustrated
in Figure 3(a). This figure not only displays the average performance of each model but also
highlights the differences in performance across individual quantum algorithm tasks. The first notable
observation is that the figure clearly demonstrates the varying levels of difficulty among quantum
algorithms. For example, models achieve higher BLEU scores on tasks such as Bernstein-Vazirani
and Deutsch-Jozsa, whereas they perform significantly worse on tasks like Grover, phase estimation,
and quantum Fourier transform. This indicates that the former tasks are considerably easier than
the latter ones. Another significant observation is that most models score higher in a five-shot
prompt compared to a one-shot prompt, which confirms the large language models’ ability to improve
performance through contextual learning.

Similar patterns are observed in oracle construction tasks, as illustrated in Figure 3(b). The figure
highlights that the Diffusion Operator task is notably more challenging than the Grover oracle
construction task. Interestingly, we found that adding more in-context examples actually reduced
the performance of the Phi-3-medium-128k-instruct and Mistral-7B-v0.3 models. This decline in
performance could be attributed to the significant differences between each oracle construction task,
which may be too out-of-distribution. Consequently, the additional examples might cause the models
to overfit to the specific examples provided in the context, rather than generalizing well across
different tasks.

Detailed Analysis of Verification Score. In addition to evaluating the BLEU score, we conducted
an experiment to measure the correctness of the machine-generated algorithms, and the results are
shown in Table 1. By running a verification function, we discovered that phase estimation and the
swap test are significantly more challenging than other problems, leading most models to score -1
(indicating they cannot even generate the correct syntax). Notably, the BLEU score for the swap test
is above average compared to other algorithms, yet almost none of the models produced a correct
algorithm. This discrepancy highlights a critical limitation of using BLEU as a metric for algorithm
evaluation. BLEU measures average similarity, but even a single mistake in an algorithm can render
it entirely incorrect, thus failing to capture the true accuracy and functionality of the generated
algorithms. Another important finding is that in a five-shot setting, GPT-4 and GPT-3.5 surpass all
other models by a large margin. This demonstrates their exceptional capabilities, particularly in
long-context comprehension and in-context learning. These models not only excel in understanding
and generating text based on minimal examples but also maintain high performance over extended
sequences, highlighting their advanced architecture and training methodologies.

The verification results of the oracle construction task, as shown in Table 2, confirm our previous
conclusions. In the five-shot setting, GPT-4 and GPT-3.5 consistently outperform all other models.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Additionally, this table highlights the inconsistency between BLEU scores and verification scores.
For instance, while the Diffusion Operator task achieves the lowest BLEU score, it is the Grover
oracle construction that receives the lowest verification score. This discrepancy suggests that BLEU
scores may not fully capture the performance of models in certain complex tasks, and it is necessary
to include verification score as a comprehensive evaluation.

Byte Perplexity. Perplexity is a measure of how well a probability distribution or a probabilistic
model predicts a sample. In the context of language models, it quantifies the uncertainty of the model
when it comes to predicting the next element in a sequence. Byte perplexity specifically deals with
sequences of bytes, which are the raw binary data units used in computer systems. For our purposes,
we consider byte perplexity under UTF-8 encoding, a widely used character encoding standard that
represents each character as one or more bytes.

For a given language model, let p(xi|x<i) be the probability of the i-th byte xi given the preceding
bytes x<i. If we have a sequence of bytes x = (x1, x2, . . . , xN), the perplexity PPL(x) of the model
on this sequence is defined as:

PPL(x) = 2−
1
N

∑N
i=1 log2 p(xi|x<i).

A notable feature of byte perplexity is that, it does not rely on any specific tokenizer, making it
versatile for comparing different models. Therefore, byte perplexity can be used to measure the
performance in quantum algorithm generation tasks. In such tasks, a lower byte perplexity indicates a
better-performing model, as it means the model is more confident in its predictions of the next byte in
the sequence.

C.2 ADDITIONAL EXPERIMENTS ON PPL SCORE AND TEMPERATURES

The Byte Perplexity results, shown in Figure 7, provide valuable insights into the performance of
our model. Evaluated in a zero-shot setting, byte perplexity trends closely mirror those observed
with BLEU scores. This alignment suggests that our model’s predictive capabilities are consistent
across Perplexity and BLEU evaluation metrics. Specifically, in the context of quantum algorithm
design tasks, the results indicate that the Bernstein-Vazirani and Deutsch-Jozsa algorithms are
relatively straightforward for the model, whereas the Simon algorithm presents greater difficulty.
This differentiation highlights the varying levels of complexity inherent in these quantum algorithms.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Perplexity

Bernstein-Vazirani

Deutsch-Jozsa

Grover

Phase Estimation

Quantum Fourier Transform

Simon

GHZ State

Random Number Generator

Swap Test

W State

Generalized-Simon(multi-str)

Generalized-Simon(ternary)

Average

Algorithm Design

Models
Meta-Llama-3-8B
Phi-3-medium-128k-instruct
Mistral-7B-v0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Perplexity

Bernstein Vazirani

Deutsch Jozsa

Diffusion Operator

Grover

Simon

Generalized-Simon(multi-str)

Average

Oracle Construction

Models
Meta-Llama-3-8B
Phi-3-medium-128k-instruct
Mistral-7B-v0.3

Figure 7: Benchmarking algorithm design and oracle construction in perplexity scores.

Regarding the counter-intuitive phenomenon where the performance on Clifford and universal random
circuits decreases after fine-tuning, we conducted additional experiments and fine-tuned the model
on 4,800 samples specifically for the Clifford task. Upon closer inspection, we observed that the
model more frequently generated outputs with infinite loops and increased monotony, often producing

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

repetitive gate patterns and repeatedly cycling over the same qubit after fine-tuning. We further
conducted experiments with different "temperature" parameters, which control the randomness of
predictions. Formally, let T > 0 be the temperature, zi be the raw score for token i, the probability
for token i is computed as pi = ezi/T∑

j ezj/T
. Typically, lower temperatures make the model more

conservative, while higher temperatures flatten the distribution, increasing the likelihood of generating
originally less probable sequences. The results are shown in Table 4:

Table 4: Clifford Model Fine-Tuning Results Across Different Temperature Settings
Model Setting Temperature BLEU Verification

Llama3 few-shot(5)
0 13.3796(±0.9508) -0.6582(±0.0360)

0.2 12.5688(±0.8276) -0.6526(±0.0372)
1 53.0431(±3.8422) -0.1914(±0.0361)

Llama finetune
0 7.6261(±0.3433) -0.8895(±0.0247)

0.2 13.8714(±0.6536) -0.7873(±0.0306)
1 32.5241(±2.0548) -0.2072(±0.0358)

One possible explanation for this counter-intuitive result lies in the challenge of encoding quantum
state vectors within a language model. In the problem description, the target quantum state is
represented by a complex vector with four decimal places of precision, where the dimension scales
as with the number of qubits . It is a well-known fact that LLMs generally struggle with very long
floating-point numbers, which might contribute to the observed performance decline.

Another potential reason could be overfitting during fine-tuning, particularly for tasks that require high
output diversity. The varying degrees of intrinsic difficulty and the amount of relevant pre-training
knowledge across different tasks likely played a role. Oracle constructions are relatively simple for
the model to learn. For example, in the Bernstein-Vazirani algorithm, the model only needs to apply
a CNOT gate at positions corresponding to ’1’ bits. In contrast, the random circuits in the Clifford
and Universal tasks involve more general and complex quantum state transformations, making them
significantly more challenging. These tasks are also less common during pre-training, which could
have hindered the model’s ability to generalize without overfitting. This challenge is one of the
reasons we initially considered a few-shot learning approach to be suitable.

While these are plausible hypotheses, we acknowledge that further investigation is required to draw
definitive conclusions. We consider this an intriguing topic that warrants additional research.

C.3 CASE STUDY

After carefully examining the model’s output, we observed several interesting patterns. We present a
series of case studies to illustrate these observations and provide possible explanations.

Low Score for GPT-4o in One-Shot Setting. At first glance, it is surprising that GPT-4o performs
poorly on many quantum algorithms in the algorithm design task in the one-shot setting compared to
Llama3-8B. Given that Llama3-8B has a relatively smaller parameter scale, the results should have
been the other way around. A closer examination of the model’s output reveals the potential reason:
while Llama3-8B closely mimics the input examples, GPT-4o tends to improvise, resulting in outputs
that are not well captured by the current syntax support. Here are several concrete examples.

This is the OpenQASM 3.0 code output for the W state with n = 7. In this code, GPT-4o uses the
advanced "for" loop syntax newly introduced in OpenQASM 3.0 to create the circuit. Although
the code fails to produce the W state, it is syntactically correct. However, the Qiskit.qasm3 import
module, which converts OpenQASM 3.0 files to QuantumCircuit objects and is used in our verification
function to check the correctness of the syntax of output OpenQASM codes, is still in the experimental
stage and does not support many of OpenQASM 3.0’s advanced features. As a result, GPT-4o’s use
of these features causes the code to fail syntax validation, resulting in a score of -1.

OPENQASM 3.0;
include "stdgates.inc";
qubit[7] q;
h q[0];

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

for i in[1:6] {
cx q[i-1], q[i];

}

Listing 8: OpenQASM 3.0 Code output by GPT-4o for W state with n = 7.

Here is another example where GPT-4o decides to assign novel names to its qubit registers, leading
to a conflict in the symbol table in Scope.GLOBAL. If we substitute all the registers x, y, and s with
new names, the code can pass syntax validation successfully and is close to the correct solution.

OPENQASM 3.0;
include "stdgates.inc";
include "oracle.inc";
bit[9] s;
qubit[10] x;
qubit[11] y;
h x[0];
h x[1];
h x[2];
h x[3];
h x[4];
h x[5];
h x[6];
h x[7];
h x[8];
Oracle x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], y;
h x[0];
h x[1];
h x[2];
h x[3];
h x[4];
h x[5];
h x[6];
h x[7];
h x[8];
measure x[0] -> s[0];
measure x[1] -> s[1];
measure x[2] -> s[2];
measure x[3] -> s[3];
measure x[4] -> s[4];
measure x[5] -> s[5];
measure x[6] -> s[6];
measure x[7] -> s[7];
measure x[8] -> s[8];

Listing 9: OpenQASM 3.0 Code output by GPT-4o for Bernstein-Vazirani Problem with n = 9.

Since Llama3-8B tends to follow the provided example more closely, it avoids such kind of errors.
These factors may help explain why GPT-4o performs poorly in the one-shot setting compared to
Llama3-8B.

High Score for GPT-4o in Five-Shot Setting. In contrast to its relatively low score in the one-
shot setting, GPT-4o achieves the best overall performance in the five-shot setting for both oracle
construction and algorithm design tasks.

Unlike in the one-shot setting, where GPT-4o frequently uses advanced OpenQASM 3.0 features, it
learns from the examples in context and uses simpler syntax in the five-shot setting. For the W state
task, here is an output in the five-shot setting:

OPENQASM 3.0;
include "stdgates.inc";
qubit[3] q;
h q[0];
cx q[0], q[1];

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

h q[1];
cx q[1], q[2];
h q[2];

Listing 10: OpenQASM 3.0 Code output by GPT-4o for W state with n = 3.

This output avoids the use of "for" loops and successfully passes the syntax validation test, although
it still cannot generate the W state correctly.

In addition to adapting to plain syntax through in-context learning, GPT-4o achieves outstanding
performance on more complicated tasks such as phase estimation. Here is the model output of
GPT-4o on the phase estimation task with qubit number n = 2.

OPENQASM 3.0;
include "stdgates.inc";
include "oracle.inc";
bit[2] c;
qubit[2] q;
Psi q[0];
h q[1];
CU_0 q[0], q[1];
h q[1];
c[0] = measure q[1];
c[1] = measure q[0];

Listing 11: OpenQASM 3.0 Code output by GPT-4o for Phase Estimation with n = 2.

from Qiskit import transpile

def run_and_analyze(circuit, aer_sim):
"""Run the circuit and analyze the result."""
circ = transpile(circuit, aer_sim)
result = aer_sim.run(circ, shots=1).result()
counts = result.get_counts()
phase_str = list(counts.keys())[0]
phase = int(phase_str, 2) / 2**2
return phase

Listing 12: Post-processing code output by GPT-4o for Phase Estimation with n = 2.

This suite of OpenQASM 3.0 circuits and post-processing functions successfully outputs the phase
within the required precision for the test case, resulting in an impressive verification score of 1.0.
Despite the small number of qubits and differences from the reference implementation, the accuracy
achieved is noteworthy.

These phenomena reflect that GPT-4o has impressive in-context learning abilities and overall better
capabilities in designing and implementing quantum algorithms.

C.4 DATA CONTAMINATION

In our experiments, we observed an interesting phenomenon of performance discrepancy between
implementing quantum algorithms with Qiskit codes for the general setting and with OpenQASM
codes for a concrete case.

We provided the following prompt:

Prompt for Bernstein-Vazirani Problem with Qiskit

Please write the code with Qiskit implementing Bernstein-Vazirani Algorithm with qubit
number n = 5.

The model answered with the following text and codes:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Text Answer by GPT4o

Here’s a Python code using Qiskit to implement the Bernstein-Vazirani algorithm with n = 5
qubits. The secret string used in this example is s = 10101 (you can change this to any string
of your choice).

from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram

Secret string s for the Bernstein-Vazirani problem
s = ’10101’

Number of qubits
n = len(s)

Create a Quantum Circuit with n+1 qubits (one ancillary qubit)
bv_circuit = QuantumCircuit(n+1, n)

Apply Hadamard gates to all qubits except the ancillary qubit
bv_circuit.h(range(n))

Apply X and Hadamard gate to the ancillary qubit
bv_circuit.x(n)
bv_circuit.h(n)

Construct the Oracle
for i, bit in enumerate(s):

if bit == ’1’:
bv_circuit.cx(i, n)

Apply Hadamard gates to the first n qubits
bv_circuit.h(range(n))
Measure the first n qubits
bv_circuit.measure(range(n), range(n))
Visualize the circuit
bv_circuit.draw(’mpl’)

Run the circuit using Qiskit Aer simulator
simulator = Aer.get_backend(’qasm_simulator’)
t_qc = transpile(bv_circuit, simulator)
qobj = assemble(t_qc)
result = simulator.run(qobj).result()

Get the result counts and plot the histogram
counts = result.get_counts()
plot_histogram(counts)

Listing 13: Qiskit code for Bernstein-Vazirani Problem generated by GPT4o in the zero-shot setting.

This code, although adopts an older version of Qiskit syntax, can be compiled and run successfully
with the correct answer. At first glance, this indicates that GPT4o has fully grasped the mechanism of
the Bernstein-Vazirani Algorithm and the syntax of Qiskit. Similar performances can be observed
with OpenQASM codes:

// OpenQASM 2.0
OPENQASM 2.0;
include "qelib1.inc";

// Declare 5 qubits for input and 1 ancilla qubit
qreg q[6];
creg c[5]; // classical register for measuring the result

// Step 1: Apply Hadamard gates to the input qubits
h q[0];

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

h q[1];
h q[2];
h q[3];
h q[4];

// Apply Hadamard to the ancillary qubit and set it to |1>
x q[5];
h q[5];

// Step 2: Oracle implementation (CNOT gates based on secret string s =
↪→ 10110)

cx q[0], q[5]; // Secret string bit 1
// No cx for q[1] because the secret string bit is 0
cx q[2], q[5]; // Secret string bit 1
cx q[3], q[5]; // Secret string bit 1
// No cx for q[4] because the secret string bit is 0

// Step 3: Apply Hadamard gates to the input qubits again
h q[0];
h q[1];
h q[2];
h q[3];
h q[4];

// Step 4: Measure the qubits to get the result
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure q[3] -> c[3];
measure q[4] -> c[4];

Listing 14: OpenQASM code for Bernstein-Vazirani Problem generated by GPT4o.

However, if we ask the GPT4o model to implement the code for a given secret string, for example
s = 000101, the model fails to apply the CX gate on the correct qubits.

OPENQASM 3.0;
include "stdgates.inc";

gate Oracle _gate_q_0, _gate_q_1, _gate_q_2, _gate_q_3, _gate_q_4,
↪→ _gate_q_5, _gate_q_6 {

// Apply CX gates according to the secret string "000101"
cx _gate_q_2, _gate_q_6;
cx _gate_q_5, _gate_q_6;

}

bit[6] c;
qubit[7] q;

// Apply Hadamard gates to the first 6 qubits
h q[0];
h q[1];
h q[2];
h q[3];
h q[4];
h q[5];

// Prepare the ancilla qubit in the |1> state and apply a Hadamard gate
x q[6];
h q[6];

// Call the oracle
Oracle q[0], q[1], q[2], q[3], q[4], q[5], q[6];

// Apply Hadamard gates to the first 6 qubits again

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

h q[0];
h q[1];
h q[2];
h q[3];
h q[4];
h q[5];

// Measure the first 6 qubits
c[0] = measure q[0];
c[1] = measure q[1];
c[2] = measure q[2];
c[3] = measure q[3];
c[4] = measure q[4];
c[5] = measure q[5];

Listing 15: OpenQASM code for Bernstein-Vazirani Problem with s = 000101 in few-shot setting.

We reminded the model of the mechanism with the following prompt:

Reminder Prompt

Remember that in the construction of oracles for Bernstein-Vazirani Problem, you should
apply cx gates where the control qubits are where the string bit equals 1, and the target qubit
is the ancillary qubit.

There was no improvement. We further asked the model about the indices of the bits in the string
which equal 1. It provided the following answer:

GPT4o’s answer for counting indices

In the secret string s="000101", the bits that equal 1 are found at the following indices
(0-based):
Index 2
Index 5
These indices correspond to the positions where the string has a ’1’.

This reveals the incapability for GPT models to count the bit of 1 and apply corresponding gates to
construct the oracle. Considering that Qiskit has implemented tutorial codes for several representative
quantum algorithms, the seemingly outstanding performance of quantum algorithm code generation
might be a deceptive result caused by data contamination. Therefore, only a carefully designed
quantum algorithm dataset can avoid the effects of data contamination, allowing for an effective
evaluation of the model’s genuine capability in quantum algorithm design and implementation. This
dataset is also meaningful for testing general AI code generation and syntax learning, where no
existing AI dataset could substitute us.

34

	Introduction
	Related Work
	Preliminaries for Quantum Computing
	QCircuitNet Dataset
	Task Suite
	Task I: Oracle Construction
	Task II: Quantum Algorithm Design
	Task III: Random Circuit Synthesis

	Dataset Structure

	Experiments
	Benchmarking LLMs on QCircuitNet
	Fine-tuning on QCircuitNet

	Conclusions and Future Work
	Details of QCircuitNet
	Format
	Discussion of more Tasks
	Datasheet
	Copyright and Licensing Terms

	Additional Preliminaries for Quantum Computing and Quantum Information
	Additional Experiment Results
	Metrics
	Additional Experiments on PPL Score and Temperatures
	Case Study
	Data Contamination

