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Abstract

Data selection is designed to accelerate learning with preserved performance. To
achieve this, a fundamental thought is to identify informative data samples with sig-
nificant contributions to the training. In this work, we propose Evolved Sampling
(ES), a simple yet effective framework for dynamic sampling performed along the
training process. This method conducts batch level data selection based on differ-
ences of historical and current losses, significantly reducing the back propagation
time while maintaining the model performance. ES is also readily extensible to
incorporate set level data selection for further training accelerations. As a plug-
and-play framework, ES consistently achieves lossless training accelerations across
various models, datasets, and optimizers, saving up to 40% wall-clock time. Par-
ticularly, the improvement is more significant under the noisy supervision setting.
When there are severe corruptions in labels, ES can obtain accuracy improvements
of approximately 20% relative to the standard batched sampling.

1 Introduction

Deep learning has showcased remarkable performance across a variety of real-world applications,
particularly leading to unparalleled successes of large “foundation” models [Touvron et al., 2023,
Rombach et al., 2022]. On the other hand, since these large models are usually trained on web-scale
datasets, the overall computation and memory loads are considerably increasing, calling for more
efficient developments of modern machine learning. Efficient learning involves several aspects,
centering around models, data, optimization, systems, and so on [Shen et al., 2023].

For data-efficient machine learning, the core is to properly evaluate the importance per data sample
in the original (large-scale) datasets. A broad array of methods is applied in a static manner,
where the samples’ importance is determined before the training. However, these approaches can
be prohibitively expensive to apply in practice, since their dependence on feature representations
requires additional (pre-)training in advance.

Another array of methods lies in a dynamic sense, where the samples’ importance is simultaneously
evaluated along the training process. Dynamic sampling methods can be further divided into two
categories: set level selection, to prune the whole dataset at the beginning of each epoch [Qin et al.,
2024, Raju et al., 2021, Thao Nguyen et al., 2023, Attendu and Corbeil, 2023], and batch level
selection, to sample subsets from original batches for back propagation [Kawaguchi and Lu, 2020,
Katharopoulos and Fleuret, 2017, 2018]. Nevertheless, these dynamic sampling methods leverage
similar strategies to evaluate the samples’ importance. Based on the naive intuition that samples’
contributions to the learning are directly associated with gradient updates, most previous methods
re-weight data samples with scales of gradients [Mirzasoleiman et al., 2020, Killamsetty et al., 2021],
current losses [Jiang et al., 2019, Loshchilov and Hutter, 2016, Schaul et al., 2016], or adopt reference
models [Mindermann et al., 2022, Deng et al., 2023, Xie et al., 2023]. However, these approaches
suffers from significant computation loads and exploit the historical information inadequately.
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Table 1: The comparison of different dynamic sampling methods. The “history” column denotes
whether the method uses historical information along the training. The “robust” column represents
the performance robustness under (severe) label noises. The last column summarizes the ratio of
samples used for back propagations (BPs) relative to the standard training. Here, r stands for the
pruning ratio for set level methods (pruning data samples of the whole epoch), and b/B represents
the pruning ratio for batch level methods (selecting a mini-batch b (subset) from a meta-batch B).

set batch history robust # of samples for BP

UCB [Raju et al., 2021] ✓ ✓ 1− r
KA [Thao Nguyen et al., 2023] ✓ 1− r

InfoBatch [Qin et al., 2024] ✓ ✓ 1− r
Loss [Katharopoulos and Fleuret, 2017] ✓ b/B

Order [Kawaguchi and Lu, 2020] ✓ b/B
ES (ours) ✓ ✓ ✓ b/B

ESWP (ours) ✓ ✓ ✓ ✓ (1− r)b/B

To tackle these challeges, we propose a novel dynamic sampling framework, Evolved Sampling (ES),
which incorporates the loss evolution or differences along the training process to determine samples’
importance and conduct batch level selection, without the demand of pre-trained reference models.
Due to its simplicity, this procedure is effortless to implement and only introduces mild computational
overheads with negligible memory costs, while significantly reducing the number of samples used for
back propagations (BPs) and consequently saving the overall wall-clock time, without degrading the
model performance. Moreover, ES facilitates convenient extensions to data pruning on the set level,
i.e. Evolved Sampling with Pruning (ESWP), leading to further accelerations with lossless model
performance. We demonstrate the differences in details between our proposed methods and previous
dynamic sampling methods in Table 1.

2 Methods

2.1 Preliminaries

The classic setting of general machine learning tasks is as follows. Given a dataset D of size n, the
goal is to solve the empirical risk minimization (ERM) problem:

min
θ∈Θ

L̂n(θ) :=
1

n

n∑
i=1

ℓi(θ), . (2.1)

Here, ℓi(·) denotes the non-negative loss function of the i-th sample, and L̂n(θ) represents the
empirical averaged loss over n data samples. When n is large, a common routine is to compute
stochastic gradient on a random batch instead of the whole training set. For instance, starting from an
initialization θ(0) = θ0, the SGD optimizer updates model by

θ(t+ 1) = θ(t)− ηt
B

B∑
j=1

∇θℓij (θ(t)) ≈ θ(t)− ηt∇θL̂n(θ(t)), (2.2)

where B ≤ n is the batch size. The standard method is to draw the batch uniformly without
replacement for ⌈n/B⌉ iterations in one epoch, which we refer as the standard batched sampling.

2.2 Evolved Sampling

For the loss-weighted sampling, one calculates the sampling probability as

pi(t) ∝ wi(t) = ℓi(θ(t)), (2.3)

In general machine learning tasks, the typical behaviors of loss curves often appear decent trends
overall, but can oscillate meanwhile due to certain noises. This introduces the sensitivity or instability
issue of the sampling scheme (2.3). A natural smoothing operation is to use the EMA of losses

pi(t) ∝ wi(t) = βwi(t− 1) + (1− β)ℓi(θ(t)), wi(0) = 1/n (2.4)
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where the hyper-parameter β ∈ [0, 1] is typically selected close to 1 to capture more historical
information. However, the EMA can potentially erase too many dynamical details (including noises)
shown in the loss dynamics. To see this, we give an illustration in Figure 1. The black curve denotes
a (polynomially) decayed function with random perturbations, which is designed to mimic typical
behaviors of loss curves in general machine learning tasks and fails to provide information robustly
due the noises. On the other hand, the blue curve represents the EMA, which leads to over-smoothing
due to the average effect.

Decoupled EMA. To sufficiently leverage the loss dynamics in a more robust sense, we propose to
calculate the sampling probability as

pi(t) ∝ wi(t) = β1si(t− 1) + (1− β1)ℓi(θ(t)),

si(t) = β2si(t− 1) + (1− β2)ℓi(θ(t)), si(0) = 1/n
(2.5)

with β1, β2 ∈ [0, 1] as two hyper-parameters. Here, the intermediate series {si(t)}t∈N, updated in
the EMA scheme, is also referred as the score (for the i-th sample). The scheme (2.5) is the so-called
decoupled EMA, which reduces to (2.4) when β1 = β2 = β. In Figure 1, it is shown by the red curve
and appears an “interpolation” between the original loss and single EMA: When losses oscillate,
the decoupled EMA reacts moderately by not only capturing detailed dynamics of losses, but also
remaining necessary robustness , exhibiting the flexibility to trade-off (by tuning two betas).

Intuitively, by setting (β1, β2)→ (0+, 1−), we are able to exploit the long-term historical information
along the training (via β2), while focusing on the importance of current losses (via β1) and thus can
get the best of both world. This simple and elegant design turns out to be surprisingly beneficial in
practice, which is further verified in numerous experiments in Section 3.

Figure 1: The effect of EMAs, where the output weight is a function of the time step t. From left to
right: β1 = 0.1, 0.5, 0.8, and β = β2 ≡ 0.9.

Annealing. Notably, similar to other loss-weighted sampling methods, the decoupled EMA sam-
pling scheme (2.5) also assigns different weights on the respective gradient of data samples, leading
to a biased estimation on the true gradient ∇θL̂n(·) (that assigns uniform weights). Inspired by Qin
et al. [2024], we adopt the annealing strategy, to perform normal training (with the standard batched
sampling, no data selection) at the last few epochs. Besides, to get a better initialization of the score
{si(·)}i∈[n], we also apply the annealing strategy at the first few epochs.

Combining the decoupled EMA sampling scheme (2.5) with the annealing strategy, we obtain the
Evolved Sampling (ES) framework (formalized in Algorithm 1).

Pruning. Note that applying the decoupled EMA sampling scheme (2.5) to meta-batches (with the
batch size B) has already introduced data selection in a batch level, since one can always select a
smaller batch (with the batch size b < B) out of the meta-batch, according to the sampling probability
pi(t) defined in (2.5). For more aggressive data pruning and enhanced data efficiency, we can further
extend ES by involving the set level data selection (i.e. randomly pruning the whole dataset according
to the probability proportional to the score {si(e)}ni=1 at the beginning of the e-th epoch), which is
Evolved Sampling with Pruning (ESWP; formalized in Algorithm 1).

3 Experiments

In this section, we provide numerical simulations on the proposed method (ES(WP); Algorithm 1) to
demonstrate its effectiveness, efficiency, robustness and flexibility. For all sampling methods, the
hyper-parameters used in data augmentation are maintained the same.
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Algorithm 1 Learning by Evolved Sampling (with Pruning)
Require: Dataset D = {zi}ni=1, model space Θ ∋ θ, optimizer (e.g. SGD, Adam)
Require: Pruning ratio r, meta-batch size B, mini-batch size b ≤ B, decoupled EMAs’ hyper-

parameters β1, β2 ∈ (0, 1), total number of epochs E, number of annealing epochs Ea

Initialize the model θ(0) = θ0, the score s(0) = 1
|D|1n = 1

n1n, t = 0

for e = 0, 1, · · · , E − 1 do
if Ea ≤ e < E − Ea then

Sample a sub-dataset De (|De| = (1− r)|D|) from D without replacement, according to the
probability p′i(e) ∝ si(e) (normalized w.r.t. i ∈ [n]) ▷ “pruning”

else
Set De = D

end if
for j = 0, 1, · · · , ⌈ |De|

B ⌉ − 1 do
Sample a meta-batch Bt (|Bt| = B) uniformly from De without replacement
Compute the loss ℓi(θ(t)) for zi ∈ Bt
Update the score: si(e+ 1)← β2si(e) + (1− β2)ℓi(θ(t)) for zi ∈ Bt
Update the weight: wi(e)← β1si(e) + (1− β1)ℓi(θ(t)) for zi ∈ Bt
if Ea ≤ e < E − Ea then

Sampling a mini-batch bt (|bt| = b) from Bt without replacement, according to the
probability pi(e) ∝ wi(e) (normalized w.r.t. {i ∈ N+ : zi ∈ Bt})
Update the model: θ(t+ 1)← optimizer(θ(t); bt)

else
Update the model: θ(t+ 1)← optimizer(θ(t);Bt) ▷ “annealing”

end if
t← t+ 1

end for
end for

3.1 Effectiveness and Efficiency

Configurations. For ES/ESWP, the default hyper-parameters are as follows: The annealing ratio is
Ea/E = 5%; the pruning ratio is r = 20% for ESWP; in decoupled EMAs, (β1, β2) = (0.2, 0.9)
for ES, (β1, β2) = (0.2, 0.8) for ESWP; for both ES and ESWP, the ratio of mini-batch size over
meta-batch size is b/B = 25%. For the two batch level selection methods (Order, Loss), we use the
same mini/meta-batch size.

Results. (i) For small-scale tasks, we train ResNet models on CIFAR datasets. It is shown in Table
2 that the batch level selection methods (Loss, Order, ES) typically exhibits limited accelerations on
these small-scale tasks, since these methods often require additional forward propagation overheads
that are not negligible compared to BPs. Nevertheless, ES is the only algorithm that achieves lossless
accelerations across all methods. Notably, ESWP saves the most computation time while maintaining
the best performance (also comparable to Baseline) among set level selection methods.

Table 2: The test accuracy (%) and saved time of training ResNet models on CIFAR datasets.

CIFAR-10 (R-18) CIFAR-100 (R-18) CIFAR-100 (R-50)

Baseline 95.4 78.8 81.1

UCB [Raju et al., 2021] 95.2↓0.2 18% 77.6↓1.2 18% 80.5↓0.6 24%
KA [Thao Nguyen et al., 2023] 95.3↓0.1 21% 78.1↓0.7 21% 80.2↓0.9 24%

InfoBatch [Qin et al., 2024] 95.3↓0.1 21% 78.4↓0.4 24% 80.4↓0.7 28%

Loss [Katharopoulos and Fleuret, 2017] 95.3↓0.1 11% 78.4↓0.4 10% 80.5↓0.6 12%
Order [Kawaguchi and Lu, 2020] 95.4↑0.0 11% 78.5↓0.3 10% 80.9↓0.2 12%

ES 95.4↑0.0 10% 78.8↑0.0 10% 81.1↑0.0 11%

ESWP 95.3↓0.1 24% 78.6↓0.2 24% 80.6↓0.5 31%

(ii) For large-scale tasks, we fine-tune the ViT-Large model on the ImageNet-1K dataset, and
summarize the performance of different sampling methods in Table 3. Under this setting, ES
continues to show the best performance among batch level selection methods and the second-to-
highest accuracy across all sampling methods. Notably, ESWP achieves the best performance and
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most significant time reduction, suggesting that ESWP inherits the advantages of both set and batch
level selection methods. In addition, it is observed that the training speed-up of batch level methods
gets far more significant given these large-scale tasks, conversely surpassing the set level methods
compared to (i). This is due to the dominance of the saved computation in BPs. Furthermore, many
sampling methods achieve higher accuracies than the baseline, implying huge potentials of data
selection in large-scale machine learning.
Table 3: The validation accuracy (%) and saved time of fine-tuning ViT-Large on the ImageNet-1K.

Baseline UCB KA InfoBatch Loss Order ES ESWP

Accuracy 84.4 84.2 84.3 84.7 84.3 84.2 84.7 85.0

Time↓ - 23.6% 25.3% 23.5% 36.4% 38.2% 26.0% 40.7%

3.2 Robustness under Label Noises

In this section, we further demonstrate that ES(WP) exhibits more notable advantages when there are
label noises. We train ResNet models on CIFAR datasets under both light (10%) and heavy (40%)
label noises, which are injected randomly with uniform probabilities or flipped to another class.

In Table 4, we summarize the results of training the ResNet-18 model on the CIFAR-100 dataset
under different levels and types of label noises. It is shown that ES/ESWP consistently outperforms
all the other sampling methods (including the baseline) with clear gaps, and the improvement is more
significant when the label noises become severer.

Table 4: The test accuracy (%) of training the ResNet-18 on the CIFAR-100 with label noises.

Baseline UCB KA InfoBatch Loss Order ES ESWP
Flip (10%) 72.3 68.7↓3.6 67.0↓5.3 71.5↓0.8 72.9↑0.6 70.8↓1.5 73.1↑0.8 73.1↑0.8
Flip (40%) 46.8 43.9↓2.9 45.0↓1.8 46.6↓0.2 53.6↑6.8 47.8↑1.0 57.1↑10.3 58.2↑11.4

Uniform (10%) 68.3 66.6↓1.7 65.4↓2.9 67.8↓0.5 67.0↓1.3 65.4↓2.9 68.7↑0.4 68.7↑0.4
Uniform (40%) 50.8 44.1↓6.7 44.0↓6.8 50.8↑0.0 57.3↑6.5 37.9↓12.9 61.1↑10.3 60.1↑9.3

3.3 Ablation Studies

Decoupled EMA and annealing. We numerically test the effectiveness of two important com-
ponents applied in ES, i.e. the decoupled EMA and annealing. Here, we perform ablations on
combinations of “Loss”, “A” (Annealing), “E” (single EMA) and “DE” (decoupled EMA). From
Table 5, it is observed that: (i) Annealing is an effective technique to boost performance; (ii) EMA
also contributes to the improvements; (iii) Compared to the single EMA, the decoupled EMA provides
more substantial benefits to the training process.

Table 5: Ablations on decoupled EMAs and annealing for different models, datasets and noises.

ResNet-18 ResNet-50 ALBERT-Base
CIFAR-10 (40%) CIFAR-100 (10%) CIFAR-100 CIFAR-100 (40%) CoLA

Loss 83.3 67.0 80.5 53.8 55.1

Loss + A 84.4 68.4 80.8 60.1 55.8

Loss + E 83.4 66.2 80.5 53.6 57.6

Loss + DE 83.7 66.8 81.1 54.2 57.5

Loss + A + E 84.6 68.0 80.4 60.3 57.6

ES = Loss + A + DE 85.2 68.7 81.1 60.9 58.4

4 Conclusion

In this work, we propose a simple yet effective framework, Evolved Sampling, which can be applied
to general machine learning tasks to improve the data efficiency in a dynamic manner. By further
adopting differences of historical losses to determine samples’ importance for data selection, Evolved
Sampling can achieve lossless training with significant accelerations, particularly when there are
severe noises in labels. Studies in the future may include: (i) more rigorous mathematical analysis
on the effect of data selection (e.g. Kolossov et al. [2024]); (ii) More specific applications, such as
data selection/reduction on domain mixtures (e.g. Chen et al. [2023], Xie et al. [2023]); (iii) More
efficient and scalable implementation, such as data parallelism [You et al., 2017, 2020].
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pher Ré. Skill-it! A data-driven skills framework for understanding and training language
models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 36000–36040. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for
deep learning. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HJg2b0VYDr.

Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, and Xiaojin Zhu. Teaching a black-box learner. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 1547–1555. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
dasgupta19a.html.

Zhijie Deng, Peng Cui, and Jun Zhu. Towards accelerated model training via Bayesian data se-
lection. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 8513–8527. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1af3e0bf5905e33789979f666c31192d-Paper-Conference.pdf.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: A margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

Ayoub El Hanchi, David A. Stephens, and Chris J. Maddison. Stochastic reweighted gradient descent.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 8359–8374. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/hanchi22a.html.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, page
291–300, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138520.
doi: 10.1145/1007352.1007400. URL https://doi.org/10.1145/1007352.1007400.

6

https://openreview.net/forum?id=4vlGm9gv6c
https://aclanthology.org/2023.sustainlp-1.9
https://proceedings.mlr.press/v37/bachem15.html
https://proceedings.mlr.press/v37/bachem15.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://openreview.net/forum?id=HJg2b0VYDr
https://openreview.net/forum?id=HJg2b0VYDr
https://proceedings.mlr.press/v97/dasgupta19a.html
https://proceedings.mlr.press/v97/dasgupta19a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/1af3e0bf5905e33789979f666c31192d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1af3e0bf5905e33789979f666c31192d-Paper-Conference.pdf
https://proceedings.mlr.press/v162/hanchi22a.html
https://doi.org/10.1145/1007352.1007400


Lingxiao Huang, Shaofeng H.-C. Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for
robust clustering. In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Nc1ZkRW8Vde.

Angela H. Jiang, Daniel L.-K. Wong, Giulio Zhou, David G. Andersen, Jeffrey Dean, Gregory R.
Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C. Lipton, and Padman-
abhan Pillai. Accelerating deep learning by focusing on the biggest losers. arXiv preprint
arXiv:1910.00762, 2019.

Angelos Katharopoulos and François Fleuret. Biased importance sampling for deep neural network
training. arXiv preprint arXiv:1706.00043, 2017.

Angelos Katharopoulos and Francois Fleuret. Not all samples are created equal: Deep learning
with importance sampling. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 2525–2534. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/
v80/katharopoulos18a.html.

Kenji Kawaguchi and Haihao Lu. Ordered SGD: A new stochastic optimization framework for
empirical risk minimization. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, pages 669–679. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/kawaguchi20a.html.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
GRAD-MATCH: Gradient matching based data subset selection for efficient deep model training.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 5464–5474.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/killamsetty21a.
html.

Germain Kolossov, Andrea Montanari, and Pulkit Tandon. Towards a statistical theory of data
selection under weak supervision. In International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=HhfcNgQn6p.

Ramnath Kumar, Kushal Majmundar, Dheeraj Nagaraj, and Arun Sai Suggala. Stochastic re-weighted
gradient descent via distributionally robust optimization. arXiv preprint arXiv:2306.09222, 2023.

Michael Langberg and Leonard J. Schulman. Universal ϵ-approximators for integrals. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, page
598–607, USA, 2010. Society for Industrial and Applied Mathematics. ISBN 9780898716986.

Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan, Pang Wei Koh, Shiori
Sagawa, Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without
training group information. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 6781–6792. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/liu21f.html.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks. In
ICLR 2016 Workshop Track, 2016.

Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.51. URL
https://aclanthology.org/2021.emnlp-main.51.

Sören Mindermann, Jan Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu,
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A Related Work

Static sampling. Methods to sampling statically can be based on geometry, uncertainty, error, meta
optimization, dataset distillation, etc. With numerous studies on theoretical guarantees [Har-Peled
and Mazumdar, 2004, Huang et al., 2023, Bachem et al., 2015], the coreset selection is designed to
approximate original datasets with smaller (re-weighted) subsets, typically achieved by clustering in
representation spaces [Xia et al., 2023, Abbas et al., 2023, Sorscher et al., 2022]. Uncertainty-based
methods use probability metrics such as the confidence, entropy [Coleman et al., 2020] and distances
to decision boundaries [Ducoffe and Precioso, 2018, Margatina et al., 2021, Dasgupta et al., 2019, Liu
et al., 2021]. Sampling methods based on errors assume that training samples with more contributions
to errors are more important. Errors are evaluated with merics such as forgetting events [Toneva et al.,
2019], GRAND & EL2N score [Paul et al., 2021], and sensitivity [Langberg and Schulman, 2010,
Munteanu et al., 2018]. As is discussed before, these static sampling methods require extra training,
leading to considerable costs in both computation and memory.
Dynamic sampling. Methods to sampling dynamically typically leverage metrics based on losses
and gradients along the training process. Loss-adaptive sampling re-weights data points during the
training according to current losses [Katharopoulos and Fleuret, 2017, Jiang et al., 2019, Loshchilov
and Hutter, 2016, Schaul et al., 2016] and historical losses[Oren et al., 2019, Sagawa et al., 2020].
To name a few, Ordered SGD [Kawaguchi and Lu, 2020] selects top-q samples in terms of the
loss ranking per training step. InfoBatch [Qin et al., 2024] randomly prunes a portion of less
informative samples with losses below the average and then re-scales the gradients. KAKURENBO
[Thao Nguyen et al., 2023] combines current losses with the prediction accuracy and confidence
to design a sampling framework with moving-back. Kumar et al. [2023] and Balaban et al. [2023]
assign weights as functions of current losses based on the robust optimization theory. Attendu
and Corbeil [2023] and Raju et al. [2021] use the exponential moving average over past losses for
sampling. There are also studies adopting reference models, including Mindermann et al. [2022],
Deng et al. [2023], Xie et al. [2023] and so on. These methods either exploit the information of
losses inadequately, or require to train additional architectures. Gradient-based sampling methods
involve (i) gradient matching, such as CRAIG [Mirzasoleiman et al., 2020] and GRAD-MATCH
[Killamsetty et al., 2021], which approximate the “full” gradients computed on original datasets via
the gradients computed on subsets; (ii) gradient adaption, where the sampling probability is basically
determined by current scales of gradients [Hanchi et al., 2022, Katharopoulos and Fleuret, 2018]. A
recent work [Wang et al., 2024] uses a intricate layer-wise sampling scheme with complex variance
control. Obviously, gradient-based sampling methods lead to much more computation and memory
overheads than loss-based methods.
Set level versus batch level. Dynamic sampling methods can be divided into two categories based
on the level where data selection is performed: (i) set level selection, to prune the whole dataset at
the beginning of each epoch [Qin et al., 2024, Raju et al., 2021, Thao Nguyen et al., 2023, Attendu
and Corbeil, 2023]; (ii) batch level selection, to sample subsets from the original batches for back
propagations [Kawaguchi and Lu, 2020, Katharopoulos and Fleuret, 2017, 2018, Mindermann et al.,
2022]. These two types of methods, facilitating training accelerations from different perspectives, are
not mutually exclusive. However, to the best of our knowledge, we are not aware of any algorithms
combining both of them.
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