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Abstract001

The integration of knowledge graphs (KGs)002
with large language models (LLMs) offers sig-003
nificant potential to improve the retrieval phase004
of retrieval-augmented generation (RAG) sys-005
tems. In this study, we propose KG-CQR,006
a novel framework for Contextual Query Re-007
trieval (CQR) that enhances the retrieval phase008
by enriching the contextual representation of009
complex input queries using a corpus-centric010
KG. Unlike existing methods that primarily011
address corpus-level context loss, KG-CQR012
focuses on query enrichment through struc-013
tured relation representations, extracting and014
completing relevant KG subgraphs to gener-015
ate semantically rich query contexts. Com-016
prising subgraph extraction, completion, and017
contextual generation modules, KG-CQR op-018
erates as a model-agnostic pipeline, ensuring019
scalability across LLMs of varying sizes with-020
out additional training. Experimental results021
on RAGBench and MultiHop-RAG datasets022
demonstrate KG-CQR’s superior performance,023
achieving a 4-6% improvement in mAP and a024
2-3% improvement in Recall@25 over strong025
baseline models. Furthermore, evaluations on026
challenging RAG tasks such as multi-hop ques-027
tion answering show that, by incorporating028
KG-CQR, the performance consistently outper-029
forms the existing baseline in terms of retrieval030
effectiveness1.031

1 Introduction032

Large Language Models (LLMs) have significantly033

advanced the field of natural language processing034

(NLP), particularly in understanding and generat-035

ing human-like text. However, LLMs still suffer036

from two critical limitations: a lack of reliable037

factual knowledge and limited reasoning capabil-038

ities (Wang et al., 2024b). These limitations be-039

come more pronounced when LLMs are applied to040

domain-specific knowledge retrieval, especially in041

1https://github.com/anonymous/repo
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Figure 1: Overview of query expansion approaches for
RAG systems: a) query decomposition; b) document
generation; c) ours: KG-enhanced contextual generation

addressing queries within vertical domains (Bang 042

et al., 2023). To address these challenges, recent 043

research has explored the integration of Knowl- 044

edge Graphs (KGs) into LLMs as a means to pro- 045

vide structured, accurate knowledge sources for 046

enhanced reasoning (Pan et al., 2024). KGs, which 047

store facts in the form of triples (i.e., head entity, 048

relation, tail entity), offer a robust and interpretable 049

representation of knowledge. As a result, LLM- 050

based applications have increasingly incorporated 051

KGs to improve performance in tasks such as ques- 052

tion answering (Ding et al., 2024), fact-checking 053

(Pham et al., 2025), and recommendation systems 054

(Abu-Rasheed et al., 2024). 055

In the context of question answering over knowl- 056

edge graphs (KGQA), current approaches can be 057

broadly categorized into two main strategies: (i) us- 058
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ing LLMs to convert natural language queries into059

formal logical queries, which are then executed060

on KGs to derive answers (Nguyen et al., 2024;061

Wang et al., 2024a); and (ii) retrieving relevant062

triples from KGs and presenting them as contextual063

knowledge for the LLM to generate the final answer064

(Sarmah et al., 2024; Sun et al., 2024). Similarly, in065

retrieval-augmented generation (RAG) tasks, exter-066

nal knowledge sources, in terms of both structured067

(KGs) and unstructured (vectorized documents),068

are retrieved and incorporated into the input prompt069

to support answer generation by LLMs (Li et al.,070

2024; Edge et al., 2024). Despite these advances,071

the retrieval process involving KGs remains under-072

explored in the aforementioned approaches.073

This study focuses on enhancing the retrieval074

process for RAG systems by integrating KG tech-075

nologies to enable contextual information for the076

input complex queries. Specifically, the objective is077

to tackle a critical challenge in current systems: the078

embedding misalignment between sentence-level079

queries and document-level corpus representations080

(Ma et al., 2023). Accordingly, existing methods081

often employ large language models (LLMs) to de-082

compose complex queries (Mao et al., 2024) (Fig-083

ure 1(a)). Nonetheless, in terms of retrieval perfor-084

mance, this approach frequently underperforms due085

to insufficient contextual alignment with the cor-086

pus. Sequentially, Gao et al. (2023) proposed a new087

approach by generating hypothetical documents to088

facilitate document-document similarity compar-089

isons (Figure 1(b)). However, this method heavily090

relies on underlying LLMs, introducing risks of091

hallucination. In terms of knowledge-grounded ex-092

pansion generation, Xia et al. (2025) introduced a093

knowledge-aware approach that leverages both un-094

structured data and structured relations. Neverthe-095

less, their reliance on predefined relation schemas096

between entities (e.g., title) and documents con-097

strains the scalability and adaptability.098

To overcome the aforementioned limitations, we099

propose KG-CQR (Knowledge Graph for Contex-100

tual Query Retrieval), a novel framework that lever-101

ages a corpus-centric KG to generate contextual102

information for input queries (Figure 1(c)). The103

key idea is to extract a relevant subgraph from the104

KG to semantically enrich each query. KG-CQR105

comprises three main modules: (i) subgraph extrac-106

tion, which identifies relevant triples; (ii) subgraph107

completion, which infers missing triples; and (iii)108

contextual generation, which constructs enriched109

query contexts. These modules utilize a new struc-110

tured representation of relations, combining tex- 111

tual information with KG triplets, to address the 112

limitations of traditional entity-based scoring in 113

KG extraction. By retrieving directly relevant data 114

and inferring missing knowledge, KG-CQR signifi- 115

cantly improves query contextualization. The main 116

contributions of this work are as follows: 117

• We propose Contextual Query Retrieval 118

(CQR), a novel paradigm designed to enhance 119

the context of domain-specific queries using a 120

predefined corpus. Our framework, KG-CQR, 121

leverages a corpus-centric knowledge graph 122

to improve both query understanding and re- 123

trieval effectiveness, achieving these improve- 124

ments without the need for additional training. 125

• KG-CQR functions as a model-agnostic 126

pipeline that employs structured relation repre- 127

sentations to generate contextual information, 128

ensuring adaptability and scalability across 129

backbone LLMs with varying parameter sizes. 130

• We evaluate KG-CQR on recent, complex 131

benchmark datasets specifically designed for 132

multi-step retrieval processes in RAG systems. 133

The experimental results demonstrate the ef- 134

fectiveness of KG-CQR in enhancing retrieval 135

quality. 136

2 Literature Review 137

2.1 Query Expansion using LLM 138

To handle complex queries effectively, query ex- 139

pansion is often essential for improving the perfor- 140

mance of the retrieval process (Azad and Deepak, 141

2019). Traditional approaches decompose input 142

queries into multi-view representations to enhance 143

retrieval accuracy (Zhang et al., 2022). Recently, 144

with the rapid advancement LLMs, a promising di- 145

rection involves query enhancement, either through 146

prompt-based techniques leveraging LLMs (Wang 147

et al., 2023), or by developing trainable frameworks 148

that generate refined queries (Mao et al., 2024). 149

These methods aim to reformulate input queries to 150

produce more effective semantic representations 151

(Chan et al., 2024; Chen et al., 2024). However, 152

they still struggle to bridge the inherent gap be- 153

tween user queries and the knowledge corpus at the 154

retrieval embedding level (Liu et al., 2025). Ac- 155

cordingly, to further improve retrieval effectiveness, 156

especially in domain-specific applications, a deeper 157

exploitation of contextual generation remains es- 158

sential (Li et al., 2025). 159
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2.2 Contextual Retrieval160

Contextualized retrieval has been introduced to en-161

hance retrieval performance, particularly in chal-162

lenging scenarios (Morris and Rush, 2024). Re-163

cent approaches such as RAPTOR (Sarthi et al.,164

2024) and GraphRAG (Edge et al., 2024) employ165

recursive processes that combine embedding, clus-166

tering, and summarization to build hierarchical rep-167

resentations of documents using tree and graph168

structures, respectively. These hierarchical repre-169

sentations help improve contextual retrieval across170

the original corpus. In terms of query expansion171

through contextualization, Gao et al. (2023) pro-172

poses HyDE, a novel approach that leverages large173

language models (LLMs) to generate hypothetical174

documents conditioned on the input query. Accord-175

ingly, the query is first processed by an LLM fol-176

lowing specific instructions to produce hypothetical177

documents, which are then used as pseudo-contexts178

for retrieval based on document-to-document simi-179

larity. However, a key limitation of HyDE lies in180

its dependence on LLM-powered generated con-181

tent, where potential inaccuracies or hallucinations182

can degrade retrieval effectiveness (Zhang et al.,183

2024; Xia et al., 2025). Moreover, query expan-184

sion strategies must account for domain-specific185

context sensitivity, as the same entities may vary186

in meaning or relevance across different domains187

(Bui et al., 2021). Therefore, this study proposes188

a novel contextual retrieval approach, which fo-189

cuses on providing contextual information for the190

input query, based on the structured relation of the191

corpus-centric KG.192

2.3 LLM-Powered KG Construction193

One of the primary challenges in utilizing knowl-194

edge graphs (KGs) lies in their construction. Prior195

work relies on predefined KGs (Xia et al., 2025),196

which limits the flexibility and scalability of the197

approach. In order to automatically construct a KG,198

given a set of unstructured data sources (corpus),199

Knowledge Graph Construction (KGC) is typically200

framed as a structured prediction task, where mod-201

els are trained to approximate target functions asso-202

ciated with various NLP tasks such as Named En-203

tity Recognition (NER), Relation Extraction (RE),204

Entity Linking (EL), and Knowledge Graph Com-205

pletion (Ye et al., 2022). However, training task-206

specific discriminative models often results in er-207

ror propagation and limited adaptability across di-208

verse tasks. To address these limitations, recent209

approaches reformulate KGC as a generative prob- 210

lem using sequence-to-sequence (Seq2Seq) models 211

(Lu et al., 2022). Powered by pre-trained mod- 212

els such as T5 (Raffel et al., 2020), the Seq2Seq 213

paradigm has demonstrated strong performance in 214

multi-task training settings for KG construction. 215

More recently, the emergence of LLMs has spurred 216

interest in their application to KGC through zero- 217

shot prompting techniques (Pan et al., 2024; Zhu 218

et al., 2024). Building on this line of work, our 219

study leverages modern open-source LLMs, e.g., 220

LLama-3-70B, to construct knowledge graphs by 221

parsing and categorizing entities and their relation- 222

ships directly from unstructured data. 223

3 Methodology 224

3.1 Preliminary 225

3.1.1 Structure Relation Representation 226

A corpus-centric KG includes a set of triplets (struc- 227

ture relation) TKG, which are defined as follows: 228

KG = {EKG, RKG, TKG}
TKG = {(u, r, v), u, v ∈ EKG, r ∈ RKG}

(1) 229

where EKG is the set of entities and RKG is the 230

set of relations. Since the KG is not available 231

for most specific domains, we follow the work in 232

GraphRAG (Edge et al., 2024) to construct the 233

corpus-centric KG, which includes three sequen- 234

tial steps: i) Ingesting specific-domain unstruc- 235

tured data; ii) Extracting entities and their relation- 236

ships using an external LLM; iii) Mapping entities 237

through edges (relations) that contain detailed in- 238

formation about their relationships.

Triplet
Document

...

KG Construction

 Textual Triplet
Representation (TTS)

'u': Saman Bankman-Fried
'r': FOUNDER
'  ': Almeda Research
'TTR': Sam Bankman-Fried, the
founder of Almeda Research, a
trading firm, ...

Knowledge Graph
Structure Relation

Representation

KG Triplets

Figure 2: Construction of structured relation represen-
tations using LLM-based prompting. Detailed prompt
templates are provided in Appendix A.5.

239
To further enhance the expressiveness of the 240

KG, we extend each triplet T i
KG with a textual 241
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triplet representation (TTR). Unlike traditional ap-242

proaches that rely solely on structured relational243

properties, our method leverages LLMs to gener-244

ate rich, natural language representations of each245

triplet, as defined below:246

TTR(T i
KG) = llm(Promtttr, D

i
d, T i

KG) (2)247

where llm(Promptttr, D
i
d, T i

KG) denotes the tex-248

tual description of the relation, generated by an249

LLM based on the instruction prompt Promptttr,250

the corresponding triplet T i
KG, and the document251

d ∈ D from which the triplet was extracted. An252

overview of this process is illustrated in Figure 2.253

In this regard, the structured relation in Equation 1254

is reformulated as:255

TKG = {(u, r, v, TTR(u, r, v))} (3)256

3.1.2 Problem Definition257

The objective of the retrieval process is to extract258

the most relevant documents for the input query, in259

which the similarity score (i.e., cosine similarity)260

can be formulated as follows:261

sim(q, d) =< vq,vd > (4)262

The core challenge in this process lies in ensur-263

ing that the query vector vq (obtained via encoder264

encq) and the document vector vd (obtained via en-265

coder encd) are embedded into a shared semantic266

space. Traditional retrieval models typically rely on267

supervised learning frameworks that train encoders268

using query-document pairs to learn such a shared269

embedding space (Karpukhin et al., 2020; San-270

thanam et al., 2022). However, directly optimizing271

for query-document similarity often results in sub-272

optimal retrieval performance, particularly when273

dealing with sparse or domain-specific queries. To274

address this limitation, we draw inspiration from275

the approach in (Gao et al., 2023), which shifts276

focus toward generating contextual embeddings for277

the query. Notably, instead of encoding the query278

directly, we enrich it with contextual information279

derived from the corpus-centric KG. This enriched280

representation is then embedded in the document281

space, allowing the similarity computation to align282

with the document-document similarity paradigm.283

The revised retrieval formulation is as follows:284

vKG-CQR(q) = encd(KG-CQR(q))

sim(q, d) =< vKG-CQR(q),vd >
(5)285

Here, KG-CQR(q) denotes the KG-enhanced con-286

textual information of the input query q.287

3.2 KG-CQR 288

The overview architecture of KG-CQR is illustrated 289

in Figure 3, which includes three main sequence 290

components, such as subgraph extraction, subgraph 291

completion, and contextual generation. 292

3.2.1 Subgraph Extraction 293

Given an input query q and a knowledge graph 294

KG, the subgraph extraction module first identi- 295

fies a set of relevant triples T̂KG (T̂KG ⊂ TKG), 296

based on the input query. Traditional subgraph 297

extraction methods typically begin by identifying 298

entities mentioned in the query q and then link- 299

ing them to entities in the KG using entity linking 300

(EL) techniques, such as using LLM prompting or 301

specialized EL tools (Sun et al., 2024). However, 302

these approaches often assume that the KG is com- 303

plete, i.e., all factual triples relevant to the query are 304

present in the graph, which is rarely the case in real- 305

world scenarios (Xu et al., 2024). Furthermore, cur- 306

rent subgraph extraction techniques predominantly 307

rely on assessing semantic similarity at the entity 308

or keyword level (Sun et al., 2024; Luo et al., 2024). 309

Nevertheless, this limited granularity often fails to 310

capture sufficient textual context, thereby reducing 311

extraction performance, particularly when input 312

queries involve ambiguous entities (Pham et al., 313

2025; Xia et al., 2025). To address these limita- 314

tions, we leverage textual representations of triples 315

(as defined in Equation 2) to measure similarity 316

with the input query. This approach enables sub- 317

graph extraction at the sentence level, rather than 318

relying solely on the entity level. The subgraph 319

extraction is formalized as follows: 320

vi
r = enc(TRR(T i

KG))

T̂KG = argmaxT i
KG∈TKG, k{sim(vq,v

i
r)}

(6) 321

where vq is the embedding of the input query, and 322

k is a hyperparameter controlling the number of 323

top-matching triples retrieved. 324

Sequentially, inspired by previous work for the 325

subgraph extraction process (Sun et al., 2024), a 326

filtering step is performed using an LLM with a 327

task-specific prompt to remove irrelevant triples: 328

T̂ ′
KG = {T i

KG ∈ T̂KG|
llm(Promtfilter, q, T i

KG) = True}
(7) 329

Here, Promptfilter denotes the instruction prompt 330

used by the LLM for the final selection. The details 331

of Promptfilter are provided in Appendix A.5. 332
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- The Falun Gong - BANNED_IN - China
- Falun Gong - FOUNDED_BY - Li Hongzhi
- The Epoch Time - PART_OF - Falun Gong

          ...
- Imf - COMMENTED_ON - China
- Falun Gong - MEDITATED_OUTSIDE - Us.Capitol

QUERY: Which country, discussed in articles from both Hacker News and Zee Business, banned Falun Gong following protests in 
its capital city in 1999 and is also experiencing growing economic headwinds in contrast to other emerging markets?

- The Falun Gong - BANNED_IN - China
- Falun Gong - FOUNDED_BY - Li Hongzhi
- The Epoch Time - PART_OF - Falun Gong

  ...
- Falun Gong - MEDITATED_OUTSIDE -
Us.Capitol

- The Falun Gong - BANNED_IN - China
- Falun Gong - FOUNDED_BY - Li Hongzhi
- The Epoch Time - PART_OF - Falun Gong
- The Epoch Time - FOLLOWER - Li Hongzhi

   ...
- The Epoch Time - CRITICIZED - China
- Falun Gong - MEDITATED_OUTSIDE -
Us.Capitol

visualize

...

...

...

...

KG-CQR

Knowledge
Base

Subgraph Extraction
Triplet Retrieval Triplet Selection

Subgraph CompletionContextual Generation

Document Retrieved

filter out
errorneous

triplets

generate
context

Fusion mechanism

Query-Relevant Path Addition

visualize

execute BFS with
Beam Search

KG

Falun Gong, founded by Li Hongzhi in China,
was later banned by the Chinese government.
Now operating globally, it maintains a presence
through actions like meditations at the U.S.
Capitol. The Epoch Times, affiliated with Falun
Gong and followed by its members, has taken a
strong critical stance against China. Li Hongzhi
has also appeared in Western media, including
interviews in New York.

- ... in 2009, Li Hongzhi came to speak to his followers. volunteers who worked at The
Epoch Times's office in Manhattan.
- ... California, hiring mainstream news veterans who are not affiliated with Falun Gong,
and revving up an ad-buying blitz...
- ... It's powered by Falun Gong, a religious group prosecuted in China, which launched
The Epoch Times as a free propaganda newsletter more than two decades ago to
oppose the Chinese Communist Party

Subgraph

Figure 3: An illustration of KG-CQR for the retrieval process, which includes three main components: Subgraph
Extraction, Subgraph Completion, and Contextual Generation

3.2.2 Subgraph Completion333

The initial subgraph T̂ ′
KG is extracted based on334

semantic similarity, typically resulting in a limited335

set of triplets that may lack sufficient contextual336

information. The goal of the subgraph completion337

function is to enrich this subgraph by incorporating338

additional triplets from the structure relation of KG339

(TKG) that form semantically meaningful paths340

between entities in T̂ ′
KG. Relevance is assessed by341

aggregating the semantic similarities between the342

input query and triplet textual representations along343

these paths. The subgraph completion proceeds344

through the following steps (Algorithm 1):345

• Step 1: Extract entities from the initial sub-346

graph T̂ ′
KG.347

• Step 2: Apply Beam Search, a heuristic-348

guided variant of Breadth-First Search (BFS),349

to identify the top-n candidate paths.350

• Step 3: Filter out paths that contain nodes not351

present in the initial subgraph T̂ ′
KG.352

• Step 4: Select the top-K highest-scoring353

unique triplets, with K defaulting to 20.354

• Step 5: Construct the completed subgraph355

T̂ ′′
KG by merging the initial subgraph T̂ ′

KG356

with the selected triplets.357

Notably, to reduce computational complexity in 358

Step 2, instead of executing the naive BFS traversal, 359

a limited number of nodes are expanded, guided 360

by a heuristic function (BFSBeam). This function 361

computes semantic similarity between the input 362

query and aggregates the relevance scores of the 363

TTRs along each path, which is illustrated in more 364

detail in the Appendix A.3. 365

3.2.3 Contextual Generation 366

The objective of the retrieval process is to identify 367

the most relevant documents for a given input query 368

by computing similarity scores, typically using co- 369

sine similarity between their vector representations, 370

which is formally defined as: 371

KG-CQR(q) = llm(Promptg, T̂ ′′
KG) (8) 372

where Promptg represents the generation instruc- 373

tion prompt, as detailed in Appendix A.5. The 374

enriched subgraph T̂ ′′
KG serves as contextual in- 375

put to the LLM, facilitating the generation of a 376

contextually enriched query representation. This 377

reformulated query can then be encoded within the 378

same embedding space as the corpus documents, 379

enabling effective retrieval. 380

3.3 Retrieval Fusion Function 381

The input query and its synthetic contextual infor- 382

mation are embedded using a fusion encoder-based 383
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Algorithm 1 Query-Relevant Path Addition for
Subgraph Completion

Require: TKG, T̂ ′
KG, q, top K, max-path L

Ensure: Subgraph T̂ ′′
KG

1: Ep ← {u, v | {u, r, v,TTR} ∈ T̂ ′
KG}

2: Load Embedding mode: enc
3: vq ← q ̸= ∅?enc(q) : None
4: Tset ← {{u, r, v} | {u, r, v,TTR} ∈ T̂ ′

KG}
5: P ←

⋃
(ei,ej)∈Ep

BFSBeam(TKG, ei, ej , Tset, L)

6: if P = ∅ then
7: return T̂ ′

KG

8: end if
9: S ← ∅

10: for p ∈ P do
11: if {vp ← enc(TTR) | {u, r, v,TTR} ∈ p}

then
12: s ← vq ̸= None?Mean(cos(vp, vq)) :

0
13: S ← S ∪ {(p, s)}
14: end if
15: end for
16: Sort S by score descending
17: C ← ∅
18: for (p, s) ∈ S until |C| ≥ K do do
19: if {u, r, v} ∈ p ∧ {u, r, v} /∈ Tset then
20: C ← C ∪ {u, r, v}
21: end if
22: end for
23: T̂ ′′

KG ← T̂ ′
KG ∪ C

24: return T̂ ′′
KG

approach. This technique enables the retrieval384

system to go beyond superficial query-document385

matching by leveraging the interaction between the386

query and its enriched context, resulting in more387

accurate and semantically relevant retrieval out-388

comes (Bruch et al., 2024). In this work, we adopt389

a weighted-sum fusion mechanism to compute the390

final query representation, defined as:391

vfuse(q) = α · vq + (1− α) · vKG−CQR(q) (9)392

This fusion mechanism proves especially effec-393

tive in complex, multi-turn, or context-sensitive394

retrieval scenarios, where conventional query en-395

hancement or decomposition methods often fall396

short. Consequently, the objective function in Equa-397

tion 5 can be reformulated as:398

sim(q, d) = sim(KG-CQR(q), d)

=< vfuse(q),vd >
(10)399

4 Experiment 400

4.1 Experimental Setup 401

Baseline: We evaluate our method using three 402

baseline models that encompass diverse document 403

retrieval strategies: (i) BM25 (Robertson and 404

Zaragoza, 2009), a classical sparse retrieval model; 405

(ii) DPR (Karpukhin et al., 2020), a dense retrieval 406

approach based on a dual-encoder architecture that 407

independently encodes queries and passages, opti- 408

mizing their embeddings via contrastive loss; and 409

(iii) BGE (Xiao et al., 2024), which combines 410

dense, sparse, and multi-vector retrieval using a 411

self-knowledge distillation framework. To thor- 412

oughly assess the impact of KG-CQR on retrieval 413

performance, we compare the integration of KG- 414

CQR against the integration of HyDE (Gao et al., 415

2023) with the same baselines. 416

Benchmark Datasets: We evaluate our method on 417

two recent and widely used benchmark datasets: 418

(i) RAGBench (Friel et al., 2024), which spans 419

five distinct industry-specific domains. We use its 420

test set comprising approximately 11,000 instances 421

for retrieval evaluation; and (ii) Multihop-RAG 422

(Tang and Yang, 2024), which includes a knowl- 423

edge base, a large set of multi-hop queries, cor- 424

responding ground-truth answers, and supporting 425

evidence, totaling 2,556 queries for evaluation. For 426

each dataset, the corresponding KG is constructed 427

in three steps, as outlined in Section 3.1.1, using 428

the LLama-3.3-70B model. 429

4.2 Main Results 430

Table 1 presents the evaluation results of the re- 431

trieval process on both datasets. Retrieval accu- 432

racy is evaluated using standard metrics, includ- 433

ing mean Average Precision (mAP) and Recall@k, 434

where k ∈ {5, 10, 25}. The reported results use 435

α = 0.7 (Equation 9), which was found to yield 436

the best performance (the selection of this value 437

is further discussed in Appendix A.2.2). From the 438

results, we draw the following observations: 439

i) Retrieval Performance: KG-CQR significantly 440

improves retrieval performance across various re- 441

trieval backbones. On the RAGBench dataset, for 442

example, KG-CQR + BGE achieves the best per- 443

formance overall, with an mAP of 0.542 and Re- 444

call@25 of 0.675, outperforming both the base- 445

line models and the HyDE-enhanced variants. On 446

the more challenging MultiHop-RAG dataset, KG- 447

CQR + BM25 achieves the highest recall met- 448

rics (e.g., Recall@25 = 0.532), demonstrating KG- 449
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RAGBench MultiHop-RAG
Model mAP Recall@5 Recall@10 Recall@25 mAP Recall@5 Recall@10 Recall@25

BM25 0.329 0.337 0.399 0.462 0.241 0.261 0.353 0.486
DPR 0.276 0.286 0.348 0.425 0.099 0.125 0.183 0.284
BGE 0.521 0.51 0.589 0.657 0.227 0.251 0.357 0.52

HyDE + DPR 0.286 0.293 0.354 0.426 0.099 0.125 0.183 0.284
HyDE + BGE 0.516 0.507 0.586 0.638 0.232 0.256 0.363 0.524

KG-CQR + BM25 0.398 0.398 0.454 0.514 0.250 0.267 0.372 0.532
KG-CQR + DPR 0.316 0.319 0.384 0.462 0.129 0.157 0.224 0.34
KG-CQR + BGE 0.542 0.529 0.61 0.675 0.24 0.261 0.371 0.525

Table 1: Retrieval performances on RAGBench and MultiHop-RAG datasets, using LLama-3.3-70B as the backbone

RAGBench MultiHop-RAG
Backbone mAP Recall@5 Recall@10 Recall@25 mAP Recall@5 Recall@10 Recall@25

LLama-3.2-3B 0.537 0.524 0.604 0.672 0.230 0.251 0.359 0.520

LLama-3.1-8B 0.538 0.526 0.606 0.672 0.235 0.255 0.370 0.522

LLama-3.3-70B 0.542 0.529 0.61 0.675 0.24 0.261 0.371 0.525

Table 2: The performance of KG-CQR across various parameter sizes of the backbone LLMs

CQR’s capability to enhance retrieval accuracy450

over traditional methods.451

ii) Contextual Accuracy: The relatively weaker452

performance of HyDE compared to its baselines453

suggests potential drawbacks of relying heavily454

on LLM-generated synthetic queries. HyDE in-455

troduces a straightforward approach for enhancing456

context, nonetheless, its effectiveness appears sen-457

sitive to the contextual reliability of the generated458

content. This underscores the limitations of insuffi-459

ciently grounded synthetic information in retrieval460

tasks.461

iii) Diverse Benchmarks: Although models462

like BGE perform well on relatively straightfor-463

ward datasets such as RAGBench, more complex464

datasets like MultiHop-RAG demand advanced rea-465

soning capabilities. KG-CQR demonstrates robust-466

ness in such settings by effectively handling multi-467

hop reasoning and maintaining strong performance.468

These results highlight the importance of retrieval469

frameworks that integrate contextual understanding470

and structured knowledge to perform consistently471

across diverse and complex benchmarks.472

4.3 Detailed Analysis473

4.3.1 Impact of LLM Backbone474

Table 2 illustrates the retrieval performance of475

KG-CQR when paired with different sizes of lan-476

guage models, using BGE as the underlying re-477

trieval method. Specifically, the LLama-3.3-70B478

model achieves the highest performance across 479

nearly all metrics, however, the performance dif- 480

ferences between the 8B and 70B variants are rel- 481

atively modest, suggesting diminishing returns as 482

model size increases. These findings indicate that 483

while larger models do offer performance advan- 484

tages, KG-CQR remains effective even with rela- 485

tively smaller backbones such as LLama-3.2-3B 486

and LLama-3.1-8B. This highlights KG-CQR’s 487

practicality for resource-constrained environments, 488

offering a favorable trade-off between retrieval per- 489

formance and computational cost. 490

4.3.2 Ablation Study 491

Table 3 presents an ablation study evaluating the 492

contribution of two core components of KG-CQR: 493

the Textual Triplet Representation (TTR) for ex- 494

tracting subgraph and the Subgraph Completion 495

(Sub.Comp.). As reported results, removing TTR

Method Recall@5 Recall@10 Recall@25

W/O TTR 0.486 0.572 0.641
W/O Sub.Comp. 0.525 0.605 0.671

KG-CQR 0.529 0.61 0.675

Table 3: Ablation studies on main components of KG-
CQR on RAGBench Datasets

496
(Equation 2) leads to the most pronounced drop 497

in performance (e.g., Recall@25 decreases from 498

0.675 to 0.641), underscoring the importance of 499
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TTR in accurately extracting relevant subgraphs500

that preserve semantic alignment with the query.501

This confirms that converting structured KG in-502

formation into textual form plays a critical role in503

aligning the knowledge with the retrieval task. Sim-504

ilarly, omitting the Subgraph Completion module505

also results in a notable performance degradation,506

though less severe than removing TTR. This sug-507

gests that while the initial subgraph extraction is508

vital, enriching the subgraph context via comple-509

tion further improves the model’s ability to retrieve510

relevant documents.511

4.3.3 Multi-Step Retrieval for RAG Results512

We evaluate the effectiveness of KG-CQR in multi-513

step reasoning RAG tasks by integrating its re-514

trieval outputs into the IRCoT framework (Trivedi515

et al., 2023). Experiments were conducted with516

three LLMs of varying sizes to assess the generaliz-517

ability of KG-CQR. The results highlight the signif-518

icance of both components in enhancing retrieval519

performance. We randomly sampled 500 examples

Model Retrieval F1 #Iter #Score

LLama-3.2-3B 0.372 3.293 3.122
LLama-3.1-8B BM25 0.393 2.748 3.424
LLama-3.3-70B 0.431 1.912 3.449

LLama-3.2-3B
KG-CQR
+BM25

0.407 2.714 3.317
LLama-3.1-8B 0.41 1.834 3.603
LLama-3.3-70B 0.443 1.393 3.826

Table 4: Multi-step reasoning RAG performance

520
from the RAGBench test set and evaluated results521

using F1, GPT-Score (#Score) (Fu et al., 2024),522

and average reasoning steps (#Iter). GPT-Score523

was computed using GPT-4o through the OpenAI524

API (based on its performance on the Judge LLM525

leaderboard2). As shown in Table 4, several key526

insights can be drawn: i) KG-CQR significantly527

enhances retrieval quality: By enriching the input528

query with semantically and contextually relevant529

information, KG-CQR consistently improves per-530

formance across all model sizes compared to using531

BM25 alone (the results with BGE method are il-532

lustrated in Appendix A.2.1); ii) Improved contex-533

tualization leads to fewer iterations: KG-CQR534

enables models to perform reasoning with fewer535

iterations, likely because the contextual queries bet-536

ter reflect the underlying multi-hop intent. This537

2https://huggingface.co/spaces/AtlaAI/judge-arena, ac-
cessed by May 18th, 2025

reduces the need for redundant or corrective rea- 538

soning steps during generation. iii) Cross-model 539

scalability: Gains are observed across the size of 540

LLMs, highlighting the flexibility of KG-CQR. 541

4.3.4 Retrieval Latency 542

Figure 4 compares the relative retrieval latency 543

of the baseline HyDE with three KG-CQR vari- 544

ants: i) KG-CQR w Naive-BFS): use basic BFS 545

algorithm for subgraph completion; ii) KG-CQR 546

w/o Sub.Comp.: removes the subgraph comple- 547

tion module entirely; iii) KG-CQR(ours): utilizes 548

heuristic-guided Beam Search for more efficient 549

subgraph completion. The analysis confirms that

Figure 4: Retrieval latency performance

550
the proposed KG-CQR with Beam Search strikes 551

an optimal balance between retrieval efficiency 552

and reasoning capability. While KG-CQR with- 553

out subgraph completion is the fastest, KG-CQR 554

with Beam Search provides a more scalable and se- 555

mantically expressive alternative with only modest 556

additional cost. In contrast, HyDE and naive BFS 557

approaches incur higher latency, making them less 558

favorable for real-time or large-scale applications. 559

5 Conclusion 560

This study introduces KG-CQR, a novel framework 561

for contextual query retrieval. By incorporating a 562

corpus-centric KG, our approach bridges the se- 563

mantic gap between user queries and the target 564

corpus. Recognizing that real-world KGs are often 565

incomplete, we propose an effective method for 566

extracting subgraph triplets, which are then used to 567

generate contextual information for the input query. 568

Experiments on widely used benchmark datasets 569

demonstrate the effectiveness and potential of the 570

proposed approach. 571
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Limitations572

Although KG-CQR demonstrates promising results,573

several limitations warrant consideration for future574

improvements:575

KG Construction Challenges: The construction576

of the corpus-centric knowledge graph relies heav-577

ily on external LLMs, such as LLama-3.3-70B,578

for entity and relation extraction. This process is579

susceptible to errors in named entity recognition580

(NER), relation extraction (RE), and entity linking581

(EL), which can propagate through the pipeline and582

affect the quality of the extracted subgraph. In do-583

mains with sparse or noisy unstructured data, the584

resulting KG may lack completeness or accuracy,585

limiting the effectiveness of KG-CQR.586

Scalability of Subgraph Extraction: The sub-587

graph extraction process, while effective, can be588

computationally intensive for large-scale knowl-589

edge graphs with millions of triples. The semantic590

similarity computation at the sentence level, us-591

ing textual triplet representations (TTRs), increases592

computational overhead, potentially limiting scal-593

ability in real-time retrieval systems or resource-594

constrained environments.595

Limited Evaluation Scope: The evaluation596

of KG-CQR was limited to two benchmark597

datasets—RAGBench and MultiHopRAG—which,598

although diverse, may not fully capture the breadth599

of real-world retrieval scenarios. To better assess600

the generalizability of the framework, further evalu-601

ation on additional datasets, especially those involv-602

ing cross-lingual tasks or domain-specific knowl-603

edge, is warranted.604
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A Appendix 880

A.1 GPT-score Criteria 881

Following the work in (Fu et al., 2024), we define 882

the GPT-Score with three criteria for the measure- 883

ment as follows: 884

• Correctness: alignment of the generated an- 885

swer with the reference answer 886

• Faithfulness: whether the generated answer 887

remains true to the given context 888

• Relevance: how well the retrieved context 889

and the generated answer address the query 890

A.2 Comprehensive Experimential Results 891

A.2.1 Multi-Step Retrieval for RAG with BGE 892

Building on the earlier analysis (Table 4), Table 5 893

presents results for multi-step reasoning RAG per- 894

formance using BGE as the retrieval baseline, along 895

with KG-CQR. The key observations are as follows: 896

i) Dense retrieval outperforms sparse retrieval 897

across all model sizes: BGE consistently outper- 898

forms BM25 in terms of F1 score and GPT-Score, 899
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Model Retrieval F1 #Iter #Score

LLama-3.2-3B 0.411 2.665 3.242
LLama-3.1-8B BGE 0.434 2.272 3.528
LLama-3.3-70B 0.448 1.48 3.576

LLama-3.2-3B
KG-CQR

+BGE

0.432 2.378 3.317
LLama-3.1-8B 0.438 1.812 3.532
LLama-3.3-70B 0.452 1.23 3.878

Table 5: Performance of multi-step reasoning RAG with
BGE

which demonstrates that dense retrieval via BGE900

retrieves more semantically relevant contexts than901

BM25, supporting more accurate and efficient rea-902

soning; ii) KG-CQR improves both BM25 and903

BGE retrieval: Adding KG-CQR on top of both904

BM25 and BGE enhances performance by enrich-905

ing the query with context-relevant knowledge. Al-906

though the improvement margin is narrower in the907

BGE setting, KG-CQR still consistently enhances908

performance, highlighting its generality across re-909

trieval methods.910

A.2.2 Fusion Embeddings Experiments911

Table 6 show the comprehensive evaluation on the912

value of α to fuse the input query and context em-913

beddings (Equation 9). As results, setting α = 0.7914

consistently yields the best overall performance.915

A.2.3 Full Retrieval Results across Backbones916

Table 7 and Table 8 demonstrate the full experi-917

mental results across various backbones, including918

LLama-3.2-3B and LLama-3.1-8B, respectively.919

Similar to the results on LLama-3.3-70B, the KG-920

CQR + BGE backbone at α = 0.7 yields the best921

performance for both models, in which LLama-3.1-922

8B shows slight improvements over LLama-3.2-3B,923

particularly in MultiHop-RAG tasks.924

A.3 BFS with Beam Search Algorithm925

Algorithm 2 presents the pseudocode for the BFS926

with Beam Search. Given the hyperparameter927

Beam width (e.g., equal to 3), the algorithm ex-928

plores explicit paths (triplets) that represent mean-929

ingful connections between entities within the930

given subgraph.931

A.4 Error Analysis with Examples932

To better understand the behavior of the KG-CQR,933

we performed a qualitative error analysis on six rep-934

resentative multi-hop queries from the MultiHop-935

RAG dataset with three corrected retrievals (Table936

Algorithm 2 BFS Algorithm with Beam Search

1: function BFSBEAM(TKG, es, et, Tset, L)
2: Q← Queue({⟨es, ∅⟩}); P ← ∅
3: Load Embedding mode: enc
4: vq ← q ̸= ∅?enc(q) : None
5: S ← ∅
6: W ← 3 ▷ Beam width for Beam Search
7: while Q ̸= ∅ do
8: (node, p)← Q.dequeue()
9: if |p| > L then

10: continue
11: end if
12: if node = et and p ̸= ∅ then
13: P ← P ∪ {p}
14: end if
15: if node = et then
16: continue
17: end if
18: for {u, r, v,TTR} ∈ TKG(u, v, r)

where u = node do
19: if v /∈ p.entities then
20: vp ← enc(TTR)
21: s ← vq ̸=

None?Mean(cos(vp, vq)) : 0
22: pnew ← p ∪ {u, r, v}
23: S ← S ∪ {(pnew, s)}
24: end if
25: end for
26: Sort S by score descending
27: for (pnew, s) ∈ S take top W do
28: u← pnew.last_node
29: Q.enqueue((u, pnew))
30: end for
31: S ← ∅
32: end while
33: return P
34: end function

9) and three with incorrect retrievals (Table 10). We 937

compared the outputs of KG-CQR against those of 938

HyDE and the human-annotated Ground Truth. 939

Based on the results in Table 9, there are sev- 940

eral assumptions as follows: i) KG-CQR demon- 941

strates strong performance in disambiguating enti- 942

ties. For instance, in the query “Did one of CBS’s 943

performers create a scandal?”, KG-CQR retrieves 944

documents specifically related to the mentioned 945

performer and event. This shows that incorporating 946

knowledge graph information improves precision 947

by retrieving documents more closely aligned with 948

the query context; ii) In time-sensitive queries like 949
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RAGBench MultiHop-RAG
Backbone mAP Recall@5 Recall@10 Recall@25 mAP Recall@5 Recall@10 Recall@25

α = 0.3
KG-CQR + DPR 0.32 0.325 0.385 0.462 0.143 0.169 0.239 0.354
KG-CQR + BGE 0.528 0.513 0.596 0.664 0.224 0.247 0.35 0.499

α = 0.5
KG-CQR + DPR 0.323 0.327 0.391 0.469 0.14 0.165 0.237 0.351
KG-CQR + BGE 0.539 0.527 0.609 0.676 0.235 0.253 0.364 0.515

α = 0.7
KG-CQR + DPR 0.316 0.319 0.384 0.462 0.129 0.157 0.224 0.34
KG-CQR + BGE 0.542 0.529 0.61 0.675 0.24 0.261 0.371 0.525

Table 6: Fusion embeddings with different values of α (Equation 9)

RAGBench MultiHop-RAG
Backbone mAP Recall@5 Recall@10 Recall@25 mAP Recall@5 Recall@10 Recall@25

KG-CQR + BM25 0.386 0.388 0.446 0.507 0.236 0.253 0.359 0.520

α = 0.3
KG-CQR + DPR 0.312 0.319 0.382 0.458 0.129 0.152 0.221 0.337
KG-CQR + BGE 0.517 0.505 0.588 0.661 0.203 0.225 0.332 0.481

α = 0.5
KG-CQR + DPR 0.319 0.327 0.388 0.465 0.132 0.156 0.225 0.341
KG-CQR + BGE 0.531 0.520 0.602 0.669 0.219 0.239 0.350 0.507

α = 0.7
KG-CQR + DPR 0.313 0.319 0.384 0.460 0.125 0.151 0.219 0.335
KG-CQR + BGE 0.537 0.524 0.604 0.672 0.230 0.251 0.366 0.522

Table 7: Full experimental results of LLama-3.2-3B with different setting of α (Equation9)

RAGBench MultiHop-RAG
Backbone mAP Recall@5 Recall@10 Recall@25 mAP Recall@5 Recall@10 Recall@25

KG-CQR + BM25 0.391 0.391 0.448 0.505 0.236 0.251 0.357 0.515

α = 0.3
KG-CQR + DPR 0.325 0.329 0.391 0.462 0.138 0.166 0.234 0.352
KG-CQR + BGE 0.523 0.509 0.591 0.659 0.216 0.237 0.341 0.489

α = 0.5
KG-CQR + DPR 0.327 0.330 0.394 0.467 0.136 0.162 0.233 0.351
KG-CQR + BGE 0.535 0.522 0.603 0.669 0.227 0.247 0.359 0.510

α = 0.7
KG-CQR + DPR 0.318 0.322 0.387 0.462 0.127 0.151 0.220 0.338
KG-CQR + BGE 0.538 0.526 0.606 0.672 0.236 0.255 0.370 0.522

Table 8: Full experimental results of LLama-3.1-8B with different setting of α (Equation9)

“Which events occurred in Week 12?”, KG-CQR950

accurately retrieves temporally relevant content,951

whereas HyDE often returns general or loosely con-952

nected documents. This suggests that KG signals953

enhance temporal grounding in multi-hop retrieval954

tasks; iii) For bridge-type queries that require chain-955

ing multiple pieces of information (e.g., “Does the956

article from Wendy refer to the same city?”), KG- 957

CQR performs well by retrieving documents that 958

correctly capture the intermediate and final entities. 959

This indicates improved multi-hop coherence over 960

baseline methods. 961

Despite these strengths, the proposed KG-CQR 962

shows notable limitations in the following areas 963

13



(Table 10): i) Contextual Drift and Irrelevant964

Retrievals: KG-CQR struggles with queries re-965

quiring fine-grained temporal reasoning, compara-966

tive analysis, or interpretation of subjective content.967

These limitations stem from insufficient temporal968

representation and the lack of deep semantic mod-969

eling needed to capture nuanced relationships and970

contrasting viewpoints; ii) Limited Multi-hop Co-971

herence: For queries requiring reasoning across972

multiple documents, KG-CQR sometimes retrieved973

disconnected evidence, failing to form a complete974

answer path.975

A.5 Prompt Template976

For better reproducibility, we present all prompt977

templates in the appendix. Below is a quick refer-978

ence list outlining the prompt templates and their979

usages:980

• Figure 5: Prompt the task instruction for KG981

construction.982

• Figure 6: Prompt the task instruction for tex-983

tual triplet representation.984

• Figure 7: Prompt the task instruction for fil-985

tering irrelevant triplets.986

• Figure 8: Prompt the task instruction for con-987

textual generation.988
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Query q HyDE@5 KG-CQR@5 Ground Truth

Did the CBSS-
ports.com article
report Kenneth
Walker III remain-
ing healthy and
uninjured during a
game, similarly to
how the Sporting
News article reports
injuries for Tee
Higgins, Noah
Brown, Treylon
Burks, and Kadarius
Toney preventing
their participation in
Week 12?

D1: Meanwhile, corner CJ Henderson
(concussion) was a full participant on Fri-
day and carries no designation heading
into the weekend...’
D2: He left Week 2 after suffering a
concussion and was absent in Week 3;
then was not part of the game plan much
in Week 4 (7.7% target share against
Philadelphia)...’
D3: He was ruled questionable to re-
turn. NFL Media reported on Monday
that Kupp suffered a low ankle sprain and
will be evaluated going forward...’
D4: Geno Smith’s struggles complicate
their fantasy prospects, as well...’
D5: Head coach Ron Rivera called the
injury "significant" earlier this week...’

D1: Geno Smith’s struggles complicate
their fantasy prospects, as well...’
D2: Meanwhile, corner CJ Henderson
(concussion) was a full participant on Fri-
day and carries no designation heading
into the weekend...’
D3: When asked if that means for Thurs-
day’s matchup against San Francisco, the
coach said, "I would think so."...’
D4: Week 11 of the 2023 NFL season
has provided plenty of drama, from the
Bears hanging with the Lions to the Gi-
ants getting a rebound from emergency
quarterback Tommy DeVito...’
D5: Miami ruled him questionable to re-
turn with a knee injury, and while he later
returned to the sidelines from a locker-
room visit, he was replaced on the field
indefinitely by Raheem Mostert...’

D1: When asked if that means for Thurs-
day’s matchup against San Francisco, the
coach said, "I would think so."...’
D2: Geno Smith’s struggles complicate
their fantasy prospects, as well...’
D3: Walker’s struggled under center,
Tillman is set up for a high-usage day
against the Rams with Amari Cooper
(ribs) banged up...’
D4: Miami ruled him questionable to re-
turn with a knee injury, and while he later
returned to the sidelines from a locker-
room visit, he was replaced on the field
indefinitely by Raheem Mostert...’

Does the article
from Wired suggest
that Sony head-
phones do not offer
the best value in
their class during the
Walmart Cyber Mon-
day Deals, while the
article from Music
Business Worldwide
indicates that Artists
are seeking deals
that offer more
control and better
economics, or do
both articles suggest
a common trend
in seeking value
and control in their
respective fields?

D1: Black Friday is often a boon for deals
on headphones and earbuds, and this year
is no different...’
D2: Engadget has been testing and re-
viewing consumer tech since 2004. Our
stories may include affiliate links; if you
buy something through a link, we may
earn a commission...’
D3: But in both the case of Universal
Music Group and Warner Music Group,
they’re – currently anyway – not the
biggest megastars on either company’s
books...’
D4: This is one of the few sales we’ve
seen all year, which makes their very high
asking price a lot more palatable...’
D5: Nothing is more frustrating than buy-
ing a new pair of headphones, an OLED
TV, or a backpack just to find out that
you could have gotten it for a lot cheaper
somewhere else...’

D1: They’re light on extras like noise
canceling but at this price, they’re a great
investment as your go-to workout com-
panions...’
D2: Black Friday is often a boon for deals
on headphones and earbuds, and this year
is no different...’
D3: Luckily they’ve already gotten a
discount, which makes it easier to land
their class-leading noise canceling, great
sound, and luxuriously comfy design
that’s loaded with modern features...’
D4: Engadget has been testing and re-
viewing consumer tech since 2004. Our
stories may include affiliate links; if you
buy something through a link, we may
earn a commission. Read more about how
we evaluate products...’
D1: This is one of the few sales we’ve
seen all year, which makes their very high
asking price a lot more palatable...’

D1: Spanish and Latin artists have much
more options to develop their audiences
and monetize their music at each stage of
their career...’
D2: They’re light on extras like noise
canceling but at this price, they’re a great
investment as your go-to workout com-
panions...’

Which company,
covered by both
TechCrunch and
The Verge, is not
only claimed to
have developed
an AI model with
superior architecture
that rivals GPT-4
but also has been
accused of altering
the internet’s appear-
ance and harming
news publishers’
bottom lines through
anticompetitive
practices?

D1: Hey, folks, welcome to Week in
Review (WiR), TechCrunch’s regular
newsletter that recaps the past few days
in tech. AI stole the headlines once again,
with tech giants from Google to X (for-
merly Twitter) heading off against Ope-
nAI for chatbot supremacy...’
D2: And on a company level, Meta is do-
ing all it can to encourage collaboration
and “openness,” recently partnering with
Hugging Face to launch a new startup
accelerator designed to spur adoption of
open source AI models...’
D3: Google, OpenAI and Microsoft, a
close OpenAI partner and investor, have
been among the chief critics of Meta’s
open source AI approach, arguing that it’s
potentially dangerous and disinformation-
encouraging...’
D4: By 2020, the Knowledge Graph had
grown to 500 billion facts about 5 billion
entities. But much of the “collective in-
telligence” that Google tapped into was
content “misappropriated from Publish-
ers,” the complaint alleges...’
D5: The lawsuit reiterates this concern,
claiming that Google’s recent advances in
AI-based search were implemented with
“the goal of discouraging end-users from
visiting the websites of Class members
who are part of the digital news and pub-
lishing line of commerce.”...’

D1: A new class action lawsuit filed this
week in the U.S. District Court in D.C.
accuses Google and parent company Al-
phabet of anticompetitive behavior in vi-
olation of U.S. antitrust law, the Sherman
Act, and others, on behalf of news pub-
lishers...’
D2: This week, Google took the wraps
off of Gemini, its new flagship genera-
tive AI model meant to power a range
of products and services including Bard,
Google’s ChatGPT competitor...’
D3: The lawsuit reiterates this concern,
claiming that Google’s recent advances in
AI-based search were implemented with
“the goal of discouraging end-users from
visiting the websites of Class members
who are part of the digital news and pub-
lishing line of commerce.”...’
D4: By 2020, the Knowledge Graph had
grown to 500 billion facts about 5 billion
entities. But much of the “collective in-
telligence” that Google tapped into was
content “misappropriated from Publish-
ers,” the complaint alleges...’
D5: Hey, folks, welcome to Week in
Review (WiR), TechCrunch’s regular
newsletter that recaps the past few days
in tech. AI stole the headlines once again,
with tech giants from Google to X (for-
merly Twitter) heading off against Ope-
nAI for chatbot supremacy...’

D1: “I used to do those types of tactics,
so I couldn’t hate on anybody personally,”
she said. “If people have a problem with
Google’s results, they have to ask them-
selves, is it the fault of the SEOs?” she
asked...’
D2: A new class action lawsuit filed this
week in the U.S. District Court in D.C.
accuses Google and parent company Al-
phabet of anticompetitive behavior in vi-
olation of U.S. antitrust law, the Sherman
Act, and others, on behalf of news pub-
lishers...’
D3: Sure, she called herself a “thought
leader,” and yes, sure, she had changed
her last name to improve her personal
branding by more closely associating her-
self with her grandmother’s uncle, the
artist Man Ray...’
D4: This week, Google took the wraps
off of Gemini, its new flagship genera-
tive AI model meant to power a range
of products and services including Bard,
Google’s ChatGPT competitor...’

Table 9: Examples of KG-CQR with correctly retrieved documents. Blue texts are corrected retrieved documents
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Query q HyDE@5 KG-CQR@5 Ground Truth

Has the approach of
Sportsbooks in ad-
justing betting lines
and odds, as re-
ported by Sporting
News after October
4, 2023, and be-
fore November 1,
2023, remained con-
sistent?

D1: For instance, when examining odds
for the next Super Bowl champion re-
leased shortly after the previous Super
Bowl, these odds are based mostly on the
recently concluded season...
D2: They are basing their odds on past
performance and expected future accom-
plishments, as well as the quality of the
team around the top candidates for the
award. Thus, the odds are quite favor-
able...
D3: When such information becomes
public, sportsbooks may adjust the odds
accordingly. Professional Bettors: Large
wagers from sharp bettors or professional
gamblers can cause the lines to shift...
D4: The past few weeks of the 2023 NFL
season have reminded us that no matter
how smooth you sail to start the voyage,
choppy waters will surely come at some
point...
D5: Let’s say the Chiefs win by exactly
three, a distinct possibility since a single
field goal decides most NFL games...

D1: For instance, when examining odds
for the next Super Bowl champion re-
leased shortly after the previous Super
Bowl, these odds are based mostly on the
recently concluded season...
D2: When such information becomes
public, sportsbooks may adjust the odds
accordingly. Professional Bettors: Large
wagers from sharp bettors or professional
gamblers can cause the lines to shift...
D3: They are basing their odds on past
performance and expected future accom-
plishments, as well as the quality of the
team around the top candidates for the
award...
D4: The past few weeks of the 2023 NFL
season have reminded us that no matter
how smooth you sail to start the voyage,
choppy waters will surely come at some
point. We started the first six weeks with
a best bets winning percentage of well
over ...
D5: Do point spread odds change?
Yes, point spread odds can change, and
these shifts are commonly referred to as
"line movement."

D1: It’s important to note that in PGA
and other golf tournaments, there are usu-
ally many players, so the odds can be
much higher than in head-to-head sports
matchups, given the broader field of com-
petition...
D2: BetMGM Sportsbook: As one of
the most recognizable names in the gam-
bling industry, BetMGM knows how to
attract and keep customers with compet-
itive odds for all bet types, including fu-
tures bets and the NBA Rookie of the
Year...
D3: When the lines are first released for
NBA ROTY honors, the season hasn’t
even started yet, so there are no statistics,
trends, or player news...
D4: Does overtime count in my money-
line bet?
Yes, in most sports and with most sports-
books (including new betting sites), over-
time (or any extra time or tiebreakers)
does count in a moneyline bet.

Does the
TechCrunch ar-
ticle on generative
AI in the enterprise
suggest that CIOs
are more cautious
in their AI adoption
strategy compared
to the belief of
business leaders
mentioned in an-
other TechCrunch
article, who think AI
will be essential for
all businesses within
five years?

D1: To hear the hype from vendors, you
would think that enterprise buyers are all
in when it comes to generative AI. But
like any newer technology, large compa-
nies tend to move cautiously...
D2: I’d venture to guess more expo-
sure for its burgeoning generative AI plat-
form...
D3: Expect more moves like that from
2024’s OpenAI as the caution and aca-
demic reserve that the previous board ex-
erted gives way to an unseemly lust for
markets and customers...
D4: Google, OpenAI and Microsoft, a
close OpenAI partner and investor, have
been among the chief critics of Meta’s
open source AI approach, arguing that it’s
potentially dangerous and disinformation-
encouraging...
D5: The NMPA’s submission, dated Oc-
tober 30, 2023, pulls no punches.
It starts off by stressing that its member-
ship – US music publishers major and
independent – are “not opposed” to AI...

D1: To hear the hype from vendors, you
would think that enterprise buyers are all
in when it comes to generative AI...
D2: I’d venture to guess more exposure
for its burgeoning generative AI platform.
IBM’s most recent earnings were boosted
by enterprises’ interest in generative AI,
but the company has stiff competition in
Microsoft and OpenAI...
D4: Expect more moves like that from
2024’s OpenAI as the caution and aca-
demic reserve that the previous board ex-
erted gives way to an unseemly lust for
markets and customers...
D4: The NMPA’s submission, dated Oc-
tober 30, 2023, pulls no punches.
It starts off by stressing that its member-
ship – US music publishers major and
independent – are “not opposed” to AI...’
D5: Google
On generative AI, Google’s report dis-
cusses “recent progress in large-scale AI
models” which it suggests...

D1: “So we’ve been doing this whole
push for AI over the last maybe six or
nine months and we’re at the point right
now where we’re building specific use
cases for each different team and func-
tion within the firm.”...
D2: Third, the application is only as so-
phisticated as the data that it is fed. Pro-
prietary data is necessary for specific and
relevant insights and to ensure others can-
not replicate the final product...
D3: That’s going to take setting up some
structure and organization around how
this gets implemented over time, says
Jim Rowan, principal at Deloitte, who is
working with clients around how to build
generative AI across companies in an or-
ganized fashion...

Does ’The Indepen-
dent - Life and Style’
article suggesting
Prince William’s
emotional state
regarding Princess
Diana’s death align
with the same pub-
lication’s depiction
of the events leading
up to her death in
’The Crown season
six’?

D1: He is not located, but later walks
back to the house on his own accord,
drenched in rain. “14 hours, that poor
boy was gone,” the Queen later says...
D2: The show also features the pair’s
death in a car crash in Paris.
As the new season arrives, and fans won-
der what in The Crown is based in reality,
here’s everything you need to know...
D3: She then poses for them in her swim-
suit, but complains in a later episode that
they can “never relax” with the press
“constantly” around...
D4: After staying several days on Mo-
hamed Al Fayed’s yacht, the boys return
home to London where their father, the
then-Prince of Wales, accompanies them
to Balmoral Castle to vacation with the
rest of the royal family in Scotland...
D5: During the interview, the outlet noted
that Smith said his wife’s memoir “kind
of woke him up” and that he has now re-
alised she is more...

D1: The show also features the pair’s
death in a car crash in Paris.
As the new season arrives, and fans won-
der what in The Crown is based in reality,
here’s everything you need to know...
D2: He is not located, but later walks
back to the house on his own accord,
drenched in rain. “14 hours, that poor
boy was gone,” the Queen later says...
D3: After staying several days on Mo-
hamed Al Fayed’s yacht, the boys return
home to London where their father, the
then-Prince of Wales, accompanies them
to Balmoral Castle to vacation with the
rest of the royal family in Scotland...
D4: She then poses for them in her swim-
suit, but complains in a later episode that
they can “never relax” with the press
“constantly” around...
D5: Asks the Queen if she’d received the
invitation to Camilla’s 50th birthday, to
which she says she has, but cannot attend
as she’s in Derbyshire...

D1: Stay ahead of the trend in fashion and
beyond with our free weekly Lifestyle
Edit newsletter Stay ahead of the trend in
fashion and beyond with our free weekly
Lifestyle Edit newsletter Please enter a
valid email address...
D2: However, at the inquest into the
death in 2007, the jury were shown CCTV
footage of him purchasing an engagement
ring worth £11,600 in a jewellers across
the square from the Ritz on the afternoon
of the crash...

Table 10: Examples of KG-CQR with incorrectly retrieved documents. Red texts indicate notable limitations of
KG-CQR in several areas, such as contextual drift or limited complex multi-hop coherence
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You are a top-tier algorithm designed for extracting information in " "structured formats to build a knowledge graph. Your task is to
identify " "the entities and relations requested with the user prompt from a given " "text. 

You must generate the output in a JSON format containing a list " 'with JSON objects. Each object should have the keys: "head", '
'"head_type", "relation", "tail", and "tail_type". The "head" ' "key must contain the text of the extracted entity with one of the types "
"from the provided list in the user prompt. The "head_type" key must contain the type of the extracted head entity, which must be
one of the types from {node_labels_str}. 

if node_labels else " ", The "relation" key must contain the type of relation between the "head" ' and the "tail", which must be one of
the relations from {rel_types_str}.' 

if rel_types else "", The "tail" key must represent the text of an extracted entity which is  the tail of the relation, and the "tail_type" key
must contain the type  of the tail entity from {node_labels_str}.

if node_labels else "", "Attempt to extract as many entities and relations as you can. Maintain " "Entity Consistency: When extracting
entities, it's vital to ensure " 'consistency. 

If an entity, such as "John Doe", is mentioned multiple ' "times in the text but is referred to by different names or pronouns " '(e.g.,
"Joe", "he"), always use the most complete identifier for ' "that entity. 

The knowledge graph should be coherent and easily " "understandable, so maintaining consistency in entity references is "
"crucial.", 

"IMPORTANT NOTES:\n- Don't add any explanation and text.",

Instruction Prompt for LLM-Powered Graph Construction

Figure 5: Prompt the task instruction for KG construction

You are an expert in extracting information from text, your task is to find pieces of information that mention the relationship of two
objects in the relationship and synthesize them into one paragraph. 
The summary paragraph must be written in English. The response MUST be the summary only without any explanation. 

Passage: {}

Triplets: {}

Instruction Prompt for LLM-Powered Textual Triplet Representation
(Equation 2)

Figure 6: Prompt the task instruction for textual triplet representation.

You are a grader assessing relevance of a list of retrieved passages to a user question. The goal is to filter out erroneous
retrievals. 
Return only the passage index whether the passage is relevant to the question. Provide the output as a JSON with passage
index seperated by a comma and no premable or explanation. 

Here is the list of retrieved text: {text}

Here is the user question: {question}

Instruction Prompt for Filtering Triplets (Equation 7)

Figure 7: Prompt the task instruction for filtering irrelevant triplets

You are a helpful assistant responsible for generating a comprehensive summary of the data provided below. Given the list of
triplets that may relation with each other. Please write a Concise summary of triplets that aim to provide a contextual information.
The output just generate a concise summary without any explanation. 

Please note that if the provided triplets are contradictory, please resolve the contradictions and provide a single, coherent
summary (no need Here is part) 

Input Triplets: {triplets}

Instruction Prompt for Contextual Generation (Equation 8)

Figure 8: Prompt the task instruction for contextual representation
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