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Abstract—An accurate prediction of blood glucose levels for
individuals affected with type-1 diabetes mellitus helps to reg-
ulate blood glucose through specific insulin delivery. In our
work, we propose the design of a densely-connected encoder-
decoder network in conjunction with Long-Short Term Memory
networks. We formulate the blood glucose prediction as a deep
reinforcement learning problem and evaluate our results on
the OhioT1DM dataset. The OhioT1DM dataset contains blood
glucose monitoring records in intervals of 5 minutes over 8
weeks for 12 patients affected with type-1 diabetes mellitus.
Prior works aim to predict the blood glucose levels in prediction
horizons of 30 and 45 minutes, corresponding to 6 and 9 data
points, respectively. Compared to prior work with the best
prediction accuracy so far with respect to the mean absolute
error, we improve by 18.4% and 22.5% in 30-minute and 45-
minute prediction horizons, respectively. Furthermore, for risk
assessment in our predictions, we visualize the error and evaluate
clinical risk through a surveillance error grid approach.

Index Terms—Deep Reinforcement Learning, Long-Short
Term Memory, Blood Glucose Predictions, Type-1 Diabetes

I. INTRODUCTION

Diabetes mellitus is a chronic medical condition character-

ized by high glucose levels in the blood [1]. Without clinical

interventions, individuals with high uncontrolled levels of

blood glucose (BG) develop serious health complications, in-

creasing the probability of heart disease, diabetic retinopathy,

or kidney damage [2]. According to the International Diabetes

Federation (IDF) [3], it is estimated that 537 million adults

between the age of 20 to 79 years are affected with diabetes.

Moreover, in 2021 alone, the IDF estimates that diabetes was

responsible for 6.7 million deaths. The variants include type

1, type 2, gestational, pre-diabetes, monogenic, and cystic

fibrosis-related diabetes [4]. In our paper, we focus on type 1

diabetes, an organ-specific autoimmune disease of pancreatic

β cells [1], wherein the β cells eventually lose the ability of

insulin synthesis.

*Equal Contribution
This research was supported by Advantest as part of the Graduate School
”Intelligent Methods for Test and Reliability” (GS-IMTR) at the University
of Stuttgart

In our paper, we propose the design of a Long-Short Term

Memory Network (LSTM) encoding network in conjunction

with Deep Reinforcement Learning (DRL). The input encod-

ing network consists of densely-connected layers which exploit

the representational power to extract informative features for

the subsequent LSTM network, followed by an output encod-

ing network. The output of the encoding network, intertwined

with LSTM, is fed into a projection layer which generates a

probability distribution across prediction values with a non-

zero mean and bounded output to promote numerical stability.

We formulate the BG prediction as a DRL learning task and

integrate the Soft Actor-Critic (SAC) DRL algorithm in our

study. We evaluate our proposed method on the OhioT1DM

dataset [5], which contains CGM of 12 patients affected with

type-1 diabetes mellitus, in intervals of 5 minutes, for 8 weeks.

We compare our results to prior work by Hatice et al. [6],

which achieved the best results using Deep Neural Networks

(DNN) with a weighted decision-level fusion of LSTM, GRU,

and Wavelets on the OhioT1DM dataset. Hatice et al. defined

the Prediction Horizon (PH) as the consecutive number of BG

levels to be predicted. A 45-minute PH involves 9 consecutive

prediction BG levels (as the OhioT1DM dataset considers a

5-minute interval). Our proposed method significantly outper-

forms the current best BG prediction approach with respect

to both Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE) in the 30-minute and 45-minute PH. The key

contributions of our work are as follows:

• We propose the design of a densely-connected encoding-

decoding network in conjunction with an LSTM model.

In contrast to other works, we formulate the BG predic-

tion task as a DRL problem and train our network using

the SAC method.

• We train our proposed method on the OhioT1DM dataset.

In comparison to the baseline, our proposed method

outperforms their best results by 18.5% on MAE and

16.3% on RMSE for 30-minute PH, and by 22.5% MAE

and 19.5% on RMSE for 45-minute PH.
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The rest of the paper is organized as follows: In Section III,

we discuss our proposed methodology involving details of the

LSTM encoding network and DRL algorithm. We delve into

our experimental setup in Section IV, followed by the results

in Section V. Section VI concludes our paper. The implemen-

tation of our method is publicly available on GitHub [7].

II. RELATED WORK

Accurately predicting BG levels for individuals affected

with type 1 diabetes plays an important role in informed

insulin injection. Various external factors like carbohydrate

intake, physical exhaustion induced by exercising, or stress

contribute to the variation of BG levels in type-1 diabet-

ics. Traditional Machine Learning (ML) approaches like ran-

dom forests [8], Autoregressive Integrated Moving Average

(ARIMA) [9], [10], to name a few, have been explored

in the space of continuous glucose monitoring (CGM) and

prediction. Deep learning-based popular approaches include

LSTM [10], Gated Recurrent Units (GRU) [6], Convolutional

Neural Networks (CNN) [11], and Convolutional Recurrent

Neural Networks (CRNN) [12]. Variants of the DRL algorithm

have also been used for Type-1 diabetes prediction [13]. In

recent years, the algorithms have been popularly evaluated

on simulator environments like Diabetes Mellitus Metabolic

Simulator for Research (DMMS.R) [14], Padova T1D Simu-

lator [15], Web-based Simulation Tool [16], Simglucose [17],

GluCoEnv [18], to name a few. Some works also include

evaluations on data collected from subjects affected with Type-

1 diabetes [19]–[21].

In regards to blood glucose monitoring for Type-1 diabetics

on the OhioT1DM [5] dataset, several methodologies have

been proposed. Harry et. al. [22] proposed additional super-

vision on top of a neural network architecture, stacked with

fully connected layers and residual backcasting, primarily by

replacing the fully connected block structure with a recurrent

neural network. Hadia et. al. [23] investigated themes of

knowledge distillation and transfer learning over a student-

teacher approach across the patients of OhioT1DM dataset.

Other approaches include generative adversarial networks [24],

multi-task networks [25], and sequence-to-sequence neural

networks [26]. The one we consider as our baseline involves

weighted decision level fusion over LSTM, WaveNet, and

GRU [6].

III. METHODOLOGY

In recent years, approaches to blood glucose prediction

increasingly use data-driven methods. Especially since 2017,

deep learning-based approaches have gained attention and

seem to be the most successful methods (see, e.g., [27]–[29]).

Similar to many other studies, we use a patient’s past BG

values as input to predict future BG values. In training, we

use 30 min of a patient’s BG history to forecast 5, 30, and

45 min prediction horizons. After the training, we evaluate

the models on unseen testing data. Fig. 1 shows an overview

of the proposed reinforcement learning-based model. Detailed

information about the network architecture is given in the

subsequent sections.

A. Deep neural networks

Previous studies revealed deep neural networks as the most

promising models for blood glucose prediction. Many different

networks have been proposed, for example, convolutional neu-

ral networks. In this study, we use recurrent neural networks

(RNN) and LSTM. In contrast to other works, we propose a

DRL approach instead of supervised learning and adjust the

architecture and training process to the requirements of our

proposed DRL.

1) Densely-connected networks: A type of neural network

where each neuron in one layer is connected to every neuron in

the next layer. Among several others, the high representational

power, flexibility, and effective feature learning (multiple

levels of abstraction) are reasons to use densely-connected

networks. In medical image analysis, they are successfully

used with convolutional networks, e.g., in DenseNet [30].

Encoding networks: The input encoding network is a

three-layer densely-connected neural network (consisting of

256, 512, and 256 neurons per layer with ReLU activation)

that exploits the representational power to extract informative

features for the subsequent LSTM network. Similarly, the

output encoding networks extract features of the LSTM for

the final blood glucose prediction of the projection layer.

Projection layer: Performs the blood glucose value pre-

diction. The size of the (densely connected) layer matches

the number of time steps in the prediction horizon. The

projection layer uses a tanh normal projection to transform

the output and generate a normal distribution with a mean

and standard deviation which is necessary to represent the

probability distribution across different prediction values (so-

called actions) in DRL, see Section III-B. We use tanh normal

projection to efficiently get a distribution with a non-zero

mean, which helps to ensure that the output is bounded and

increases numerical stability.

2) LSTM: A type of RNN explicitly designed for pro-

cessing sequential data, e.g., time-series data. In addition to

the input data, RNNs have a feedback mechanism (so-called

memory) to use previous network outputs to make the current

prediction. The structure of an LSTM in Fig. 1 shows multiple

gates (input, forget, and output gate) that control the flow of

information through time in the memory [31]. The LSTM cell

processes the input xt at time step t, the previous cell memory

ct−1, and the previous output ht−1 of the cell to generate the

outputs ct respectively ht. The input gate in (1) and the forget

gate in (2) control the cell state ct, see (5). Together with the

result of the output gate in (3), the hidden state ht of the cell

is given in (6).
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Fig. 1: Overview of the proposed network architecture including encoder networks, LSTM, and the final projection layer.

it = sigmoid (Wixt + Uiht−1 + bi) (1)

ft = sigmoid (Wfxt + Ufht−1 + bf ) (2)

ot = sigmoid (Woxt + Uoht−1 + bo) (3)

c̃t = tanh (Wcxt + Utht−1 + bc) (4)

ct = ft � ct−1 � it � c̃t−1 (5)

ht = ot � tanh (ct) (6)

These gates and the recurrent structure of the network allow

us to address the vanishing gradients problem and to improve

the learning of long-term dependencies [32]. In our proposed

design, we use an LSTM with a cell size of 256.

B. Deep reinforcement learning

DRL combines the representational power of deep learning

and the decision-making ability of reinforcement learning.

DRL is a sub-field of machine learning for complex, high-

dimensional decision-making tasks in which an agent learns

an optimal behavior by taking action in its environment and

receiving rewards or punishments with respect to the outcome

of the actions [33]. DRL tasks can be described as Markov

Decision Processes, which determine the space of environment

states S, the space of agent actions A, and a scalar training

signal R (reward). At each time step t, the agent gets a state

st ∈ S and selects an action at ∈ A following a policy

π (at|st). Consequently, the agent receives a reward rt ∈ R
and the next state st+1 ∈ S . We parameterize the policy π
with a deep neural network and maximize the cumulative

reward (return) in training. Analog to the study in [34], we

use Actor-Critic training algorithms. Actor-Critic algorithms

use a so-called value function to predict future rewards. The

value function in Eq. 7 denotes the expected total (discounted)

reward starting from state s and γ the discount factor.

V (s) = Eπ

[ ∞∑
k=0

γkrt+k+1|st = s

]
(7)

In the following, we focus on the Soft Actor-Critic (SAC)

algorithm [35], which was the most successful in our study

among the algorithms in [34].
Soft Actor-Critic: DRL algorithm for continuous control

tasks following the Actor-Critic framework [36]. It uses two

networks, the actor and the critic network, to learn the pol-

icy respectively to estimate a soft value function similar to

Eq. 7, which is used to update the policy using Temporal

Difference (TD) error. SAC’s soft value function updates

and entropy regularization improve exploration and prevent

the policy from becoming too deterministic. In addition, the

automatic temperature tuning simplifies the hyperparameter
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tuning process, increasing stability and robustness in training

[35]. However, training will require more computational effort,

possibly increasing the training time compared to common

supervised approaches.

In the following experiments, we use an actor and

a critic network with a structure shown in Fig. 1.

To formulate the BG prediction as a DRL task, we

define the environment state at time t as a vector

[BGt−5, BGt−4, BGt−3, BGt−2, BGt−1, BGt]
T

, the reward

as in Eq. 8, and actions as continuous BG values in the

range from 35 to 500 mg/dl for a given prediction horizon

(single-step ahead or multi-step ahead). During training, the

agent outputs continuous BG values from 35 to 500, given the

observed state of the environment.

Rt+1 = −|BGt − at| (8)

The reward definition is such that the reward is close to

zero if the output action at is close to the real BG value Bt

and far away from zero (in the negative direction) otherwise.

Formulating the BG prediction task as a decision-making task

allows us to apply different DRL techniques.

IV. EXPERIMENTAL SETUP

A. Dataset

In this paper, we use the OhioT1DM dataset [5], widely

used in the research of BG level prediction. The most recent

release for the second Blood Glucose Level Prediction (BGLP)

Challenge (2020) contains data from 12 subjects with type

1 diabetes on insulin pump therapy. It includes continuous

glucose monitoring (CGM), insulin, physiological sensor, and

self-reported life-event data throughout an eight-week data

collection period for each of the 12 people. Throughout the

eight-week period, they wore Medtronic 530G or 630G insulin

pumps and used Medtronic Enlinte CGM sensors for data

collection. The data is entirely anonymized, e.g., by randomly

assigning ID numbers for each patient. The dataset includes

19 different features, especially the CGM blood glucose level

given in 5 minutes intervals. The data is from 7 male and 5

female subjects aged from 20 to 80 years. Detailed information

on the dataset is given in Table I.

B. Preprocessing

We normalize the data using z-score standardization widely

used in ML algorithms. It scales the values of each feature in

the data to have zero mean and unit variance. The feature-wise

calculation of the z-score normalization is given in Eq. 9 and

requires determining the distribution mean μx and standard

deviation σx for each feature x.

x′ =
x− μx

σx
(9)

The intuition using z-score normalization is that average BG

values correlate with A1C and other relevant characteristics,

e.g., hyperglycemia. Moreover, the normalization focuses on

potentially dangerous changes in BG values and neglects

statistics in the data that do not reveal information for accurate

CGM [37].

C. Hyperparameter selection

Applying deep neural networks successfully to a given

problem requires a suitable selection of hyperparameters that

control the structure and properties of architectures and al-

gorithms. In this work, we use random search to determine

the most successful hyperparameters with respect to achiev-

able RMSE values [38]. The sets of hyperparameter values

were chosen in alignment with commonly used values in the

literature.

D. Evaluation metrics

Evaluation metrics are measures to quantify the accuracy

of a system. Many metrics exist to evaluate the accuracy

of BG prediction tasks. In the following, we introduce the

most common metrics to evaluate analytical and clinical ac-

curacy. Evaluation of analytical accuracy includes quantitative

methods for describing how closely the predictions match

the ground truth measurements. In contrast, clinical accuracy

is a qualitative measure to evaluate the clinical outcome of

different treatment decisions. Therefore, the definition includes

statistical metrics and the expert knowledge of clinicians.

Analytical accuracy: The most commonly used numerical

metric is the Root Mean Squared Error (RMSE) given in Eq.

10. In addition, we use the Mean Absolute Error (MAE) in

Eq. 11 to evaluate the analytical BG prediction accuracy in

this study.

RMSE =

√√√√ 1

n

n∑
i=1

(ypredicted − ymeasured)
2

(10)

MAE =
1

n

n∑
i=1

|ypredicted − ymeasured| (11)

Clinical accuracy: A surveillance Error Grid (SEG) is the

most recently used grid-based visualization method to evaluate

clinical accuracy. It is a metric for error- and (clinical) risk

assessment of BG measurements [39]. In general, the error

grid shows a set of risk zones with scores (risk levels) for

the clinical impact ranging from 0 (none) to 4 (extreme).

Fig. 2 shows a simplified, discrete SEG with limits from 0

to 600 ml/dl and risk zones separated by 120 mg/dl intervals.

The error grid on which our predictions are superimposed

in Fig. 4 is continuously color-coded. The color represents

the average risk rating of clinician respondents of a survey

[39]. It represents the mean group decision in accordance

with the consensus of experts. Consequently, the SEG is not

symmetrical with respect to the identity line.

V. RESULTS

We train our proposed DRL algorithm on the OhioT1DM

dataset [5]. The OhioT1DM dataset contains continuous blood

glucose level monitoring in intervals of 5 minutes for 12 pa-

tients. Our models are trained on the blood glucose recordings

of each patient available in the OhioT1DM dataset in an 80-20
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TABLE I: Description of the OhioT1DM dataset properties [5].

Patient ID Gender Age Range Pump Model Sensor Band Training Samples Test Samples
540 male 20-40 630G Empetica 11947 2884
544 male 40-60 630G Empetica 10623 2704
552 male 20-40 630G Empetica 9080 2352
567 female 20-40 630G Empetica 10858 2377
584 male 40-60 530G Empetica 12150 2653
596 male 60-80 530G Empetica 10877 2731
559 female 40-60 530G Basis 10796 2514
563 male 40-60 530G Basis 12124 2570
570 male 40-60 530G Basis 10982 2745
575 female 40-60 530G Basis 11866 2590
588 female 40-60 530G Basis 12640 2791
591 female 40-60 530G Basis 1ß847 2760

TABLE II: Multi Step Prediction Results (SAC, Batch size=1024, PH=30 mins)

Patient Root Mean Square Error Mean Absolute Error
ID Our Proposed Baseline [6] % Improvement Our Proposed Baseline [6] % Improvement

Method (LSTM + WaveNet + GRU) Over Baseline Method (LSTM + WaveNet + GRU) Over Baseline
540 19.254 25.28 23.837 13.807 18.77 12.996

544 15.287 19.76 22.637 11.348 14.36 12.996

552 14.499 19.43 25.378 10.580 14.66 27.831

559 19.372 21.78 19.779 13.473 15.35 12.228

563 17.779 20.43 12.976 12.308 14.39 14.468

567 22.206 23.96 7.321 14.682 17.41 12.625

570 15.803 18.06 12.497 11.715 12.85 8.833

575 20.370 25.02 18.585 14.011 16.77 16.452

584 24.306 24.84 3.237 16.606 18.57 10.576

588 15.024 21.26 29.332 11.040 15.55 29.003

591 18.096 23.76 23.838 12.996 18.61 28.436

596 17.319 19.23 9.938 12.625 13.58 7.032
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Fig. 2: Visualization of SEG risk zones.

train-test split ratio. In the prediction phase, for every patient,

we perform training on 30 minutes intervals (corresponding

to 6 consecutive blood glucose level recordings) and perform

TABLE III: Comparing Average in Multi-Step Prediction

Results (SAC, Batch size=1024, PH=30 mins)

Method Root Mean Mean Absolute
Square Error Error

LSTM [6] 22.13 16.02

Wavelet [6] 22.49 16.47

GRU [6] 22.00 15.91

WaveNet + LSTM [6] 22.35 16.29

WaveNet + GRU [6] 22.21 16.15

LSTM + GRU [6] 21.98 15.86

LSTM + WaveNet + GRU [6] 21.90 15.87

Deep RL (Proposed Method) 18.32 12.93

prediction on either a single step (corresponding to the blood

glucose level in the next 5 minutes) or multi-step prediction

(corresponding to the blood glucose level in next 30 or 45

minutes). The evaluation results are visualized using SEG and

compared to our baseline [6] with respect to RMSE and MAE.

We discuss the prediction results for the entire dataset of 250

hours with regard to single-step and multi-step predictions as

follows.

Multi-Step Predictions for 30 minutes: Our proposed SAC

model predicts the blood glucose level for 6 consecutive steps

(corresponding to the next 30 minutes), with a batch size of
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TABLE IV: Multi Step Prediction Results (SAC, Batch

size=1024, PH=45 mins)

Patient Root Mean Square Error Mean Absolute Error
ID Our Proposed Method Our Proposed Method
540 24.995 18.025

544 20.527 14.849

552 19.826 14.426

559 24.833 17.606

563 20.888 14.356

567 27.873 18.492

570 19.322 14.158

575 25.151 17.249

584 31.512 22.687

588 20.452 14.701

591 23.084 16.382

596 22.723 16.945

TABLE V: Comparing Average in Multi-Step Prediction Re-

sults (SAC, Batch size=1024, PH=45 mins)

Method Root Mean Mean Absolute
Square Error Error

LSTM [6] 12.93 21.61

Wavelet [6] 29.68 22.19

GRU [6] 29.22 21.50

WaveNet + LSTM [6] 29.46 21.87

WaveNet + GRU [6] 29.44 21.83

LSTM + GRU [6] 29.26 21.56

LSTM + WaveNet + GRU [6] 29.12 21.52

Deep RL (Proposed Method) 23.43 16.66

1024, and 50000 training steps while considering input data

for 30 minutes. For all 12 patients, we evaluate the RMSE

and MAE, as presented in Table II. Table III features the

comparative results of our proposed method with respect to

LSTM, Wavelet, GRU, and a possible combination of these

methods. We observe that for all the patients, our proposed

method can significantly improve over the baseline [6], with

respect to both metrics. On average for all 12 patients, our

proposed method improves RMSE by 16.34% and MAE by

18.4%. Our proposed method outperforms each of them.

Multi-Step Predictions for 45 minutes: Our proposed SAC

model predicts the blood glucose level for 9 consecutive steps

(corresponding to the next 45 minutes), with a batch size of

1024, and 50000 training steps while considering input data

for 30 minutes. For all 12 patients, we evaluate the RMSE

and MAE, as presented in Table IV. Table V features the

comparative results of our proposed method with respect to

LSTM, Wavelet, GRU, and a possible combination of these

methods. We observe that for all the patients, our proposed

method can significantly improve over the baseline [6], with

respect to both metrics. On average for all 12 patients, our

proposed method improves the RMSE by 19.53% and MAE

by 22.5%. Our method outperforms each of them. To visualize

how well our model fits the data, in Fig. 3, we present the

TABLE VI: Single-Step Prediction Results (SAC, Batch

size=64, PH=5 mins)

Patient ID Root Mean Square Error Mean Absolute Error
540 12.270 9.441

544 8.806 7.087

552 8.336 6.573

559 10.920 8.293

563 9.017 6.907

567 9.309 7.293

570 10.940 8.626

575 11.640 8.914

584 11.630 8.745

588 8.542 6.894

591 9.840 7.225

596 8.07 6.360

Average 9.943 7.697

ground truth in comparison to the prediction results for a

representative sample of the testing dataset of 30 hours for

patient ID 570 and 584.

Single Step Prediction for 5 minutes: Our proposed

SAC model predicts the blood glucose level for one step

(corresponding to the next 5 minutes), with a batch size of

64, and 50000 training steps while considering input data

for 30 minutes. For all 12 patients, we evaluate the RMSE

and MAE, as presented in Table VI. The average RMSE and

MAE are 9.943 and 7.767. Owing to the lack of single-step

prediction results in our baseline models, we refrain from any

comparative results.

Surveillance Error Grid for Multi-Step Prediction:
Through SEG, we assess the risk between predicted and

ground truth blood glucose levels for all 12 patients. SEG

helps us to estimate the percent predictions that lie within the

risk zones, as defined by clinical practices. We present the

average SEG in the multi-step prediction of 30 minutes and

45 minutes, for all 12 patients, in Table VII and Table VIII

respectively. Tables IX and X present a comparison among all

the prior works compared to our proposed method, for multi-

step prediction of 30 minutes and 45 minutes respectively. We

present the SEG visualization for the patients with the best and

worst scores respectively, referenced by patient ID 570 and 584

using our proposed method, in Fig. 4. From the tables and the

visualization of SEG as outlined in Fig. 4, we can conclude

that a significant proportion of the prediction results lie in

the no risk to slight risk zone, excluding a few outliers. Our

prediction either outperforms or remains consistent with our

baseline. This further bolsters the confidence in our prediction

results.

VI. CONCLUSION

In our paper, we have proposed a novel methodology for

time series modeling of BG levels in type-1 diabetes using a

densely-connected encoder-decoder network and LSTM for-

mulated as a DRL problem. We have evaluated our results

for the OhioT1DM dataset benchmark. Compared to the prior
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TABLE VII: Average SEG in Multi-Step Prediction Results (SAC, Batch size=1024, PH=30 mins)

Patient ID None (0) Slight (1) Moderate (2) Great (3) Extreme (4)
540 85.104 14.896 0.000 0.000 0.000

544 90.815 9.185 0.000 0.000 0.000

552 89.541 10.459 0.000 0.000 0.000

559 89.928 9.952 0.120 0.000 0.000

563 89.085 10.915 0.000 0.000 0.000

567 86.869 12.963 0.168 0.000 0.000

570 90.367 9.560 0.073 0.000 0.000

575 89.161 10.801 0.039 0.000 0.000

584 85.332 14.517 0.075 0.075 0.000

588 91.361 8.531 0.108 0.000 0.000

591 89.592 10.408 0.000 0.000 0.000

596 89.011 10.989 0.000 0.000 0.000

Average 88.847 11.098 0.048 0.000 0.000

TABLE VIII: Average SEG in Multi-Step Prediction Results (SAC, Batch size=1024, PH=45 mins)

Patient ID None (0) Slight (1) Moderate (2) Great (3) Extreme (4)
540 86.343 13.542 0.116 0.000 0.000

544 89.605 10.395 0.000 0.000 0.000

552 89.344 10.656 0.000 0.000 0.000

559 89.022 10.951 0.027 0.000 0.000

563 91.111 8.863 0.0261 0.000 0.000

567 85.035 14.515 0.366 0.084 0.000

570 92.015 7.790 0.195 0.000 0.000

575 86.817 13.157 0.0259 0.000 0.000

584 82.212 17.611 0.151 0.025 0.000

586 90.380 9.620 0.000 0.000 0.000

591 86.847 13.153 0.000 0.000 0.000

596 87.151 12.849 0.000 0.000 0.000

TABLE IX: Comparing Average SEG in Multi-Step Prediction Results (SAC, Batch size=1024, PH=30 mins)

Method None (0) Slight (1) Moderate (2) Great (3) Extreme (4)
LSTM [6] 86.42 13.56 0.02 0.00 0.00

Wavelet [6] 85.91 14.06 0.03 0.00 0.00

GRU [6] 86.41 13.55 0.04 0.00 0.00

WaveNet + LSTM [6] 86.43 13.54 0.03 0.00 0.00

WaveNet + GRU [6] 86.39 13.57 0.04 0.00 0.00

LSTM + GRU [6] 86.52 13.44 0.04 0.00 0.00

LSTM + WaveNet+ GRU [6] 86.53 13.45 0.02 0.00 0.00

Deep RL (Proposed Method) 88.85 11.10 0.05 0.00 0.00

TABLE X: Comparing Average SEG in Multi-Step Prediction Results (SAC, Batch size=1024, PH=45 mins)

Method None (0) Slight (1) Moderate (2) Great (3) Extreme (4)
LSTM [6] 80.95 18.98 0.07 0.00 0.00

Wavelet [6] 79.88 20.07 0.05 0.00 0.00

GRU [6] 81.08 18.85 0.07 0.00 0.00

WaveNet + LSTM [6] 81.04 18.90 0.06 0.00 0.00

WaveNet + GRU [6] 81.01 18.92 0.07 0.00 0.00

LSTM + GRU [6] 81.10 18.83 0.07 0.00 0.00

LSTM + WaveNet+ GRU [6] 81.14 18.80 0.06 0.00 0.00

Deep RL (Proposed Method) 87.99 11.93 0.08 0.01 0.00

345

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:07:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Blood glucose ground truth in comparison to the

prediction for a representative sample of the testing dataset

of 30 hours for patient ID 570 (a) and patient ID 584 (b)

work that achieved the best prediction accuracy, on average,

and with respect to the mean absolute error, we have improved

by 18.4% and 22.5% in 30-minute and 45-minute prediction

horizons, respectively. Furthermore, for risk assessment in

our predictions, we have visualized the error and evaluated

clinical risk through a surveillance error grid approach. For

future work, we aim to evaluate our proposed methodology of

time-series modeling for other BG prediction datasets and for

different categories of diabetes.
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