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ABSTRACT

The goal of protein design typically involves increasing fitness (extrapolating)
beyond what is seen during training (e.g., towards higher stability, stronger binding
affinity, etc.). State-of-the-art methods assume that one can safely steer proteins
towards such extrapolated regions by learning from pairs alone. We hypothesize
that noisy training pairs are not sufficiently informative to capture the fitness
gradient and that models learned from pairs specifically may fail to capture three-
way relations important for search, e.g., how two alternatives fair relative to a
seed. Building on the success of preference alignment models in large language
models, we introduce a progressive search method for extrapolative protein design
by directly distilling into the model relevant triplet relations. We evaluated our
model’s performance in designing AAV and GFP proteins and demonstrated that
the proposed framework significantly improves effectiveness in extrapolation tasks.

1 INTRODUCTION

We focus on the challenging task of extrapolative protein design (Chan et al., 2021; Padmakumar et al.,
2023; Lee et al., 2023). The problem involves creating novel protein sequences with fitness values
above and beyond those seen during training. Extrapolation is challenging for machine learning
methods as methods are primarily trained to recognize patterns within the range of the training data
(Xu et al., 2020). Existing extrapolative protein design methods can be roughly categorized into two
groups. Scorer-based approaches optimize sequences by following a learned score model with the help
of reinforcement learning (Lee et al., 2024) or Gibbs sampling (Kirjner et al., 2024), progressively
modifying sequences towards higher predicted fitness values. Since the score model in these methods
has been trained primarily on sequences belonging to the training region of fitness values, its ability
to generalize to sequences further away may be limited. Edit-based methods, on the other hand,
effectively learn gradient directions from pairs of examples derived from data or from an estimated
score model, and learn to propose sequence improvements. If the learned patters of improvement
generalize, then the methods are able to continue to improve the sequences beyond those in the original
training region. Current generative models for sequence improvement approximate the gradient
direction through differences between protein pairs, e.g., learning the ranking through contrastive
discriminatory objective (Chan et al., 2021), token-level machine translation (Padmakumar et al.,
2023) and Bradley-Terry (BT) model (Bradley & Terry, 1952) with maximum likelihood objective
(Lee et al., 2023). The primary limitation is that noisy pairs alone may not provide sufficient gradient
information to effectively guide protein generation.

In this paper, we build on edit-based methods to address these limitations and further enhance the
methods with data distillation. We draw inspiration from recent successes of preference learning
(Christiano et al., 2017; Rafailov et al., 2023) in text generation. In order to improve the extrapolation
power of the generative models, we distill carefully selected higher order (triplet) relationships into
the models. These triplet relations are meant to better approximate the gradient direction in sequence
space and therefore aid in progressive search for better sequences. We focus on improvements
relative to a seed with the help of offline preference learning approaches such as direct preference
optimization (DPO) (Rafailov et al., 2023) and efficient exact optimization (EXO) (Ji et al., 2024). We
introduce hard triplet relations as additional guidance to the generative model pre-trained from pairs
alone. Specifically, given a conditional generative model P(.|x), we identify examples x1 < x2 < x3

(based on their fitness) where the current model fails, i.e., P(x1|x2) > P(x3|x2). We consider these
mistakes similar to harmful text generation in LMs. The proposed data distillation approach guides
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language models towards higher fitness in the extrapolation region while preventing the generation of
lower fitness sequences.

We evaluate our method on the well studied Green Fluorescent Proteins (GFP) by Sarkisyan et al.
(2016) and Adeno-Associated Virus (AAV) by Bryant et al. (2021). We utilize the carefully created
medium and hard difficulty splits provided by Kirjner et al. (2024). Our contributions are summarized
as follows:

• We develop a novel data distillation approach for extrapolative protein design through
preference learning. Our approach distills model-dependent hard triplewise ranking into
generative model through reverse KL offline preference learning (Section 3.4 for preference
data creation and Section 3.5 for general model alignment).

• Our benchmark shows that our approach can drastically improve the performance upon prior
methods (Section 5).

• Through ablation studies, we show the importance of training on hard triplewise rankings in
comparison to other methods for preference dataset creation (Section 6.1).

• We benchmark our proposed approach against state-of-the-art scorer-based approaches and
our approach becomes state-of-the-art in 3 out of 4 datasets (Section 6.2).

• We benchmark the reverse KL preference learning approach against other state-of-the-art
preference learning approaches such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2023),
IRPO (Pang et al., 2024), NCA (Chen et al., 2024), SPPO (Wu et al., 2024), AOT (Melnyk
et al., 2024) (Section 6.3).

2 RELATED WORK

Controllable Biological Sequence Design The approaches for controlled biological sequence design
can be categorized into (i) conditional protein design with control codes such as protein families
(Karimi et al., 2020; Madani et al., 2023) (ii) controllable generation via scorer functions such as
Gibbs sampling on smoothed fitness landscape (Kirjner et al., 2024) (iii) protein optimization in
latent space such as reinforcement learning in latent space of large language models (Lee et al., 2024),
property-guided variational auto-encoder based models (Gómez-Bombarelli et al., 2018; Ghaffari
et al., 2024) (iv) extrapolative protein design: extrapolating to fitness beyond training data (Chan
et al., 2021; Padmakumar et al., 2023; Lee et al., 2023) All extrapolative protein design models have
the inherent assumption that extrapolation can be learned sufficiently well through pairwise ranking
of protein finesses. Chan et al. (2021) developed a contrastive learning approach of ranking pairs
through a discriminator of the latent space and extrapolating biological sequences through traversing
it. Padmakumar et al. (2023) proposed to learn local editor for translating sequences with low fitness
to sequences with slightly higher fitness through machine translation. Recently, Lee et al. (2023)
modeled the ranked pairs through Bradley-Terry (BT) model via a maximum likelihood objective,
named align-plm. The align-plm model is an unconditional auto-regressive generative model, so it
does not have any notion of seed (starting sequence). Therefore, the align-plm model has been used
as an oracle rather than a generative model to rank the fitness of heuristically generated sequences.
Particularly, starting from seed sequences, they will exhaustively search all single site mutations and
rank them based on align-plm model to choose the top ranking sequences and iteratively continue
this process.

Preference Learning Aligning language models toward human feedback has improved their capa-
bilities in following instruction (Ouyang et al., 2022) and translation (Kreutzer et al., 2018). LLM
alignment originated from the seminal work of Christiano et al. (2017) on reinforcement learning
with human feedback (RLHF). However, training RLHF was shown to be challenging due to training
instabilities, reward hacking and catastrophic forgetting (Peng et al., 2023). Recently, there has been
a momentum for closed-form and direct optimization of offline preferences. Direct optimization of
human feedback can be categorized into sequence likelihood calibration (Zhao et al., 2023), direct
preference optimization (DPO) through Bradley-Terry (BT) model (Rafailov et al., 2023; Mitchell,
2023), a more generalized version of DPO named Ψ preference optimization (Azar et al., 2023). It
has recently been shown that, under probability matching perspective, DPO is optimizing the forward
KL divergence KL(π∗

β ||πθ) where π∗
β is the optimal target distribution and πθ the parameterized
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model distribution. However, the RLHF objective function is equivalent of minimizing the reverse KL
divergence KL(πθ||π∗

β). Recently, efficient exact optimization (EXO) has been proposed to minimize
the reverse KL divergence of the general alignment objective (Ji et al., 2024). It has been shown that
DPO only covers the support of π∗

β (mean seeking) and EXO is capturing its modes (mode seeking).
Direct preference models not only perform on par with RLHF but are also simpler to implement,
single-stage training and computationally efficient in practice.

3 METHODS

3.1 PROBLEM DEFINITION

Let’s assume there is a supervised dataset D = {(xn, yn)}Nn=1 with N samples where xn =
(xn

1 , · · · , xn
L) is nth protein sequence with length L and yn is its corresponding fitness value (i.e.

stability, binding affinity). Let’s assume the fitness value y in dataset D is bounded y ∈ [ymin, ymax].
We define this region as training region and try to generate sequences with fitness value ygen > ymax

or ygen < ymin which is defined as the extrapolation region.

3.2 OVERVIEW

The core concept behind the proposed method is to gradually learn the higher order relationships
among ranked proteins. We start with an auto-regressive unconditional pLM such as Prot-T5-XL
(Elnaggar et al., 2021) that is trained on unsupervised data to model x ∼ Pθ(.) where x is a generated
protein sequence. Inspired by the ICE model (Padmakumar et al., 2023), we trained a local editor
with the desired direction (e.g. increasing the binding affinity) to learn the first order relationship
among ranked proteins (approximating desired gradient direction through pairs). The model learns
to generate x2 ∼ Pθ(.|x1) where the fitness of x2 (designed sequence) is expected to be better than
x1 (starting sequence). Inspired by direct preference optimization (DPO) (Rafailov et al., 2023) and
EXO (Ji et al., 2024), we aligned the pairwise model based on hard triplets by directly optimizing on
newly created preferences where the pairwise model makes the worst mistakes. With this alignment,
the model updates its belief of gradient direction from triplewise relationships where the pairwise
model is going in the wrong direction. The overall schematic of the proposed method is illustrated in
Figure 1.

Figure 1: Schematic overview of extrapolative protein design through triplet preference learning.

3.3 LOCAL EDITING THROUGH PAIRS

Given a supervised dataset D, we trained a scorer function fs to predict the fitness of a query
sequence. We expect fs to perform well on the training region and perform poorly on the extrapolation
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region, since it has not seen these fitness values during its training. Then, following Padmakumar
et al. (2023) we generated perturbed sequences by masking-infilling starting from the training
sequences (seeds). Scorer function fs is utilized to assess whether the newly generated pair (seed,
sequence) has a small but meaningful improvement in the desired direction. We created the dataset
Dpair = {(xm, zm)}Mm=1 with M samples where fs(x

m) < fs(z
m) if increasing fitness is desired

and vice versa. Finally, we fine-tuned the Prot-T5-XL model (Elnaggar et al., 2021) through MLE in
an auto-regressive manner to predict the next amino acid: Ppair(z|x) =

∏L
i=1 P(zi|z<i,x).

3.4 PREFERENCE DATASET CREATION

To better approximate the gradient direction toward improved fitness in the extrapolation region and
directly model higher order relationship among proteins, we created a preference dataset of size K
based on triplets Dtriplet = {(xk

prompt,x
k
w,x

k
l )}Kk=1 where xprompt is the seed sequence, xw is the

desired response and xl is the undesired response. We are interested in increasing fitness by moving
from xprompt toward xw where fs(xprompt) < fs(xw) while guarding it against sequences with same
or worse fitnesses (undesired ones). Therefore, we create the following preference datasets (i) Don’t go
backward: triplets should satisfy the following order fs(xl) < fs(xprompt) < fs(xw) (ii) Don’t get
stuck at the same fitness: triplets should satisfy the following order fs(xl) ≈ fs(xprompt) < fs(xw).

In addition for better approximation of gradient direction and higher order modeling, we would like
to focus more on the triplets which are the most confusing for the pairwise model. We mathematically
define hardness for a given triplet (xprompt,xw,xl) with respect to the pairwise model:

Shardness = log Ppair(xl|xprompt)− log Ppair(xw|xprompt) (1)

By definition, triplets with Shardness > 0 are considered to be hard examples, since the pairwise model
prefers the undesired sequences to the desired sequences given the prompts, and Shardness <= 0 are
easy examples similarly. In our internal experiments, we found out that 65%-70% of the proposed
triplets are already easy. We have hypothesized that one should focus on the hard triplet examples
in the entire training fitness range. We have performed ablation studies to investigate the impact of
these components. The details of preference creation has been explained in section 4.3.

3.5 PREFERENCE LEARNING THROUGH TRIPLETS

We model the triplewise relationship through offline preference optimization recently developed for
model alignment. Ji et al. (2024) proposed a general model alignment which is explained in details in
supplementary section A. We will utilize their approximate formulation for offline preference setting.
Firstly, one can define the empirical distribution fθ for a given prompt xprompt and a response xj

where j ∈ {w, l} as follow:

Pfθ (j|xw,xl,xprompt) =
e
βπ log

Pθ(xj |xprompt)

Ppair(xj |xprompt)

e
βπ log

Pθ(xw|xprompt)

Ppair(xw|xprompt) + e
βπ log

Pθ(xl|xprompt)

Ppair(xl|xprompt)

(2)

Secondly, one can define the empirical distribution Prϕ as follow:

Prϕ(j|xw,xl,xprompt) =

{
1− ϵ : j = w

ϵ : j = l

Where ϵ is a small number (e.g. 10−5). Finally, the offline alignment objective is the reverse KL
between Pfθ and Prϕ :

Lexo = E{xw,xl,xprompt}∼Dtriplet

[
KL

(
Pfθ (.|xw,xl,xprompt)||Prϕ(.|xw,xl,xprompt)

)]
(3)

3.6 INFERENCE AND EVALUATION

During inference, the model starts with an initial seed sequence, iteratively edits it and is expected
to improve its fitness. At iteration t, given the seed sequence xt−1 and the trained extrapolative
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protein design model Ptriplet(.|x), one would sample xt ∼ Ptriplet(.|xt−1) until t reaches T (i.e. 10)
predefined iterations. (Fan et al., 2018) introduced ”top-k” as fixed number of highest probability
vocabulary tokens to keep in inference. (Holtzman et al., 2019) introduced nucleus sampling to avoid
degenerate sampling by filtering the unreliable tail of the probability distribution. Particularly, for a
given top-p probability, the smallest set of most probable tokens with probabilities that add up to top-p
or higher are kept for generation. Temperature (τ) hyper-parameter is used to control the randomness
in generation and as a way to balance between greedy search (token with max probability when
τ → 0) and uniform sampling (when τ → ∞). Inspired from Padmakumar et al. (2023), for each
initial seed sequence, we sample N (i.e. 10 for AAV and 2 for GFP) sequences using a combination
of top-k and top-p sampling with k = 10, p = 0.95 and a temperature of 0.7 (1.0) without (with)
scorer in inference. At the end of each iteration, we randomly select M (i.e. 10,000 for AAV and
2,000 for GFP) samples from all generated sequences and use them as seeds for next iteration when
scorer is not used in the inference. We have only chosen the best sequence out of N generated ones
for each seed based on scorer model when used in inference. At the last T th iteration, we evaluate the
final M samples. For in-silico evaluation of GFP and AAV datasets, we used the evaluators trained by
Kirjner et al. (2024).

4 EXPERIMENTS

4.1 DATASETS

In order to assess the extrapolation ability of models on both sequence and fitness landscape, we have
utilized the Adeno-associated virus (AAV) and Aequorea victoria GFP (avGFP) datasets processed
by Kirjner et al. (2024). They proposed to use mutational gap, defined as the minimum number
of mutations required from the training set to achieve the optimal fitness, in order to measure the
extrapolation ability of protein design models. We used the medium and hard difficulty split of
datasets where mutational gap are 6 and 7 mutations respectively. The characteristics of the datasets
are explained in Table 1.

Table 1: Characteristics of datasets for benchmarking
GFP AAV

Medium Hard Medium Hard
Training region [1.31,3.02] [1.30,1.56] [5.64,7.48] [4.7,6.42]

Extrapolation region >3.02 >1.56 >7.48 >6.42
Mutational gap (99th) 6 7 6 7

Number of seeds 100 100 100 100
Avg. fitness of seeds 2.28 2.28 1.49 1.49

Avg. fitness of top100 extrapolation sequences 4.02 4.02 16.62 16.62

4.2 BENCHMARKED MODELS

When scorer has not been utilized in inference, we compared our proposed method to (i) Sampling:
unconditional protein design through Prot-T5-XL (Elnaggar et al., 2021) (ii) Iterative Controlled
Extrapolation (ICE): extrapolation through learning a local editor by translating proteins with lower
fitness to slightly better fitness (Padmakumar et al., 2023) (iii) Align-plm: extrapolation via Bradley-
Terry (BT) model of ranked proteins with big enough distances (Lee et al., 2023). We could not
compare our method against Genhance (Chan et al., 2021) as we couldn’t run their code. When
scorer has been utilized in inference, we compared with (i) Iterative sampling: unconditional protein
design through Prot-T5-XL (Elnaggar et al., 2021) with scorer ranking, (ii) ICE + scorer: ICE with
scorer ranking, (iii) BiGGS: Gibbs sampling with Graph-based Smoothing in the smoothed fitness
landscape (Kirjner et al., 2024), (iv) LatProtRL: The recent state-of-the-art model for protein fitness
optimization through reinforcement learning in latent space of large language models (Lee et al.,
2024).

4.3 IMPLEMENTATION DETAILS

We used the CNN models trained by Kirjner et al. (2024) and Dallago et al. (2021) on smoothed
fitness landscape of the training regions of GFP and AAV datasets respectively and utilized them
as scorer functions fs. Following Padmakumar et al. (2023), we created the pairs dataset Dpairs =
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{(xi
1,x

i
2)}Mi=1 with M = 900K(100K) training (validation) samples where they follow |fs(x1)−

fs(x2)| < 0.5 and {x1,x2} can either be from original dataset or masking-infiling (e.g. 5% masking).
We trained the local editor model on Dpairs for 10 epochs with the AdamW optimizer (Loshchilov &
Hutter, 2017), a learning rate of 1e-4 and batch size of 384.

Next, we created the preference dataset for both proteins following the principles of (i) Don’t go
backward and (ii) Don’t get stuck at the same fitness. For GFP, we binned sequences based on their
smoothed fitness into buckets of [0, 0.25, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25] and [0, 0.2, 0.4, 0.6, 0.8,
1, 1.2, 1.4, 1.6] for medium and hard difficulty datasets. For AAV, we binned sequences based on
their smoothed fitness into buckets of [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7] and [0.5, 1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5] for medium and hard difficulty datasets. In total, we created
500K (50K) training (validation) samples in which half of them based on Don’t go backward and
the other half based on Don’t get stuck at the same fitness. For Don’t go backward, we sampled
triplets from every three consecutive buckets where xprompts, xl and xw are from buckets with
middle, lowest and highest fitness respectively. For Don’t get stuck at the same fitness, we sampled
triplets from every two consecutive buckets where xprompts and xl are from the bucket with lower
fitness and xw is from the bucket with higher fitness. As shown by Padmakumar et al. (2023) in pair
creation, utilizing masking-infiling sequences might further improve the triplets as well. Instead of
investigating masking-infiling from unconditional generative model for triplets, we have created two
preference datasets utilizing paired conditional extrapolative seq2seq model in combination with
scorers. These datasets are named scorer distillation and combined distillation which are explained
in details in section 6.1.

Then, we assessed the hardness of triples defined in equation 1. We chose the top 100K (10K) hardest
triplets as training (validation) samples for offline preference learning. We further fine-tuned the
local editor model based on triplet-based preference learning through EXO loss function defined in
equation 3 for 1 epoch with batch size of 32, learning rate of 5e-7, β = 0.1 and the AdamW optimizer
(Loshchilov & Hutter, 2017).

4.4 EVALUATION METRICS

We use four evaluation metrics: (i) Extrapolation percentage: Our primary goal is to generate
sequences in the extrapolation region. We use evaluator models to assess the percentage of generated
sequences that have fitness in the extrapolation region. (ii) Fitness100: Our secondary metric is the
average fitness of the top 100 generated sequences that measures how far away generated sequences
are from the training region in the fitness landscape. (iii) Distance100: the third metric measures
the edit distance of the top 100 generated sequences from the top 100 ground truth sequences in
the actual assay that have not been seen by any model (extrapolation sequences). We measure the
average of the closest distance between these two sets of sequences. (iv) Diversity100: Our final
metric measures the diversity of the top 100 candidates of each model. Diversity is measured as
median of the distances between every pair of top 100 candidates. We should emphasize that higher
diversity does not correlate with better performance since a random algorithm can achieve maximum
diversity. However, it may provide insights on the exploitation-exploration trade-off.

5 RESULTS

Figure 2 shows that for 3 out of 4 datasets, the proposed method (EXO) significantly outperforms
baseline methods while being slightly better on the hard difficulty split of the GFP dataset. Table
2 shows that (i) extrapolation percentage has substantially increased by 1.54 (20.76% to 52.75%),
17.53 (4.59% to 85.07%), 4.07 (18.52% to 92.92%) times on hard difficulty AAV, medium difficulty
AAV and medium difficulty GFP datasets respectively in comparison to the best baseline method. It
has decreased from 54.45% to 24.27% on the hard difficulty GFP dataset. (ii) The average fitness of
the top 100 candidates has increased drastically by 21.53% (9.01 to 10.95), 39.76% (9.43 to 13.18),
10.19% (2.55 to 2.81), 69.03% (2.39 to 4.04) on the hard/medium difficulty splits of the AAV and
GFP datasets respectively, in comparison to the best baseline method. (iii) The top 100 generated
candidates from EXO are closer to the top 100 unseen ground truth extrapolation sequences in all
datasets except being second best on the hard difficulty split of AAV dataset. (iv) The diversity of
the sequences generated on the hard splits of AAV and GFP datasets is on-par with prior methods
(balance exploitation vs exploration), while having lower diversity on the medium splits of AAV and
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GFP datasets (more exploitation vs exploration). First, we performed hyper-parameter tuning for β
since it is used in the preference learning stage. Based on the results shown in Figure 15 and Table 16,
β = 0.1 is outperforming other values on medium splits while performing decent and robust on hard
splits. We also performed hyper-parameter tuning for sampling temperature (τ ) which is important at
inference stage. Similarly, based on Figure 16 and Table 17, τ = 0.7 is outperforming other values
on medium splits while performing decent and robust on hard splits. In addition, Figure 13 and Table
14 shows that our results are reproducible by running with five different random seeds for both the
hard and the medium splits of AAV and GFP datasets.

Figure 2: Comparison of in-silico fitness evaluation for baselines and proposed method on
medium/hard difficulty splits of GFP and AAV datasets. .

Table 2: Comparison of in-silico fitness evaluation for baselines and proposed method on medium/hard
difficulty splits of GFP and AAV datasets. We report average (standard deviation) of 5 different runs.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Top 100 ground truth - 16.62 - 5.01 - 16.62 - 5.01
Sampling 1.64%(0.31) 7.42(0.30) 4.49(0.35) 7.18(0.61) 1.64%(0.31) 7.42(0.30) 4.49(0.35) 7.18(0.61)

ICE 5.58%(0.04) 8.18(0.01) 9.08(0.14) 13.56(0.18) 4.59%(0.15) 9.43(0.04) 7.72(0.08) 11.49(0.24)
Align-pm 20.76%(0.00) 9.01(0.00) 7.60(0.00) 8.16(0.00) 3.49%(0.00) 8.66(0.00) 7.29(0.00) 6.22(0.00)

EXO 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Top 100 ground truth - 4.02 - 4.64 - 4.02 - 4.64
Sampling 18.52%(0.80) 1.94(0.09) 10.21(0.50) 20.10(1.01) 18.52%(0.80) 1.94(0.09) 10.21(0.50) 20.10(1.01)

ICE 27.16%(0.80) 2.07(0.01) 10.93(0.18) 15.76(0.64) 0.16%(0.19) 2.39(0.03) 8.47(0.21) 14.41(0.87)
Align-plm 54.45%(0.00) 2.55(0.00) 9.64(0.00) 4.17(0.00) 0.00%(0.00) 2.12(0.00) 6.13(0.00) 5.41(0.00)

EXO 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)

6 ABLATION STUDIES

6.1 EFFECT OF PREFERENCE DATA

To evaluate the effect of preference data on the proposed method, we have created five types of
preference datasets (1) All: random triplet creation through Don’t go backward and Don’t get
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stuck at the same fitness principles that includes a mix of easy and hard examples. (2) Mistakes:
focusing on the hardest triplets created from similar principles (this is the default preference of
data creation in the proposed method). (3) Mistakes in extrapolation: focusing only on the hardest
triplets close to the extrapolation region but in the training region. The main question behind it:
Are the hard examples close to the extrapolation region sufficient for good extrapolative generative
model in extrapolation region? (4) Scorer distillation: In the previous three preference datasets, we
perform data distillation by ranking triplewise sequences based on hardness for local editor. Another
alternative approach is to utilize the local editor to propose sequences and rank them based on the
scorer in order to create a preference dataset. Particularly, for a given xprompt, one can sample K
sequences y1:K = {y1,y2, ..,yK} from Ppair(.|xprompt). Then, choose the triplewise rankings for
all pairs based on si,j = f(yj)− f(yi) where f(yj) < f(xprompt) < f(yi). By definition, sij > 0
can be considered as hard example since the pairwise model has wrongly generated yj with lower
predicted fitness than prompt. We would like to encourage the pairwise model to generate more
sequences similar to yi since its predicted fitness is higher than seed sequence. This approach can be
considered as scorer distillation since we are attempting to distill the scorers knowledge in training
and extrapolation region into the generative model. (5) Combined distillation: Finally, we combine
the hardest triplets from Mistakes (our default) with scorer distillation to utilize the best of both
worlds.

Table 3 shows that (1) training on hard examples is drastically beneficial in enhancing the performance
of EXO. We observe that in medium difficulty splits of AAV/GFP datasets Mistakes significantly
outperforms All version and perform worse (34.55% to 24.27%) and (54.78% to 52.75%) on hard
split of GFP and AAV datasets. In addition, Average fitness of top 100 candidates have increased
drastically for all datasets except hard split of GFP where it slightly performs worse (2.88 vs 2.81)
on hard split of GFP dataset. (2) learning from hard examples close to extrapolation region is not
sufficient for EXO. Similarly, we observe that in 3 out of 4 datasets Mistakes outperforms Mistakes
in extrapolation version and perform worse (56.65% to 24.27%) on hard split of GFP, (3) training
on data distillation outperform scorer distillation one for EXO. We observe that in 3 out 4 datasets
Mistakes outperforms scorer distillation version and perform worse (76.89% to 52.75%) on hard
split of AAV, and (4) training on Combined distillation perform well on hard split of AAV and
GFP datasets in comparison to the default one but perform worse on medium split. It shows that
in hard difficulty split where there is much less data to learn from it is beneficial to augment data
through scorer distillation. However, it is computationally expensive to create triplets through scorer
distillation since we need to run local editor in inference for many samples. Table 7 indicates that
scorer distillation is more than 200 times more expensive to run on GPU machines in comparison
to the default. In addition, training curves for preference learning on these preference datasets have
been shown on Figures 21, 22, 24, 23. In general, we can conclude that based on Table 3 and Figure
7, Mistakes perform better (or on-par) in comparison to other four preference datasets with almost no
computational overhead.

Table 3: Comparison of in-silico fitness evaluation for various preference data on medium/hard
difficulty splits of GFP/AAV datasets. We report average (standard deviation) of 5 different runs.

Triplet creation AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

All 54.78%(3.86) 7.86(0.00) 9.99(0.00) 0.00(0.00) 31.19%(0.89) 11.06(0.18) 6.37(0.16) 6.08(0.72)
Mistakes in extrapolation 6.72%(0.19) 8.28(0.11) 8.66(0.20) 12.83(0.30) 8.88%(0.51) 10.80(0.04) 5.61(0.27) 8.75(0.29)

Scorer distillation 76.89%(3.48) 10.15(0.18) 7.00(0.00) 0.00(0.00) 15.52%(1.47) 9.83(0.00) 5.99(0.00) 0.0(0.00)
Combined distillation 78.19%(2.66) 13.97(0.11) 1.74(0.25) 1.70(0.45) 70.85%(0.72) 13.24(0.11) 2.85(0.19) 2.91(0.41)
Mistakes (default) 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)

Triplet creation GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

All 34.55%(2.22) 2.88(0.26) 4.50(1.80) 6.05(2.99) 17.65%(2.80) 3.89(0.01) 2.03(0.15) 2.47(0.10)
Mistakes in extrapolation 56.65%(1.18) 3.49(0.02) 2.13(0.06) 3.16(0.06) 0.00%(0.00) 1.99(0.02) 13.44(2.58) 17.79(4.28)

Scorer distillation 0.00%(0.00) 1.35(0.01) 9.78(0.05) 0.33(0.06) 9.85%(5.01) 3.35(0.28) 3.70(0.88) 3.02(0.89)
Combined distillation 65.86%(1.07) 3.65(0.02) 2.42(0.10) 4.07(0.08) 28.84%(2.77) 3.82(0.02) 2.24(0.19) 3.14(0.19)
Mistakes (default) 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)

We have further assessed the impact of 1) creating triplets from consecutive vs non-consecutive bins;
2) sequence similarity cutoff between prompt vs desired/undesired responses. Table 4 highlights
that naively creating preference data from non-consecutive pairs would confuse the model’s learning
and worsen the performance on 3 out of 4 splits. We hypothesize that, in order to properly learn
from non-consecutive bins, one needs to develop a more sophisticated prompt to incorporate the
distance between bins as well. In addition, Table 4 suggests that max mutation 15 between seed and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

desired/undesired sequences would slightly improve the performance on hard splits of AAV and GFP
datasets while worsen it for medium splits. However, calculating sequence similarity for large dataset
is computationally expensive therefore we would not suggest it as our default.

Table 4: Comparison of in-silico fitness evaluation for ablation studies on triplet creation. We report
average (standard deviation) of 5 different runs.

Triplet creation bins Max mutations AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Mistakes Consecutive None 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)
Mistakes Non-Consecutive None 32.86%(0.84) 9.46(0.09) 7.49(0.36) 9.02(0.75) 30.41%(0.35) 11.06(0.03) 6.77(0.20) 7.83(0.30)
Mistakes Consecutive 5 7.24%(0.28) 8.25(0.04) 9.00(0.12) 13.18(0.34) 10.84%(0.68) 10.14(0.18) 7.22(0.10) 9.06(0.64)
Mistakes Consecutive 10 53.33%(12.83) 9.58(0.47) 8.05(0.87) 2.56(4.32) 57.47%(0.30) 10.03(0.01) 5.99(0.20) 4.25(0.45)
Mistakes Consecutive 15 55.62%(1.38) 11.20(0.29) 5.11(0.19) 7.37(0.19) 81.38%(1.86) 11.72(0.12) 3.19(0.40) 2.63(0.27)

Triplet creation bins Max mutations GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Mistakes Consecutive None 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)
Mistakes Non-Consecutive None 31.61%(4.16) 2.50(0.09) 7.08(1.04) 7.77(1.82) 82.82%(1.56) 4.06(0.05) 0.80(0.40) 0.69(0.26)
Mistakes Consecutive 5 27.57%(1.42) 2.05(0.01) 10.83(0.16) 14.72(0.65) 0.05%(0.10) 2.35(0.05) 8.68(0.15) 14.43(0.26)
Mistakes Consecutive 10 11.16%(0.58) 2.78(0.04) 3.52(0.30) 4.59(0.71) 3.98%(0.84) 3.48(0.11) 3.43(0.32) 4.50(0.82)
Mistakes Consecutive 15 42.01%(6.84) 2.34(0.07) 6.32(0.21) 7.51(0.59) 83.10%(0.38) 3.95(0.00) 0.30(0.05) 0.00(0.00)

6.2 EFFECT OF SCORER

Prior to our work, scorer-based generative models such as LatprotRL (through reinforcement learning
(Lee et al., 2024)) or BiGGS (through Gibbs sampling (Kirjner et al., 2024)) were the state-of-the-art
and outperformed non-scorer generative models by large margins. Tables 5 shows that our method
can fill the gap, compete favorably with the scorer-based generative model and outperform them in
various tasks. Particularly, EXO outperform scorer-based generative model on medium difficulty split
of AAV (85.07% vs 38.63%) and GFP (92.92% vs 55.50%) datasets. In addition combination of EXO
+ scorer ranking can furthermore outperform LatproRL/BiGGS in 3 out of 4 datasets. In addition we
can observe that, on the hard split of GFP dataset even though extrapolation percentage of EXO +
scorer is 50.91% vs BiGGs 99.53%. However, its average top 100 generated sequences are almost
on-par with them (3.79 vs 3.83). In addition its top 100 generated sequences are closer to the unseen
extrapolation sequences (1.73 vs 3.48 mutations). Figure 14 and Table 15 indicates that our results
are reproducible by running with five different random seed generator for both hard and medium
splits of AAV and GFP datasets.

Table 5: Comparison of in-silico fitness evaluation for scorer-based methods on medium/hard
difficulty splits of GFP and AAV datasets. We report average (standard deviation) of 5 different runs.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Iterative sampling 1.37%(0.12) 7.67(0.25) 6.54(0.44) 11.28(0.70) 0.40%(0.10) 7.67(0.14) 6.59(0.65) 11.43(0.97)
ICE + scorer 37.01%(0.36) 10.26(0.12) 6.50(0.30) 9.90(0.47) 33.17%(0.59) 10.80(0.10) 6.52(0.49) 9.89(0.55)

BiGGS 16.80%(5.37) 10.85(0.51) 5.70(1.06) 6.38(1.44) 4.88%(0.84) 10.21(0.88) 8.05(0.84) 8.34(0.93)
LatprotRL 64.82%(1.02) 13.29(0.06) 2.45(0.16) 4.67(0.23) 38.63%(0.86) 12.53(0.08) 2.83(0.15) 5.21(0.07)

EXO 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)
EXO + scorer 84.04%(1.15) 14.25(0.11) 1.52(0.21) 2.53(0.31) 94.23%(0.60) 13.90(0.05) 2.00(0.06) 3.05(0.29)

EXO (Combined distillation) 78.19%(2.66) 13.97(0.11) 1.74(0.25) 1.70(0.45) 70.85%(0.72) 13.24(0.11) 2.85(0.19) 2.91(0.41)
EXO (Combined distillation) + scorer 98.96%(0.21) 14.21(0.02) 1.51(0.23) 1.08(0.19) 84.71%(0.39) 13.19(0.03) 3.14(0.16) 3.34(0.28)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Iterative sampling 0.01%(0.02) 1.18(0.03) 184.71(10.78) 207.45(3.02) 0.00%(0.00) 1.22(0.04) 174.52(17.62) 201.22(6.04)
ICE + scorer 14.87%(0.75) 1.96(0.04) 9.52(0.25) 18.19(0.46) 0.02% (0.02) 2.53(0.04) 8.22(0.14) 15.68(0.28)

BiGGS 99.53%(0.21) 3.83(0.02) 3.48(0.36) 6.01(0.51) 55.50%(6.75) 3.89(0.03) 4.13(0.38) 5.74(0.71)
LatprotRL 88.28%(1.05) 3.88(0.01) 1.48(0.04) 2.86(0.07) 38.22%(1.99) 3.92(0.01) 1.56(0.05) 3.04(0.05)

EXO 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)
EXO + scorer 50.91%(3.16) 3.79(0.01) 1.73(0.12) 3.08(0.22) 58.09%(6.35) 3.96(0.03) 2.75(0.16) 4.04(0.10)

EXO (Combined distillation) 65.86%(1.07) 3.65(0.02) 2.42(0.10) 4.07(0.08) 28.84%(2.77) 3.82(0.02) 2.24(0.19) 3.14(0.19)
EXO (Combined distillation) + scorer 71.15%(2.34) 3.75(0.03) 2.10(0.07) 3.46(0.09) 32.41%(1.34) 3.86(0.02) 2.16(0.11) 3.19(0.16)

6.3 EFFECT OF PREFERENCE LEARNING ALGORITHM

We benchmark against the the state-of-the-art offline preference learning algorithms such as direct
preference optimization (DPO) (Rafailov et al., 2023), its generalized version of identity-mapping
preference optimization (IPO) (Azar et al., 2023), addition of NLL loss function on favorable direction
to DPO (IRPO) (Pang et al., 2024), noise contrastive alignment (NCA) (Chen et al., 2024), Nash
equilibrium based self-play preference optimization (SPPO) (Wu et al., 2024), alignment through
optimal transport (AOT) (Melnyk et al., 2024) and our default model EXO through reverse KL
distribution matching (Ji et al., 2024). Tables 6 shows that EXO outperforms other preference
learning algorithms on 3 out of 4 tasks. Particularly, EXO outperform the best alternative preference
learning algorithm by (52.75% vs 50.78% attained by AOT), (85.07% vs 74.39% attained by DPO)
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and (92.92% vs 47.26% attained by IRPO) on hard split of AAV, medium split of AAV and medium
split of GFP, respectively. IRPO through addition of NLL loss function to DPO loss has shown to
outperforms others on hard split of GFP by 55.15% vs 42.80% attained by IPO. In addition, training
curves for preference learning based on these preference learning methods have been shown on
Figures 17, 18, 20, 19. In general, we can observe that EXO is robustly performing well.

Table 6: Comparison of in-silico fitness evaluation for various preference learning algorithms. We
report average (standard deviation) of 5 different runs.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

DPO 46.53%(0.53) 11.17(0.12) 5.68(0.17) 9.15(0.34) 74.39%(2.41) 12.96(0.09) 2.77(0.45) 4.15(0.33)
IPO 33.74%(0.81) 9.97(0.15) 7.20(0.19) 11.15(0.13) 30.83%(0.34) 11.47(0.08) 5.41(0.10) 7.30(0.14)

IRPO 37.67%(0.76) 10.62(0.29) 5.36(0.31) 8.35(0.29) 35.13%(0.65) 11.37(0.10) 5.39(0.22) 7.86(0.45)
NCA 39.10%(1.89) 10.07(0.23) 6.90(0.56) 10.38(0.43) 39.75%(1.10) 11.95(0.29) 4.19(0.55) 5.92(0.81)
SPPO 21.31%(0.56) 9.18(0.07) 8.22(0.08) 11.30(0.40) 17.54%(2.25) 10.88(0.10) 6.57(0.09) 7.97(0.11)
AOT 50.78%(1.55) 10.97(0.08) 5.79(0.62) 9.31(0.58) 59.35%(1.91) 12.83(0.09) 2.68(0.45) 3.61(0.94)
EXO 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

DPO 38.96%(5.99) 3.73(0.06) 1.92(0.19) 3.26(0.28) 13.76%(4.64) 3.53(0.12) 3.77(0.60) 5.05(0.51)
IPO 42.80%(9.05) 3.47(0.08) 2.05(0.11) 3.10(0.24) 10.55%(0.33) 3.69(0.03) 2.45(0.09) 4.00(0.19)

IRPO 55.15%(1.94) 3.68(0.06) 1.85(0.44) 2.94(0.54) 47.26%(1.14) 3.85(0.01) 2.10(0.03) 3.68(0.08)
NCA 30.75%(1.01) 2.55(0.09) 5.65(0.97) 9.08(1.57) 24.67%(1.75) 3.92(0.02) 2.32(0.05) 2.98(0.14)
SPPO 30.70%(1.60) 2.32(0.07) 9.07(0.37) 12.03(1.05) 0.58%(0.12) 2.51(0.07) 7.29(0.19) 11.63(0.68)
AOT 35.51%(5.60) 3.38(0.09) 9.90(4.50) 18.15(8.12) 29.54%(5.40) 3.65(0.03) 3.95(0.12) 4.84(0.22)
EXO 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)

7 DISCUSSIONS

We utilized the ProstT5 model (Heinzinger et al., 2023) trained in multi-modal fashion (sequence
and structure) to embed the unique sequences generated by each method. ProstT5 would enable
us to better assess the closeness of the top generated candidates to the top unseen extrapolation
sequences in sequence-structure latent space rather than defining closeness based on edit distance in
purely sequence space, which does not consider the characteristics of mutations. Two dimensional
visualization of embeddings through t-SNE (Van der Maaten & Hinton, 2008) in Figure 3 highlights
that top candidates generated by EXO and EXO+scorer have supports by unseen ground truth
extrapolation sequences in the latent space of ProstT5 on the hard split of AAV dataset.

As mentioned, we used the in-silico evaluator trained on GFP and AAV datasets by Kirjner et al.
(2024) and utilized by the state-of-the-art methods (Lee et al., 2024; 2023). We calculated the
mean-squared error and Spearman’s rank correlation coefficient between a scorer trained on a specific
split of the dataset and the evaluator trained on the entire dataset. Figures 4 and 5 highlights that (1)
the mean square error of scorer deteriorates significantly in the extrapolation region. (2) on the AAV
dataset the correlation deteriorates as we move further away from the training region, as expected.
However, on the GFP dataset, the scorer and evaluator have a very non-smooth rank correlation
relationship. An experimental pipeline with wet-lab validation in the loop is the ultimate evaluation
pipeline which is, unfortunately, very costly and time-intensive.

8 CONCLUSION

We present a novel data distillation approach to enhance extrapolative protein design models. Our
main contribution is to create model-aware hard preference datasets in order to better approximate
the direction of the gradient and learn higher order relationships such as triplewise rankings. In order
to evaluate our contribution, we have utilized the carefully curated medium/hard difficulty splits of
AAV and GFP datasets where the model needed to extrapolate both on sequence and fitness spaces.
Our framework outperforms both extrapolative non-scorer and scorer-based generative models
baselines. Through ablation studies, we have investigated (1) the effects of various approaches
of creating preference datasets and (2) effects of state-of-the-art preference learning algorithms.
Potential future directions include (1) assessing the effect of higher order relationship (quadruples
etc.) through Plackett-Luce ranking models (Plackett, 1975; Luce, 2005) on extrapolation, and (2)
utilizing reasoning approaches such as tree of thoughts (Yao et al., 2024) to boost performance of the
proposed extrapolative protein design model.
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A GENERAL MODEL ALIGNMENT

Ji et al. (2024) proposed the following definition for general model alignment:
Definition A.1. Let βπ > 0, βr > 0 and βπβr = β. In addition for simplicity, let’s assume x is the
prompt sequence, y is the desired or undesired sequence and rϕ(x,y) is the reward model between
prompt and generated sequence. Therefore, the generalized alignment objective is defined as:

J = Ex∼Dtriplet

(
EPβπ

θ (y|x)[rϕ(x,y)]− βrDKL[P
βπ

θ (y|x)||Ppair(y|x)]
)
, (4)

Where Pβπ

θ (y|x) satisfies:

Pβπ

θ (y|x) ∝ Pθ(y|x)βπPpair(y|x)1−βπ , (5)

In addition, given unlimited model capacity, the optimal policy is analytically defined as:

P∗
β = Ppair(y|x)

e
1
β rϕ(x,y)

Zβ(x)
, (6)

Where Zβ(x) =
∑

y′∼Y Ppair(y
′|x)e

1
β rϕ(x,y

′) is the partition function.

Ji et al. (2024) have proposed a practical way of approximating the general alignment objective
through sampling and self-normalization. Following their proposed approach, for given S generated
sequences y1:S = {y1,y2, ..,yS} sampled from Ppair(.|x), one can define the empirical distribution
fθ based on S samples as:

Pfθ (s|y1:S ,x) =
e
βπ log

Pθ(ys|x)

Ppair(ys|x)∑
j e

βπ log
Pθ(yj |x)

Ppair(yj |x)

(7)

Similarly one can define the empirical distribution rϕ based on reward function as:

Prϕ(s|y1:S ,x) =
e

1
βr

rϕ(x,ys)∑
j e

1
βr

rϕ(x,yj)
(8)

Finally, the original general alignment objective can be translated to the reverse KL between Pfθ and
Prϕ :

Lexo = Ex∼Dtriplet,y1:S∼pair(.|x)

[
KL

(
Pfθ (.|y1:S ,x)||Prϕ(.|y1:S ,x)

)]
(9)

B MUTATIONAL ANALYSIS

Figure 3: t-SNE visualization (2 dimensions) of top 200 generated sequences for EXO vs baselines
based on ProstT5 embedding (Heinzinger et al., 2023) (left) without scorer generative models (right)
with scorer generative models on the hard split of AAV dataset.
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C SCORER VS EVALUATOR

C.1 ABSOLUTE PREDICTIONS

Figure 4: Comparison of in-silico scorer trained on specific subset of the data versus in-silico evaluator
trained on all the data from absolute prediction perspective.

C.2 CORRELATION WITHIN BUCKETS

Figure 5: Comparison of in-silico scorer trained on specific subset of the data versus in-silico evaluator
trained on all the data from ranking within buckets perspective.
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C.3 RANKING ACROSS BUCKETS

Figure 6: Comparison of in-silico scorer trained on specific subset of the data versus in-silico evaluator
trained on all the data from ranking across buckets perspective.

D ABLATION STUDIES

D.1 TRIPLETS

Figure 7: Comparison of in-silico fitness evaluation for various preference data on medium/hard
difficulty splits of GFP and AAV datasets.
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D.2 EFFECT OF SCORER

Figure 8: Comparison of in-silico fitness evaluation for scorer-based baselines and proposed method
on medium/hard difficulty splits of GFP and AAV datasets.

D.3 EFFECT OF PREFERENCE LEARNING

Figure 9: Comparison of in-silico fitness evaluation for various preference learning algorithm on
medium/hard difficulty splits of GFP and AAV datasets.
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Table 7: Comparison of computational costs of generating triplets with P3 (V100) GPU machine. We
report average (standard deviation) of seconds needed for one triplet creation.

Triplet creation AAV (seconds) GFP (seconds)
Mistakes 0.025(0.001) 0.031(0.001)

Scorer distillation 0.136(0.001) 8.944(0.007)

D.4 CONSECUTIVE VS NON-CONSECUTIVE TRIPLETS

D.4.1 WITHOUT SCORER

Table 8: Comparison of in-silico fitness evaluation for preference data created based on consecutive or
non-consecutive bins on medium/hard difficulty splits of GFP and AAV datasets. We report average
(standard deviation) of 5 different runs.

Triplet creation AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Consecutive 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)
Non-Consecutive 32.86%(0.84) 9.46(0.09) 7.49(0.36) 9.02(0.75) 30.41%(0.35) 11.06(0.03) 6.77(0.20) 7.83(0.30)

Triplet creation GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Consecutive 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)
Non-Consecutive 31.61%(4.16) 2.50(0.09) 7.08(1.04) 7.77(1.82) 82.82%(1.56) 4.06(0.05) 0.80(0.40) 0.69(0.26)

D.4.2 WITH SCORER

Table 9: Comparison of in-silico fitness evaluation for preference data created based on consecutive
or non-consecutive bins on medium/hard difficulty splits of GFP and AAV datasets with scorer. We
report average (standard deviation) of 5 different runs.

Triplet creation AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Consecutive + scorer 84.04%(1.15) 14.25(0.11) 1.52(0.21) 2.53(0.31) 94.23%(0.60) 13.90(0.05) 2.00(0.06) 3.05(0.29)
Non-Consecutive + scorer 54.92%(0.53) 10.65(0.18) 6.12(0.34) 8.56(0.63) 44.9%(0.80) 11.43(0.12) 5.51(0.35) 7.75(0.43)

Triplet creation GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Consecutive +scorer 50.91%(3.16) 3.79(0.01) 1.73(0.12) 3.08(0.22) 58.09%(6.35) 3.96(0.03) 2.75(0.16) 4.04(0.10)
Non-Consecutive + scorer 35.46%(2.97) 2.91(0.09) 3.23(0.47) 5.29(0.54) 68.76%(12.84) 3.96(0.06) 1.81(0.29) 2.28(0.26)
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D.5 SEQUENCE SIMILARITY CONSTRAINT

D.5.1 DISTRIBUTION OF SEQUENCE SIMILARITY IN CURRENT PREFERENCE DATA

Figure 10: Distribution of sequence similarities on hard triplets of AAV and GFP datasets.

D.5.2 CORRELATION OF SEQUENCE SIMILARITY IN PREFERENCE DATA WITH ITS HARDNESS

Figure 11: Sequence similarity does not have correlation with its hardness in triplets on both AAV
and GFP datasets.
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D.5.3 WITHOUT SCORER

Table 10: Comparison of in-silico fitness evaluation for sequence similarity cutoff preference dataset
on medium/hard difficulty splits of GFP and AAV datasets. We report average (standard deviation) of
5 different runs.

Triplet creation AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

max mutation = 5 7.24%(0.28) 8.25(0.04) 9.00(0.12) 13.18(0.34) 10.84%(0.68) 10.14(0.18) 7.22(0.10) 9.06(0.64)
max mutation = 10 53.33%(12.83) 9.58(0.47) 8.05(0.87) 2.56(4.32) 57.47%(0.30) 10.03(0.01) 5.99(0.20) 4.25(0.45)
max mutation = 15 55.62%(1.38) 11.20(0.29) 5.11(0.19) 7.37(0.19) 81.38%(1.86) 11.72(0.12) 3.19(0.40) 2.63(0.27)

No max mutation constraint 52.75%(1.74) 10.95(0.17) 5.30(0.39) 8.46(0.27) 85.07%(1.72) 13.18(0.33) 1.64(0.41) 1.08(0.46)

Triplet creation GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

max mutation = 5 27.57%(1.42) 2.05(0.01) 10.83(0.16) 14.72(0.65) 0.05%(0.10) 2.35(0.05) 8.68(0.15) 14.43(0.26)
max mutation = 10 11.16%(0.58) 2.78(0.04) 3.52(0.30) 4.59(0.71) 3.98%(0.84) 3.48(0.11) 3.43(0.32) 4.50(0.82)
max mutation = 15 42.01%(6.84) 2.34(0.07) 6.32(0.21) 7.51(0.59) 83.10%(0.38) 3.95(0.00) 0.30(0.05) 0.00(0.00)

No max mutation constraint 24.27%(1.70) 2.81(0.07) 9.08(4.04) 14.96(7.44) 92.92%(0.30) 4.04(0.01) 2.13(0.14) 2.57(0.14)

D.5.4 WITH SCORER

Table 11: Comparison of in-silico fitness evaluation for sequence similarity cutoff preference dataset
on medium/hard difficulty splits of GFP and AAV datasets. We report average (standard deviation) of
5 different runs.

Triplet creation AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

max mutation = 5 + scorer 37.14%(1.47) 9.23(0.06) 7.91(0.46) 8.29(1.30) 32.15(0.29) 10.76(0.09) 6.39(0.27) 8.61(0.45)
max mutation = 10 + scorer 97.14%(5.70) 9.46(0.24) 8.00(0.15) 0.57(0.28) 95.34%(0.67) 13.56(0.09) 1.54(0.15) 2.39(0.22)
max mutation = 15 + scorer 92.97%(1.91) 14.37(0.06) 1.45(0.17) 2.32(0.12) 95.01% (0.75) 13.81(0.06) 1.89(0.22) 3.00(0.37)

No max mutation constraint + scorer 84.04%(1.15) 14.25(0.11) 1.52(0.21) 2.53(0.31) 94.23%(0.60) 13.90(0.05) 2.00(0.06) 3.05(0.29)

Triplet creation GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

max mutation = 5 + scorer 20.81%(1.51) 2.06(0.02) 10.91(0.19) 15.40(1.03) 0.60%(0.14) 2.61(0.09) 8.15(0.08) 13.99(0.58)
max mutation = 10 + scorer 21.67%(2.76) 3.10(0.02) 3.02(0.09) 4.15(0.22) 6.18%(0.82) 3.66(0.05) 3.08(0.21) 3.90(0.70)
max mutation = 15 + scorer 41.31%(2.10) 2.71(0.09) 4.63(0.07) 6.49(0.27) 64.35%(7.20) 3.93(0.04) 2.95(0.11) 3.04(0.12)

No max mutation constraint + scorer 50.91%(3.16) 3.79(0.01) 1.73(0.12) 3.08(0.22) 58.09%(6.35) 3.96(0.03) 2.75(0.16) 4.04(0.10)

D.6 EFFECT OF NUMBER OF ITERATIONS

Figure 12: Comparison of in-silico fitness evaluation for various iterations of EXO on medium
difficulty split of GFP and AAV datasets.

Table 12: Comparison of in-silico fitness evaluation for various iterations of EXO on medium
difficulty split of GFP and AAV datasets.

Iteration AAV (medium) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

1 18.98% 11.75 3.68 6.13 76.5% 3.96 0.88 0.78
2 26.87% 11.99 3.46 5.46 80.05% 4.02 1.82 1.49
5 69.17% 13.01 1.67 1.95 92.05% 4.05 2.44 2.47

10 83.83% 13.50 1.00 0.99 93.10% 4.04 1.93 2.50
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D.7 EFFECT OF TOP CANDIDATES

Table 13: Comparison of in-silico fitness evaluation for baselines and proposed method on
medium/hard difficulty splits of GFP and AAV datasets. We report average (standard deviation) of 5
different runs.

Method AAV (hard) AAV (medium)
Fitness10 ↑ Fitness100 ↑ Fitness1000 ↑ Fitnessall ↑ Fitness10 ↑ Fitness100 ↑ Fitness1000 ↑ Fitnessall ↑

Sampling 9.33(0.43) 7.42(0.30) 5.32(0.20) 3.32(0.07) 9.33(0.43) 7.42(0.30) 5.32(0.20) 3.32(0.07)
ICE 9.19 (0.11) 8.18(0.01) 6.67(0.01) 3.83(0.01) 10.71(0.05) 9.43(0.04) 7.64(0.03) 4.42(0.03)

Align-plm 9.91(0.00) 9.22(0.00) 7.90(0.00) 5.35(0.00) 9.54(0.00) 8.70(0.00) 7.33(0.00) 4.99(0.00)
EXO 12.63(0.47) 10.95(0.17) 9.41(0.08) 6.54(0.04) 13.32(0.42) 13.18(0.33) 12.46(0.14) 9.87(0.13)

Method GFP (hard) GFP (medium)
Fitness10 ↑ Fitness100 ↑ Fitness1000 ↑ Fitnessall ↑ Fitness10 ↑ Fitness100 ↑ Fitness1000 ↑ Fitnessall ↑

Sampling 2.43(0.13) 1.94(0.09) 1.28(0.12) 1.22(0.01) 2.43(0.13) 1.94(0.09) 1.28(0.12) 1.22(0.01)
ICE 2.22(0.02) 2.07(0.01) 1.61(0.01) 1.32(0.01) 2.94(0.10) 2.39(0.03) 1.72(0.01) 1.45(0.01)

Align-plm 2.86(0.00) 2.39(0.00) 1.60(0.00) 1.33(0.00) 2.27(0.00) 2.12(0.00) 1.87(0.00) 1.60(0.00)
EXO 3.74(0.07) 2.81(0.07) 1.70(0.02) 1.40(0.02) 4.09(0.01) 4.04(0.01) 3.85(0.01) 3.58(0.01)

E REPRODUCIBILITY

E.1 WITHOUT SCORER IN INFERENCE

Figure 13: In-silico fitness evaluation for EXO algorithm on medium/hard difficulty splits of GFP
and AAV datasets with 5 different random seed.
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Table 14: In-silico fitness evaluation for EXO algorithm on medium/hard difficulty splits of GFP and
AAV datasets with 5 different random seeds.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Run 1 50.41 11.12 5.69 8.60 83.66 13.50 1.30 0.84
Run 2 54.58 11.19 5.58 8.65 83.71 12.80 2.00 0.75
Run 3 54.79 10.83 5.53 8.77 87.94 13.32 1.90 2.00
Run 4 52.7 10.85 5.11 8.05 86.22 12.76 2.00 0.93
Run 5 51.27 10.76 4.61 8.24 83.83 13.50 1.00 0.90
AVG 52.75 10.95 5.30 8.46 85.07 13.18 1.64 1.08
STD 1.74 0.17 0.39 0.27 1.72 0.33 0.41 0.46

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Run 1 22.40 2.70 6.69 10.36 92.65 4.06 2.20 2.52
Run 2 25.70 2.86 5.96 9.47 92.95 4.04 2.08 2.56
Run 3 23.25 2.90 16.63 29.09 92.30 4.04 2.09 2.84
Run 4 26.85 2.75 10.01 15.97 93.10 4.05 2.36 2.42
Run 5 23.15 2.86 6.14 9.92 93.10 4.04 1.93 2.50
AVG 24.27 2.81 9.08 14.96 92.82 4.04 2.13 2.56
STD 1.70 0.07 4.04 7.44 0.30 0.01 0.14 0.14

E.2 EFFECT OF SCORER

Figure 14: In-silico fitness evaluation for EXO algorithm with scorer on medium/hard difficulty splits
of GFP and AAV datasets with 5 different random seed.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 15: In-silico fitness evaluation for EXO algorithm with scorer on medium/hard difficulty splits
of GFP and AAV datasets with 5 different random seeds.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Run 1 83.25% 14.20 1.84 3.10 93.97% 13.83 2.09 3.50
Run 2 83.59% 14.46 1.29 2.48 95.14% 13.96 1.95 2.62
Run 3 84.10% 14.25 1.35 2.58 94.53% 13.92 1.91 2.88
Run 4 86.22% 14.23 1.72 2.28 94.19% 13.92 2.00 3.17
Run 5 83.04% 14.13 1.42 2.19 93.32% 13.85 2.06 3.07
AVG 84.04% 14.25 1.52 2.52 94.23% 13.89 2.00 3.04
STD 1.14% 0.11 0.21 0.31 0.60% 0.05 0.06 0.29

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

Run 1 53.00% 3.78 1.78 3.10 53.94% 3.96 3.07 4.18
Run 2 52.84% 3.81 1.50 2.65 69.39% 4.00 2.63 3.92
Run 3 54.10% 3.82 1.72 3.16 56.69% 3.92 2.69 4.05
Run 4 45.60% 3.78 1.86 3.31 50.84% 3.90 2.64 4.13
Run 5 49.00% 3.77 1.81 3.18 59.59% 3.96 2.71 3.91
AVG 50.90% 3.79 1.73 3.08 58.09% 3.94 2.74 4.03
STD 3.16% 0.02 0.12 0.22 6.35% 0.03 0.16 0.10

F HYPER-PARAMETER TUNING FOR PROPOSED METHOD

F.1 PREFERENCE LEARNING PARAMETER: β

Figure 15: In-silico fitness evaluation for EXO algorithm with scorer on medium/hard difficulty splits
of GFP and AAV datasets with different beta hyper-parameters.
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Table 16: In-silico fitness evaluation for EXO algorithm on medium/hard difficulty splits of GFP and
AAV datasets with different β hyper-parameters.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

β=0.02 64.14% 8.57 8.00 0.00 39.20% 9.85 7.00 0.00
β=0.05 59.84% 8.32 9.99 0.00 24.50% 9.39 7.00 0.0
β=0.1 51.27% 10.76 4.61 8.24 83.83% 13.50 1.00 0.99
β=0.2 47.06% 12.54 3.64 6.41 67.29% 12.77 2.95 5.03
β=0.5 33.20% 10.25 6.07 9.35 32.19% 11.56 5.25 7.80
β=0.9 29.95% 9.66 7.38 10.95 29.08% 11.25 6.13 8.01

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

β=0.02 62.55% 3.87 0.88 1.17 1.84% 2.99 2.78 4.82
β=0.05 11.40% 2.68 14.16 24.65 0.10% 2.55 5.85 6.22
β=0.1 23.15% 2.86 6.14 9.92 93.10% 4.04 1.93 2.50
β=0.2 51.60% 3.77 1.98 3.56 25.50% 3.82 2.22 3.84
β=0.5 37.25% 3.13 2.72 4.20 33.20% 3.94 1.96 3.00
β=0.9 32.05% 2.28 9.24 12.00 4.95% 3.68 2.20 3.91

F.2 SAMPLING PARAMETER: TEMPERATURE (τ )

Figure 16: In-silico fitness evaluation for EXO algorithm with scorer on medium/hard difficulty splits
of GFP and AAV datasets with different sampling temperature (τ ) hyper-parameters.
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Table 17: In-silico fitness evaluation for EXO algorithm on medium/hard difficulty splits of GFP and
AAV datasets with different sampling temperature (τ ) hyper-parameters.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 51.27% 10.76 4.61 8.24 83.83% 13.50 1.00 0.99
τ=1.0 57.4% 13.14 3.16 5.54 76.03% 13.75 2.78 4.28
τ=1.2 44.73% 12.00 4.33 7.80 62.94% 13.63 3.01 4.93
τ=1.5 31.71% 11.21 5.85 9.84 42.69% 12.81 3.66 5.95

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 23.15% 2.86 6.14 9.92 93.10% 4.04 1.93 2.50
τ=1.0 49.25% 3.76 1.88 3.26 36.19% 3.86 2.90 4.57
τ=1.2 35.00% 3.15 3.67 6.59 29.84% 3.92 2.34 4.10
τ=1.5 19.30% 2.45 12.77 24.18 41.80% 3.96 2.25 4.18

G HYPER-PARAMETER TUNING FOR BASELINE MODELS

G.1 WITHOUT SCORER

G.2 SAMPLING

We have utilized Prot-T5-XL (Elnaggar et al., 2021) as a pre-trained generative baseline model. We
used the same combination of top-k and top-p parameters (k = 10, p = 0.95) as the proposed method
since we have not done any tuning for these parameters in the proposed method as well. Similar to
the proposed method, we have performed hyper-parameter tuning for temperature (τ ) with the same
grid search of = [0.7, 1.0, 1.2, 1.5]. Table 18 suggests that τ = 0.7 is performing slightly better than
others however within the margin of standard deviations.

Table 18: In-silico fitness evaluation for Prot-T5-XL algorithm on medium/hard difficulty splits of
GFP and AAV datasets with different sampling temperature (τ ) hyper-parameter.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 (default) 1.64%(0.31) 7.42(0.30) 4.49(0.35) 7.18(0.61) 1.64%(0.31) 7.42(0.30) 4.49(0.35) 7.18(0.61)
τ=1.0 1.62%(0.12) 7.45(0.14) 4.42(0.10) 7.24(0.12) 1.62%(0.12) 7.45(0.14) 4.42(0.10) 7.24(0.12)
τ=1.2 1.56%(0.18) 7.31(0.12) 4.59(0.23) 7.49(0.25) 1.56%(0.18) 7.31(0.12) 4.59(0.23) 7.49(0.25)
τ=1.5 1.60%(0.12) 7.44(0.07) 4.43(0.05) 7.24(0.17) 1.60%(0.12) 7.44(0.07) 4.43(0.05) 7.24(0.17)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 (default) 18.52%(0.80) 1.94(0.09) 10.21(0.50) 20.10(1.01) 18.52%(0.80) 1.94(0.09) 10.21(0.50) 20.10(1.01)
τ=1.0 17.74%(0.85) 1.87(0.02) 10.61(0.22) 20.87(0.46) 17.74%(0.85) 1.87(0.02) 10.61(0.22) 20.87(0.46)
τ=1.2 17.67%(1.27) 1.87(0.01) 10.58(0.25) 20.85(0.53) 17.67%(1.27) 1.87(0.01) 10.58(0.25) 20.85(0.53)
τ=1.5 18.28%(0.39) 1.89(0.01) 10.54(0.17) 20.70(0.33) 18.28%(0.39) 1.89(0.01) 10.54(0.17) 20.70(0.33)

G.2.1 ICE

Iterative Controlled Extrapolation (ICE) Padmakumar et al. (2023) utilizes ranked pairs of sequences
to learn a local editor. We used the same combination of top-k and top-p parameters (k = 10,
p = 0.95) as the proposed method since we have not done any tuning for these parameters in the
proposed method as well. Similar to the proposed method, we have performed hyper-parameter
tuning for temperature (τ ) with the same grid search of = [0.7, 1.0, 1.2, 1.5]. Table 19 suggests that
τ = 0.7 is performing slightly better than others however within the margin of standard deviations.

Table 19: In-silico fitness evaluation for ICE algorithm on medium/hard difficulty splits of GFP and
AAV datasets with different sampling temperature (τ ) hyper-parameter.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 (default) 5.58%(0.04) 8.18(0.01) 9.08(0.14) 13.56(0.18) 4.59%(0.15) 9.43(0.04) 7.72(0.08) 11.49(0.24)
τ=1.0 4.36%(0.13) 8.10(0.07) 9.42(0.12) 14.30(0.34) 3.72%(0.10) 9.10(0.07) 8.15(0.14) 12.93(0.26)
τ=1.2 4.40%(0.08) 8.06(0.06) 9.47(0.23) 14.41(0.14) 3.84%(0.13) 9.21(0.03) 8.06(0.12) 12.74(0.23)
τ=1.5 4.58%(0.07) 8.24(0.06) 9.19(0.12) 14.46(0.22) 3.97%(0.20) 9.16(0.07) 7.95(0.15) 12.53(0.29)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 (default) 27.16%(0.80) 2.07(0.01) 10.93(0.18) 15.76(0.64) 0.16%(0.19) 2.39(0.03) 8.47(0.21) 14.41(0.87)
τ=1.0 19.97%(0.77) 2.03(0.01) 11.34(0.16) 16.76(0.35) 0.32%(0.11) 2.34(0.04) 8.28(0.16) 15.63(0.25)
τ=1.2 15.38%(0.55) 1.94(0.01) 10.83(0.11) 18.61(0.26) 0.12%(0.02) 2.35(0.01) 8.31(0.08) 16.14(0.18)
τ=1.5 14.64%(0.96) 1.92(0.02) 9.90(0.10) 19.18(0.14) 0.03%(0.02) 2.38(0.02) 8.42(0.08) 16.52(0.19)
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G.2.2 ALIGN-PLM

Align-plm Lee et al. (2023) proposed a Bradley- Terry (BT) model of ranked proteins with big fitness
distances between ranked proteins. We have utilized their implementation to train and run their
model in inference. In inference, they proposed to use all single-site mutations with respect to seed
sequence as generator and keep top M (e.g. M = 10) sequences ranked by likelihood of the proposed
model. At the end of each iteration, they will keep the top N (e.g. N = 10000) for being used as seed
sequence for the next iteration. For inference, M is their only hyper-parameter. We have performed
hyper-parameter tuning for M with the grid search of = [5, 10, 20]. Their model would need 10
days to finish 10 iterations on GFP dataset on a p3 GPU machine. Since align-plm approach uses
all single-site-mutations as its generative model, so it is a deterministic model. Therefore, we are
reporting its standard deviation as zero in the Table 20. We can observe that M = 20 is outperforming
the default (M = 10), therefore, we will use this value.

Table 20: In-silico fitness evaluation for Align-plm algorithm on medium/hard difficulty splits of
GFP and AAV datasets with different top M hyper-parameter.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

M=5 24.56%(0.00) 10.29(0.00) 6.98(0.00) 7.91(0.00) 3.13%(0.00) 8.81(0.00) 7.32(0.00) 5.92(0.00)
M=10 (default) 22.49%(0.00) 9.22(0.00) 7.46(0.00) 8.56(0.00) 3.30%(0.00) 8.70(0.00) 6.83(0.00) 5.77(0.00)

M=20 20.76%(0.00) 9.01(0.00) 7.60(0.00) 8.16(0.00) 3.49%(0.00) 8.66(0.00) 7.29(0.00) 6.22(0.00)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

M=5 20.75%(0.00) 2.51(0.00) 8.64(0.00) 5.11(0.00) 0.10%(0.00) 2.23(0.00) 5.45(0.00) 4.95(0.00)
M=10 (default) 20.30%(0.00) 2.39(0.00) 6.88(0.00) 5.62(0.00) 0.00%(0.00) 2.12(0.00) 5.96(0.00) 5.23(0.00)

M=20 54.45%(0.00) 2.55(0.00) 9.64(0.00) 4.17(0.00) 0.00%(0.00) 2.12(0.00) 6.13(0.00) 5.41(0.00)

G.3 WITH SCORER

G.3.1 ITERATIVE SAMPLING

We have utilized Prot-T5-XL (Elnaggar et al., 2021) in combination with scorer as a pre-trained
language model guided by scorer to increase fitness. We used the same combination of top-k and
top-p parameters (k = 10, p = 0.95) as the proposed method since we have not done any tuning for
these parameters in the proposed method as well. Similar to the proposed method, we have performed
hyper-parameter tuning for temperature (τ ) with the same grid search of = [0.7, 1.0, 1.2, 1.5]. Table
21 suggests that τ = 1.0 (default) is performing similarly to other τ within the margin of standard
deviations.

Table 21: In-silico fitness evaluation for Iterative sampling algorithm on medium/hard difficulty splits
of GFP and AAV datasets with different sampling temperature (τ ) hyper-parameters.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 1.18%(0.10) 7.64(0.07) 6.37(0.16) 10.82(0.37) 0.47%(0.13) 7.64(0.30) 6.57(0.36) 11.35(0.55)
τ=1.0 (default) 1.37%(0.12) 7.67(0.25) 6.54(0.44) 11.28(0.70) 0.40%(0.10) 7.67(0.14) 6.59(0.65) 11.43(0.97)

τ=1.2 1.42%(0.26) 7.85(0.20) 6.42(0.38) 11.04(0.59) 0.64%(0.05) 7.96(0.11) 6.18(0.19) 10.74(0.44)
τ=1.5 1.58%(0.21) 7.90(0.33) 6.43(0.13) 10.87(0.28) 0.61%(0.17) 8.06(0.30) 6.21(0.29) 10.91(0.41)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 0.03%(0.02) 1.19(0.02) 180.36(8.35) 205.14(1.23) 0.00%(0.00) 1.19(0.02) 187.21(10.78) 207.74(2.32)
τ=1.0 (default) 0.01%(0.02) 1.18(0.03) 184.71(10.78) 207.45(3.02) 0.00%(0.00) 1.22(0.04) 174.52(17.62) 201.22(6.04)

τ=1.2 0.00%(0.00) 1.16(0.03) 178.61(8.32) 205.99(3.93) 0.00%(0.00) 1.21(0.03) 183.39(13.33) 206.30(3.75)
τ=1.5 0.01%(0.02) 1.18(0.02) 175.05(16.85) 202.91(7.20) 0.00%(0.00) 1.20(0.02) 182.03(13.60) 204.96(4.87)

G.3.2 ICE + SCORER

Iterative Controlled Extrapolation (ICE) Padmakumar et al. (2023) with scorer has the same hyper-
parameter (τ ) to be tuned as most of the other models. we have performed hyper-parameter tuning
for temperature (τ ) with the same grid search of = [0.7, 1.0, 1.2, 1.5]. τ = 0.7 is the default value
used by the authors. Based on our hyper-parameter tuning reported in Table 22, we can observe that
default value performs well on GFP hard split and τ = 1.5 performs well on both medium and hard
split of AAV dataset. Therefore, will use τ = 1.5 in our main reporting.
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Table 22: In-silico fitness evaluation for ICE algorithm with scorer on medium/hard difficulty splits
of GFP and AAV datasets with different sampling temperature (τ ) hyper-parameters.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 (default) 27.13%(3.18) 9.24(0.19) 8.08(0.19) 10.47(0.87) 18.14%(3.20) 10.34(0.26) 7.21(0.26) 8.37(1.02)
τ=1.0 33.69%(0.42) 9.64(0.12) 7.78(0.21) 10.47(0.31) 25.28%(1.23) 10.50(0.05) 6.89(0.17) 9.33(0.31)
τ=1.2 34.41%(0.74) 9.77(0.18) 7.94(0.13) 11.18(0.54) 29.94%(1.21) 10.68(0.10) 6.85(0.20) 9.29(0.32)
τ=1.5 37.01%(0.36) 10.26(0.12) 6.50(0.30) 9.90(0.47) 33.17%(0.59) 10.80(0.10) 6.52(0.49) 9.89(0.55)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.7 (default) 28.78%(0.40) 2.09(0.01) 10.85(0.11) 13.96(0.83) 0.13%(0.19) 2.66(0.05) 7.87(0.22) 11.66(0.44)
τ=1.0 20.68%(1.39) 2.05(0.01) 10.93(0.16) 16.49(0.56) 0.65%(0.10) 2.56(0.02) 8.03(0.14) 14.27(0.24)
τ=1.2 14.30%(0.69) 1.95(0.02) 10.29(0.05) 18.40(0.30) 0.29%(0.23) 2.54(0.05) 8.13(0.10) 15.14(0.18)
τ=1.5 14.87%(0.75) 1.96(0.04) 9.52(0.25) 18.19(0.46) 0.02% (0.02) 2.53(0.04) 8.22(0.14) 15.68(0.28)

G.3.3 BIGGS

BiGGS Kirjner et al. (2024) proposed Gibbs sampling with Graph-based Smoothing in the smoothed
fitness landscape. The main hyper-parameter, in their inference is the temperature (τ ) used in Gibbs
sampling. Their default is τ = 0.01. We have performed hyper-parameter tuning for temperature
(τ ) with the grid search of = [0.002, 0.005, 0.01, 0.02]. Based on Table 23, we can observe that
τ = 0.002 is having serious issues with diversity. Particularly, it has diversity of zero for medium
splits of AAV and GFP datasets for top 100 designs. In addition, we can observe that for hard splits
of AAV and GFP, default value (τ = 0.01) is performing better than (τ = 0.005) while (τ = 0.005)
is performing better on medium splits of AAV and GFP datasets.

Table 23: In-silico fitness evaluation for BiGGS algorithm on medium/hard difficulty splits of GFP
and AAV datasets with different sampling temperature (τ ) hyper-parameters.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.002 32.2%(3.67) 10.09(0.32) 3.95(0.09) 0.128 (0.25) 25.98%(1.27) 11.56(0) 5.99(0) 0.00(0.00)
τ=0.005 18.70%(1.94) 9.35(0.30) 3.20(0.25) 3.56(0.44) 9.31%(1.28) 12.37(0.19) 5.74(0.46) 5.30(0.24)

τ=0.01 (default) 16.80%(5.37) 10.85(0.51) 5.70(1.06) 6.38(1.44) 4.88%(0.84) 10.21(0.88) 8.05(0.84) 8.34(0.93)
τ=0.02 26.19%(2.40) 10.01(0.09) 4.28(0.31) 3.79(0.13) 7.07%(0.70) 11.28(0.43) 4.65(1.04) 7.36(0.97)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

τ=0.002 100%(0.0) 3.97(0.01 0.66(0.39) 0.24(0.22) 100%(0.0) 3.99(0.04) 0.40(0.48) 0.00(0.00)
τ=0.005 89.30% (3.04) 3.80(0.02) 1.68(0.20) 3.21(0.39) 98.92% (1.38) 4.05(0.01) 2.21(1.15) 1.96(0.70)

τ=0.01 (default) 99.53%(0.21) 3.83(0.02) 3.48(0.36) 6.01(0.51) 55.50%(6.75) 3.89(0.03) 4.13(0.38) 5.74(0.71)
τ=0.02 95.58%(0.97) 3.88(0.01) 2.36(0.15) 4.39(0.22) 67.91%(4.27) 3.91(0.01) 2.64(0.22) 5.23(0.36)

G.3.4 LATPROTRL

LatprotRL Lee et al. (2024) proposed protein fitness optimization through reinforcement learning in
latent space of large language models. Maximum number of mutations allowed per step is the only
hyper-parameter controllable in inference of LatprotRL. We have performed hyper-parameter tuning
for maximum number of mutations allowed per step with the grid search of = [2, 3, 4, 5]. When we set
maximum number of mutations allowed per step equal 2, we have encounter errors in the inference
for hard splits of AAV and GFP. Based on the results reported in Table 24, the current default value
(3) is already performing robustly well on these datasets.

Table 24: In-silico fitness evaluation for LatprotRL algorithm on medium/hard difficulty splits of
GFP and AAV datasets with different maximum number of mutations per step hyper-parameter.

Method AAV (hard) AAV (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

max mutations per step=2 - - - - 38.96%(1.62) 12.47(0.09) 2.78(0.05) 4.85(0.22)
max mutations per step=3 (default) 64.82%(1.02) 13.29(0.06) 2.45(0.16) 4.67(0.23) 38.63%(0.86) 12.53(0.08) 2.83(0.15) 5.21(0.07)

max mutations per step=4 62.57%(0.85) 13.22(0.11) 2.82(0.09) 5.10(0.11) 37.45%(1.38) 12.60(0.11) 2.98(0.07) 5.47(0.14)
max mutations per step=5 60.46%(0.71) 13.08(0.09) 3.15(0.10) 5.68(0.21) 35.76%(0.98) 12.40(0.08) 3.08(0.11) 5.71(0.14)

Method GFP (hard) GFP (medium)
Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100 Extrapolation ↑ Fitness100 ↑ Distance100 ↓ Diversity100

max mutations per step=2 - - - - 35.77%(1.04) 3.91(0.01) 1.61(0.03) 3.15(0.04)
max mutations per step=3 (default) 88.28%(1.05) 3.88(0.01) 1.48(0.04) 2.86(0.07) 38.22%(1.99) 3.92(0.01) 1.56(0.05) 3.04(0.05)

max mutations per step=4 87.81%(0.88) 3.89(0.01) 1.47(0.04) 2.86(0.05) 39.87%(1.72) 3.93(0.01) 1.56(0.06) 3.08(0.05)
max mutations per step=5 86.19%(0.97) 3.88(0.01) 1.48(0.02) 2.87(0.06) 38.26%(1.31) 3.93(0.01) 1.57(0.04) 3.08(0.07)
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H TRAINING CURVES FOR PREFERENCE LEARNING ALGORITHMS

H.1 MEDIUM DIFFICULTY SPLIT OF GFP

Figure 17: Log probability of validation set’s desired vs undesired sequences for preference learning
models on medium difficulty split of GFP.
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H.2 HARD DIFFICULTY SPLIT OF GFP

Figure 18: Log probability of validation set’s desired vs undesired sequences for preference learning
models on hard difficulty split of GFP.
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H.3 MEDIUM DIFFICULTY SPLIT OF AAV

Figure 19: Log probability of validation set’s desired vs undesired sequences for preference learning
models on medium difficulty split of AAV.
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H.4 HARD DIFFICULTY SPLIT OF AAV

Figure 20: Log probability of validation set’s desired vs undesired sequences for preference learning
models on hard difficulty split of AAV.
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I TRAINING CURVES FOR TRIPLET DATASETS

I.1 MEDIUM DIFFICULTY SPLIT OF GFP

Figure 21: Log probability of validation set’s desired vs undesired sequences for various approach of
creating triplets on medium difficulty split of GFP.

I.2 HARD DIFFICULTY SPLIT OF GFP

Figure 22: Log probability of validation set’s desired vs undesired sequences for various approach of
creating triplets on medium difficulty split of GFP.
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I.3 MEDIUM DIFFICULTY SPLIT OF AAV

Figure 23: Log probability of validation set’s desired vs undesired sequences for various approach of
creating triplets on medium difficulty split of AAV.

I.4 HARD DIFFICULTY SPLIT OF AAV

Figure 24: Log probability of validation set’s desired vs undesired sequences for various approach of
creating triplets on medium difficulty split of AAV.
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