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ABSTRACT

Autoregressive sequence generation, a prevalent task in machine learning and
natural language processing, generates every target token conditioned on both
a source input and previously generated target tokens. Previous data augmen-
tation methods, which have been shown to be effective for the task, mainly en-
hance source inputs (e.g., injecting noise into the source sequence by random
swapping or masking, back translation, etc.) while overlooking the target-side
augmentation. In this work, we propose a target-side augmentation method for
sequence generation. In training, we use the decoder output probability distri-
butions as soft indicators, which are multiplied with target token embeddings, to
build pseudo tokens. These soft pseudo tokens are then used as target tokens to en-
hance the training. We conduct comprehensive experiments on various sequence
generation tasks, including dialog generation, machine translation, and abstractive
summarization. Without using any extra labeled data or introducing additional
model parameters, our method significantly outperforms strong baselines. The
code is available at https://github.com/TARGET-SIDE-DATA-AUG/
TSDASG.

1 INTRODUCTION

Sequence generation is an important class of machine learning tasks and has made great progress
in recent years (Vaswani et al., 2017; Hassan et al., 2018; Zhou et al., 2020; Stiennon et al., 2020).
In general, it is to generate sequences of interest based on a given source input. For example, in
text summarization, the source input is a long document while the target sequence is a summary.
In machine translation, the source input is a sentence in a language while the target output is a
sentence in another language. Autoregressive (AR) methods, which generate tokens one by one au-
toregressively to leverage previously generated tokens, are widely used in most sequence generation
problems (Gatt & Krahmer, 2018; Brown et al., 2020).

Data augmentation is a crucial technology for many machine learning tasks including sequence
generation. The goal of data augmentation is to increase the number of training examples without
incurring additional efforts of manually labeling, which could be costly or even impossible. For
example, Wang et al. (2018) add random noise into input sequences, Gao et al. (2019) use a pre-
trained language model to synthesize pseudo input sequences, and Edunov et al. (2018) use back-
translation to synthesize pseudo-pairs for machine translation. Furthermore, we list more works
about the data augmentation method in Section 2.

While these works have demonstrated promising improvements, an inherent aspect of AR sequence
generation is generally overlooked. As illustrated in Figure 1, in AR generation, each token is gen-
erated based on two kinds of input information: the original source inputs and previously generated
target-side tokens (aka target-side inputs). While most existing data augmentation works focus on
enhancing source inputs, the augmentation of target-side inputs is under-explored. As far as we
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know, only there are only a few works (Mihaylova & Martins, 2019; Zhang et al., 2019) weakly
related to this problem, which are to address the exposure bias issue (Bengio et al., 2015) of the
teacher forcing training. Those works adjust the sequence in token-level by randomly sampling
target-side words from ground truth and model output. However, the token level adjustment may
not fully leverage the potential of target input.

ENCODER DECODER

What's the weather today? <BOS> It  is 

It is sunny

Target Input

Target Ouput

Source Input

Figure 1: Illustration of autoregressive generation.

This work focuses on target-side data aug-
mentation for sequence generation and pro-
poses a sequence-level target-side augmenta-
tion method. In training, we first feed the
ground truth target tokens to the decoder to gen-
erate the output probability distributions (over
the target vocabulary) for each target position.
Then these distributions are multiplied with
the target-side token embeddings to build soft
pseudo tokens as enhanced target-side inputs.
Inspired by the success of mixup (Hongyi et al.,
2018), the pseudo tokens are further mixed
up with original ground truth target tokens to
build synthetic target-side sequences. Next, our
model is trained with both ground truth data and
synthetic data. Note that we only change the target tokens for decoder input rather than target outputs
or labels. Our model can benefit from the stochastic representation of target input tokens to achieve
better performance. The inference process is kept the same as the conventional method. Moreover,
no extra data or model parameters are required during inference. That is, we do not introduce any
additional burden on model inference.

We conduct experiments on various sequence generation tasks, including dialog generation, machine
translation, and abstractive summarization. On five datasets, our method outperforms standard AR
training without data augmentation, as well as existing data augmentation methods.

Our main contributions are as follows:

Problem: We shine a light on a previously neglected problem, namely, the target-side inputs ar-
gumentation (TIA) for autoregressive sequence generation.

Method: We propose a new algorithm, the Soft Sequence-level Target-side Inputs Argumenta-
tion (SSTIA), which constructs synthetic target-side input tokens by generating soft pseudo-token
sequences.

Experiment: We test our method on three sequence generation tasks with five data sets. Our
method achieves good improvements over strong baselines, which reveals the importance of target-
side data augmentation and the effectiveness of our algorithm. We want to call more attention from
the community to design better methods for target-side data augmentation.

2 RELATED WORK

Data augmentation has been widely used in almost all tasks of deep learning and has been widely
surveyed before (Shorten & Khoshgoftaar, 2019; Wen et al., 2021; Feng et al., 2021). In this section,
we only briefly discuss works related to our method.

Rule-based augmentation: Some works propose to use heuristic rules to augment the source
data. For example, Wang et al. (2018) randomly replace words in sentences with another word in
the vocabulary, Guo et al. (2020) softly combine sequences in the training set, Shen et al. (2020)
randomly erase part of a sequence to build restricted views, and Sennrich et al. (2016b) use pervasive
dropout to enrich data. However, those methods target to enhance source input and do not pay
attention to the target input.
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Model-based augmentation: In this category of methods, deep learning models are used to gen-
erate the augmented data. For example, Gao et al. (2019) leverage a language model to enhance
the source tokens, and Kumar et al. (2020) use BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019), and BART (Lewis et al., 2020) to generate pseudo data. For tasks with high duality, e.g.,
machine translation, back translation is widely used (Sennrich et al., 2016a; Edunov et al., 2018;
Prabhumoye et al., 2018; Hoang et al., 2018). Usually, large-scale monolingual data is used to build
pseudo training data. Similar to rule-based methods, the model-based methods do not pay much
effort to the target input either.

Knowledge distillation: Knowledge distillation is also a widely used method for sequence gen-
eration (Hinton et al., 2015; Kim & Rush, 2016; He et al., 2019; Gou et al., 2021). In this method,
teacher models are trained to generate synthetic labels for student models. However, for student
models, the target input and output of the decoder are still same. On the contrary, our methods focus
on changing the target input, therefore the decoder input and output are different. And we do not
have any intention of model compression.

Scheduled sampling: Scheduled sampling methods are invented to solve the exposure-bias prob-
lem (Bengio et al., 2015; Mihaylova & Martins, 2019; Zhang et al., 2019). Although these methods
also change the target input, they can only work in the token-level adaptation. In contrast, our
method builds sequence-level synthetic data to improve training performance. This is an important
difference between our method and scheduled sampling methods. Besides, when using sentence-
level oracle, OR-NMT (Zhang et al., 2019) need full decoding and training time could be 5x slower.

Reinforcement learning: The refinement learning (RL) based sequence generation meth-
ods (Ranzato et al., 2015; Shen et al., 2016; Norouzi et al., 2016) can directly optimize the metrics
that are used in test time and the target input of decoder is not always necessary. However, success-
fully training a RL-based sequence generation is still challenging due to its instability (Wu et al.,
2018). Therefore, we focus on AR generation in this paper.

Non-autoregressive generation: Non-autoregressive (NAR) generation has been proposed as an
alternative sequence generation paradigm, where all target tokens are generated in parallel. Although
model performance has been greatly improved by many recent works (Gu et al., 2018; Qian et al.,
2021; Ren et al., 2020), the AR generation is still the most common approach. Therefore, we choose
to study the AR generation in this work and leave the application on NAR for future work.

Iterative refinement: Iterative refinement is a common way to improve performance. For exam-
ple, Xia et al. (2017) proposed deliberation networks, and Lee et al. (2018) proposed to use iterative
refinement in the NAR generation (Gu et al., 2018). However, these methods need multiple passes
during inference time. Therefore, the iterative NAR is slower than fully NAR method (Gu & Kong,
2021). By contrast, our method only augments the data during training and has no extra inference
cost. This makes our methods applicable to more scenarios where latency is critical.

3 OUR METHOD

In this section, we first introduce the background and notations. Next, we present the target-side
data augmentation framework and our proposed method. Finally, we will discuss the relation with
iterative data augmentation methods.

Background: Let x denote the source-side input, and let y = (y1, y2, · · · , yn) denote a target
sequence to generate, where n is the sequence length, and each yi belongs to a predefined vocabulary
V made up of all words or sub-words. Let D = {(xj , yj)}Mj=1 denote the training set with size M .
In the AR generation, our task is to model the distribution P (y|x). Specifically,

P (y|x) =

n∏
i=1

P (yi|x, y<i) (1)

where y<i denotes the sub-sequence before yi, and y0 is represented by a special begin-of-sentence
(BOS) token. We can see that the probability of generating yi conditions on both x and y<i.
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Conventional source-side data augmentation methods can be summarized as using a function faug to
generate enhanced data set. Specifically, for any (xj , yj) ∈ D, we generate the source-side sequence
by x̃j = faug(xj , yj), and append (x̃j , yj) to the enhanced dataset D̃. The faug can also solely base
on x or y. This augmentation method can be rule based (e.g., a noise function) or model based (e.g.,
a pre-trained language model). It may also contain some external knowledge or heuristic (Wang
et al., 2018; Kobayashi, 2018; Kumar et al., 2020).

Based on the original dataset D and the augmented dataset D̃, the training objective function is
defined as follows:

L = αLD + (1− α)LD̃

= −α 1

M

M∑
i=1

logP (yi|xi)− (1− α)
1

M̃

M̃∑
i=1

logP (yi|x̃i)

= −(1− α)
1

M

M∑
i=1

ni∑
j=1

logP (yij |xi, yi<j)− α
1

M̃

M̃∑
i=1

ni∑
j=1

logP (yij |x̃i, yi<j),

(2)

The parameter α in Equation 2 balances the loss weight on real dataD and synthetic data D̃, and the
ni denotes the length of yi.

Enhancing the target-side conditional input: Different from faug which focuses on enhancing
the source-side input, we propose a new method that augments the previously generated target to-
kens, i.e., the y<i in equation 1. We create an augmented training data set D̆ = {(xk, yk, y̆k)}Mk=1,
where the y̆k is the augmented sequence serving as the conditional input of the target sequence. The
workflow is shown in Figure 2(a).

The loss function on D̆ is defined as follows:

LD̆ = − 1

M

M∑
i=1

ni∑
j=1

logP (yij |xi, y̆i<j). (3)

Some recent study (Chen et al., 2020b; Shen et al., 2020) have found that maximizing agreement
between multiple augmented data that are generated from a single piece of data can improve model
performance. Inspired by this, we design a consistency loss Lc between synthetic data and real data
to stabilize the training. It is defined as

LC = − 1

M

M∑
i=1

ni∑
j=1

D(P (·|xi, yi<j), P (·|xi, y̆i<j)). (4)

The D in Equation 4 can be any function to measure the divergence of two distributions, e.g., Kull-
back–Leibler divergence or Jensen–Shannon divergence. We found that using Lc can stabilize the
training.

Our final loss function is defined as:
L = (1− α)LD + αLD̆ + βLC (5)

Empirically, we found β = 1 is a good default value and used in all experiments.

Augmented data generation: We use model-based method to generate the augmented sequence y̆.
However, we do not need external pre-trained models like (Gao et al., 2019). Specifically,

(1) We obtain the logits l̂ij for any j ∈ {1, 2, · · · , ni}, which are the values before softmax, of all
target tokens. Intuitively, l̂ij = dec(enc(xi), yi<j), where enc and dec denote the encoder and
decoder of the sequence generation model and l̂ij is a |V|-dimensional vector. Note that we feed the
groundtruth y<j into the decoder to obtain l̂ij .

(2) We obtain the y̆ij as follows:

y̆ij =

(
γ

exp(l̂ij/T )∑|V|
v=1 exp(l̂ij [v]/T )

+ (1− γ)yij

)
WEmb, (6)
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Figure 2: Illustration of our algorithm. (a) Target side data augmentation. The decoder consumes
both ground truth and synthetic data as target input. (b) Augmented target data generation with soft
labels. The ⊗ denotes mixup operation.

where (i) WEmb is the target word embedding with size |V| × d; (ii) T is the softmax temperature;
(iii) the square brackets [·] denotes the subscription of vector; (iv) γ is the mixup ratio and we use
the same value as α in Equation 5 for all experiments. The y̆ij is a mixture of two parts: (i) the
embedding of the groundtruth yij ; (ii) a soft representation, which is the product between the target
embedding and a distribution output by a sequence generation model. Empirically, we found T
is an important hyper-parameter and more details can be found in Section 4.4. In addition, as the
modern sequence generation follows the encoder-decoder architecture , we can further reduce the
augmentation cost by reusing the encoder output because it is not changed during decoding.

Multi-round enhancement: Similar to iterative back-translation (Hoang et al., 2018), our model
can be easily extended to multiple rounds. That is, we can use the Equation 6 multiple times, where
the logits l̂ij need to be replaced by the previous output. The experimental results suggest that too
many iterations only give marginal extra gain. Therefore, our experiments mainly focus on single
round augmentation.

4 EXPERIMENT

We conduct experiments on various sequence generation tasks. The experiment details and results
are in the following sections. Our implementation is based on the FairSeq framework (Ott et al.,
2019). We use Transformer (Vaswani et al., 2017) network architecture in all experiments with
different model sizes, which are adjusted according to the data size. During training, we use Adam
optimizer (Kingma & Ba, 2015) with Adam β = (0.9, 0.98) and invert sqrt learning rate
scheduler. Meanwhile, we used label smoothing of value 0.1, which is the same value as Vaswani
et al. (2017).

4.1 DIALOG GENERATION

We conduct experiments on two commonly used dialog generation data sets: the DailyDialog (Li
et al., 2017) for single-turn dialog generation and Persona-Chat (Zhang et al., 2018) for multi-turn
dialog generation. We follow the script of Luo et al. (2018) to pre-process the DailyDialog data,
where the dialog is represented as request-response pairs. Then the first 80% pairs are used for
training, the next 10% for validation, and the last 10% for test. We follow the script of Miller et al.
(2017) to pre-process the Persona-Chat data, where the persona is inserted before the dialog.* We
only use the self original direction of Persona-Chat data in our experiments.

We use transformer small configuration for DailyDialog dataset and transformer base
for Persona-Chat dataset, where both the encoder and the decoder consist of six layers. The
(Embed Dim,FFN Embed Dim) of those configurations are (512, 1024) and (512, 2048), respec-
tively. Our results are generated by beam search with beam size 5. We evaluate the BLEU (B1-B4),

*The data process scripts and evaluation scripts are available in Appendix.
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ROUGE-L (R-L), METEOR (Met.), and CIDEr metric (Papineni et al., 2002; Lin, 2004; Banerjee
& Lavie, 2005; Vedantam et al., 2015). We use nlg-eval (Sharma et al., 2017) to compute the
metrics except for BLEU scores, which are computed by the script from Luo et al. (2018). The ex-
perimental results of DailyDialog and Persona-Chat are shown in Table 1 and Table 2, respectively.

Table 1: Experimental results on DailyDialog data set.
Method B1 B2 B3 B4 R-L Met. CIDEr
Seq2Seq (Luo et al., 2018) 12.43 4.57 2.69 1.84 - - -
AEM (Luo et al., 2018) 13.55 4.89 3.04 2.16 - - -
Transformer (Our reproduce) 14.70 6.13 4.15 3.13 17.45 5.36 18.58

SeqMix (Guo et al., 2020) 12.09 4.16 2.50 1.81 14.96 5.46 6.68
SSMBA (Ng et al., 2020) 12.96 4.68 3.03 2.34 15.69 4.43 10.23
OR-NMT (Zhang et al., 2019) 16.18 7.94 6.13 5.21 18.86 6.78 38.94

SSTIA1 (Ours) 17.53 9.32 7.54 6.70 20.32 8.64 53.57

In Table 1 and Table 2, our method is first compared with conventional methods. In addition, we use
recent data augmentation methods (e.g., SeqMix and SSMBA) as baselines. We also reproduce the
results on Transformer and OR-NMT with sentence oracle. The subscript 1 of our method means
we use single round augmentation.

From Table 1 we can see that our method is much better than existing works on all metrics, espe-
cially previous works of data augmentation. On all metrics mentioned above, we achieved propi-
tious improvement over the Transformer baseline, especially for BLEU-4 (+3.57), R-L (+2.87),
Met. (+3.28), and CIDEr (+34.99). The scores are also better than previous data augmentation
methods’. We can witness the similar improvement in Table 2, especially on the R-L (+0.93) and
the CIDEr (+0.73) metric. Furthermore, following Liu et al. (2020b), we conducted the human eval-
uation on Persona-Chat data set, and the average score is improved from 1.18 to 1.49, which verified
the quality improvement of our method. More details about human evaluation is in Appendix.

Table 2: Experimental results on Persona-Chat dataset.
Method B1 B2 B3 B4 R-L Met. CIDEr
Transformer (Tay et al., 2021) - - - 3.20 13.38 5.89 18.94
Transformer (Our reproduce) 18.33 8.28 4.99 3.44 19.27 8.13 20.42

SeqMix (Guo et al., 2020) 18.11 8.30 3.43 2.83 18.98 8.32 20.26
SSMBA (Ng et al., 2020) 18.69 7.07 3.90 2.72 19.28 8.30 11.66
OR-NMT (Zhang et al., 2019) 18.69 8.34 4.97 3.42 19.80 8.43 20.14

SSTIA1 (Ours) 19.03 8.68 5.21 3.55 20.20 8.43 21.15

4.2 MACHINE TRANSLATION

On machine translation task, we conduct experiments on two widely used data sets: the IWSLT’14
English (EN) ↔ German (DE) data set (Cettolo et al., 2014), which is a small scale data set with
140k sentence pairs, and the WMT’14 EN→ DE dataset (Bojar et al., 2014), which is a larger one
with 4.5M sentence pairs. We use the scripts from Ott et al. (2019) to process data. For IWSLT’14
EN↔DE, all words are lowercased and tokenized, and for WMT’14, all sentences are kept as orig-
inal case then tokenized. Then the tokenized sentences are processed by BPE (Sennrich et al.,
2016d) with 10k and 40k steps, respectively. We use transformer small for IWSLT’14 and
transformer base for WMT’14, where the details are described in Section 4.1. The subscript
1 or 2 of our method means the number of rounds used in augmentation. Our results are generated
by beam search using beam size 5. We compute the BLEU score by the Moses script (Koehn et al.,
2007) with the same tokenizer used by previous works.

The experimental results are summarized in Table 3 and Table 4, respectively. Our baselines include
standard AR training without data augmentation, other Transformer variants, and previous works
about data augmentation. Compared with Transformer without data augmentation, our method
achieves 1.65-point BLEU gain on IWSLT’14 EN→DE direction, 2.36-point on DE→EN direction,
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and 1.8-point improvement on WMT’14 EN→DE translation (significance level 0.001). Besides,
our results are better than other methods with complex architecture modification (the first group in
tables) and source-side data augmentation (the second group in tables). These numbers clearly show
the importance of target-side data augmentation and the potency of our algorithm.

Moreover, we added an extra round of data augmentation on the IWSLT’14 data set, and the results
are in the last row of Table 3. We can see that the BLEU scores can be further boosted while
the improvement is smaller than the first round’s. This phenomenon is consistent with other data
augmentation methods, e.g., iterative back-translation (Hoang et al., 2018).

Finally, we combine our method with previous data augmentation method, i.e., back translation.
More specifically, without using extra monolingual data, we translate the target sentences in the
training set using a backward translation model. When jointly using BT and our method, the BLEU
score can be boosted to 37.17, which is higher than using any of the methods solely. The result
exemplifies that our method is complementary to other data augmentation methods.

Table 3: Experimental results on IWSLT English↔ German translation task.
Method EN→DE DE→EN
Transformer (Vaswani et al., 2017) 28.57 34.40
DynamicConv (Wu et al., 2019) 28.70 35.00
MAT (Fan et al., 2020) 29.90 35.59

Adversarial training (Wang et al., 2019) 28.43 35.18
WordDrop (Sennrich et al., 2016c) 29.20 35.60
SCA (Gao et al., 2019) - 35.78
SwitchOut (Wang et al., 2018) 29.00 35.90
SSMBA (Ng et al., 2020) - 36.10
SeqMix (Guo et al., 2020) 29.50 36.20
Back Translation (Our reproduce) - 36.38
Mixed Representations (Wu et al., 2020) 29.93 36.41

SSTIA1 (Ours) 30.14 36.47
SSTIA2 (Ours) 30.22 36.76
SSTIA1 + Back Translation - 37.17

Table 4: Experimental results on WMT’14 English→German translation task.
Method BLEU
Transformer (Vaswani et al., 2017) 27.3
Admin (Liu et al., 2020a) 27.9
Evolved Transformer (So et al., 2019) 28.4
Weighted Transformer (Ahmed et al., 2017) 28.4

Adversarial Training (Wang et al., 2019) 28.4
OR-NMT (Zhang et al., 2019) 28.5
Transformer+Cutoff (Shen et al., 2020) 29.1

SSTIA1 (Ours) 29.1

4.3 ABSTRACTIVE SUMMARIZATION

We conduct experiments on the CNN/DM (Hermann et al., 2015) news summary dataset. To mea-
sure the effectiveness of our method with pre-trained models, We fine-tune the BART (Lewis et al.,
2020) model on the CNN/DM dataset. Our experiments are based on BART.Large configuration.
We use the scripts from Lewis et al. (2020) to process the CNN/DM data and the files2rouge
tool to evaluate the ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L) score. We report both
scores and 95% confidence intervals. Our results are shown in Table 5.

In addition to BART (Chen et al., 2020a), we also compare our method with previous works on this
task and the scheduled sampling method OR-NMT with sentence-level Oracle. From the numbers
in Table 5, our method significantly improves the ROUGE score of the BART model with 0.6-
point R-1 and 0.7-point R-L and is better than other architecture changes or fine-tuning techniques.
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Table 5: Experimental results on CNN/DM dataset.
Method R-1 R-2 R-L
BART (Lewis et al., 2020) 44.16 21.28 40.90
BART + OR-NMT (Zhang et al., 2019) 44.01 21.26 40.81
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11
ERNIE-GEN (Xiao et al., 2020) 44.02 21.17 41.26
ProphetNet (Qi et al., 2020) 44.20 21.17 41.30
BART + R3F (Aghajanyan et al., 2021) 44.38 21.53 41.17

BART + SSTIA1 (Ours)
95% confidence interval

44.76
(44.54, 44.95)

21.46
(21.23, 21.68)

41.57
(41.36, 41.77)

Moreover, our results are better than the scheduled sampling methods OR-NMT on sentence-oracle,
demonstrating our augmentation method’s effectiveness.

4.4 ABLATION STUDY

Study of the parameter α: α is a key hyper-parameter of our system, which controls the aug-
mented data weight and mix-up ratio. To study the effect of parameter α, we conduct experiments on
the IWSLT’14 En→ De data set. The Table 6 and Table 10 provide the results of this ablation study.
In addition to a fixed value, we also explore two value schedule functions that change the α by epoch:
(S1) α = min(1, 1.5/

√
log(EPOCH) + 1); (S2) α = (EPOCH − 55)2/3000 + 0.027(EPOCH < 55).

We have more results on other datasets and explanations about the design intuition of these two
formulas in the Appendix.

First, we can observe that using a moderate value gives the best results. If the value is too high, e.g.,
0.9, the results are negatively affected. For the scheduled approach, different from previous works,
we did not notice significant improvement. These results may suggest that a fixed value is already
good enough for our algorithm.

Table 6: Ablation study of α on IWSLT’14 dataset.
α 0.1 0.3 0.4 0.5 0.7 0.9 S1 S2

BLEU(test) 36.43 36.47 36.43 36.40 36.22 36.19 36.00 36.38

BLEU(dev) 36.75 36.78 36.74 36.71 36.68 36.53 36.49 36.57

Study of the consistency loss: We conduct experiments on the IWSLT’14 En → De data set to
study the importance of consistency loss by changing the values of hyper-parameter β. As can be
seen from Table 7, when the consistency loss is not used (β = 0), the BLEU score is improved by
0.9 point over the baseline without augmentation, which is lower than our best result. Meanwhile,
the default value β = 1 gives the best result. When the value is too high or too low, the BLEU score
will be negatively affected.

Table 7: Ablation study of β in loss function.
β 0 0.6 0.8 1 2 3

BLEU(test) 35.28 36.03 36.29 36.47 36.32 36.30
BLEU(dev) 35.96 36.39 36.57 36.78 36.53 36.46

Study of the softmax temperature T : The softmax temperature T is an important hyper-
parameter of our algorithm. Empirically, we find a linear correlation between the best T value
and vocabulary size. In Figure 3, for all data sets we use, we show the vocabulary size on the x-axis
and the best T value on the y-axis (Detailed numbers are in Appendix). As the line chart shows, the
best T value linearly decreases with the increase in vocabulary size. We suspect the reason is that
the high temperature will smooth the probability distribution. Therefore, we suggest adjusting this
parameter according to the vocabulary size to achieve the best results.

8



Published as a conference paper at ICLR 2022

10000 20000 30000 40000 50000

Vocabulary size

0

1

2

3

4

5

B
es

t
T

va
lu

e

PersonaChat

DailyDialog

IWSLT

WMT

CNN/DM

Figure 3: The best temperature on different vocabulary size.

Table 8: Ablation on the choice of D.
D Single Round Double Rounds

DKL(test) 36.47 36.76
DKL(dev) 36.78 37.19
DJS(test) 35.95 36.50
DJS(dev) 36.34 36.91

Study of the divergence D: Theoretically,
we can use any function D in Equation 4 to
measure the divergence between two distribu-
tions. We empirically choose Kullback–Leibler
divergence (DKL) or Jensen–Shannon diver-
gence (DJS) and conduct experiments on the
IWSLT’14 EN→ DE data set. We explore both
single round augmentation and double rounds
augmentation. It can be seen from the data in Table 8 that the DKL gives better results than JS di-
vergence. Our intuition is that the synthetic data is not symmetric to real data therefore KL is more
suitable here.

Table 9: Experimental results on iterative data
augmentation.

# Iterations 0 1 2 3

BLEU(test) 34.40 36.47 36.76 36.77
BLEU(dev) 35.49 36.78 37.19 37.18

Iterative data augmentation: As described
in Section 3, our method can be easily ex-
tended to iterative augmentation. We conduct
experiments to evaluate the improvement on the
IWSLT’14 DE→EN data set, and the results are
in Table 9. The zero iteration means no aug-
mentation data is used. The numbers clearly
show that the first iteration gives the most improvement, and other rounds have fewer yet positive
effects on performance.

5 CONCLUSION AND FUTURE WORK

This paper studies a fundamental yet widely overlooked problem: augmenting the target input infor-
mation for autoregressive sequence generation tasks. While data augmentation methods have been
approved to be critical for machine learning, the study of enhancing the target-side conditional input
is still limited. Meanwhile, we propose a sequence-level data augmentation method by using soft
labels from the decoder output. Then the mixup method is used to generate synthetic data for model
training. We conducted comprehensive experiments on three sequence generation tasks of five data
sets. The experimental results suggest that augmenting target input benefits the sequence generation
quality. Moreover, our method can vastly boost the model performance for these tasks. We hope
this can bring more attention to this type of augmentation method.

There are many potential directions for future research. First, the investigation into other meth-
ods to augment this information will be fascinating. Second, applying such an idea to large-scale
pre-training could also be substantial. Last, how to combine this method with other mono data aug-
mentation methods, e.g., a VAE model, is also a significant challenge. Therefore, we expect more
research to be done in this area in the future.
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A DATA PROCESS AND EVALUATION SCRIPTS

The scripts for data preprocessing and evaluation can be found in the following URLs.

DailyDialog: https://github.com/lancopku/AMM

Persona-Chat: https://github.com/facebookresearch/ParlAI/tree/main/
projects/personachat

IWSLT’14: https://github.com/pytorch/fairseq/blob/main/examples/
translation/prepare-iwslt14.sh

WMT’14: https://github.com/pytorch/fairseq/blob/main/examples/
translation/prepare-wmt14en2de.sh
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CNN/DM: https://github.com/pytorch/fairseq/blob/main/examples/
bart/README.summarization.md

Moses BLEU: https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/generic/multi-bleu.perl

Statistical significance: https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/analysis/bootstrap-hypothesis-difference-significance.
pl

files2rouge: https://github.com/pltrdy/files2rouge

B ABLATION STUDY

In Section 4.4, we mentioned two α schedule formula. Our intuition is that the value should decrease
with the training progress, while the initial model quality may not be good, which will affect the
synthetic data quality. Thus, we believed it could be better to have a warm-up stage when the model
only learns from real data. Empirically, we find that the performance of the model with almost all
hyper-parameters do not increase any more after the 50th epoch. That’s the reason that we choose
55 in S2. However, compared with a fixed value, we did not observe improvement. Therefore, we
kept a fixed value in all other experiments.

Figure 4 contains the plots of these two functions.
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Figure 4: The α schedule function.

Besides, due to the limited pages, we put more albation results in Table tables 10 to 14.

C STUDY OF ITERATIVE AUGMENTATION

We show the training curve of IWSLT’14 dataset for different iteration round in Figure 5.

D TRAINING CURVE ABOUT THE CONSISTENCY LOSS

We show the training curve w/ and w/o consistency loss in Figure 6. As it shown in the figure,
without consistency loss, the model will converge slower and the performance is worse.

E HUMAN EVALUATION DETAILS

To verify the effectiveness of out method on dialogue generation and summarization task, we re-
cruited 5 evaluators to judge on 100 samples in blind testing. For each response, each evaluator
needs to give a score from 1 (low quality) to 4 (high qualiy). The score details are shown in Ta-
ble 15.
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Table 10: Ablation study of α on Persona-Chat dataset(dev).
α BLEU-1 BLEU-2 BLEU-3 BLEU-4
0.3 18.78 8.57 5.14 3.55
0.4 19.03 8.68 5.21 3.55
0.5 18.99 8.64 5.21 3.55
0.6 18.64 8.53 5.10 3.51

Table 11: Ablation study of softmax temperature on IWSLT’14 dataset.
T 0.5 1 2 4 6 10

BLEU 36.01 36.31 36.28 36.47 36.41 36.23

Table 12: Ablation study of softmax temperature on Persona-Chat.
Temperature BLEU-1 BLEU-2 BLEU-3 BLEU-4

2.0 18.26 8.46 5.11 3.50
4.0 17.92 8.34 5.06 3.49
4.5 19.03 8.68 5.21 3.55
5.0 18.44 8.37 4.98 3.45
6.0 18.27 8.35 5.04 3.48

Table 13: Ablation on the choice of D on dialog(PersonaChat).
D B1 B2 B3 B4 R-L Met. CIDEr

DKL 19.03 8.68 5.21 3.55 20.20 8.43 21.15
DJS 18.61 8.49 5.08 3.50 19.71 8.43 21.10

Table 14: Ablation on the choice of D on summarization.
D ROUGE-1 ROUGE-2 ROUGE-L

BART+OURS(DKL) 44.76 21.46 41.57
BART+OURS(DJS) 44.59 21.42 41.43

Table 15: Human evaluation distribution and average score.
Task System 1 2 3 4 Average Score

Dialog Baseline 85.70% 11.68% 1.94% 0.68% 1.175
Ours 62.98% 27.90% 6.49% 2.63% 1.487

Summarization Baseline 2.27% 14.77% 34.09% 48.86% 3.300
Ours 0.00% 9.09% 32.95% 57.95% 3.490

17



Published as a conference paper at ICLR 2022

Figure 5: Study of the iterative augmentation on IWSLT.

baseline

Iteration=1, β=0

Iteration=1, β=1

Transformer-base

Figure 6: BLEU-4 on the validation set during training.
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