Under review as a conference paper at ICLR 2026

STOP WASTING YOUR TOKENS: TOWARDS EFFICIENT
RUNTIME MULTI-AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

While Multi-Agent Systems (MAS) excel at complex tasks, their growing au-
tonomy with operational complexity often leads to critical inefficiencies, such
as excessive token consumption and failures arising from misinformation. Ex-
isting methods primarily focus on post-hoc failure attribution, lacking proactive,
real-time interventions to enhance robustness and efficiency. To this end, we in-
troduce SUPERVISORAGENT, a lightweight and modular framework for runtime,
adaptive supervision that operates without altering the base agent’s architecture.
Triggered by an LLM-free context filter, SUPERVISORAGENT intervenes at critical
junctures to proactively correct errors, guide inefficient behaviors, and purify obser-
vations. On the challenging GAIA benchmark, SUPERVISORAGENT reduces the
token consumption of the Smolagent framework by an average of 29.45% without
compromising its success rate. Extensive experiments across five additional bench-
marks (math reasoning, code generation, and question answering) and various SoTA
foundation models validate the broad applicability and robustness of our approach.

1 INTRODUCTION

The advent of powerful Large Language Models (LLMs) has catalyzed significant advancements
in Multi-Agent Systems (MAS) (Liu et al., 2025a; ang Gao et al., 2025), enabling them to achieve
remarkable performance across diverse and challenging domains such as mathematical reason-
ing (Shang et al., 2025), code generation (Lu et al., 2025), and complex question answering (Luo
et al., 2025). This progress has spurred research into sophisticated agent architectures, including self-
evolving systems that learn from feedback and experience (Shi et al., 2025b; Liu et al., 2025b), and
dynamic topologies that adapt to task complexity (Li et al., 2025a;b). However, a critical paradox has
emerged: as these autonomous systems become more capable and complex, they often become less
robust and economically viable. Systemic inefficiencies lead to prohibitive computational costs, while
their intricate internal interactions create new vectors for unpredictable failures (Zhang et al., 2025¢).

This lack of robustness stems from the operational complexity of modern MAS, which introduces
a significant reliability challenge. (Tian et al., 2025). The long chain of interactions inherent in
these systems creates fertile ground for error propagation (Dong et al., 2025; Shen et al., 2025).
For instance, a single piece of misinformation generated by an agent, a common risk with today’s
powerful yet occasionally hallucinatory foundation models (Kalai et al., 2025; Farquhar et al., 2024),
can be committed to memory and subsequently poison the reasoning of all downstream agents(as
explained in Figure 1a). These vulnerabilities mean that even a state-of-the-art MAS can fail on tasks
well within its theoretical capabilities, simply due to a lack of operational robustness (Chen et al.,
2024).

Furthermore, the issue of economic efficiency is a major barrier to the real-world deployment of
MAS (Wang et al., 2025a). We identify two primary sources of this inefficiency. First, agents often
struggle with excessively long observations, such as verbose web pages or tool outputs, which flood
their context windows. This not only inflates token costs but can also obscure critical information,
causing the agent to lose focus and derail its task execution (Hosseini et al., 2025). Second, agents
may adopt sub-optimal strategies, entering into repetitive action loops or choosing unnecessarily
complex paths to a solution (Cemri et al., 2025), further wasting computational resources (see Figure
la). Our own analysis reveals that cutting-edge architectures can incur staggering token costs, with
some GAIA benchmark (Mialon et al., 2023) tasks consuming upwards of two million tokens.

Under review as a conference paper at ICLR 2026

suas H—' =) = H—> = H—> EEEE
Observation with error

Error Propagation L’..‘J corrected by Superv:sorAgenl O senatonwihene
) Corrected observation

e @ @ Page Down N @ PageDown @ PageDown @ n*PageDown
1 2 2\ s A4 D\ s Y
N N Find on Page Ctrl F
))

Guidance provided by
SupervisorAgent

(@ T N ;

Conciseness relevance

Factuality Efficiency

i Supervisor Avg. 0
| 405k tokens 3 5 0
tokens saved

! Baseline Avg.

620k tokens 6 3 %

variance reduction

Valid

o
5
=
<
Task Density (Frequency)

Irrelavance

=
o

0o 1000k 2000k 3000k 4000k
Token Cost per Task

Multi-Agent System Supervised
i- R n Efficien
SupervisorAgent (ours) Multi-Agent System (ours) ’ obustness & ciency

Supervision Type Supervision Action Space Supervision Output

: : :7 B ccu J A(Cerror) = {correct, guidance, veri fication} ’

Alcercesive) = {correct}

piteiotn >=> _
| Inefficient Beha o AlCineficient) = {approve, guidance} J |Raw Observat

Figure 1: The SUPERVISORAGENT Framework: Concept and Impact. (a) Illustrative examples of common
failure modes in MAS, including error propagation and inefficient loops, and the corresponding intervention
by our SUPERVISORAGENT. (b) An overview of a conventional MAS, highlighting the high-risk interaction loci
(agent-agent, agent-tool, agent-memory) where such failures occur. (¢) The core workflow of our SUPERVISOR-
AGENT, which monitors these interactions to provide real-time intervention. (d) The resulting Supervised MAS
(SMAS), which integrates the Supervisor to enhance system-wide robustness and efficiency. (e) Performance on
GAIA (Level 2), where SMAS (blue) reduces token cost by 35% and variance by 63% versus the baseline (red).

To address these intertwined challenges, we propose SUPERVISORAGENT, a lightweight and modular
framework that enhances the robustness and efficiency of Multi-Agent Systems (MAS) through
real-time supervision. Incorporating an adaptive filter, SUPERVISORAGENT enables proactive process
control. It adaptively intervenes at critical junctures to mitigate key operational risks: it conducts
proactive error diagnosis, provides pragmatic guidance for inefficient behaviors, and performs
adaptive observation purification to reduce contextual noise from long observations.

In summary, our main contributions are:

1. We propose and implement SUPERVISORAGENT, a novel, lightweight, and non-intrusive meta-
agent framework for real-time MAS supervision. It improves agent robustness and efficiency
through proactive error correction, inefficiency guidance, and adaptive observation purification,
without altering the base agents’ architecture.

2. We conduct extensive experiments on the challenging GAIA benchmark and demonstrate a signif-
icant Pareto improvement. When applied to the Smolagent framework (Roucher et al., 2025),
SUPERVISORAGENT reduces token consumption by an average of 29.68 % while maintaining
competitive task success rates.

3. We validate the general applicability of our approach across five additional benchmarks span-
ning mathematical reasoning (GSM8k-Hard, AIME), code generation (HumanEval, MBPP), and
question answering (DROP). Our method consistently delivers substantial efficiency gains, high-
lighted by a 23.74% token reduction on HumanEval alongside an accuracy improvement. The
framework’s effectiveness is further confirmed across various foundation models, including the
GPT-4.1, Gemini-2.5-pro, and Qwen3 series.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The increasing complexity of Multi-Agent Systems (MAS). Recent advancements in Large
Language Models have spurred the development of increasingly sophisticated Multi-Agent Systems
(MAS) capable of tackling complex, multi-step tasks (Tran et al., 2025; He et al., 2025). Frameworks
like Tongyi DeepResearch (Team, 2025), AgentOrchestra (Zhang et al., 2025f), and Aime (Shi
et al., 2025a) exemplify this trend, introducing complex features such as hierarchical structures (Zhu
et al., 2025; Cheng et al., 2025), dynamic agent management (Wu et al., 2025; Zhang et al., 2025g),
and end-to-end training (Li et al., 2025b; Ye et al., 2025). However, this escalating architectural
complexity invariably introduces significant challenges in maintaining operational robustness and
computational efficiency, which we address in this work.

Failure attribution and robustness. A significant body of work has emerged to address the chal-
lenge of MAS robustness, primarily focusing on post-hoc failure attribution (Zhang et al., 2025e).
Systems like Aegis (Song et al., 2025) and SHIELDA (Zhou et al., 2025) propose taxonomies for
failure analysis, while AgenTracer (Zhang et al., 2025b) and A2P (West et al., 2025) introduce meth-
ods to better trace the root causes of task failures. While valuable, these methods are fundamentally
reactive, analyzing failures after they have occurred. In contrast, our SUPERVISORAGENT is designed
for proactive, real-time intervention, aiming to detect and mitigate high-risk steps before they lead to
systemic failure.

Efficient Multi-Agent Systems Another stream of research targets the efficiency of MAS, a critical
factor largely driven by token consumption. Most approaches focus on design-time optimization.
Some prune the system’s architecture by eliminating agents with AgentDropout (Wang et al., 2025b)
or communication links with SafeSieve (Zhang et al., 2025d). Others generatively construct efficient
prompts (Han et al., 2025) or agent topologies from the outset, as seen in MetaAgent (Zhang et al.,
2025h), MaAS (Zhang et al., 2025a), and HiVA (Tang et al., 2025). A second direction, context
compression, aims to reduce token count by summarizing or distilling observations (Chen et al., 2025;
Mou et al., 2025). Our work is orthogonal to these methods. Instead of focusing on static design or
message content, we introduce runtime process control. SUPERVISORAGENT addresses dynamic
inefficiencies during execution, a complementary approach that can enhance existing systems.

3 PRELIMINARY

In this section, we first establish a formalism for our proposed Supervised Multi-Agent System
(SMAS). We then detail the core components of our framework: the SupervisorAgent’s action space
and the contextual information it leverages for decision-making.

3.1 A FORMALISM FOR SUPERVISED MULTI-AGENT SYSTEMS

Our work is predicated on the idea that the complex, often chaotic, interactions within a Multi-Agent
System (MAS) can be actively managed to improve both robustness and efficiency. To formalize this,
we introduce the concept of a Supervised Multi-Agent System.

Definition 1 (Supervised Multi-Agent System (SMAS)) . A SMAS is a Multi-Agent System aug-
mented with a meta-level control agent, henceforth referred to as the Supervisor. The Supervisor’s
objective is to monitor agent interactions in real-time, proactively detecting and mitigating opera-
tional risks without altering the core logic of the agents it oversees. In this work, we implement
this conceptual Supervisor as a concrete agent named SUPERVISORAGENT.

The fundamental unit of supervision is the interaction, which occurs when an agent engages with
other system components. We categorize interactions into three primary types(see in Figure 1b):

1. Agent-Agent Interactions: Communication or delegation between agents. In architectures like
ReAct (Yao et al., 2023), where an agent’s output becomes another’s input, this channel is highly
susceptible to the propagation of hallucinated or erroneous information (Shen et al., 2025);

2. Agent-Tool Interactions: The invocation of external tools or APIs. This interaction is a primary
source of external information, but it is also fraught with risks, including factually incorrect,
irrelevant, or outdated data that can corrupt the agent’s context (Qian et al., 2025);

Under review as a conference paper at ICLR 2026

3. Agent-Memory Interactions: The retrieval of information from short- or long-term memory
stores. While crucial for self-evolving systems, memory introduces the hazard of acting upon stale
or flawed information from past experiences (Xiong et al., 2025).

3.2 THE SUPERVISORAGENT’S CONTEXT WINDOW

To make informed decisions, the SUPERVISORAGENT is provided with a rich, real-time snapshot of
the MAS’s state, which we formalize as the context window.

Definition 2 (Context Window) . The standard context window, W, is a tuple of five key elements:
W = (N7anQlan7S)7

where N is the name of the agent under review, Q4 and Q; are the global and local tasks, T} is the
local trace of agent A’s recent actions and observation summaries, and S is a summary of the
agent’s latest interaction step. For diagnosing system-wide inefficiencies, we augment this to an
extended context window Wy, = W U{Ty}, where T, is the global trace of all agent interactions.

3.3 THE SUPERVISOR’S ACTION SPACE

The role of the Supervisor is to diagnose high-risk interactions and execute a targeted intervention
(Figure 2c). We define three primary intervention contexts, ¢ € C = {Cerror, Cexcessives Cinefficient }» Which
activate one of three core supervision strategies:

* Proactive Error Correction: Triggered by cerror, this strategy aims to diagnose the root cause of
an explicit error and provide a direct fix or a verification task to resolve it.

* Adaptive Observation Purification: Triggered by cexcessive, this strategy refines excessively long
or noisy observations to improve the signal-to-noise ratio for the agent.

¢ Guidance for Inefficiency: Triggered by Cipefficient, this strategy provides pragmatic, course-
correcting hints for sub-optimal behaviors, while also critically permitting productive, albeit
repetitive, processes to continue via an approve action.

These strategies are implemented by selecting an action a from the global action space .A. The specific
subset of permissible actions, .A(c), is formally defined by the intervention context as follows:

{correct_observation, provide_guidance, run_verification} if ¢ = Ceyror
A(c) = < {correct_observation} if ¢ = Cexcessive -
{approve, provide_guidance} if ¢ = Cinefficient

The implementation of each action is detailed in Section 4.3.

4 METHODOLOGY

Building upon the formalism of a Supervised Multi-Agent System (SMAS) introduced in Section 3,
we now detail the architecture and operational workflow of our SUPERVISORAGENT (illustrated in
Figure 2). Our methodology is structured around three fundamental questions: What to supervise,
When to supervise, and How to supervise. We defer the specific implementation details, including
all hyperparameters and prompts, to Appendix A.3 A.S5.

4.1 WHAT TO SUPERVISE: HIGH-RISK INTERACTION POINTS

The primary targets for our supervision are the three high-risk interaction points defined in our
preliminary formalism (Section 3.1, see also Figure 2a): Agent-Agent, Agent-Tool, and Agent-
Memory interactions. These points are the primary channels through which errors and inefficiencies
are introduced and propagated throughout the system. Our goal is to monitor these specific channels
to maintain the operational integrity of the MAS.

4.2 WHEN TO SUPERVISE: THE ADAPTIVE FILTER

While a naive approach might monitor every interaction, the associated computational cost is pro-
hibitive and would undermine our goal of improving efficiency. Therefore, the cornerstone of our

Under review as a conference paper at ICLR 2026

Adpative Filter

Observation

Context Window W

@ Agent Name
Global Task
Global Trace

@ Interaction Summay

Local Task

@ Local Trace

(b)

W (® ® @ Action Space A

A Guidance

Inefficient Behavior

" OQ@EOO®®

A:

@ Raw observation (G) Guidance

O.) Corrected observation

O—@
)

Guidance @—)@—{c_:)

@
p

O— @

(c)

r[Manager Agent J—)[Output: Unable to determine]

(V) Verification result

No
No
No

Approve

Approve Guidance

supervision intensity

(a)

B excessive observation

Manager Agent
assign § retun
assign [return
Search Agent assign

[Observation]

WHAT

retum

([searcnagent | Comparison -
P) SMAS MAS W[aptive Fil
(@ inefficient behavior x 10 = v Search Agent T laptive Filter
Totaltoken 430,557 70% 1,442,909 H
@ ineficient behavior x 7 . _
5
(d) MAS (@ inefficient behavior X 8 Totalstep 13 lL“ % 23

Context Window

SupervisorAgent
monitor

Supervision Action
Supervision output

mMonitor process

HOW

‘[Manager Agent Output: Bacon]

B excessive observation
Manager Agent
ssson Jroum

Ly T
1 (Steps saved):
Search Agent . 0
(RN R — '
v | SearchAgent | .
————— X _

(e) SMAS(Ours) x B @ inefficient behavior | searchAgent |

B excessive observation @ inefficient behavior

Observation purification Provide guidance

G 47902 2> 165

Figure 2: The architecture and workflow of SUPERVISORAGENT. (a) The LLM-free adaptive filter for
identifying high-risk interactions. (b) The context window, aggregating goals and traces for situational awareness.
(c¢) The spectrum of intervention actions, from simple approval to intensive verification. (d, e) Case study on a
GAIA task, comparing the baseline MAS (d) with our SMAS (e), which cuts steps by 43% and token cost by
over 70%. (f) The supervise workflow for an interaction, from filtering to a final supervision action.

framework is a lightweight, LLM-free adaptive filter designed to trigger supervision only at critical
junctures (as shown in the case studies in Figures 2d and 2e). This approach ensures that the Supervi-
sor’s resources are deployed judiciously, maximizing impact while minimizing overhead. The filter is
designed to be fast and heuristic-based, monitoring the MAS for three pre-defined, high-risk scenarios:

* Error occurrence. The manifestation of an explicit error (e.g., in tool use or code execution) is
a critical trigger. Unlike standard MAS that often pass the full error log into a cluttered context
for a subsequent agent to debug, our filter immediately flags these events for a focused, real-time
intervention.

¢ Inefficient behavior. An agent may enter a loop of sub-optimal or repetitive actions that, while
not explicit errors, lead to high token consumption and latency. Our filter is designed to detect
such patterns, such as an agent repeatedly using the page_down action instead of a more direct
search strategy.

* Excessive observation length. Interactions with tools can return excessively long and noisy
observations (e.g., raw HTML) that inflate costs and distract the agent. Our filter identifies such
cases for immediate information purification.

4.3 HOW TO SUPERVISE: MEMORY-AUGMENTED, MULTI-LEVEL INTERVENTION

Once a high-risk interaction is flagged, SUPERVISORAGENT leverages a rich context window and a
spectrum of intervention strategies to deliver a nuanced, effective response.

Under review as a conference paper at ICLR 2026

Memory-augmented context window. To make an effective decision, a supervisor must possess
a more comprehensive understanding of the system’s state than any single agent. This is why
SUPERVISORAGENT is conceptualized with its own memory module, not a simple monitor. As
illustrated in Figure 2b, this is achieved through a dynamic context window WV, which aggregates
the global task @), the agent’s local task ();, interaction summary S, and its recent action trace 7;.
Crucially, for diagnosing complex inefficiencies, SUPERVISORAGENT also accesses the global trace
T,, granting it a holistic perspective that transcends the limited view of any individual agent. This
elevated viewpoint is what enables it to provide genuinely strategic guidance.

A spectrum of intervention actions. With this rich context, SUPERVISORAGENT selects an action
from a multi-level action space A, adapting intervention intensity tailored to issue severity (Figure 2c).
These actions range from a minimal nudge to a comprehensive correction:

* approve: A minimal intervention that permits a productive, albeit repetitive, agent behavior to
continue. Primarily used in the inefficient context, its purpose is to avoid disrupting a process that
is pragmatically the best path forward from its current state.

* provide_guidance: A semi-intrusive action that steers an agent away from a sub-optimal strategy
or logical flaw. This action appends a concise, directive hint to the existing observation, correcting
the agent’s reasoning path without altering the core context data.

* correct_observation: A direct and forceful intervention that refines the agent’s sensory input. It is
the sole action for excessive observations, where it purifies the content, and is also used in error
contexts to fix factually incorrect data. This action replaces the original raw observation entirely
with a cleaned and corrected version.

* run_verification: The deepest intervention, used in complex error contexts when internal infor-
mation is insufficient. It invokes a verification sub-agent for external fact-checking or advanced
debugging, returning a definitive, verified result.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We empirically validate the effectiveness of SUPERVISORAGENT through a series of extensive
experiments. We begin by outlining our evaluation metrics, datasets, and baselines. For a more
detailed description of the experimental settings, please refer to Appendix A.2.

Datasets. We evaluate our method on a diverse suite of six benchmarks spanning three domains.
Our primary benchmark is the challenging GAIA validation set (Mialon et al., 2023), which provides
a comprehensive test of an MAS’s general problem-solving capabilities. To demonstrate broader
applicability, we use five additional benchmarks: for mathematical reasoning, we use AIME (Hug-
gingFaceH4, 2024) and a random subset of 600 samples from GSM8k-Hard (Gao et al., 2022); for
code generation, we use the full HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
datasets; and for question answering, we use a subset of 800 samples from the DROP (Dua et al.,
2019) dataset, following the sampling strategy of prior work (Zhang et al., 2025¢).

Baselines. On several benchmarks, we compare SUPERVISORAGENT against a comprehensive set
of agentic systems equipped with web-browsing and code execution capabilities. These baselines fall
into two categories: (1) single agent execution methods: including vanilla LLM, Self Consistency
CoT(3 answers) (Wang et al., 2023), and CodeAgent (Roucher et al., 2025); and (2) multi-agent
systems, including Smolagent (Roucher et al., 2025), MetaAgent (Zhang et al., 2025h), OWL(role
playing) (Hu et al., 2025), and AWorld (Yu et al., 2025).

Implementation details. When considering the integration of SUPERVISORAGENT with existing
MAS, we select Smolagent (Roucher et al., 2025) as our primary baseline due to its open-source avail-
ability, robust performance, and modular architecture that facilitates seamless integration. Besides,
some current MASs’ strong capabilities stem from comprehensive MCP tools, which essentially
provide high-quality information that greatly simplifies the agent’s task. As for Smolagent, its capa-
bilities mostly arise from the agentic interactions inside of it, which is more suitable for evaluating
the effectiveness of SUPERVISORAGENT.

Under review as a conference paper at ICLR 2026

Table 1: Overall performance on the GAIA validation set. Our SMAS consistently reduces the average token
cost comparing to Smolagent baseline (Smol.) while achieving competitive pass @k success rates.

Method Avg. Acc. Avg. Tokens (K) L1 Acce. L1 Tokens (K) L2 Acc. L2 Tokens (K) L3 Acc. L3 Tokens (K)
CodeAgent 40.00 120.40 56.60 92.84 34.88 131.90 23.08 138.54
OWL 45.40 111.07 56.56 67.72 43.02 110.36 29.16 209.34
OAgents 49.09 340.50 66.04 260.27 47.67 358.63 19.23 44411
Smolagent 50.91 527.76 62.26 298.51 53.49 619.59 19.23 691.33
AWorld 60.00 128.27 67.92 69.61 62.79 164.08 34.62 133.65

pass@1
Smol. 5091 527.76 62.26 298.51 53.49 619.59 19.23 691.33
+ SMAS (ours) 5091 371.12 129.68% 62.26 258.28 113.48% 51.16 404.96 |34.64% 26.92 17.69% 489.22 129.23%
pass@2
Smol. 58.18 467.19 69.81 275.85 59.30 548.02 30.77 589.92
+ SMAS(ours) 57.58 387.70 117.02% 73.58 13.77% 270.07 12.10% 54.65 417.41 123.83% 34.62 13.85% 529.20 110.29%
pass@3
Smol. 61.82 502.40 71.70 282.14 63.95 605.05 34.62 611.87
+ SMAS (ours) 63.03 +1.21% 369.52 126.45% 75.47 13.77% 276.84 |1.88% 62.79 409.05 32.39% 38.46 13.84% 427.72 130.10%

Framework Selection We selected Smolagent as our primary experimental testbed due to its
modular architecture, which is conducive to seamless integration. Critically, Smolagent’s capabilities
stem primarily from its internal agentic interactions rather than powerful external tools(e.g. web APIs
or solvers). This provides an ideal, controlled environment to isolate and evaluate the direct impact of
our SUPERVISORAGENT on an agent’s core reasoning and communication processes.

Metrics. For GAIA and the code generation benchmarks, we report the standard pass @k metric.
For our main baseline, Smolagent, we report pass@1, 2, and 3. For math reasoning, we report the
final solve rate (%). For question answering, we report the F1 score for DROP. In all experiments, we
meticulously track and report the total token consumption as a primary measure of efficiency.

5.2 RESULTS AND ANALYSIS

Significant efficiency gains with competitive accuracy. The main experimental results, presented
in Table 1, confirm the substantial benefits of SUPERVISORAGENT. On the GAIA validation set,
when integrated with the Smolagent framework, SUPERVISORAGENT achieves an average token
reduction of 29.68% at pass@ 1, while maintaining a statistically equivalent success rate. Notably,
the efficiency gains are even more pronounced on more difficult tasks, with token savings reaching
32.39% on Level 2 and 30.10% on Level 3 tasks at pass@3.

Across the other five benchmarks, SUPERVISORAGENT mostly delivers a Pareto improvement.
In mathematical reasoning, it improves the solve rate on AIME by 6.67% while simultaneously
reducing token costs by 18.92%. Most strikingly, in code generation, it not only holds competitive
accuracy on HumanEval, but also cuts token consumption by 23.74%. These results underscore
SUPERVISORAGENT’s ability to act as a universal efficiency enhancer across diverse problem
domains.

Model-Agnostic generalization. To demonstrate that the benefits of SUPERVISORAGENT are
architectural rather than model-specific, we evaluated it with three different powerful LLMs as
its inference engine on GAIA. As shown in Figure 4b, SUPERVISORAGENT consistently yields
significant token savings and maintains robust performance across all models, including GPT-4.1,
Gemini-2.5-pro, and Qwen3-235B. This validates that our supervision framework is a model-agnostic
component that can enhance a wide variety of LLM-powered agent systems.

Improving robustness and performance consistency. Beyond average performance, we define
robustness as the consistency of an agent’s performance. As illustrated by the violin plots in Figure
3, SUPERVISORAGENT significantly reduces the variance in token consumption per task. The
distributions for the supervised MAS are visibly shorter and wider, indicating a more concentrated
and predictable performance profile. The bar chart on the right further quantifies this, showing a
marked decrease in token cost variance, especially for the more complex Level 2 and 3 tasks. This
demonstrates that our method not only makes the MAS more efficient on average but also more
reliable and less prone to extreme resource consumption outliers.

Under review as a conference paper at ICLR 2026

Table 2: Generalization across diverse benchmarks. SUPERVISORAGENT consistently reduces token costs
while maintaining or improving accuracy on tasks spanning mathematical reasoning, code generation, and
question answering. All reported gains are relative to the Smolagent baseline.

Method Metrics GSM-hard AIME HumanEval MBPP DROP
Vanilla Acc/F1 (%) 67.17 26.67 76.82 80.09 76.36
Avg. Tokens (K) 0.37 2.01 0.28 0.27 0.46
Acc/F1 (%) 69.01 30.00 77.78 81.26 77.72
CoT SCE-shot) U0 Tokens (K) 2.62 14.26 1.42 1.29 2.73
OWL Acc/F1 (%) 72.48 33.33 90.74 79.08 79.85
Avg. Tokens (K) 15.67 56.11 31.87 54.80 11.47
MetaA gent Acc/F1 (%) 72.14 26.67 74.08 79.86 78.16
g Avg. Tokens (K) 4.35 6.24 2.59 6.39 1.43
Smolagent Acc/F1 (%) 74.33 30.00 92.07 85.68 81.08
g Avg. Tokens (K) 11.59 59.14 4091 111.07 12.01
Acc / F1 (%) 75.50 36.67 92.68 84.43 79.80
+SMAS (ours) o Tokens (K) 10.55 18000 47.95 yigooe 31.19 123740 103.71 joee 1134 1560%
1e6 Level 1 ps@1 1e6 Level 1 ps@2 le6 Level 1 ps@3 Variance Comparison
1% 1% S = L2 e
21.00 21.00 21.00 L1 ps@1 = Level 3 SMAS
50.75 éovs 50»75 F s
‘2 0.50 *Z 0.50 ‘E 0.50 L1 ps@2 -
%o.zs f_go.zs %025 ‘
0.00 SMAS 000 SMAS 000 SMAS L1 ps@3 F
1e6 Level 2 ps@1 1e6 Level 2 ps@2 le6 Level 2 ps@3
g3 <3 g3 L2 ps@1 F
g g 5 L2 ps@2
& % g 12 ps@3 F
SMAS SMAS SMAS
1le6 Level 3 ps@1 S 1le6 Level 3 ps@2 1e6 Level 3 ps@3 L3 ps@1 F
§20 §Z ~2° L3ps@2‘—
215 2 3 1 5
?iA ‘e =
SMAS 0 SMAS SMAS 0 2

4
Token Variance lell

(a) (b)

Figure 3: SUPERVISORAGENT enhances performance consistency on the GAIA benchmark. (a) Violin
plots of token cost distributions, revealing the more compact and predictable performance of our Supervised
MAS (SMAS). (b) A direct comparison quantifying the substantial reduction in token cost variance achieved by
our SMAS across all difficulty levels.

Ablation Study Our ablation study, conducted on the 30 most token-intensive GAIA tasks, dissects
the contribution of SUPERVISORAGENT’s three core strategies (Table 3, Figure 4a). We compare the
full SUPERVISORAGENT against three ablated versions: w/o Correction (disabling Proactive Error
Correction), w/o Guidance (disabling Guidance for Inefficiency), and w/o Purification (disabling
Adaptive Observation Purification). The results reveal that Purification is the primary driver of token
reduction. Concurrently, removing the Correction and Guidance modules leads to a significant drop in
accuracy, confirming their critical role in ensuring task success and robustness. This highlights a clear
trade-off: while Purification is key to efficiency, the other two strategies are crucial for maximizing
performance, justifying their marginal token cost by preventing costly failures.

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of SUPERVISORAGENT’s components on the 30 most token-intensive tasks from the
GAIA validation set.

Method Avg. Acc. Avg. Token Level 1 Avg. Token Level 2 Avg. Token Level 3 Avg. Token
Smolagent 40.00 1,446,526 933,013 2,037,437 1,369,131

+ SMAS (w/o Correction) 40.00 719,075 150.28% 426,786 154.26% 755,543 162.91% 974,895 128.79%

+ SMAS (w/o Guidance) 40.00 706,831 |51.14% 453,623 |51.38% 913,109 |55.18% 753,761 144.95%

+ SMAS (w/o Purification) 46.6716.67% 851,747 141.11% 585,411 137.26% 990,769 151.37% 979,061 128.49%

+ SMAS 46.6716.67% 721,332 150.13% 522,364 144.01% 960,694 |52.85% 680,939 150.26%

100%
Q@ Methods Base Agent Cost
Smolagent (Baseline) Supervisor Overhead
Low Cost/ High Accuracy Ours (wlo Error Analysis) —— Accuracy (%)

8
A
46% (Ideal Region) Removing Summarization M Ours (o Inefficient Analysis) 600k
9 Cost @ Ours (wlo Summarization)
ost) @ Ours (Full Supervisor) 527.8k 80%
x - B S
o § 500K | ‘ e 45‘2;,2‘(
g S | 448.9k .

. g , .
£ 3 400k - 60% §
Q o - g
g ° g
:43% Removing Inefficiency Analysis H g
g (! Accuracy) $ 300k g
£ = 40% <
3 o
< g

2% g
200k
Removing or Analysis <
19 > (1 Accuracy 20%
100k
g High Cost/ Low Accuracy
40% 3
Ok 0%
700k 800k 900k 1000k 1100k 1200k 1300k 1400k Smolagent Ours Ours Ours
Token Cost (Average per Task) (GPT-4.1) (GPT-4.1) (Gemini-1.5-pro) (Qwen-2)
(a) Ablation study on GAIA. (b) Model Generalization of SUPERVISORAGENT.

Figure 4: Ablation study and model generalization of SUPERVISORAGENT. (a) Ablation study on challenging
GAIA tasks, dissecting the distinct contributions of each module to the framework’s overall efficiency and
robustness. (b) Validation of model-agnosticism, showing that SUPERVISORAGENT consistently delivers token
savings across diverse foundation models.

6 DISCUSSION AND CONCLUSION

In this work, we introduced SUPERVISORAGENT, a lightweight and non-intrusive meta-agent
framework that enhances the robustness and efficiency of Multi-Agent Systems. Through real-
time, adaptive supervision, SUPERVISORAGENT mitigates common failure modes and reduces
computational overhead using three core strategies: proactive error correction, pragmatic inefficiency
guidance, and adaptive observation purification. Our extensive experiments demonstrate a significant
Pareto improvement. On the challenging GAIA benchmark, SUPERVISORAGENT reduces token
consumption by an average of 29.68% while maintaining competitive task success rates, a crucial
step towards building more practical and scalable agentic systems.

Our work also yields critical insights for the broader field. First, we discovered that seemingly
“noisy” information, such as HTML structure and truncation cues, serves as a vital signal for ReAct-
style agents; overly aggressive purification can paradoxically harm performance. This highlights a
fundamental trade-off between information density and the preservation of environmental texture.
Second, our focus on token cost underscores the need for a more holistic efficiency evaluation for
MAS. A comprehensive analysis must also account for the frequency and complexity of external tool
API calls, which offload significant burdens from the LLM. This very trade-off informed our choice
of Smolagent as a primary baseline; its reliance on internal agentic reasoning, rather than powerful
external tools, provided a controlled environment to isolate and evaluate our supervisor’s impact on
the interaction process itself.

These insights inform several promising avenues for future work. While our SUPERVISORAGENT
proved robust, developing a self-evolving, memory-augmented version remains an exciting opportu-
nity. Other key directions include creating more sophisticated purification techniques that address
the “noise-as-signal” problem and developing a universal resource consumption metric for MAS.
Ultimately, we posit that incorporating such real-time, meta-level supervision is a foundational
component for building the next generation of truly scalable and reliable autonomous systems.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work aims to improve the reliability and efficiency of Multi-Agent Systems, a crucial step for
developing practical and beneficial autonomous technologies. We believe that by introducing a
mechanism for real-time supervision, our framework provides a paradigm not only for performance
optimization but also for enhancing the safety and predictability of future agentic systems. Our
research was conducted on publicly available benchmarks, did not involve private user data, and
adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We are committed to ensuring our work is reproducible. The core architecture and logic of SUPERVI-
SORAGENT are detailed in Section 4, with theoretical formalisms in Section 3. For direct replication,
we provide all implementation details and final prompts in Appendix A.3, A.5, and our full source
code, including experiment scripts, will be made publicly available. The datasets and metrics used in
our extensive experiments (Section 5) are all based on publicly available benchmarks, allowing for
direct comparison and validation of our results.

REFERENCES

Huan ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
Zhenghailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang.
A survey of self-evolving agents: On path to artificial super intelligence, 2025. URL https:
//arxiv.org/abs/2507.21046.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why do multi-agent Ilm systems fail?, 2025. URL https://arxiv.
org/abs/2503.13657.

Junzhi Chen, Juhao Liang, and Benyou Wang. Smurfs: Multi-agent system using context-efficient
dfsdt for tool planning. In Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 3281-3298, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Zhaorun Chen, Zhen Xiang, Chaowei Xiao, Dawn Song, and Bo Li. Agentpoison: Red-teaming 1lm
agents via poisoning memory or knowledge bases, 2024. URL https://arxiv.org/abs/
2407.12784.

Yuyang Cheng, Yumiao Xu, Chaojia Yu, and Yong Zhao. Hawk: A hierarchical workflow framework
for multi-agent collaboration, 2025. URL https://arxiv.org/abs/2507.04067.

10

https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2407.12784
https://arxiv.org/abs/2407.12784
https://arxiv.org/abs/2507.04067

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Shen Dong, Shaochen Xu, Pengfei He, Yige Li, Jiliang Tang, Tianming Liu, Hui Liu, and Zhen
Xiang. A practical memory injection attack against llm agents, 2025. URL https://arxiv.
org/abs/2503.03704.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2368-2378, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https:
//aclanthology.org/N19-1246/.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625-630, jun 2024. ISSN 1476-
4687. doi: 10.1038/s41586-024-07421-0. URL https://www.nature.com/articles/
s41586-024-07421-0.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Yichen Han, Bojun Liu, Zhengpeng zhou, Guanyu Liu, Zeng Zhang, Yang Yang, Wenli Wang,
Isaac N Shi, Yunyan, Lewei He, and Tianyu Shi. Mapgd: Multi-agent prompt gradient descent for
collaborative prompt optimization, 2025. URL https://arxiv.org/abs/2509.11361.

Junda He, Christoph Treude, and David Lo. Llm-based multi-agent systems for software engineering:
Literature review, vision, and the road ahead. ACM Transactions on Software Engineering and
Methodology, 34(5):1-30, 2025.

Peyman Hosseini, Ignacio Castro, lacopo Ghinassi, and Matthew Purver. Efficient solutions for an
intriguing failure of LLMs: Long context window does not mean LLMs can analyze long sequences
flawlessly. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di
Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st International Conference on
Computational Linguistics, pp. 1880-1891, Abu Dhabi, UAE, January 2025. Association for
Computational Linguistics. URL https://aclanthology.org/2025.coling-main.
128/.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping
Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in
real-world task automation, 2025. URL https://arxiv.org/abs/2505.23885.

HuggingFaceH4. Aime 2024 dataset. https://huggingface.co/datasets/
HuggingFaceH4/aime_2024, 2024.

Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
hallucinate, 2025. URL https://arxiv.org/abs/2509.04664.

Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, and Shirui Pan. Assemble your crew:
Automatic multi-agent communication topology design via autoregressive graph generation, 2025a.
URL https://arxiv.org/abs/2507.18224.

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhengiang Huang,
Qianben Chen, Weichen Sun, Qiexiang Wang, Hongxuan Lu, Tianrui Qin, Chenghao Zhu, Yi Yao,
Shuying Fan, Xiaowan Li, Tiannan Wang, Pai Liu, King Zhu, He Zhu, Dingfeng Shi, Piaohong
Wang, Yeyi Guan, Xiangru Tang, Minghao Liu, Yuchen Eleanor Jiang, Jian Yang, Jiaheng Liu,
Ge Zhang, and Wangchunshu Zhou. Chain-of-agents: End-to-end agent foundation models
via multi-agent distillation and agentic rl, 2025b. URL https://arxiv.org/abs/2508.
13167.

11

https://arxiv.org/abs/2503.03704
https://arxiv.org/abs/2503.03704
https://aclanthology.org/N19-1246/
https://aclanthology.org/N19-1246/
https://www.nature.com/articles/s41586-024-07421-0
https://www.nature.com/articles/s41586-024-07421-0
https://arxiv.org/abs/2509.11361
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://arxiv.org/abs/2505.23885
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://arxiv.org/abs/2509.04664
https://arxiv.org/abs/2507.18224
https://arxiv.org/abs/2508.13167
https://arxiv.org/abs/2508.13167

Under review as a conference paper at ICLR 2026

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang, Xiaogiang Wang, Yuyu Luo,
Haibo Jin, Peiyan Zhang, Ollie Liu, Jiaqi Chen, Huan Zhang, Zhaoyang Yu, Haochen Shi, Boyan
Li, Dekun Wu, Fengwei Teng, Xiaojun Jia, Jiawei Xu, Jinyu Xiang, Yizhang Lin, Tianming Liu,
Tongliang Liu, Yu Su, Huan Sun, Glen Berseth, Jianyun Nie, Ian Foster, Logan Ward, Qingyun Wu,
Yu Gu, Mingchen Zhuge, Xinbing Liang, Xiangru Tang, Haohan Wang, Jiaxuan You, Chi Wang,
Jian Pei, Qiang Yang, Xiaoliang Qi, and Chenglin Wu. Advances and challenges in foundation
agents: From brain-inspired intelligence to evolutionary, collaborative, and safe systems, 2025a.
URL https://arxiv.org/abs/2504.01990.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-rl: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025b. URL https://arxiv.org/abs/2504.142309.

Xu Lu, Weisong Sun, Yiran Zhang, Ming Hu, Cong Tian, Zhi Jin, and Yang Liu. Requirements
development and formalization for reliable code generation: A multi-agent vision, 2025. URL
https://arxiv.org/abs/2508.18675.

Yajie Luo, Yihong Wu, Muzhi Li, Fengran Mo, Jia Ao Sun, Xinyu Wang, Liheng Ma, Yingxue
Zhang, and Jian-Yun Nie. An entity linking agent for question answering, 2025. URL https:
//arxiv.org/abs/2508.03865.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.
12983.

Xinyi Mou, Chen Qian, Wei Liu, Xuanjing Huang, and Zhongyu Wei. Ecolang: Efficient and
effective agent communication language induction for social simulation, 2025. URL https:
//arxiv.org/abs/2505.06904.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tiir, Gokhan
Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation, 2025. URL https:
//arxiv.org/abs/2502.11435.

Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunis-
miki. ‘smolagents‘: a smol library to build great agentic systems. https://github.com/
huggingface/smolagents, 2025.

Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang, Bingcheng
Dong, Xudong Zhou, Bowen Zhang, Ying Xin, Ziming Miao, Scarlett Li, Fan Yang, and Mao
Yang. rstar2-agent: Agentic reasoning technical report, 2025. URL https://arxiv.org/
abs/2508.20722.

Xu Shen, Yixin Liu, Yiwei Dai, Yili Wang, Rui Miao, Yue Tan, Shirui Pan, and Xin Wang. Under-
standing the information propagation effects of communication topologies in llm-based multi-agent
systems, 2025. URL https://arxiv.org/abs/2505.23352.

Yexuan Shi, Mingyu Wang, Yunxiang Cao, Hongjie Lai, Junjian Lan, Xin Han, Yu Wang, Jie Geng,
Zhenan Li, Zihao Xia, Xiang Chen, Chen Li, Jian Xu, Wenbo Duan, and Yuanshuo Zhu. Aime:
Towards fully-autonomous multi-agent framework, 2025a. URL https://arxiv.org/abs/
2507.11988.

Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, Ninghao Liu, Haitao Mi,
and Dong Yu. Mobilegui-rl: Advancing mobile gui agent through reinforcement learning in online
environment, 2025b. URL https://arxiv.org/abs/2507.05720.

Kevin Song, Anand Jayarajan, Yaoyao Ding, Qidong Su, Zhanda Zhu, Sihang Liu, and Gennady
Pekhimenko. Aegis: Taxonomy and optimizations for overcoming agent-environment failures in
Ilm agents, 2025. URL https://arxiv.org/abs/2508.19504.

Jinzhou Tang, Jusheng Zhang, Qinhan Ly, Sidi Liu, Jing Yang, Chengpei Tang, and Keze Wang.
Hiva: Self-organized hierarchical variable agent via goal-driven semantic-topological evolution,
2025. URL https://arxiv.org/abs/2509.00189.

12

https://arxiv.org/abs/2504.01990
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2508.18675
https://arxiv.org/abs/2508.03865
https://arxiv.org/abs/2508.03865
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2505.06904
https://arxiv.org/abs/2505.06904
https://arxiv.org/abs/2502.11435
https://arxiv.org/abs/2502.11435
https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents
https://arxiv.org/abs/2508.20722
https://arxiv.org/abs/2508.20722
https://arxiv.org/abs/2505.23352
https://arxiv.org/abs/2507.11988
https://arxiv.org/abs/2507.11988
https://arxiv.org/abs/2507.05720
https://arxiv.org/abs/2508.19504
https://arxiv.org/abs/2509.00189

Under review as a conference paper at ICLR 2026

Tongyi DeepResearch Team. Tongyi-deepresearch. https://github.com/Alibaba-NLP/
DeepResearch, 2025.

Fanggiao Tian, An Luo, Jin Du, Xun Xian, Robert Specht, Ganghua Wang, Xuan Bi, Jiawei Zhou,
Ashish Kundu, Jayanth Srinivasa, Charles Fleming, Rui Zhang, Zirui Liu, Mingyi Hong, and Jie
Ding. An outlook on the opportunities and challenges of multi-agent ai systems, 2025. URL
https://arxiv.org/abs/2505.18397.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms, 2025. URL
https://arxiv.org/abs/2501.06322.

Ningning Wang, Xavier Hu, Pai Liu, He Zhu, Yue Hou, Heyuan Huang, Shengyu Zhang, Jian Yang,
Jiaheng Liu, Ge Zhang, Changwang Zhang, Jun Wang, Yuchen Eleanor Jiang, and Wangchunshu
Zhou. Efficient agents: Building effective agents while reducing cost, 2025a. URL https:
//arxiv.org/abs/2508.02694.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang Ding, Miao Zhang, Jie Liu, and Min Zhang.
Agentdropout: Dynamic agent elimination for token-efficient and high-performance 1lm-based
multi-agent collaboration, 2025b. URL https://arxiv.org/abs/2503.18891.

Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, and Yue Zhang. Abduct, act, predict: Scaffolding
causal inference for automated failure attribution in multi-agent systems, 2025. URL https:
//arxiv.org/abs/2509.10401.

Feijie Wu, Zitao Li, Fei Wei, Yaliang Li, Bolin Ding, and Jing Gao. Talk to right specialists: Routing
and planning in multi-agent system for question answering, 2025. URL https://arxiv.org/
abs/2501.07813.

Zidi Xiong, Yuping Lin, Wenya Xie, Pengfei He, Jiliang Tang, Himabindu Lakkaraju, and Zhen
Xiang. How memory management impacts llm agents: An empirical study of experience-following
behavior, 2025. URL https://arxiv.org/abs/2505.16067.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. Mas-gpt: Training
lIms to build llm-based multi-agent systems, 2025. URL https://arxiv.org/abs/2503.
03686.

Chengyue Yu, Siyuan Lu, Chenyi Zhuang, Dong Wang, Qintong Wu, Zongyue Li, Runsheng Gan,
Chunfeng Wang, Siqi Hou, Gaochi Huang, Wenlong Yan, Lifeng Hong, Aohui Xue, Yanfeng
Wang, Jinjie Gu, David Tsai, and Tao Lin. Aworld: Orchestrating the training recipe for agentic ai,
2025. URL https://arxiv.org/abs/2508.20404.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025a.

Guibin Zhang, Junhao Wang, Junjie Chen, Wangchunshu Zhou, Kun Wang, and Shuicheng Yan.
Agentracer: Who is inducing failure in the Ilm agentic systems?, 2025b. URL https://arxiv.
org/abs/2509.03312.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation, 2025c. URL https://arxiv.org/
abs/2410.10762.

13

https://github.com/Alibaba-NLP/DeepResearch
https://github.com/Alibaba-NLP/DeepResearch
https://arxiv.org/abs/2505.18397
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2508.02694
https://arxiv.org/abs/2508.02694
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2503.18891
https://arxiv.org/abs/2509.10401
https://arxiv.org/abs/2509.10401
https://arxiv.org/abs/2501.07813
https://arxiv.org/abs/2501.07813
https://arxiv.org/abs/2505.16067
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2503.03686
https://arxiv.org/abs/2503.03686
https://arxiv.org/abs/2508.20404
https://arxiv.org/abs/2509.03312
https://arxiv.org/abs/2509.03312
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762

Under review as a conference paper at ICLR 2026

Ruijia Zhang, Xinyan Zhao, Ruixiang Wang, Sigen Chen, Guibin Zhang, An Zhang, Kun Wang, and
Qingsong Wen. Safesieve: From heuristics to experience in progressive pruning for llm-based
multi-agent communication, 2025d. URL https://arxiv.org/abs/2508.11733.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures
and when? on automated failure attribution of 1lm multi-agent systems, 2025e. URL https:
//arxiv.org/abs/2505.00212.

Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui
Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-purpose task
solving, 2025f. URL https://arxiv.org/abs/2506.12508.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23378-23386, 2025g.

Yaolun Zhang, Xiaogeng Liu, and Chaowei Xiao. Metaagent: Automatically constructing multi-
agent systems based on finite state machines, 2025h. URL https://arxiv.org/abs/2507.
22606.

Jingwen Zhou, Jieshan Chen, Qinghua Lu, Dehai Zhao, and Liming Zhu. Shielda: Structured
handling of exceptions in llm-driven agentic workflows, 2025. URL https://arxiv.org/
abs/2508.07935.

He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li,
Ningning Wang, Pai Liu, Tianhao Peng, Xin Gui, Xiaowan Li, Yuhui Liu, Yuchen Eleanor Jiang,
Jun Wang, Changwang Zhang, Xiangru Tang, Ge Zhang, Jian Yang, Minghao Liu, Xitong Gao,
Jiaheng Liu, and Wangchunshu Zhou. Oagents: An empirical study of building effective agents,
2025. URL https://arxiv.org/abs/2506.15741.

14

https://arxiv.org/abs/2508.11733
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2506.12508
https://arxiv.org/abs/2507.22606
https://arxiv.org/abs/2507.22606
https://arxiv.org/abs/2508.07935
https://arxiv.org/abs/2508.07935
https://arxiv.org/abs/2506.15741

Under review as a conference paper at ICLR 2026

CONTENTS
1 Introduction
2 Related Work

3 Preliminary
3.1 A Formalism for Supervised Multi-Agent Systems
3.2 The SUPERVISORAGENT’s Context Window
3.3 The Supervisor’s Action Spaceo e

4 Methodology
4.1 What to Supervise: High-Risk Interaction Points
4.2 When to Supervise: The Adaptive Filter
4.3 How to Supervise: Memory-Augmented, Multi-Level Intervention

5 Experiments
5.1 Experimental Setup
5.2 Resultsand Analysis

6 Discussion and Conclusion

A Appendix
Al LLMUSAge o v vt e e e e e
A2 Experimental Setup
A21 Datasets e e
A22 Baselines
A.3 TImplementationdetails
A.3.1 What to Supervise: The ActionStep Object
A.3.2 When to Supervise: The Prioritized Adaptive Filter
A.3.3 How to Supervise: The Intervention Pipeline
A4 CaseStudy e
AS Prompts L. e

15

R) AW Ww w

NN

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

The large language model (LLM) was utilized as a writing assistant during the preparation of this
manuscript. Its application was strictly limited to improving the clarity and grammatical accuracy of
the text. Specific uses included rephrasing sentences for better flow and translating initial concepts
and drafts from Chinese to English. All core scientific contributions, including the conceptualization
of our SUPERVISORAGENT framework, the design of the methodology and experiments, and the
analysis and interpretation of the results, are solely the work of the authors. The authors take full
responsibility for all claims and the final content of this paper.

A.2 EXPERIMENTAL SETUP
A.2.1 DATASETS

Here, we provide a detailed introduction to the datasets used in this paper:

* GAIA (Mialon et al., 2023) serves as a benchmark designed to evaluate next-generation LLMs that
possess enhanced capabilities through the incorporation of tools, efficient prompting strategies, and
access to external search resources. This benchmark comprises over 450 challenging questions,
each with a clear and unequivocal answer, necessitating varying degrees of tooling and autonomy
for resolution. Accordingly, the questions are categorized into three distinct levels: Level 1 is
expected to be solvable by proficient LLMs, while Level 3 signifies a substantial increase in the
model’s capabilities. Each level includes a fully public development set for validation purposes,
as well as a test set containing private answers and associated metadata. In our experiments, we
utilize the test set, which encompasses 164 tasks.

* GSM-hard (Gao et al., 2022) is an advanced version of the GSM8K mathematics reasoning
dataset (Cobbe et al., 2021). This enhanced dataset presents models with increased challenges,
featuring larger numerical values and more complex relationships within the problems.

* AIME-2024 (HuggingFaceH4, 2024) is a dataset comprising problems derived from the Amer-
ican Invitational Mathematics Examination (AIME) 2024. AIME is a prestigious mathematics
competition for high school students, recognized for its challenging problems that span various
mathematical domains. This benchmark serves multiple purposes: it evaluates the mathematical
reasoning capabilities of LLMs, assesses their problem-solving abilities on complex mathematical
challenges, and investigates Al performance on structured mathematical tasks.

* HumanEval (Chen et al., 2021) is a dataset released by OpenAl that includes 164 programming
problems, each containing a function signature, a docstring, a body, and several associated unit
tests. These problems were handwritten to ensure that they were not included in the training dataset
for code-generation models. This benchmark is crucial for evaluating code-generation models,
providing a structured set of challenges in Python that facilitates the assessment of both the quality
and correctness of code produced by language models.

* MBPP(Mostly Basic Python Problems Dataset) (Austin et al., 2021) comprises approximately
1,000 crowd-sourced Python programming problems that are specifically designed to be solvable
by entry-level programmers. The dataset covers essential programming fundamentals and standard
library functionalities. Each problem includes a task description, a corresponding code solution,
and three automated test cases.

* DROP(Data Retrieval Open Answering) Dua et al. (2019) is a reading comprehension benchmark
that requires discrete reasoning over paragraphs. This dataset consists of 96,000 questions developed
through crowd sourcing and adversarial methods. It challenges systems to resolve references
within the questions, which may point to multiple input positions. The tasks entail performing
discrete operations, such as addition, counting, and sorting, necessitating a substantially more
comprehensive understanding of paragraph content than that demanded by prior datasets. In our
experiment, we sampled 800 tasks for evaluation.

16

Under review as a conference paper at ICLR 2026

A.2.2 BASELINES

* Vanilla is the original Large Language Model (LLM) that processes input using only the question
and a basic prompt, without any prompt engineering or external tool integration. This straightfor-
ward approach emphasizes the model’s inherent capabilities in handling natural language tasks.
By operating in this simplistic manner, Vanilla LLM serves as a critical baseline for evaluating
the performance of more advanced techniques that incorporate sophisticated prompt strategies or
additional tools, thereby providing valuable insights into the effectiveness of various methodologies
in natural language processing.

* CoT-SC(Chain-of-Thought Self-Consistency) (Wang et al., 2023) serves as a baseline for enhancing
the reasoning capabilities of language models. This approach generates multiple reasoning chains,
which are then aggregated to produce a coherent summary. By leveraging self-consistency, CoT-
SC improves the reliability of the model’s outputs, allowing for better performance in complex
reasoning tasks. This structured process facilitates deeper analysis of the model’s thought processes,
providing a foundation for comparing more advanced reasoning strategies and understanding their
impact on overall performance.

* MetaAgent (Zhang et al., 2025h) is a groundbreaking framework designed to automatically
construct multi-agent systems by specifying the objectives of a given task. A distinctive feature of
MetaAgent is its ability to generate these multi-agent systems without relying on external training
data. This capability allows the produced multi-agent systems to effectively address all scenarios
within the specified task domain. The underlying architecture of the Multi-Agent System is based
on Finite State Machines(FSM), which facilitates structured decision-making and state transitions,
thereby enhancing the system’s operational efficiency and adaptability.

* OWL(Open Web Language) (Hu et al., 2025) serves as a foundational framework for knowledge
representation in multi-agent systems. By enabling agents to process and reason over complex data
in a machine-readable format, OWL is crucial for facilitating interoperability among diverse agents.
It allows for the creation of ontologies that define intricate relationships and constraints within the
environment, thereby enhancing collaborative behaviors among agents. The expressive power of
OWL supports advanced inference capabilities, empowering agents to share knowledge effectively
and make informed decisions. This framework establishes a robust baseline for evaluating and
enhancing the performance of multi-agent systems in various applications.

* SmolAgent (Roucher et al., 2025) is a lightweight library designed to facilitate the development
and implementation of Al agents that can think and operate using code. It emphasizes simplicity
and efficiency, enabling users to create multi-agent systems with minimal code. SmolAgent’s
architecture allows for smart threading, dependency management, and context sharing, making it
ideal for orchestrating complex tasks. By providing a streamlined framework, SmolAgent serves as
a foundational model for evaluating the performance and capabilities of more advanced agent-based
systems in various applications.

* AWorld (Yu et al., 2025) is an open-source framework for large-scale agent—environment interac-
tion, designed to accelerate the “learning from practice” paradigm in agentic Al. By distributing
tasks across clusters, AWorld speeds up experience collection by over 14x compared to standard
sequential execution, enabling practical and scalable reinforcement learning. Using this frame-
work, a Qwen3-32B-based agent trained in AWorld achieves state-of-the-art results on the GAIA
benchmark, providing a practical blueprint for end-to-end agentic Al training.

A.3 IMPLEMENTATION DETAILS

In this section, we provide a detailed description of how the conceptual framework of SUPER-
VISORAGENT is implemented in our codebase. Our implementation is centered around the
supervise_and_correct function, which serves as the primary entry point for all supervisory
actions. We structure our explanation following the same What, When, and How logic presented in
our main methodology.

A.3.1 WHAT TO SUPERVISE: THE ACTIONSTEP OBJECT

Our supervision targets the discrete interaction steps performed by each agent within the MAS. In our
framework, every such interaction is encapsulated in a data structure we refer to as an ActionStep
object. This object contains all relevant information for a single step, including the agent’s thought

17

Under review as a conference paper at ICLR 2026

process (model_output), the executed tool_calls, the resulting observations, and an
error attribute which is populated if an exception occurs. Our SUPERVISORAGENT is implemented
as a callback function that intercepts every ActionStep object generated by any agent in the
system.

A.3.2 WHEN TO SUPERVISE: THE PRIORITIZED ADAPTIVE FILTER

To avoid the prohibitive cost of constant intervention, we employ a lightweight, LLM-free adap-
tive filter. This filter is implemented as a prioritized conditional chain at the beginning of the
supervise_and_correct function. It evaluates each ActionStep to determine if supervi-
sion is warranted. The conditions are checked in the following order of precedence:

1. Sub-Agent Completion: The highest priority is to check if the observation contains a final report
from a sub-agent (identified by the presence of a "<summary_of_work>" string). If so, it
triggers the specialized Adaptive Observation Purification strategy to distill the
findings for the manager agent.

2. Error Occurrence: If the step.error attribute is not None, the Proactive Error
Correction strategy is triggered. Our implementation includes a defensive check to ensure
this does not fire for known, non-critical tool failures that the base agent can handle.

3. Inefficient Behavior: If no error is present, we then check for inefficiency using our heuristic-
based _check_for_inefficiency function. This function detects patterns such as hard
loops (identical actions and observations) and excessive step counts for a given sub-task, triggering
the Guidance for Inefficiency strategy.

4. Excessive Observation Length: Finally, if none of the above conditions are met, the filter
checks if the length of the step.observations string exceeds a pre-defined threshold (3,000
characters in our implementation). If it does, the general type of Adaptive Observation
Purification strategy is activated.

If none of these conditions are met, the step is approved by default, and no costly LLM-based
supervision is invoked.

A.3.3 HOW TO SUPERVISE: THE INTERVENTION PIPELINE

Once the adaptive filter flags an interaction, the supervise_and_correct function executes a
three-stage intervention pipeline:

1. Context Aggregation Before making a decision, the Supervisor aggregates a compre-
hensive context window (V). This process involves retrieving the global task (G) and
the agent’s local task (L), formatting the agent’s recent local action history (7;) via the
_format_local_trace_for_prompt function, and generating a summary of the current
step (S) using the _summarize_interaction function. For inefficient behavior, the full global
trace (1) is also included.

2. LLM-based Decision Making The aggregated context is then compiled into a specialized prompt
tailored to the triggered supervision type (e.g., Proactive Error Correction). This prompt
instructs our main model (e.g., GPT-4.1) to analyze the situation and return a structured JSON object
containing its analysis, achosen action (fromthe set {approve, correct_observation,
provide_guidance, run_verification}), and the necessary parameters to execute that
action.

3. Action Execution The returned JSON is parsed, and the chosen action is executed.

e correct_observation: The original step.observations is entirely replaced with the
new_observation provided in the parameters. A “[Supervisor’s Note: ...]” is prepended to
inform the agent of the modification.

e provide_guidance: The guidance string from the parameters is appended to the end of
the existing step.observations, leaving the original sensory data intact while providing a
corrective hint.

e run_verification: The task parameter is passed to a dedicated, fully-equipped verification
agent, and its conclusive findings are appended to the step.observations.

18

Under review as a conference paper at ICLR 2026

A.4 CASE STUDY

GAIA Benchmark Case Information

Task ID: 5b2al4e8-6e59-479¢-80e3-4696e8980152

Level: 3

Question: The brand that makes these harnesses the dogs are wearing in the attached
pic shares stories from their ambassadors on their website. What meat is mentioned in the story
added Dec 8th 20227

Attached iamge: 5b2al4e8-6e59-479c-80e3-4696e8980152.jpg

1. Activate first search_agent:
Failure attribution: page_down 10 times and end up searching
Output of first search_agent:

Observations: ### 1. Task outcome (short version):

Despite a detailed investigation and navigation through the RC Pets
official website and blog section, I was unable to locate the

ambassador story posted on December 8th, 2022. Therefore, I cannot

report any mention of meat in its content.

2. Activate another search_agent:

* Plan: turn to access historical versions of the website
 page_down for 7 times

¢ Then web_search other resources

* Output of search_agent

Observations: ### 1. Task outcome (short version):

Despite a detailed investigation and navigation through the RC
Pets official website and blog section, I was unable to locate
the ambassador story posted on December 8th,2022. Therefore, I
cannot report any mention of meat in its content.

3. Activate third search_agent:

* Plan: Thought: Since all direct website and archive attempts failed, I will extend my search
to include RC Pets’ official social media (Instagram, Facebook, Twitter) and broader web,
as brands often share ambassador stories across platforms and tag or date posts.

» web_search for 8§ times
* Output of search_agent

Observations: ### 1. Task outcome (short version):

No evidence was found of any RC Pets ambassador or partner story
posted on December 8th, 2022, on official RC Pets Instagram,
Facebook, Twitter, or the broader web. No blog posts, community
group stories, or ambassador reposts regarding RC Pets for that
date or month could be

located, and no relevant content mentioning meat was found.

Original final answer:

Final answer: After an exhaustive investigation across all
available RC Pets channels (official website, blog, and social
media), Wayback Machine, pet influencer blogs, hashtags, and pet
community forums, no ambassador story or repost by RC Pets or
affiliated

19

Under review as a conference paper at ICLR 2026

ambassadors/partners could be found for December 8th, 2022. No
story mentioning any meat was identified for the date or month, and
no content relevant to the request is accessible through any
official or community web source. All logical avenues for
retrieving the answer were

attempted and exhausted.

Reformulated answer: Unable to determine

. J

Smolagent + SupervisorAgent

Supervision type: Basic_extraction: 8 times
Supervision type: Inefficiency_analysis: 2 times

 First time

guidance: Providing guidance to agent: ’'Stop paging through the
blog manually. Instead, use the web_search tool or the Ruffwear
website’s internal search to find the specific ambassador story
posted on December 8th, 2022. You could search for ’'Ruffwear
ambassador story December 8 2022’ or check if the blog section
has a date-filter or text search. Once you locate the precise
article, examine it for any mention of meat, noting a quote for
context.’

Analysis: The agent is stuck repeatedly using ’page_down’
without making meaningful progress toward locating the December 8
th, 2022 story among the ’ambassadors’ blog entries. There are 82
pages, and there’s no indication the agent is close to the
correct blog post. This paginated browsing is highly inefficient
when a direct search or filter by date would be much faster. It’s
overwhelmingly more efficient to instead search for the specific
blog post by date (’December 8th, 2022’) using the web_search
tool or any site search functionality if available.

¢ Second time

approve

Supervision type: sub_agent_result_synthesis: 1 time
* Original output length: 47902
* Length after process: 1438

content = """

Official Ruffwear Ambassador Stories Section

- Ruffwear ambassador stories are shared in ’'Explored: A Ruffwear
Blog’ (https://ruffwear.com/blogs/explored/tagged/ambassadors) .

Story Posted December 8, 2022

- Title: "Snow Camping With Theresa & Cassie"

— Author: Theresa Silveyra

— Date Published: December 8, 2022 ("2022-12-08 08:00:01 -0800")
— Story URL: https://ruffwear.com/blogs/explored/snow—camping—
with-theresa-cassie

Meat Mentioned in the Story
— The only specific meat mentioned is "bacon".

> Specific quoted context from the story:

> "Of course, barely a minute had passed before Cassie’s longing
eyes and dangling tongue signaled a desire to play or, perhaps, a
desire for treats. She led the way back, her fluffy white tail
raised high in excitement, ready to take on this new year and,

20

Under review as a conference paper at ICLR 2026

more likely, ready to devour the New Year’s Day bacon being
cooked up in camp."

Confirmation of Accuracy

— The article and details are confirmed by both page metadata and
direct content search.

— Searches for "meat", "chicken", "beef", "turkey", "pork", "fish
", "salami", and "sausage" yielded no other results; only bacon

was present.

Additional Context

— Author attribution and publication date are validated.

— Other foods or treats are referenced, but bacon is the only
explicit meat in the text.

Direct Answer
— The meat mentioned in the Ruffwear ambassador story posted on
December 8th, 2022 is bacon.

A.5 PROMPTS

Base prompt for SUPERVISORAGENT

base_prompt = f£"""

Role: You are an expert supervisor in a multi-agent system. Your
role is to monitor an agent’s actions, ensure alignment with the
main goal, correct errors, and optimize the workflow.

Objective: The overall objective (Global Task) is: "{global_task}"

Agent context:
You are currently reviewing an action from the agent ’{agent_name
}r.
This agent’s specific sub-task (Local Task) is: '{local_task}’.
Here 1s the current local execution trace: {local_trace_str}
Here is the summary of the agent’s latest thought process and the
resulting observation:

{summary}

{current_state_summary}

Rules:

1. Assess Necessity: First, assess if intervention is truly
necessary. If the agent’s action and observation are correct and
productive, use the "approve" action. Avoid unnecessary
interventions.

2. Be Decisive: When an intervention is needed, choose the most
effective action to move the project forward.

3. Output Format: Your response MUST be a valid JSON object.

Actions:
Your available actions are:
- ‘approve‘': The agent’s action is correct and requires no changes

= ‘correct_observation': The observation contains errors or can be
significantly improved (e.g., filtered, summarized, extracted).

You will provide a corrected version.

- ‘provide_guidance‘: The observation is correct, but the agent’s

thinking or next step is flawed. You will provide a hint or

corrected reasoning to guide the agent.

21

Under review as a conference paper at ICLR 2026

- ‘run_verification': You have doubts about the factual accuracy
of the observation and need an external assistant to verify it.

Your response MUST be a JSON object with the following structure:
{
"analysis": "Your brief analysis of the situation, explaining
your reasoning for the chosen action.",
"action": "ONE of the available actions: [’approve’, '
correct_observation’, ’provide_guidance’, ’run_verification’]",
"parameters": {
"new_observation": "IF action is ’correct_observation’,
provide the refined observation here.",
"guidance": "IF action is ’provide_guidance’, provide a clear
hint or instruction for the agent’s next thought process.",
"task": "IF action is ’'run_verification’, provide the
verification question for the assistant."

}

} nun

Prompt for "error_occurrence"

Base Prompt:

Addtional Prompt:

f" nn

**Rolexx:You are an expert Debugger and AI Diagnostician. Your
primary goal is to understand the root cause of an error and
provide the most effective solution to get the agent back on track.

**Situationxx:

The agent’s last action resulted in a critical error, which is
detailed in the "summary" of the agent’s action below. *xApproval
is not an option; you must intervene.xx

**x——— Your Debugging Framework (MANDATORY) ———xx*
Before generating your JSON output, you MUST follow this structured
thinking process:

**Step 1: Analyze the Errorxx
— What 1is the precise error message and type (e.g., ‘Tool Error
‘, ‘Python Exception‘, ‘APIError‘)?

**Step 2: Examine the Contextx*x*
— Review the ‘local_execution_trace' and the agent’s ‘thought®
process leading to the error.
— What was the agent *tryingx to accomplish?
— Was the tool call or code it executed (‘summary' section)
syntactically correct but logically flawed?

**Step 3: Root Cause Diagnosisx*x
— Based on the error and context, what is the single most
likely root cause?
- (e.g., "The agent passed a natural language string to a tool
expecting a mathematical expression.", "The agent is trying to
access a file that does not exist.")

+**xStep 4: Formulate a Solution Strategyxx
— Based on the root cause, determine the best intervention:

22

Under review as a conference paper at ICLR 2026

- If the error can be fixed by correcting the agent’s =xx
next thought process or actionxx, choose ‘provide_guidance
‘. This is the most common case for logical errors.

— If the error was caused by faulty information in the #x
previous observation*x that the agent is now acting upon,
choose ‘correct_observation?'.

- If you lack critical information to solve the error and
need to consult an external source, choose '
run_verification®.

**——— YOUR ACTIONABLE OUTPUT (JSON) ———xx%
Based on your diagnosis, provide your final decision in the JSON
format.

Prompt for "inefficiency_behavior"

Base Prompt:

Additional Prompt:

f" nmn

**Rolex*:You are a pragmatic and experienced AI workflow strategist
Your primary goal is to ensure the agent team achieves its task

in the most efficient way xxfrom its current statexx.

Situation:An inefficiency trigger has been activated for agent
"{agent_name}’. **This is a flag for you to review, NOT a
confirmation of a problem.xx The agent might be engaged in a
necessary, methodical process.

**Global Execution Tracexx:
{global_trace_str}

*x——— Your Decision Framework (MANDATORY) ———x*x%
Before generating your JSON output, you MUST follow this structured
thinking process:

**Step 1l: Goal & Plan Inferencexx
— Based on the ‘Global Execution Trace‘, what is the agent’s
immediate, implicit plan?
- (e.g., "The agent is clearly trying to collect all rows of a
data table by repeatedly using ‘page_down'‘.")

**Step 2: Progress Assessmentxx
— Is the agent making tangible progress towards its inferred
goal?
— Is each new step yielding new, relevant information (even if
it’s just more rows of the same table)?
— How close is the agent to completing this sub-task? (e.g., "
It is on page 10 of 13, it is very close to getting all the
data.")

+**Step 3: Cost-Benefit Analysis of Intervention*x*

— xxCompare two costsxx*:
— x*%Cost Ax*: The estimated cost (time, tokens) of letting
the agent xxcontinuexx its current, perhaps clumsy, path to

completion.

— xxCost Bxx: The estimated cost of xxinterruptingxx the
agent, guiding it to a new path, and having it xxstart over
*%x on that new path.

23

Under review as a conference paper at ICLR 2026

— *xCRITICAL QUESTION*x: Is the agent "one step away" from
solving its sub-task? If so, interrupting it is almost
always the wrong decision, even if a theoretically "better"
path exists.

**Step 4: Decision and Justificationxx
— Based on the analysis above, decide between ‘approve' and '
provide_guidance.

**——— YOUR ACTIONABLE OUTPUT (JSON) ———xx%
You must choose ONE of the following two actions:

**x1. If you decide the agent should continue:*x*

— xxConditionxx: The agent is making clear, incremental

progress AND is close to completing its sub-task (Cost A < Cost
B) .

— xxActionx*x: MUST be ‘"approve"*‘.

— *xAnalysis**: Briefly explain *whyx the agent’s current path,
while perhaps repetitive, is the most pragmatic way forward
from its current state. (e.g., "The agent is methodically
paginating through a table to gather all data. Although
repetitive, this is a valid and necessary process. It is on
page 10 of 13 and about to succeed. Intervention would be
disruptive.")

*x2. If you decide the agent is truly stuck:xx
— xxCondition**: The agent is in a non-productive loop (e.g.,
getting the same observation repeatedly) OR the alternative
path is overwhelmingly more efficient and the agent is not
close to finishing (Cost B << Cost A).
— x*xActionx*: MUST be ‘"provide_guidance"‘.
— **xAnalysis**: Briefly explain the root cause of the
inefficiency.
— xxGuidancexx: The ‘guidance‘ parameter MUST contain a clear,
concrete, and actionable instruction that represents a *
significantly* better strategy. (e.g., "Instead of scrolling,
use the ‘web_search' tool with the query ’‘who had the most BB
for the 1977 Yankees’ to get the answer directly.")

wnwn

Prompt for "excessive observation length"

fll nmn

Role: AI Agent Observation Compressor

You are a specialized data compression model for an AI agent. Your
sole purpose is to process raw observations (HTML, text, etc.) and

reduce their token count while strictly preserving their structural
integrity and all potentially useful information.

x## Core Principles ##xx

1. xxContext-Agnostic:x* You have NO knowledge of the agent’s
overall goal or past actions. Do NOT try to infer the task. Your
compression must be generic and unbiased, preserving information
that could be useful for ANY potential task.

2. *xPreservation Over Compression:xx It is critically important
to avoid over-summarization. Losing a potentially key piece of
information is a greater failure than not compressing enough. The
output must retain enough detail for the agent to make informed
decisions.

24

Under review as a conference paper at ICLR 2026

3. xxStructural Integrity:** The output’s structure (headings,
lists, paragraphs, HTML hierarchy) must mirror the input’s
structure. Do not merge distinct sections.

4. xxPreserve Metadatax+*: Always keep leading lines like ‘"Address
: ."Y, Y"Wiewport: ..."' verbatim.

x+##Compression Rules##x*x
Based on the type of content, apply the following rules:

«+xType 1: For HTML Contentsx

Your goal is to simplify the HTML to its semantic and

structural core, removing presentation-focused noise.

1. xxSimplify Tags:*x* Remove non-essential attributes.
= **REMOVE attributes like:*x ‘class‘, ‘id‘, ‘style?‘',
onclick', ‘onmouseover', and any ‘data-*x' or ‘Js—»*'
attributes. These are primarily for styling and scripting,
not for content structure.
= **KEEP essential attributes:x* ‘href‘, ‘src‘, ‘alt',
title', ‘aria-label‘, ‘placeholder‘', ‘value‘. These
attributes contain crucial information for navigation and

interaction.
2. xxRemove Non-Visible Content:** Completely remove ‘<script
>Y, ‘<style>', and HTML comment ‘' blocks.
3. =xxPreserve Content:** Keep ALL text content within tags
exactly as it is. Do not summarize the text inside the HTML.
4. xxWhitespace:xx Condense multiple spaces, newlines, and

tabs in the HTML structure into a single space where
appropriate to improve readability without losing structure.
**Example: x*
* **%0Original:*+ ‘<td class=’datacolBoxR’ style='"padding: 5
px;’'>25</td
S
* *+xCompressed:x* ‘<td><a href="/wiki/some_link" title="
Some Link">25</td>"

+xType 2: For Plain Text Contentxx
Your goal is to make the text more concise without losing
factual information or its original layout.
1. xxRetain Key Information:xx Fully preserve all named
entities (e.g., people, organizations, locations), numbers,
dates, codes, IDs, and any factual data.
2. x*xCondense Prose:** For descriptive sentences or paragraphs
, rephrase them to be more direct. Remove filler words,
redundant phrases, and overly elaborate adjectives. However, do
NOT eliminate the sentence entirely.
3. xxMaintain Structure:xx If the input text has multiple
paragraphs, bullet points, or numbered lists, the output MUST
have the same structure. Do not flatten a list into a single
paragraph.
**Example: x*
* xxOriginal:x* "The company, officially known as The
International Business Machines Corporation (IBM), is a
very large and influential American multinational
technology corporation that has its headquarters located in
Armonk, New York, and it was originally founded all the
way back in 1911."
* **xCompressed:*«* "The International Business Machines
Corporation (IBM) is an American multinational technology
corporation headquartered in Armonk, New York, founded in
1911."

*x## Final Instruction ##x*x*

25

Under review as a conference paper at ICLR 2026

Process the following observation according to the rules above.
Provide only the compressed output, without any extra text,
explanation, or preamble.

{observation}
nmwnw

Prompt for "result_synthesis"

this is for synthesis the final answer from sub-agent
Base Prompt:

Additional Prompt:

fll nmn

**Rolex*:You are an expert Intelligence Analyst working for a
manager agent. Your task is to process a verbose report from a
sub-agent (e.g., a search specialist) and synthesize a direct,
comprehensive, and clean answer for your manager.

x——— YOUR INPUTS ———%x
%1 . The Manager’s Request (Immediate Goal) xx:
- "{local_task}"

*%x2. The Overall Mission (Global Goal) *=*:
- "{global_task}"

*%3. The Sub-Agent’s Full Field Report (Raw Observation) xx:

AW

{summary}
(Note: The ’summary’ variable here contains the sub-agent’s full,
multi-part final_answer)

**——— YOUR CRITICAL TASK ———%x%

Your sole task is to read the ENTIRE "Field Report" (including
the short version, detailed version, and the summary of work) and
synthesize a single, clean, and self-contained response that =xx

fully and completely*x answers the "Manager’s Request".
**xCritical Rule for Synthesisxx:
**Preserve Semantic Structurexx: When synthesizing, you MUST
maintain the original information’s hierarchy. If the source
contains headings, chapters, articles, or numbered/bulleted
lists, these structural elements *x*MUST be preservedsx in
your output to give context to the data points below them. xx
Do not flatten a structured document into a simple,
unstructured block of text.x*x
**Your Internal Thought Process (MANDATORY) xx*:
1. =xxDeconstruct the Manager’s Requestx*x: What are the
specific pieces of information the manager is asking for?
Create a mental checklist.
2. *xScan the Entire Reportx*: Read all parts of the sub
—agent’s report to find the answers for your checklist.
The most valuable details are often in the "extremely
detailed version" or the "summary of work".

3. xxSynthesize, Don’t Just Extractx*: Combine the
findings into a coherent, fluent, and direct answer. Do
not simply copy the "short version". Your answer must be

comprehensive enough to prevent the manager from needing
to ask follow-up questions.

26

Under review as a conference paper at ICLR 2026

**Examplexx:

— xxManager’s Requestxx: "Find the number of encoder layers in

the BERT-Base model."

— x*xSub-Agent’s Reportxx: (A long text containing "Short version:
12 layers", "Detailed version: ...Section 3 of the paper states

L=12 for BERT-Base...", etc.)

— **xYour Ideal Synthesized Outputs*x: "The BERT-Base model has 12

encoder layers (L=12), as specified in Section 3 of the original

paper by Devlin et al., 2018."

*xAction**:Your action MUST be ‘"correct_observation"*‘.

“n

**xParameterxx:Provide your final, synthesized answer in the

new_observation" ' parameter.
nnn

27

	Introduction
	Related Work
	Preliminary
	A Formalism for Supervised Multi-Agent Systems
	The SupervisorAgent's Context Window
	The Supervisor's Action Space

	Methodology
	What to Supervise: High-Risk Interaction Points
	When to Supervise: The Adaptive Filter
	How to Supervise: Memory-Augmented, Multi-Level Intervention

	Experiments
	Experimental Setup
	Results and Analysis

	Discussion and Conclusion
	Appendix
	LLM usage
	Experimental Setup
	Datasets
	Baselines

	Implementation details
	What to Supervise: The ActionStep Object
	When to Supervise: The Prioritized Adaptive Filter
	How to Supervise: The Intervention Pipeline

	Case Study
	Prompts

