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ABSTRACT

Graph spectra are an important class of structural features on graphs that have
shown promising results in enhancing Graph Neural Networks (GNNs). Despite
their widespread practical use, the theoretical understanding of the power of spec-
tral invariants — particularly their contribution to GNNs — remains incomplete.
In this paper, we address this fundamental question through the lens of homomor-
phism expressivity, providing a comprehensive and quantitative analysis of the
expressive power of spectral invariants. Specifically, we prove that spectral invari-
ant GNNs can homomorphism-count exactly a class of specific tree-like graphs
which we refer to as parallel trees. We highlight the significance of this result
in various contexts, including establishing a quantitative expressiveness hierarchy
across different architectural variants, offering insights into the impact of GNN
depth, and understanding the subgraph counting capabilities of spectral invariant
GNNs. In particular, our results significantly extend Arvind et al. (2024) and set-
tle their open questions. Finally, we generalize our analysis to higher-order GNNs
and answer an open question raised by Zhang et al. (2024b).

1 INTRODUCTION

The graph spectrum, defined as the eigenvalues of a graph matrix, is an important class of graph
invariants. It encapsulates rich graph structural information including the graph connectivity, bi-
partiteness, node clustering patterns, diameter, and more (Brouwer & Haemers, 2011). Besides
eigenvalues, generalized spectral information may also include projection matrices, which further
encodes node relations such as distances and random walk properties, enabling the definition of
more fine-grained graph invariants (Fürer, 2010). These spectral invariants possesses strong expres-
sive power. For example, a well-known conjecture raised by Van Dam & Haemers (2003); Haemers
& Spence (2004) claimed that almost all graphs can be uniquely determined by their spectra up to
isomorphism. The rare exceptions, known as cospectral graphs, tend to be highly similar in their
structure and continue to be an active area of research in graph theory (Lorenzen, 2022).

In the machine learning community, spectral invariants have recently gained increasing popularity
in designing Graph Neural Networks (GNNs) (Bruna et al., 2013; Defferrard et al., 2016; Lim et al.,
2023; Huang et al., 2024; Feldman et al., 2023; Zhang et al., 2024b; Black et al., 2024; Kanat-
soulis & Ribeiro), owing to several reasons. From a practical perspective, graph spectra have been
shown to be closely related to certain practical applications such as molecular property prediction
(Bonchev, 2018). Moreover, a recent line of works (Xu et al., 2019; Morris et al., 2019; Li et al.,
2020; Chen et al., 2020; Zhang et al., 2023b) has pointed out that the expressive power of classic
message-passing neural networks (MPNNs) are inherently limited, and cannot encode important
graph structure like connectivity or distance. Incorporating spectral invariants into the design of
MPNNs can naturally alleviate the limitations.

Therefore, from both theoretical and practical perspectives, it is beneficial to give a systematic un-
derstanding of the power of spectral invariants and their corresponding GNNs. The earliest study in
this area may be traced back to Fürer (2010), who first linked the power of several spectral invariants
to the classic Weisfeiler-Lehman test (Weisfeiler & Lehman, 1968) by proving that these invariants
are upper bounded by 2-FWL. More recently, Rattan & Seppelt (2023) further revealed a strict
expressivity gap between Fürer’s spectral invariants and 2-FWL. Zhang et al. (2024b) and Arvind
et al. (2024) analyzed refinement-based spectral invariants, which offer insights into the power of
real GNN architectures. Yet, all of these works study expressiveness through the lens of Weisfeiler-
Lehman tests, which has inherent limitations. So far, there remains a lack of comprehensive under-
standing of the practical power of spectral invariants and their corresponding GNN architectures.
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Current work. In this paper, we investigate the aforementioned questions via a novel perspective
called graph homomorphism. Specifically, Zhang et al. (2024a) recently proposed homomorphism
expressivity as a quantitative framework to better understand the expressive power of various GNN
architectures. As homomorphism expressivity is a fine-grained and practical measure, it naturally
addresses several limitations of the WL test. However, extending this framework to other archi-
tectures, such as spectral invariant GNNs, poses significant challenges. In fact, whether homomor-
phism expressivity exists for a given architecture remains an open research direction (see Zhang
et al. (2024a)). In our context, this problem becomes even challenging since homomorphism and
spectral invariants correspond to two orthogonal branches in graph theory. Here, we provide affir-
mative answers to all these questions by formally proving that the homomorphism expressivity for
spectral invariant GNNs exists and can be elegantly characterized as a special class of parallel trees
(Theorem 3.3). This offers deep insights into a series of previous studies, extending their results and
answering several open questions. We summarize our results below:

• Separation power of spectral invariants/GNNs. We offer a new proof that projection-based
spectral invariants and corresponding GNNs are strictly bounded by 2-FWL (Corollary 3.4).
Moreover, we establish a quantitative hierarchy among raw spectra information, projection,
refinement-based spectral invariant, and various combinatorial variants of WL tests (see Fig-
ure 4). This (i) recovers and extends results in Rattan & Seppelt (2023), and (ii) provides
clear insights into the hierarchy established in Zhang et al. (2024b).

• The power of refinement. We offer a systematic understanding of the role of refinement in
spectral invariant GNNs. We show increasing the number of iterations always leads to a strict
improvement in expressive power (Corollary 3.11), thus settling a key open question raised
in Arvind et al. (2024). Moreover, our counterexamples establish a tight lower bound on the
number of iterations required to achieve maximal expressivity, which is in the same order of
graph size. This advances a line of research regarding iteration numbers in WL tests (Fürer,
2001; Kiefer & Schweitzer, 2016; Lichter et al., 2019).

• Substructure counting power of spectral invariants/GNNs. On the practical side, we pre-
cisely characterize the power of spectral invariants/GNNs in counting certain subgraphs as
well as the required iterations. For example, they can count all cycles within 7 vertices, while
using 1 iteration already suffices to count all cycles within 6 vertices (Corollary 3.15).

Empirically, a set of experiments on both synthetic and real-world tasks validate our theoretical
results, showing that the homomorphism expressivity of spectral invariant GNNs well reflects their
performance in down-stream tasks.

2 PRELIMINARIES

Notations. We use { } and {{ }} to denote sets and multisets, respectively. The cardinality of a
given (multi)set S is denoted as |S|. In this paper, we consider finite, undirected, simple graphs
with no self-loops or repeated edges, and without loss of generality we only consider connected
graphs. Let G = (VG, EG) be a graph with vertex set VG and edge set EG, where each edge in
EG is a set {u, v} ⊂ VG of cardinality two. The neighbors of vertex u is denoted as NG(u) :=
{v ∈ VG|{u, v} ∈ EG}. A walk of length k is a sequence of vertices u0, · · · , uk ∈ VG such
that {ui−1, ui} ∈ EG for all i ∈ [k]. It is further called a path if ui ̸= uj for all i < j, and it
is called a cycle if u0, · · · , uk−1 is a path and u0 = uk. The shortest path distance between two
nodes u, v ∈ VG, denoted as disG(u, v), is the minimum length of walk from u to v. A graph
F = (VF , EF ) is a subgraph of G if VF ⊂ VG and EF ⊂ EG. We use Pn (resp. Cn) to denote a
graph corresponding to a path (resp. cycle) of n vertices. A graph is called a tree if it is connected
and contains no cycle as a subgraph. We denote by T r the rooted tree T with root r. The depth of a
rooted tree T r is defined as dep(T r) = maxu∈VT

disT (r, u).

2.1 SPECTRAL INVARIANT GNNS

Let G be a graph of n vertices where VG = [n], and denote by A ∈ {0, 1}n×n the adjacency
matrix of G. The spectrum of G is defined as the multiset of all eigenvalues of A. In addition
to eigenvalues, eigenspaces also provide important spectral information. Formally, the eigenspace
associated with some eigenvalue λ can be characterized by its projection matrix Pλ. It follows that
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there exist a unique set of orthogonal projection matrices {Pλ}λ∈Λ, where Λ is the set of all distinct
eigenvalues of A, such that A =

∑
λ∈Λ λPλ, and the following conditions hold:

∑
λ Pλ = I ,

PλPλ′ = 0 for λ ̸= λ′, and APλ = PλA for all λ ∈ Λ. Combining the projection matrices with
the associated eigenvalues naturally define an invariant between node pairs, which we denote by P:

P(u, v) := {{(λ,Pλ(u, v))|λ ∈ Λ}} for u, v ∈ VG.

Then, one can define the so-called “spectral invariant” of a graph as follows. Consider the following
color refinement process by treating P(u, v) as the edge feature between vertices u and v:

χ
Spec,(d+1)
G (u) = hash

(
χ
Spec,(d)
G (u), {{(χSpec,(d)

G (v),P(u, v))|v ∈ VG}}
)

for u ∈ VG, d ∈ N+,

where all colors χSpec,(0)
G (u) (u ∈ VG) are constant in initialization, and hash is a perfect hash

function. For each iteration d, the mapping χSpec,(d)
G induces an equivalence relation over vertex set

VG, and the relation gets refined with the increase of d. Therefore, with a sufficiently large number
of iterations d ≤ |VG|, the relations get stable. The spectral invariant χSpec,(∞)

G (G) is then defined to
be the multiset of stable node colors. We can similarly define χSpec,(d)

G (G) to be the multiset of node
colors after d iterations (Arvind et al., 2024). We remark that χSpec,(1)

G (G) is exactly the Fürer’s
(weak) spectral invariant proposed in Fürer (2010).

Owing to the relation between GNNs and color refinement algorithms, one can easily transform the
above refinement process into a GNN architecture by replacing hash function with a continuous,
non-linear, parameterized function, while maintaining the same expressive power (Xu et al., 2019;
Morris et al., 2019). We call the resulting architecture Spectral Invariant GNNs, following Zhang
et al. (2024b). Without ambiguity, we may also refer to χSpec,(d)

G (G) as the graph representation
computed by a d-layer spectral invariant GNN.

2.2 HOMOMORPHISM EXPRESSIVITY

Given two graphs F and G, a homomorphism from F to G is a mapping f : VF → VG that
preserves edge relations, i.e., {f(u), f(v)} ∈ EG for all {u, v} ∈ EF . We denote by Hom(F,G)
the set of all homomorphisms from F toG and define hom(F,G) = |Hom(F,G)|, which counts the
number of homomorphisms. If f is further surjective on both vertices and edges of G, we call G a
homomorphic image of F . A mapping f : VF → VG is called an isomorphism if f is a bijection and
both f and its inverse f−1 are homomorphisms. We denote by sub(F,G) the number of subgraphs
of G that is isomorphic to F .

In Zhang et al. (2024a), the authors introduced the concept the homomorphism expressivity to quan-
tify the expressive power of a color refinement algorithm (or GNN). It is formally defined as follows:
Definition 2.1. Let M be a color refinement algorithm (or GNN) that outputs a graph invariant
χM
G (G) given graph G. The homomorphism expressivity of M , denoted by FM , is a family of

connected graphs1 satisfying the following conditions:
a) For any two graphs G,H , χM

G (G) = χM
H (H) iff hom(F,G) = hom(F,H) for all F ∈ FM ;

b) FM is maximal, i.e., for any connected graph F /∈ FM , there exists a pair of graphs G,H
such that χM

G (G) = χM
H (H) and hom(F,G) ̸= hom(F,H).

By characterizing the set FM for different GNN models M , one can quantitatively understand the
expressivity gap between two models by simply computing their set inclusion relation and set differ-
ence. Zhang et al. (2024a) examines several representative GNNs under this framework, including
the standard MPNNs and Folklore GNNs (Maron et al., 2019; Azizian & Lelarge, 2021), and recent
architectures such as Subgraph GNN (Bevilacqua et al., 2022; Qian et al., 2022; Cotta et al., 2021)
and Local GNN (Morris et al., 2020; Zhang et al., 2023a). However, one implicit challenge not re-
flected in Definition 2.1(a) is that the set FM may not even exist for a general GNN M . Proving the
existence corresponds to an involved research topic known as homomorphism distinguishing closed-
ness (Roberson, 2022; Seppelt, 2024; Neuen, 2023) and is highly non-trivial. In the next section,
we will give affirmative results showing that the homomorphism expressivity of spectral invariant
GNNs does exist and give an elegant description of the graph family.

1For simplicity, we focus on connected graphs in this paper. The results can be easily generalized to dis-
connected graphs following Seppelt (2024).
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(a) A parallel edge with endpoints (u, v) (b) An example of parallel tree and its tree skeleton
Figure 1: Illustration of a parallel edge with endpoints (u, v) in (a) and a parallel tree with its
skeleton on the right in (b).

3 HOMOMORPHISM EXPRESSIVITY OF SPECTRAL INVARIANT GNNS

In this section, we investigate the homomorphism expressivity of spectral invariants and the cor-
responding GNNs. We will provide a complete characterization of the set FSpec,(d) for arbitrary
model depth d ∈ N ∪ {∞}. This allows us to analyze spectral invariants in a novel perspective,
significantly extending prior research and resolving previously unanswered questions.

3.1 MAIN RESULTS

Our idea is motivated by the previous finding that the homomorphism of MPNN is exactly the
family of all trees (Zhang et al., 2024a). Note that in the definition of spectral invariant GNN, if one
replaces P(u, v) by the standard adjacency Auv , the resulting architecture is just an MPNN. Such
a relationship perhaps implies that the homomorphism expressivity of spectral invariant GNNs also
comprises “tree-like” graphs. We will show this is indeed true. To present our results, let us define
a special class of graphs, referred to as parallel trees:

Definition 3.1 (Parallel Edge). A graph G is called a parallel edge if there exist two different
vertices u, v ∈ VG such that the edge set EG can be partitioned into a sequence of simple paths
P1, . . . , Pm, where all paths share endpoints (u, v). We refer to (u, v) as the endpoints of G.

Definition 3.2 (Parallel Tree). A graph F is called a parallel tree if there exists a tree T such that F
can be obtained from T by replacing each edge (u, v) ∈ ET with a parallel edge that has endpoints
(u, v). We refer to T as the parallel tree skeleton of the graph F . Given a parallel tree F , the parallel
tree depth of F is defined as the minimum depth of any parallel tree skeleton of F .

We give an illustration of parallel edge and parallel tree in Figure 1. With the above definitions, we
are ready to state our main theorem:

Theorem 3.3. For any d ∈ N, the homomorphism expressivity of spectral invariant GNNs with d
iterations exists and can be characterized as follows:

FSpec,(d) = {F | F has parallel tree depth at most d}.

Specifically, the following properties hold:

• Given any graphsG andH , χSpec,(d)
G (G) = χ

Spec,(d)
H (H) if and only if, for all connected graphs

F with parallel tree depth at most d, hom(F,G) = hom(F,H).

• FSpec,(d) is maximal; that is, for any connected graph F /∈ FSpec,(d), there exist graphs G and
H such that χSpec,(d)

G (G) = χ
Spec,(d)
H (H) and hom(F,G) ̸= hom(F,H).

We will present a concise proof sketch of Theorem 3.3 in Section 3.3. Next, in Section 3.2, we will
discuss the significance of this result, including how it extends previous findings and addresses open
problems identified in earlier studies.

3.2 IMPLICATIONS

Our theory has a wide range of applications, which will be separately discussed in detail below.

3.2.1 COMPARISON WITH 2-FWL

Firstly, we compare the expressive power of spectral invariant GNNs with the expressive power
of the standard Weisfeiler-Lehman (WL) test. It immediately follows that the expressive power
of spectral invariant GNNs strictly lies between the expressive power of 1-WL and 2-FWL test.
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2 3

1

4 5 6

Figure 2: A coun-
terexample graph in
F2−FWL\FSpec,(∞).

Corollary 3.4. The expressive power of spectral invariant GNNs is strictly
stronger than 1-WL and strictly weaker than 2-FWL.

Proof. According to Zhang et al. (2024a), the homomorphism expressivity
of 2-FWL encompasses the set of all graphs with treewidth at most 2. A
classical result in graph theory states that any subgraph of any series-parallel
graph has treewidth at most 2 (Diestel, 2017). Since any parallel tree is clearly
a subgraph of some series-parallel graph, its treewidth is at most 2. It follows
that the homomorphism expressivity of parallel trees is contained within that
of the 2-FWL. To show the gap, we give a counterexample graph in Figure 2.
This implies that the expressive power of spectral invariant GNNs is strictly
weaker than that of the 2-FWL. The proof for the case of 1-WL is similar and
we omit it for clarity.

3.2.2 HIERARCHY

Theorem 3.3 not only provides insights into the relationship between the expressive power of spec-
tral invariant GNNs and 2-FWL, but also allows for a comparison with a wide range of graph in-
variants and the corresponding GNNs. Specifically, similar to the analysis in Corollary 3.4, for any
GNN models A and B such that their homomorphism expressivity exists, if FA ⊊ FB , then A is
strictly weaker than B. We now use this property to establish a comprehensive hierarchy by linking
spectral invariant GNNs to other fundamental graph invariants and GNNs.

Corollary 3.5. Spectral invariant GNN with 1 iteration is strictly weaker than subgraph GNN (also
referred to as (1, 1)-WL in Rattan & Seppelt (2023)).

Proof. According to Zhang et al. (2024a), the homomorphism expressivity of subgraph GNNs con-
tains all graphs that become a forest upon the deletion of a specific vertex. On the other hand,
Theorem 3.3 states that the homomorphism expressivity of spectral invariant GNNs with one itera-
tion contains all parallel trees of depth 1. Since any parallel tree of depth 1 becomes a forest when
deleting the root vertex, we have proved that FSpec,(1) is a subset of that of subgraph GNNs. Finally,
one can easily construct a counterexample graph to prove the strict separation.

Remark 3.6. Our result recovers and strengthens the main result in Rattan & Seppelt (2023), which
only studied spectral invariants with 1 iteration (Fürer’s weak spectral invariant). We will next show
this result actually does not hold in case of more than 1 iterations.

Corollary 3.7. Spectral invariant GNNs with 2 iterations are incomparable to subgraph GNNs.

We provide a counterexample in Figure 3. Nevertheless, we can still bound the expressive power of
spectral invariant GNNs with multiple iterations to that of Local 2-GNN, as stated in the following:

Corollary 3.8. For any d ∈ N+∪{∞}, spectral invariant GNNs with d iterations are strictly weaker
than Local 2-GNN (Morris et al., 2020; Zhang et al., 2024a).

Proof. According to Zhang et al. (2024a), the homomorphism expressivity of Local 2-GNNs con-
tains all graphs that admit a strong nested ear decomposition. Since any parallel edge can be par-
titioned into ears with the same endpoints, one can easily construct a nested ear decomposition for
any parallel tree. This shows FSpec,(d) is a subset of that of Local 2-GNN. The expressivity gap can
be seen using the same counterexample graph in Figure 2.

Remark 3.9. Corollaries 3.7 and 3.8 significantly extend the findings of Arvind et al. (2024, Theo-
rem 17) and provide additional insights into Zhang et al. (2024b, Theorem 4.3).

The power of projection. We next conduct a fine-grained analysis by separating eigenvalues and
projections to better understand their individual contributions to enhancing the expressive power of
GNN models. We first prove the following theorem:

Theorem 3.10. The homomorphism expressivity of graph spectra is the set of all cycles Cn (n ≥ 3)
plus paths P1 and P2, i.e., {Cn|n ≥ 3} ∪ {P1, P2}.
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(a) Counterexample for Corollary 3.7 (b) Counterexample for Corollary 3.11

Figure 3: Counterexample for Corollary 3.7 and Corollary 3.11

The proof of Theorem 3.10 is provided in Appendix C, which has the same structure as that of
Theorem 3.3. Previously, Van Dam & Haemers (2003); Dell et al. (2018) have proved that the spectra
of two graphs G and H are identical if and only if for every cycle F , hom(F,G) = hom(F,H).
We extend their result by further proving the maximal property (Definition 2.1(b)), which only adds
two trivial graphs P1 and P2 to the homomorphism expressivity. From this result, one can easily
see that using eigenvalues alone can already improve the expressive power of an MPNN since the
homomorphism expressivity of MPNN contains only trees (but not cycles).

To understand the role of projection, one can compare the set {Cn|n ≥ 3}∪{P1, P2} with FSpec,(1)

(the homomorphism expressivity of Fürer’s spectral invariant). Clearly, the set of all parallel trees of
depth 1 is strictly larger than {Cn|n ≥ 3}∪{P1, P2}, confirming that adding projection information
significantly enhances the expressive power beyond graph spectra.

The power of refinement. We finally investigate the power of iterations d (or number of GNN
layers) in enhancing the model’s expressive power. We have the following result:

Corollary 3.11. For any d ∈ N, spectral invariant GNNs with d + 1 iterations are strictly more
powerful than spectral invariant GNNs with d iterations.

Proof. For any k ∈ N, we can construct a counterexample formed by replacing each edge in a path
P2k+1 with a parallel edge. We illustrate the construction in Figure 3(b). One can easily see that the
resulting graph is in FSpec,(k+1) but not FSpec,(k).

Remark 3.12. Corollary 3.11 addresses the key open question posed in Arvind et al. (2024), who
conjectured that spectral invariant GNNs converge within constant iterations. Specifically, the au-
thors questioned whether, for d ≥ 4, spectral invariant GNNs with d + 1 iterations are as powerful
as those with d iterations. We disproved this conjecture by providing a family of example graphs
that cannot be distinguished in d iterations but can be distinguished in d+ 1 iterations.

Our counterexamples further leads to the following result:

Corollary 3.13. For any d ∈ N+, There exist two graphs with O(d) vertices such that spectral
invariant GNNs require at least d iterations to distinguish between them.

Corollary 3.13 establishes a tight bound on the number of layers needed for spectral invariant GNNs
to reach maximal expressivity, showing that it scales with the order of graph size. This advances an
important research topic that aims to study the relation between expressiveness and iteration number
of color refinement algorithms (Fürer, 2001; Kiefer & Schweitzer, 2016; Lichter et al., 2019).

To summarize all the above results, we illustrate the hierarchy established for spectral invariant
GNNs and other mainstream GNNs in Figure 4.

3.2.3 SUBGRAPH COUNT

In fact, our results can go beyond the WL framework and reveal the expressive power of spectral
invariant GNNs in a more practical perspective. As an example, we will show below how Theo-
rem 3.3 can be used to understand the subgraph counting capabilities of spectral invariant GNNs.
Given any graph F , we say a GNN modelM can subgraph-count substructure F if for any graphsG
andH , the condition χM

G (G) = χM
H (H) implies sub(F,G) = sub(F,H). Denote by Spasm(F ) the

set of all homomorphic images of F . Previous results have proved that, if the homomorphism ex-
pressivity FM exists for model M , then M can subgraph-count F if and only if Spasm(F ) ⊂ FM

(Seppelt, 2023; Zhang et al., 2024a). This allows us to precisely analyze which substructure can be
subgraph-counted by spectral invariant GNNs.

Corollary 3.14. Spectral invariant GNN can count cycles and paths with up to 7 vertices.

6
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strict

strict

...

strict

Eigenvalue

Subgraph
 GNN

2-FWL

strict

strict

strict

strict

strict
incomparable

Spectral IGN
 1 iteration

Local
2- GNN

strict

Spectral IGN
 2 iteration

Spectral IGN
 ∞ iteration

Figure 4: Hierarchy of spectral invariant GNN (abbreviated as Spectral IGN) and other mainstream
GNNs. Each arrow points to the strictly stronger architecture.

Proof. For cycles or paths with at most 7 vertices, one can check by enumeration that their homo-
morphic images are all parallel trees. For cycles or paths with at least 8 vertices, the 4-clique is a
valid homomorphic image but is not a parallel tree.

We can further strengthen the above results by studying the number of iterations needed to count
substructures. We have the following results:
Corollary 3.15. The following holds:

1. Spectral invariant GNNs can subgraph-count all cycles up to 7 vertices within 2 iterations.

2. The above upper bound is tight: spectral invariant GNNs with only 1 iteration (i.e., Fürer’s
weak spectral invariant) cannot subgraph-count 7-cycle.

3. Spectral invariant GNNs with 1 iteration suffice to subgraph-count all cycles up to 6 vertices.

Remark 3.16. The subgraph counting power of spectral invariant has long been studied in the liter-
ature. Cvetkovic et al. (1997) proved that the graph angles (which can be determined by projection)
can subgraph-count all cycles of length no more than 5. In comparison, our results significantly
extend their findings, which even match the cycle counting power of 2-FWL (Arvind et al., 2020).
Moreover, we show that Fürer’s weak spectral invariant can already count 6-cycles, thus extending
the work of Fürer (2017).

3.3 PROOF SKETCH

In this section, we provide a proof sketch of Theorem 3.3, with the complete proof presented in the
Appendix. We begin by demonstrating that the information encoded by spectral invariants is closely
related to encoding walk information in the aggregation process of GNNs. This corresponds to the
following lemma (proved in Appendix B.2):
Lemma 3.17. (Equivalence of encoding walk and encoding spectral information) Let G =
(VG, EG) be a graph, with its adjacency matrix denoted by A. For vertices x, y ∈ VG, define
ωk
G(x, y) = Ak

x,y for all k ∈ {0, 1, 2, . . . , |VG|}, which represents the number of k-walks from
vertex x to vertex y. Define the tuple ω∗

G(x, y) = (ω0
G(x, y), ω

1
G(x, y), . . . , ω

n−1
G (x, y)), where

n = |VG|. Define the walk-encoding GNN with the following update rule:

χ
Walk,(d+1)
G (x) = hash(χ

Walk,(d)
G (x), {{(ω∗

G(x, y), χ
Walk,(d)
G (y)) | y ∈ VG}}).

The walk-encoding GNN outputs a representation χWalk,(d)
G (G) = {{χWalk,(d)

G (u)|u ∈ VG}}. For any
graphs G, H , we have χWalk,(d)

G (G) = χ
Walk,(d)
H (H) if and only if χSpec,(d)

G (G) = χ
Spec,(d)
H (H).

Our next step aims to prove that for graphsG andH , χWalk,(d)
G (G) = χ

Walk,(d)
H (H) iff, for all graphs

F with parallel tree depth at most d, hom(F,G) = hom(F,H). This will yield the first property
outlined in Theorem 3.3. The proof has a similar structure to that in Zhang et al. (2024a), which
is based on the tools of tree-decomposed graphs and algebraic graph theory (see Theorems B.14
and B.20 and Lemma B.17). This part corresponds to Appendix B.3.

Now, it remains to prove that the set FSpec,(d) is maximal (the second property in Theorem 3.3). To
achieve this, we leverage the technique called pebble game (Cai et al., 1992), which was originally
used to construct counterexample graphs that cannot be distinguished by the k-FWL test. We extend
the framework and define the pebble game for spectral invariant GNNs as follows:
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Definition 3.18. (Pebble game for spectral invariant GNNs) The pebble game is conducted on
two graphs G = (VG, EG) and H = (VH , EH). Without loss of generality, we assume VG = VH .
Initially, each graph is equipped with two distinct pebbles denoted as u and v, which start outside
the graphs. The game involves two players: the spoiler and the duplicator. The game process is
described as follows:

• Initialization: The spoiler first selects a non-empty subset V S from either VG or VH , and the
duplicator responds with a subset V D from the other graph, ensuring that |V D| = |V S|. Then,
the spoiler places the pebble u on some vertex in V D, and the duplicator places the correspond-
ing pebble u on some vertex in V S. Similarly, the spoiler and duplicator repeat the process to
place two pebbles v. After the initialization, all pebbles will lie on the two graphs.

• Main Process: The game iteratively repeats the following steps, where in each iteration the
spoiler may choose freely between the following two actions:

1. Action 1 (moving pebble v). The spoiler first selects a non-empty subset V S from either VG
or VH , and the duplicator responds with a subset V D from the other graph, ensuring that
|V D| = |V S|. The spoiler then moves pebble v to some vertex in V D, and the duplicator
moves the corresponding pebble v to some vertex in V S.

2. Action 2 (moving pebble u). This action is similar to the above one except that both players
move pebble u instead of pebble v.

• Termination: The spoiler wins if, after a certain number of rounds, ω⋆
G(u, v) for graph G differs

from ω⋆
H(u, v) for graph H . Conversely, the duplicator wins if the spoiler is unable to win after

any number of rounds.

With the above definition, we can now prove the equivalence between the outcome of a pebble game
and the ability to distinguish non-isomorphic graphs using spectral invariant GNNs:
Lemma 3.19. (Equivalence of pebble game and spectral invariant GNNs) Given graphs G
and H and the number of steps d ∈ N, the spoiler cannot win the pebble game in d steps iff
χ
Spec,(d+1)
G (G) = χ

Spec,(d+1)
H (H).

We give a proof in Appendix B.4. Next, to identify counterexamplesG andH for any F /∈ FSpec,(d)

such that χSpec,(d)
G (G) = χ

Spec,(d)
H (H) and hom(F,G) ̸= hom(F,H), we draw inspiration from a

special class of graphs called Fürer graphs (Fürer, 2001), which is a principled approach to con-
structing pairs of non-isomorphic but structurally similar graphs. If graphs G and H are the Fürer
graph and twisted Fürer graph constructed from the same base graph F , we show that the pebble
game can be significantly simplified. Importantly, the simplified pebble game will be played on the
base graph F instead of the complex Fürer graphs, making the subsequent analysis much easier.
Due to space constraints, a detailed description of the simplified pebble game is provided in Ap-
pendix B.5. We then establish the following lemma, which relates the simplified pebble game to
spectral invariant GNNs:
Lemma 3.20. (Equivalence of pebble game on Fürer graphs and spectral invariant GNNs) Given
a base graph F , let G(F ) and H(F ) be the Fürer graph and twisted Fürer graph of F , respectively.
Then, the spoiler cannot win the simplified pebble game on F in d steps iff χSpec,(d+1)

G (G(F )) =

χ
Spec,(d+1)
H (H(F )).

Note that for any connected graph F , hom(F,G(F )) ̸= hom(F,H(F )) (Roberson, 2022; Zhang
et al., 2024a). Furthermore, we demonstrate that the spoiler has a winning strategy on F in d steps
if and only if F is a parallel tree with parallel tree depth at most d + 1 (see Appendix B.6). By
combining these results with Lemma 3.20, we establish the following lemma:
Lemma 3.21. For any F /∈ FSpec,(d), the spoiler cannot win the simplified pebble game on F .
Consequently, χSpec,(d)

G (G(F )) = χ
Spec,(d)
H (H(F )).

This yields the second property in Theorem 3.3 and concludes the proof.

3.4 EXTENSIONS

So far, this paper mainly analyzes the standard spectral invariant GNNs, which refines node features
based on projection information. In this subsection, we will show the flexibility of our proposed
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homomorphism expressivity framework, which can also be used to analyze other spectral-based
GNN models such as higher-order spectral invariant GNNs.

3.4.1 HIGHER ORDER

Let us consider generalizing Section 2.1 to higher order spectral invariant GNNs. A natural update
rule of higher order spectral invariant GNN can be defined as follows:
Definition 3.22 (Higher-Order Spectral Invariant GNN). For any k ∈ N+, the k-order spectral
invariant GNN maintains a color χk-Spec

G (u) for each vertex k-tuple u = (u1, . . . , uk) ∈ V k
G . Ini-

tially, χk-Spec,(0)
G (u) = (P(u1, u2), . . . ,P(u1, uk), . . . ,P(uk−1, uk)). In each iteration t + 1, the

color is updated as follows:

χ
k-Spec,(t+1)
G (u) = hash(χ

k-Spec,(t)
G (u), {{(χk-Spec,(t)

G (v, u2, . . . , uk),P(u1, v)) : v ∈ VG}}, · · · ,

{{(χk-Spec,(t)
G (u1, u2, . . . , uk−1, v),P(uk, v)) : v ∈ VG}}).

Denote the stable color of vertex tuple u ∈ V k
G as χk-Spec

G (u). The graph representation is defined
as χk-Spec

G (G) := {{χk-Spec
G (u) : u ∈ V k

G}}.

One can see that when k = 1, the above definition degenerates to the standard spectral invariant
GNN defined in Section 2.1. To illustrate the homomorphism expressivity of higher-order spectral
invariant GNNs, we extend the concept of strong nested ear decomposition (NED) introduced by
Zhang et al. (2024a) and define the parallel strong NED. Our main result is stated below:
Theorem 3.23 (informal). A graph F is said to have a parallel k-order strong nested ear decompo-
sition (NED) if there exists a graph G such that G admits a strong NED and F can be obtained from
G by replacing each edge {u, v} ∈ EG with a parallel edge that has endpoints (u, v). Then, the
homomorphism expressivity of k-order spectral invariant GNNs is the set of all graphs that admit a
parallel k-order strong NED.

Due to space constraints, we leave the formal definition of k-order strong NED and the technical
proof of Theorem 3.23 to the Appendix.

3.4.2 SYMMETRIC POWER

To generalize spectrum and projection to higher order, another classic approach in the literature is
to use the symmetric power of a graph (also called the token graph). Audenaert et al. (2005) first
introduced the graph symmetric power to generalize eigenvalues into higher-order graph invariants.
The formal definition of the symmetric k-th power is presented as follows:
Definition 3.24 (Symmetric Power). For any k ∈ N+ and graph G, the symmetric k-th power of
G, denoted by G{k}, is a graph where its vertices are k-subsets of VG, and two subsets are adjacent
if and only if their symmetric difference is an edge in G.

Our homomorphism expressivity framework can be used to study the ability of mainstream GNNs
to encode the symmetric power of graphs. Our main result is stated as follows:
Theorem 3.25. The Local 2k-GNN defined in Morris et al. (2020); Zhang et al. (2024a) can encode
the symmetric k-th power. Specifically, for given graphs G and H , if G and H have the same
representation under Local 2k-GNN, then G{k} and H{k} have the same representation under the
spectral invariant GNN defined in Section 2.1.

Discussions with prior work. Regarding the expressive power of symmetric power, Alzaga et al.
(2008); Barghi & Ponomarenko (2009) gave the first upper bound, showing that if 2k-FWL fails
to distinguish between two non-isomorphic graphs, then their symmetric k-th powers are cospec-
tral. However, it remains unclear whether the conclusion extends to the more powerful projection
information (beyond eigenvalues), or if the stated upper bound is tight. These open questions are
further highlighted in Zhang et al. (2024b). Our result answers both questions by bounding the
stronger refinement-based spectral invariant for the k-th symmetric power graphs to Local 2k-GNN,
which is strictly weaker than 2-FWL (Zhang et al., 2024a). This offers a deeper understanding of
the capability of mainstream GNNs in encoding higher-order spectral information.
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Table 1: Experimental results on homomorphism counting, real-world tasks and substructure count.

Model
Task Homomorphism Count ZINC Substructure Count

Subset Full
MPNN .300 .261 .276 .233 .341 .138± .006 .030± .002 .358 .208 .188 .146 .261 .205

Spectral Invariant GNN .045 .046 .053 .048 .303 .103± .006 .028± .003 .072 .072 .089 .089 .060 .099
Subgraph GNN .011 .013 .010 .015 .260 .110± .007 .028± .002 .010 .020 .024 .046 .007 .027
Local 2-GNN .008 .006 .008 .008 .112 .069± .001 .024± .002 .008 .011 .017 .034 .007 .016

4 EXPERIMENT

In this section, we validate our theoretical findings through empirical experiments. We evaluate the
performance of GNN models on both synthetic and real-world tasks. For the synthetic tasks, we
assess the homomorphic counting power and subgraph counting power of the GNN models. These
experiments serve to confirm our theoretical results, including Theorem 3.3 and Corollary 3.14. In
addition, for the real-world task, we focus on molecular reaction prediction, specifically evaluat-
ing GNN performance on the ZINC dataset (Dwivedi et al., 2020). Our primary objective is not
to achieve SOTA results but to validate our theoretical findings. We compare the performance of
spectral invariant GNNs to both MPNNs and subgraph GNNs on the ZINC dataset. Details about
model architectures are in Appendix D.

Homomorphism Count We use the benchmark dataset from Zhao et al. (2022) to evaluate the ho-
momorphism expressivity of four mainstream GNN models. The reported performance is measured
by the normalized Mean Absolute Error (MAE) on the test set. The empirical results are presented
in Table 1. We can see that concerning homomorphism: (i) MPNN is unable to encode any of the
five substructures, and none of the five substructures is a tree; (ii) Spectral invariant GNN can only
encode the 1st and 2nd substructures; (iii) Subgraph GNN can encode the 1st, 2nd, and 3rd sub-
structures; and (iv) Local 2-GNN can encode the 1st, 2nd, 3rd, and 4th substructures. The empirical
results basically align with our theoretical findings.

Subgraph Count Cycle counting is a fundamental problem in chemical and biological tasks. Fol-
lowing the settings in Frasca et al. (2022); Zhang et al. (2023a); Huang et al. (2023), we evaluate the
cycle counting power of four GNNs. The empirical results in Table 1 demonstrate that the spectral
invariant GNN can accurately count 3-, 4-, 5-, and 6-cycles, indicating its strong performance in
cycle counting tasks. This empirical result is also consistent with our theoretical predictions. Fur-
thermore, we believe that a potential enhancement to our experimental results would be to evaluate
the GNN models on additional datasets, including EXP, CSL,BREC (Wang & Zhang, 2023).

Real-World Task We evaluate our GNN models on the ZINC-subset and ZINC-full dataset
(Dwivedi et al., 2020). Following the standard configuration, all models are constrained to a 500K
parameter budget. The results show that the spectral invariant GNN outperforms MPNN while
demonstrating comparable performance to the subgraph GNN on the real-world task. These find-
ings are consistent with our theoretical predictions.

5 CONCLUSION

In this work, we investigate the expressive power of spectral invariant graph neural networks
(GNNs). By leveraging the framework of homomorphism expressivity, we give a precise charac-
terization the homomorphism expressivity of these networks. We then establish a comprehensive
hierarchy of spectral invariant GNNs relative to other mainstream GNNs based on their homomor-
phism expressivity. Additionally, we analyze the subgraph counting capabilities of spectral invariant
GNNs, with a focus on their ability to count essential substructures. Our results are extended to
higher-order contexts and address additional problems related to spectral structures using our homo-
morphism framework. We demonstrate the significance of our findings by showing how our results
extend previous work and address open problems identified in the literature. Finally, we conduct
experiments to validate our theoretical results.
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A ADDITIONAL RELATED WORK

Spectral Based Graph Neural Network. Spectral invariants refer to eigenvalues, projection ma-
trices, and other generalized spectral information. In recent studies, spectral invariants have gained
significant attention in the fields of graph learning and graph theory (Fürer, 2010; Van Dam &
Haemers, 2003; Haemers & Spence, 2004). For instance, a well-known conjecture proposed by
Van Dam & Haemers (2003); Haemers & Spence (2004) posits that almost all graphs can be uniquely
determined by their spectra, up to isomorphism. Given the importance and widespread application
of graph spectral information (Bonchev, 2018), the machine learning community has also focused
on analyzing the ability of graph neural networks (GNNs) to encode spectral information and on de-
signing GNN models that incorporate more spectral features. As a result, several recent works have
concentrated on the spectral-based design of GNNs (Bruna et al., 2013; Defferrard et al., 2016; Lim
et al., 2023; Huang et al., 2024; Feldman et al., 2023; Zhang et al., 2024b). Specifically, Dwivedi
et al. (2023; 2021); Kreuzer et al. (2021); Rampášek et al. (2022) have designed spectral GNNs by
encoding Laplacian eigenvectors as absolute positional encodings. A key drawback of using Lapla-
cian eigenvectors is the ambiguity in choosing eigenvectors; thus, follow-up works have sought to
design GNNs that are invariant to the choice of eigenvectors. Lim et al. (2023) introduced BasisNet,
which achieves spectral invariance for the first time using projection matrices. Huang et al. (2024)
further generalized BasisNet by proposing the Spectral Projection Encoding (SPE), which performs
soft aggregation across different eigenspaces, as opposed to the hard separation implemented in
BasisNet.

In addition to the design of spectral-based GNNs, several recent works have also focused on an-
alyzing the expressive power of spectral GNNs and comparing them with other mainstream GNN
models. Balcilar et al. (2021) investigate the relationship between ChebNet (Defferrard et al., 2016)
and the 1-WL test, demonstrating that for graphs with similar maximum eigenvalues, ChebNet is as
expressive as 1-WL. Geerts & Reutter (2022) revisit this analysis and prove that CaleyNet (Levie
et al., 2018) is bounded by the 2-WL test.

Black et al. (2024) introduced several new WL algorithms based on absolute and relative positional
encodings (PE). The authors further established a bunch of equivalence relationships among these
algorithms. Notably, there exists a strong connection between the proposed ”stack of power of ma-
trices” PE and Spectral Invariant GNNs. We can prove that the proposed (I, L, · · · , L2n−1)-WL
(see Theorem 4.6 in Black et al. (2024)) is as expressive as spectral invariant GNNs with matrix L,
and similarly, (I, A, · · · , A2n−1)-WL is as expressive as spectral invariant GNNs with the ordinary
adjacency matrix. Therefore, all results in our paper can be used to understand the power of these
WL variants. Since Zhang et al. (2024b) has shown that the expressive power of RD-WL is bounded
by Spectral Invariant GNNs, it follows that the proposed L†-WL (see Theorem 4.6 in Black et al.
(2024)) is also bounded in expressive power by Spectral Invariant GNNs. This conclusion repro-
duces their key result (Theorem 4.4 in Black et al. (2024)).

Homomorphism Count and Subgraph Count. Subgraph counting is a fundamental problem in
chemical and biological tasks, as the ability to count subgraphs is strongly correlated with the per-
formance of GNN in molecular prediction tasks. Kanatsoulis & Ribeiro studies subgraph counting
power for a novel GNN framework, where classic message-passing GNNs are enhanced with ran-
dom node features, and the GNN output is computed by taking the expectation over the introduced
randomness. The paper demonstrates that such GNNs can learn to count various substructures,
including cycles and cliques. These findings share similarities with our work, as both studies char-
acterize the cycle-counting power of certain GNN models. Notably, the GNN framework proposed
in Kanatsoulis & Ribeiro can count more complex substructures, such as 4-cliques and 8-cycles,
which exceed the expressive power of 2-FWL.

Moreover, based on the foundational theory of Lovász (2012); Curticapean et al. (2017), it follows
that the subgraph counting power of a GNN can be inferred from its ability to count homomor-
phisms (Seppelt, 2023; Zhang et al., 2024a). Consequently, recent research has also focused on the
homomorphism counting power of GNNs. Dell et al. (2018) demonstrates that two graphs have
the same representation under the k-WL algorithm if and only if the number of homomorphisms
to the two graphs from any substructure with bounded tree width k is equal. Additionally, Zhang
et al. (2024a) introduce the concept of homomorphism expressivity as a quantitative framework for
assessing the expressive power of GNNs. This paper specifically focuses on the subgraph counting
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power of spectral invariant GNNs. Related works in this area include Cvetkovic et al. (1997), which
shows that the graph angles (which can be determined through projection) are capable of counting
all cycles of length up to 5, and Lim et al. (2023), which demonstrates that GNNs can count cycles
with up to 5 vertices. A detailed comparison of our results with these previous studies is provided
in the main text.

B PROOF OF THEOREM 3.3

B.1 PREPARATION: PARALLEL TREE AND UNFOLDING TREE

B.1.1 ADDITIONAL EXPLANATION FOR PARALLEL TREE

For the reader’s convenience, we begin by restating the definition of the parallel tree, as introduced
in the main paper.
Definition B.1 (Parallel Edge:). We denote a graph G as a parallel edge if there exist vertices
u, v ∈ VG such that the edge set EG can be partitioned into a sequence of simple paths P1, . . . , Pm,
where each path has endpoints (u, v). We refer to (u, v) as the endpoints of the parallel edge G.
Definition B.2 (Parallel Tree:). We define a graph F as a parallel tree if there exists a tree T such
that we can obtain a graph isomorphic to F by replacing each edge (u, v) ∈ ET with a parallel edge
having endpoints (u, v). We refer to T as the parallel tree skeleton of the graph F . Additionally, we
denote the minimum depth of any parallel tree skeleton of F as the parallel tree depth of F .

We further define parallel tree decomposition for any parallel tree as follows:
Definition B.3 (Parallel tree decomposition). For a parallel tree F = (VF , EF ), its parallel tree
decomposition involves constructing a rooted tree T r = (VT r , ET r ) along with mapping functions
βT r and γT r that satisfy the following conditions:

1. The label function for nodes, βT r : VT r → VF , maps each node in T r to a unique vertex in F .
2. Let EF denote the union of all paths in the graph F . The edge label function, γT r : ET r → 2EF ,

satisfies the condition that for all (t1, t2) ∈ ET r , each P ∈ γT r (t1, t2) is a path connecting
βT r (t1) and βT r (t2). Moreover, for each edge e ∈ EF , there exists a unique tuple (t1, t2, P ),
where (t1, t2) ∈ VT × VT and P ∈ γT (t1, t2), such that e lies on the path P .

We denote T r = (VT r , ET r , βT r , γT r ) as the decomposition skeleton of graph F , and the ordered
pair (F, T r) as a parallel-tree decomposed graph.

Let Spt denote the set of all parallel trees, and we use Spt
d to denote the set of all parallel trees whose

parallel tree skeleton has depth at most d.

B.1.2 UNFOLDING TREE OF SPECTRAL INVARIANT GNN

We now introduce a process of constructing a parallel tree from any vertex of a given graph.
Definition B.4 (Constructing an unfolding tree of spectral invariant GNN). Given a graph G,
vertex u ∈ V (G) and a non-negative integer d, the depth-d spectral GNN unfolding tree of graph
G at vertex u, denoted as (F

(d)
G (u), T

(d)
G (u)), is a parallel-tree decomposed graph constructed as

follows: At the beginning, F = {u}, and T only has a root node r with βT r (r) = {u}. We can
define a mapping π : VF → VG as π(u) = u.

For each leaf node t in T r, do the following procedure: Let βT r (t) = x. For each w ∈ VG, add a
fresh node tw to T r and designate t as its parent. Then, consider the following case:

1. If w ̸= π(x), add xw to F and extend π with π(xw) = w. We define βT r (tw) = xw. For every
walk w = v1, v2, . . . , vn = π(x) with n ≤ |VG|, where v1 = π(x), vn = w, we introduce a
path xv1 , xv2 , . . . , xvn linking xw and x to graph F , where xv1 = x, xvn = xw. We can also
extend mapping π with π(xv1) = v1, π(xv2) = v2, . . . , π(xvn) = vn. We define γT r (t, tw) to
be the set of all path xv1 , xv2 , . . . , xvn connecting x and xw introduced in this step.

2. If w = π(x), we define βT r (tw) = x. Similarly, for every walk w = v1, v2, . . . , vn = π(x)
with n ≤ |VG|, we introduce a loop xv1

, xv2 , . . . , xvn to graph F , where xv1 = x = xvn .
We can also extend mapping π with π(xv1) = v1, π(xv2) = v2, . . . , π(xvn) = vn. We define
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γT r (t, tw) to be the set of all path xv1 , xv2 , . . . , xvn connecting x and xw introduced in this
step.

We terminate the process once T r becomes a complete tree of depth d.

The following fact is straightforward from the construction of the unfolding tree:
Fact B.5. For any graph G, any vertex u ∈ VG, and any non-negative integer D, there is a homo-
morphism from F

(D)
G (u) to G.

With additional Explanation for parallel tree and construction of unfolding tree, we are now ready
to prove Theorem 3.3 step by step.

B.2 STEP 1: EQUIVALENCE OF ENCODING WALK INFORMATION AND SPECTRAL
INFORMATION

In this section, we aim to prove Lemma 3.17. The key idea is to use the Cayley-Hamilton theorem
to demonstrate that the walk-encoding GNN, as defined in Lemma 3.17, is equivalent to the spectral
invariant GNN.

B.2.1 PROOF OF LEMMA 3.17

Lemma B.6. Let G = (VG, EG) be a graph, with its adjacency matrix denoted by A. For
vertices x, y ∈ VG, define ωk

G(x, y) = Ak
x,y for all k ∈ {0, 1, 2, . . . , |VG|}, which rep-

resents the number of k-walks from vertex x to vertex y. Define the tuple ω∗
G(x, y) =

(ω0
G(x, y), ω

1
G(x, y), . . . , ω

n−1
G (x, y)), where n = |VG|. Define the walk-encoding GNN with the

following update rule:

χ
Walk,(d+1)
G (x) = hash(χ

Walk,(d)
G (x), {{(ω∗

G(x, y), χ
Walk,(d)
G (y)) | y ∈ VG}}).

The walk-encoding GNN outputs a graph invariant χWalk,(d)
G (G) = {{χWalk,(d)

G (u)|u ∈ VG}}.
For any graphs G and H , we have χWalk,(d)

G (G) = χ
Walk,(d)
H (H) if and only if χSpec,(d)

G (G) =

χ
Spec,(d)
H (H).

Proof. We begin by proving the following statement: If the spectra of graph G and graph H are
identical (denoted as (λ1, λ2, . . . , λm)), then for x, u ∈ VG and y, v ∈ VH , P(x, u) = P(y, v) if
and only if ω⋆

G(x, u) = ω⋆
H(y, v).

1. First, we prove that if P(x, u) = P(y, v), then ω⋆
G(x, u) = ω⋆

H(y, v).

By the properties of diagonalizable matrices, for any k ∈ {1, 2, . . . , |VG|}, we have:

ωk
G(x, u) = λk1Pλ1

(x, u) + λkλ2
P2(x, u) + · · ·+ λkmPλm

(x, u).

Therefore, if

Pλr
(x, u) = Pλr

(y, v), ∀r ∈ [m],

it follows that:

ωk
G(x, u) =

m∑
r=1

λkrPλr
(x, u) =

m∑
r=1

λkrPλr
(y, v) = ωk

H(y, v).

Thus, we have proven the first direction of the statement.
2. Now, we prove that if ω⋆

G(x, u) = ω⋆
H(y, v), then P(x, u) = P(y, v).

Let AG and AH denote the adjacency matrices of graphsG andH , respectively. By the Cayley-
Hamilton theorem, the minimal annihilating polynomial of matrix AG is given by:

f(λ) = (λ− λ1)(λ− λ2) · · · (λ− λm).

For each r ∈ {1, 2, . . . ,m}, the eigenspace corresponding to eigenvalue λr is Ker(λrI−AG).
Since:

Rn = Ker(λ1I −AG)⊕Ker(λ2I −AG)⊕ · · · ⊕Ker(λmI −AG),
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for each r ∈ {1, 2, . . . ,m}, the projection matrix onto the kernel space Ker(λrI −AG) is:

fr(AG) =
∏
j ̸=r

(λjI −AG) = Pλr
.

Therefore, there exist coefficients cr0, . . . , c
r
m−1 such that:

Pλr (x, u) = cr0 · ω0
G(x, u) + cr1 · ω1

G(x, u) + · · ·+ crm−1 · ωm−1
G (x, u),

Pλr
(y, v) = cr0 · ω0

H(y, v) + cr1 · ω1
H(y, v) + · · ·+ crm−1 · ωm−1

H (y, v).

Finally, we conclude that if ω⋆
G(x, u) = ω⋆

H(y, v), then P(x, u) = P(y, v) for all x, u ∈ VG
and y, v ∈ VH .

Armed with the statement proven above, we are now prepared to prove Lemma 3.17. We will prove
the two directions of the lemma separately as follows:

1. First, we prove that if χSpec
G (G) = χSpec

H (H), then χWalk
G (G) = χWalk

H (H). To do so, it suffices
to show that for all t ∈ N, if χSpec,(t)

G (u) = χ
Spec,(t)
H (v) for all (u, v) ∈ VG × VH , then

χ
Walk,(t)
G (u) = χ

Walk,(t)
H (v).

We prove this by induction. Initially, the statement holds trivially for t = 0. We then assume the
statement holds for t = d and aim to prove it for t = d+ 1. If χSpec,(d+1)

G (u) = χ
Spec,(d+1)
H (v),

then the following conditions are satisfied:

χ
Spec,(d)
G (u) = χ

Spec,(d)
H (v),

{{(P(u, x), χ
Spec,(d)
G (x)) | x ∈ VG}} = {{(P(v, y), χ

Spec,(d)
H (y)) | y ∈ VH}}.

(1)

For any x ∈ VG and y ∈ VH , if (P(u, x), χ
Spec,(d)
G (x)) = (P(v, y), χ

Spec,(d)
H (y)), then by our

previous result and the induction hypothesis, we have:

(ω⋆
G(u, x), χ

Walk,(d)
G (x)) = (ω⋆

H(v, y), χ
Walk,(d)
H (y)). (2)

By combining equation 1 and equation 2, we conclude:

χ
Walk,(d)
G (u) = χ

Walk,(d)
H (v),

{{(ω⋆
G(u, x), χ

Walk,(d)
G (x)) | x ∈ VG}} = {{(ω⋆

H(v, y), χ
Walk,(d)
H (y)) | y ∈ VH}}.

Thus, we conclude that χWalk,(d+1)
G (u) = χ

Walk,(d+1)
H (v). Therefore, we have proven that

χSpec
G (G) = χSpec

H (H) implies χWalk
G (G) = χWalk

H (H).

2. Now, we prove the converse: if χWalk
G (G) = χWalk

H (H), then χSpec
G (G) = χSpec

H (H). Initially,
χWalk
G (G) = χWalk

H (H) implies {{χWalk,(1)
G (u) | u ∈ VG}} = {{χWalk,(1)

H (v) | v ∈ VH}}. If
χ
Walk,(1)
G (u) = χ

Walk,(1)
H (v), then ω⋆

G(u, u) = ω⋆
H(v, v). This leads to:

{{ω⋆
G(u, u) | u ∈ VG}} = {{ω⋆

H(v, v) | v ∈ VH}}.
Hence, we derive that for all k ∈ [n]:

tr
(
Ak

G

)
=
∑
u∈VG

Ak
G(u, u) =

∑
u∈VG

ωk
G(u, u) =

∑
v∈VH

ωk
H(v, v) =

∑
v∈VH

Ak
H(v, v) = tr

(
Ak

H

)
.

By standard results from linear algebra, the spectra of graphs G and H must be identical.

Similar to the first direction, we now prove that for all t ∈ N, if χWalk,(t)
G (u) = χ

Walk,(t)
H (v) for

all (u, v) ∈ VG × VH , then χSpec,(t)
G (u) = χ

Spec,(t)
H (v).

We again proceed by induction. Initially, the statement holds trivially for t = 0. Assuming the
statement holds for t = d, we aim to prove it for t = d+1. If χWalk,(d+1)

G (u) = χ
Walk,(d+1)
H (v),

we have:

χ
Walk,(d)
G (u) = χ

Walk,(d)
H (v),

{{(ω⋆
G(u, x), χ

Walk,(d)
G (x)) | x ∈ VG}} = {{(ω⋆

H(v, y), χ
Walk,(d)
H (y)) | y ∈ VH}}.
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According to the statement proven earlier, for any x ∈ VG and y ∈ VH , ω⋆
G(u, x) = ω⋆

H(v, y)
implies that P(u, x) = P(v, y). Thus, we obtain:

χ
Spec,(d)
G (u) = χ

Spec,(d)
H (v),

{{(P(u, x), χ
Spec,(d)
G (x)) | x ∈ VG}} = {{(P(v, y), χ

Spec,(d)
H (y)) | y ∈ VH}}.

Therefore, we conclude that χSpec,(d+1)
G (u) = χ

Spec,(d+1)
H (v). Finally, we have proven that

χWalk
G (G) = χWalk

H (H) implies χSpec
G (G) = χSpec

H (H).

By combining both directions, we conclude that for any two graphsG andH , χWalk
G (G) = χWalk

H (H)

if and only if χSpec
G (G) = χSpec

H (H). Hence, the walk-encoding GNN is as expressive as the spectral-
invariant GNN.

B.3 STEP 2: FINDING THE HOMOMORPHIC EXPRESSIVITY

We first define the isomorphism between parallel-tree decomposed graphs.

Definition B.7. Given two parallel-tree decomposed graphs (F, T r) and (F̃ , T̃ r), a pair of mappings
(ρ, τ) is called an isomorphism from (F, T r) to (F̃ , T̃ r), denoted by (F, T r) ∼= (F̃ , T̃ r), if the
following hold:

1. ρ is an isomorphism from F to F̃ , while τ is an isomorphism from T r to T̃ r (ignoring labels β
and γ).

2. For any t ∈ VT r , ρ(βT r (t)) = βT̃ r (τ(t)). Moreover, for any (t1, t2) ∈ ET r , ρ(γT r (t1, t2)) =
γT r (τ(t1, t2))

Theorem B.8. For any two graphs G,H , any vertices u ∈ VG, x ∈ VH ,and any non-negative inte-
gerD, χWalk,(D)

G (u) = χ
Walk,(D)
H (x) iff there exists an isomorphism (ρ, τ) from (F

(D)
G (u), T

(D)
G (u))

to (F
(D)
G (x), T

(D)
G (x)) such that ρ(u) = x.

Proof. The proof proceeds by induction on D. The base case is straightforward: for D = 0, the
theorem holds trivially. Now assume the theorem holds for all D ≤ d, and we will prove it for
D = d+ 1.

We first prove that χWalk,(d+1)
G (u) = χ

Walk,(d+1)
H (x) implies the existence of an isomorphism

(ρ, τ) from (F
(d+1)
G (u), T

(d+1)
G (u)) to (F

(d+1)
H (x), T

(d+1)
H (x)) such that ρ(u) = x. Given that

χ
(d+1)
G (u) = χ

(d+1)
H (x), it follows that:

{{ω∗
G(u, v), χ

Walk,(d)
G (v)}}v∈VG

= {{ω∗
H(x, y), χ

Walk,(d)
H (y)}}y∈VH

.

Let n = |VG| = |VH |, and denote VG = {v1, v2, . . . , vn}, VH = {y1, y2, . . . , yn} such that:

ω∗
G(u, vi) = ω∗

H(x, yi), χ
Walk,(d)
G (vi) = χ

Walk,(d)
H (yi) for all i ∈ [n].

By the definition of tree unfolding, we have:

F
(d+1)
G (u) =

(⋃
vi

F
(d)
G (vi)

)
∪ F (1)

G (u), F
(d+1)
H (x) =

(⋃
yi

F
(d)
H (yi)

)
∪ F (1)

H (x),

where we use ∪ to represent graph union. By the inductive hypothesis, there exists an isomor-
phism (ρi, τi) from (F

(d)
G (vi), T

(d)
G (vi)) to (F

(d)
H (yi), T

(d)
H (yi)) such that ρi(vi) = yi. Addition-

ally, since ω∗
G(u, vi) = ω∗

H(x, yi), F
(1)
G (u) is isomorphic to F (1)

H (x). Therefore, by merging all
ρi and τi into ρ̃ and τ̃ , and constructing an approximate mapping between tree nodes at depth no
more than 1 in T (d+1)

G (u) and T (d+1)
H (x), it follows that (ρ̃, τ̃) is a well-defined isomorphism from

(F
(d+1)
G (u), T

(d+1)
G (u)) to (F

(d+1)
H (x), T

(d+1)
H (x)), satisfying ρ̃(u) = x.

Next, we prove that if there exists an isomorphism (ρ, τ) between the parallel-tree decom-
posed graphs (F

(d+1)
G (u), T

(d+1)
G (u)) and (F

(d+1)
H (x), T

(d+1)
H (x)) such that ρ(u) = x, then

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

χ
Walk,(d+1)
G (u) = χ

Walk,(d+1)
H (x). Since τ is an isomorphism from T

(d+1)
G (u) to T (d+1)

H (x), it maps
all depth-1 nodes in T (d+1)

G (u) to depth-1 nodes in T (d+1)
H (x). Let s1, s2, . . . , sn be the depth-1

nodes in T (d+1)
G (u), and t1, t2, . . . , tn be the corresponding nodes in T (d+1)

H (x). For i ∈ [n], we de-
note the subtree induced by si and its descendants as T (d+1)

G,si
(u), and similarly, the subtree induced

by ti and its descendants as T (d+1)
G,ti

(x). Additionally, we define the subgraph of F (d+1)
G (u) induced

by T (d+1)
G,si

(u) as F (d+1)
G,si

(u). Likewise, we define the subgraph of F (d+1)
H (u) induced by T (d+1)

H,ti
(u)

as F (d+1)
H,ti

(u). Without loss of generality, we assume the following:

• τ is an isomorphism from the subtree T (d+1)
G,si

(u) to T (d+1)
H,ti

(x).

• For all s ∈ V
T

(d+1)
G,si

(u)
, ρ(β

T
(d+1)
G (u)

(s)) = β
T

(d+1)
H (x)

(τ(s)).

• For all e ∈ E
T

(d+1)
G,si

(u)
, ρ(γ

T
(d+1)
G (u)

(e)) = γ
T

(d+1)
H (x)

(τ(e)).

• ρ is an isomorphism between the subgraphs F (d+1)
G,si

(u) and F (d+1)
H,ti

(x).

According to our assumption, (F (d+1)
G,si

(u), T
(d+1)
G,si

(u)) is isomorphic to (F
(d+1)
H,ti

, T
(d+1)
H,ti

(x)). Addi-

tionally, by the definition of the unfolding tree, (F (d+1)
G,si

(u), T
(d+1)
G,si

(u)) is isomorphic to the depth-d

unfolding tree (F
(d)
G (vi), T

(d)
G (vi)) for some vi ∈ VG. Similarly, (F (d+1)

H,ti
(x), T

(d+1)
H,ti

(x)) is iso-

morphic to (F
(d)
H (yi), T

(d)
H (yi)) for some yi ∈ VH . By induction, we know that χWalk,(d)

G (vi) =

χ
Walk,(d)
H (yi) and ω∗

G(u, vi) = ω∗
H(x, yi). Therefore, we conclude:(

ω∗
G(u, vi), χ

Walk,(d)
G (vi)

)
=
(
ω∗
H(x, yi), χ

Walk,(d)
H (yi)

)
for all i ∈ [n], implying that:

{{
(
ω∗
G(u, vi), χ

Walk,(d)
G (vi)

)
}}v∈VG

= {{
(
ω∗
H(x, yi), χ

(d)
H (yi)

)
}}y∈VH

. (3)

It remains to prove that χWalk,(d)
G (u) = χ

Walk,(d)
H (x). To prove this, note that equation 3 implies that

{{
(
ω∗
G(u, vi), χ

Walk,(d′)
G (vi)

)
}}y∈VG

= {{
(
ω∗
H(x, yi), χ

Walk,(d′)
H (yi)

)
}}y∈VH

.

holds for all 0 ≤ d′ ≤ d. Combined this with the fact that χWalk,(0)
G (u) = χ

Walk,(0)
H (x), we can

incrementally prove that χWalk,(d′)
G (u) = χ

Walk,(d′)
H (x) for all d′ ≤ d + 1. We have thus concluded

the proof. Thus, the proof is complete.

Definition B.9. Given a graph G and a parallel-tree decomposed graph (F, T r), we define the
function treeCount((F, T r), G) as the number of ordered pairs (u, d) ∈ VG × N such that the
depth-d unfolding tree (F

(d)
G (u), T

(d)
G (u)) at vertex u is isomorphic to (F, T r).

Corollary B.10. For any graph G,H , χWalk
G (G) = χWalk

H (H) iff treeCount((F, T r), G) =
treeCount((F, T r), H) holds for all parallel-tree decomposed graph (F, T r).

Proof. We first prove one direction of the corollary. We aim to prove that if χWalk
G (G) =

χWalk
H (H), then treeCount((F, T r), G) = treeCount((F, T r), H). If χWalk

G (G) = χWalk
H (H), then

{{χWalk
G (u) : u ∈ VG}} = {{χWalk

H (x) : x ∈ VH}}. For each color c in the above multiset, pick
u ∈ VG with χWalk

G (u) = c. It follows that if (F, T r) ∼= (F
(D)
G (u), T

(D)
G (u)) for some D, then

treeCount((F, T r), G) = |{{u ∈ VG : χWalk
G (u) = c}}| = |{{x ∈ VH : χH(x) = c}}| =

treeCount((F, T r), H) by Theorem B.8. On the other hand, if (F, T r) ̸∼= (F
(D)
G (u), T

(D)
G (u))

for all u ∈ VG and all D, then clearly treeCount((F, T r), G) = treeCount((F, T r), H) = 0.

We then aim to prove the second direction of the corollary. If treeCount((F, T r), G) =
treeCount((F, T r), H) holds for all parallel-tree decomposed graph (F, T r), it clearly holds for
all (F (D)

G (u), T
(D)
G (u)) with u ∈ VG and a sufficiently large D. This guarantees that for all color

c, |{{u ∈ VG : χWalk
G (u) = c}}| = |{{x ∈ VH : χWalk

H (x) = c}}| by Theorem B.8. Therefore,
{{χWalk

G (u) : u ∈ VG}} = {{χWalk
H (x) : x ∈ VH}}, concluding the proof.
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Definition B.11. For parallel-tree decomposed graph (F, T r), we use Dep(T r) to denote the depth
of tree T . For any tree note t ∈ VT , we use depT (t) to denote the depth of node t in T r.

Using techniques similar to those in Corollary B.10, we can derive a finite-iteration version of Corol-
lary B.10 as follows:

Corollary B.12. For any graphs G and H , χ
Walk,(d)
G (G) = χ

Walk,(d)
H (H) if and only if

treeCount ((F, T r), G) = treeCount ((F, T r), H) holds for all parallel-tree decomposed graphs
(F, T r) with Dep(T r) ≤ d.

In the following theorem, we will bridge homomorphic count with unfolding tree count. Before
presenting the result, we first introduce some notations used to present the theorem.

Definition B.13. Given two parallel-tree decomposed graphs (F, T r) and (F̃ , T̃ r), a pair of map-
pings (ρ, τ) is called a strong homomorphism from (F, T r) to (F̃ , T̃ s) if it satisfies the following
conditions: First, τ is a homomorphism from T to T̃ , ignoring the labels β and γ, and is depth-
preserving, i.e., depT r (t) = depT̃ s(τ(t)) for all t ∈ VT . Additionally, ρ is a homomorphism from
F [γT (t1, t2)] to F̃ [γT̃ (τ(t1), τ(t2))]. Finally, the depth of T r is equal to the depth of T̃ s.

We use strHom((F, T r), (F̃ , T̃ r)) to denote the set of all strong homomorphism from (F, T r) to
(F̃ , T̃ r), and let strhom((F, T r), (F̃ , T̃ r)) = |strHom((F, T r), (F̃ , T̃ r))|.
Theorem B.14. Let (F, T r) be parallel-tree decomposed graph and let G be a graph. We have

hom(F,G) =
∑

(F̃ ,T̃ r)∈Spt

strhom
(
(F, T r),

(
F̃ , T̃ r

))
· treeCount(

(
F̃ , T̃ r

)
, G)

Proof. We assume that βT r (r) = u for (F, T r), and the depth of (F, T r) is d. Let x ∈ VG
be any vertex in G, and denote (F

(d)
G (x), T

(d)
G (x)) as the depth-d unfolding tree at x. We

define S1(x) as the set of all homomorphisms from F to G that map the vertex u ∈ VF to
x ∈ VG. Furthermore, we define S2(x) as the set of strong homomorphisms (ρ, τ) from (F, T r)

to (F
(d)
G (x), T

(d)
G (x)), such that ρ(u) = x. Then Theorem B.14 is equivalent to the following

equation:
∑

x∈VG
|S1(x)| =

∑
x∈VG

|S2(x)| . We will prove that |S1(x)| = |S2(x)| for all x ∈ VG.

Given x ∈ VG, according to Fact B.5, there exists a homomorphism π from F
(d)
G (x) to graph G.

Define a mapping σ such that σ(ρ, τ) = π ◦ ρ for all (ρ, τ) ∈ S2(x). It suffices to prove that σ is a
bijection from S2(x) to S1(x).

We first prove that σ is a mapping from S2(x) to S1(x). Since ρ is a homomorphism from F to
F

(d)
G (x), and π is a homomorphism from F

(d)
G (x) to G. The composition of homomorphism is still

a homomorphism. Therefore, π ◦ ρ is a homomorphism from F to graph G.

We then prove that σ is a surjection. For all g ∈ S1(x), we define a mapping (ρ, τ) from
(F, T r) to (F

(d)
G (x), T

(d)
G (x)) as follows. First define ρ(u) = x and set τ(r) to be the root of

(F
(d)
G (x), T

(d)
G (x)). Let v1, v2, . . . , vm ∈ VT r be the tree nodes of depth 1. Similarly, by definition

of the unfolding tree, let y1, y2, . . . , yn ∈ V
F

(d)
G (x)

be tree nodes of depth 1. For all i ∈ [m], we
denote {Pi1, Pi2, . . . , Piai

} = γT r (u, vi), to be the paths associated with edge (u, vi) ∈ ET r . Sim-
ilarly, for i ∈ [n] we denote {P̃i1, P̃i2, . . . , P̃ibi} = γT r (x, yi) to be the paths associated with edge
(x, yi) ∈ E

T
(d)
G (x)

. Since g and π are both homomorphism, we have:

• For every vi(i ∈ [m]), there exists xj (j ∈ [n]), such that g(βT r (vi)) = π(β
T

(d)
G (x)

(yj)) = z̃j

for some z̃j ∈ VG.

• For every path Pik ∈ γT r (u, vi) (k ∈ [ai]) linking u and βT r (vi), there exists P̃jl (l ∈ [bj ])

linking x and β
T

(d)
G (x)

(yj) such that g(Pik) = π(P̃jl).

We then define ρ(βT r (vi)) = β
T

(d)
G (x)

(yj) and ρ(Pik) = P̃jl for each i ∈ [m] and k ∈ [ai].
Based on the above two items, one can easily define τ such that each node s in T r of depth 1
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is mapped by τ to a node t in T
(d)
G (x) of the same depth, such that ρ(βT r (s)) = β

T
(d)
G (x)

(t)

and ρ(γT r (r, s)) = γ
T

(d)
G (x)

(x, t). Continuing, we denote the subtree of T r induced by s and
all its descendants as T r

s , and the subgraph of F induced by T r
s as Fs. Similarly, we denote the

subtree of T (d)
G (x) induced by τ(s) and its descendants as T (d)

G,τ(s)(x), and the subgraph of F (d)
G (x)

induced by T (d)
G,τ(s)(x) as F (d)

G,τ(s)(x). We can recursively define the image of ρ on Fs for each tree
node of depth 1, following the same construction described above. This recursive definition holds
because g remains a homomorphism from (Fs, T

r
s ) to G, and π remains a homomorphism from

(F
(d)
G,τ(s)(x), T

(d)
G,τ(s)(x)) to G, with g(βT r (s)) = π(β

T
(d)
G (x)

(τ(s))). By recursively applying this
procedure, we can construct (ρ, τ) such that it becomes a strong homomorphism (denoted strHom)
from (F, T r) to (F

(d)
G (x), T

(d)
G (x)). Therefore, we have shown that for any g ∈ S1(x), there exists

a preimage (ρ, τ) ∈ S2(x) such that σ(ρ, τ) = g.

Finally, we prove that σ is an injection.
Let (ρ1, τ1), (ρ2, τ2) ∈ S2(x) such that π ◦ ρ1 = π ◦ ρ2. Similar to previous item, we define
v1, v2, . . . , vm ∈ VT r to be the tree nodes of depth 1. Similarly, by definition of the unfolding tree,
let y1, y2, . . . , yn ∈ V

T
(d)
G (x)

be tree nodes of depth 1.

• For all i ∈ [m], we denote {Pi1, Pi2, . . . , Piai
} = γT r (u, vi), to be the paths associated with

edge (u, vi) ∈ ET r . Similarly, for i ∈ [n] we denote {P̃i1, P̃i2, . . . , P̃ibi} = γT r (x, yi) to be the
paths associated with edge (x, yi) ∈ E

T
(d)
G (x)

. For each i ∈ [m], let j1(i) and j2(i) be indices
satisfying ρ1(wi) = xj1(i) and ρ2(wi) = xj2(i). It follows that π(xj1(i)) = π(xj2(i)). By the
definition of unfolding tree, we must have xj1(i) = xj2(i), and thus ρ1(wi) = ρ2(wi).

• For each k ∈ [ai], Pik ∈ γT r (u, vi), let l1(k) and l2(k) be indices satisfying ρ1(Pik) = P̃jl1(j)

and ρ2(Pik) = P̃jl2(j), where we use j to denote j = j1(i) = j2(i). With similar analysis as
the previous item, we have π(P̃jl1(j)) = π(P̃jl2(j)). By the definition of the unfolding tree, we
must have P̃jl1(j) = P̃jl2(j), and thus ρ1(Pik) = ρ2(Pik).

Next, we recursively apply the previously described procedure to the subtree induced by the tree
node s at depth 1 and its descendants, following the same steps outlined earlier. Through this
process, we can ultimately demonstrate that ρ1 = ρ2. Consequently, σ is injective.

Combining the above three parts completes the proof.

Theorem B.15. Let (F, T r) be parallel-tree decomposed graph with Dep(T r) ≤ d and let G be a
graph. We have

hom(F,G) =
∑

(F̃ ,T̃ r)∈Spt
d

strhom
(
(F, T r),

(
F̃ , T̃ r

))
· treeCount(

(
F̃ , T̃ r

)
, G)

Proof. According to the third condition in Definition B.13, for (F, T r) ∈ Spt
d and (F̃ , T̃ r) ∈ Spt,

if strhom((F, T r), (F̃ , T̃ r)) ̸= 0, then Dep(T r) = Dep(T̃ r). Therefore, we have (F̃ , T̃ r) ∈ Spt
d .

Thus, the conclusion of the lemma follows.

Definition B.16. Given two parallel-tree decomposed graphs (F, T r) and (F̃ , T̃ r), along with
a strong homomorphism (ρ, τ), we define (ρ, τ) as a surjective strong homomorphism if both
ρ and τ are surjective mappings, and as an injective strong homomorphism if both ρ and
τ are injective mappings. We denote the set of all surjective strong homomorphisms from
(F, T r) to (F̃ , T̃ r) by strSurj((F, T r), (F̃ , T̃ r)), and further define strsurj((F, T r), (F̃ , T̃ r)) =

|strSurj((F, T r), (F̃ , T̃ r))|. Similarly, we denote the set of all injective strong homomorphisms
from (F, T r) to (F̃ , T̃ r) by strInj((F, T r), (F̃ , T̃ r)), and further define strinj((F, T r), (F̃ , T̃ r)) =

|strInj((F, T r), (F̃ , T̃ r))|.

We now present the following lemma regarding the relationships between strong homomorphisms,
surjective strong homomorphisms, and injective strong homomorphisms.
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Lemma B.17. For any parallel-tree decomposed graph (F, T r) and (F̃ , T̃ s), we have

strhom
(
(F, T r),

(
F̃ , T̃ s

))
=

∑
(F̂ ,T̂ t)∈Spt

strsurj
(
(F, T r),

(
F̂ , T̂ t

))
· strinj

((
F̂ , T̂ t

)
,
(
F̃ , T̃ s

))
/aut

(
F̂ , T̂ t

)
,

where aut(F̂ , T̂ t) denotes the number of automorphism of (F̂ , T̂ r). Here, the summation ranges
over all non-isomorphic (parallel-tree decomposed) graphs in Spt and is well-defined as there are
only a finite number of graphs making the value in the summation non-zero.

Proof. We initially define the set S as the set of triples ((F̂ , T̂ t), (ρ, τ), (ϕ, ψ)) that satisfy (F̂ , T̂ t) ∈
Spt, (ρ, τ) ∈ strSurj((F, T r), (F̂ , T̂ t)), and (ϕ, ψ) ∈ strInj((F̂ , T̂ t), (F̃ , T̃ s)). We define a mapping
σ such that σ((F̂ , T̂ t), (ρ, τ), (ϕ, ψ)) = (ϕ ◦ ρ, ψ ◦ τ) for all ((F̂ , T̂ t), (ρ, τ), (ϕ, ψ)) ∈ S. Our goal
is to prove that σ is a mapping from S to strHom((F, T r), (F̃ , T̃ s)). Moreover, we aim to show
that σ((F̂1, T̂

t1
1 ), (ρ1, τ1), (ϕ1, ψ1)) = σ((F̂2, T̂

t2
2 ), (ρ2, τ2), (ϕ2, ψ2)) if and only if there exists an

isomorphism (ρ̂, τ̂) from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 ) such that ρ̂ ◦ ρ1 = ρ2, τ̂ ◦ τ1 = τ2, ϕ1 = ϕ2 ◦ ρ̂, and

ψ1 = ψ2 ◦ τ̂ .

We will prove these statements one by one. We first prove that σ is a mapping from S to
strHom((F, T r), (F̃ , T̃ s)). This simply follows from the fact that strSurj and strInj are both
strHom, and the composition of two strHoms are still a strHom.

Next, we will prove that σ is surjective. Given (ρ̃, τ̃) ∈ strHom((F, T r), (F̃ , T̃ s)), we define
(F̂ , T̂ r), (ρ, τ), and (ϕ, ψ) as follows:

1. We define F̂ as the subgraph of F̃ induced by ρ̃(VF ), and we define T̂ t as the subgraph of T̃ s

induced by τH(VT ). We clearly have (F̂ , T̂ t) ∈ Spt.

2. Let ρ = ρ̃ and τ = τ̃ . Obviously, (ρ, τ) is a strSurj from (F, T r) to (F̂ , T̂ t).
3. Define identity mappings ϕ(u) = u for all u ∈ VF̂ for ψ(t) = t for all t ∈ VT̂ . Obviously,

(ϕ, ψ) is a strInj from (F̂ , T̂ t) to (F̃ , T̃ s).

We clearly have ρ̃ = ϕ ◦ ρ and τ̃ = ψ ◦ τ . Thus, σ is a surjection.

We will now prove that σ((F̂1, T̂
t1
1 ), (ρ1, τ1), (ϕ1, ψ1))=σ((F̂2, T̂

t2
2 ), (ρ2, τ2), (ϕ2, ψ2)) iff there

exist an isomorphism (ρ̂, τ̂) from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 ) such that ρ̂ ◦ ρ1 = ρ2, τ̂ ◦ τ1 =

τ2, ϕ1 = ϕ2 ◦ ρ̂, ψ1 = ψ2 ◦ τ̂ . It suffices to prove only one direction, namely,
σ((F̂1, T̂

t1
1 ), (ρ1, τ1), (ϕ1, ψ1))=σ((F̂2, T̂

t2
2 ), (ρ2, τ2), (ϕ2, ψ2)) implies that there exist an isomor-

phism (ρ̂, τ̂) from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 ) such that ρ̂◦ρ1 = ρ2, τ̂ ◦τ1 = τ2, ϕ1 = ϕ2◦ρ̂, ψ1 = ψ2◦ τ̂ .

1. We first prove that F̂1
∼= F̂2 and T̂ t1

1
∼= T̂ t2

2 . For any u, v ∈ VF , if ρ1(u) ̸= ρ1(v), then
ϕ1 ◦ ρ1(u) ̸= ϕ1 ◦ ρ1(v) since ϕ is an injection. Therefore, ϕ2 ◦ ρ2(u) ̸= ϕ2 ◦ ρ2(v), and thus
ρ2(u) ̸= ρ2(v). By symmetry, we also have that ρ2(u) ̸= ρ2(v) implies ρ1(u) ̸= ρ1(v). This
proves that ρ1(u) = ρ1(v) iff ρ2(u) = ρ2(v). For any u, v ∈ VF , if {ρ1(u), ρ1(v)} ∈ EF̂1

,
then {u, v} ∈ EF since ρ1 is a surjection. Therefore, {ρ2(u), ρ2(v)} ∈ EF̂2

since ρ2 is a
homomorphism.

2. Consequently, there exist isomorphism ρ̂ and τ̂ such that ρ̂ ◦ ρ1 = ρ2, τ̂ ◦ τ1 = τ2. For any node
q ∈ VT ,

ρ̂(βT̂1
(τ1(q))) = ρ̂ ◦ ρ1(βT (q)) = ρ2(βT (q)) = βT̂2

(τ2(q)) = βT̂2
(τ̂ ◦ τ1(q)).

Moreover, for any {q1, q2} ∈ ET ,

ρ̂(γT̂1
(τ1(q1, q2))) = ρ̂ ◦ ρ1(γT (q1, q2)) = ρ2(γT (q1, q2)) = γT̂2

(τ2(q1, q2)) = γT̂2
(τ̂ ◦ τ1(q1, q2)).

Since τ1 is surjective, τ1(q) ranges over all nodes in T̂ t1
1 when q ranges over VT , and τ1(q1, q2)

ranges over all edges in T̂ t1
1 when (q1, q2) ranges over ET . We thus conclude that (ρ, τ) is an

isomorphism from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 )
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3. We finally prove that ϕ1 = ϕ2 ◦ ρ̂ and ψ1 = ψ2 ◦ τ̂ . Pick any u ∈ VF , we have ϕ2 ◦ ρ̂ρ1(u) =
ϕ2 ◦ ρ2(u) = ϕ1 ◦ ρ1(u). Since ρ1 is surjective, ϕ1(u) ranges over all vertices in F̂1 when u
ranges over VF . This proves that ϕ1 = ϕ2 ◦ ρ̂. Following the same procedure, we can prove that
ψ1 = ψ2 ◦ τ̂ .

Combining the above three items concludes the proof.

From Lemma B.17, we can also obtain the finite-iteration version of Lemma B.17 as follows:

Lemma B.18. For any parallel-tree decomposed graph (F, T r) ∈ Spt
d and

(
F̃ , T̃ s

)
∈ Spt

d , we
have

strhom
(
(F, T r),

(
F̃ , T̃ s

))
=

∑
(F̂ ,T̂ t)∈Spt

d

strsurj
(
(F, T r),

(
F̂ , T̂ t

))
· strinj

((
F̂ , T̂ t

)
,
(
F̃ , T̃ s

))
/aut

(
F̂ , T̂ t

)
,

Proof. According to the third condition in Definition B.13, for (F̂ , T̂ r) ∈ Spt, if
strsurj((F, T r), (F̂ , T̂ t)) · strinj((F̂ , T̂ t), (F̃ , T̃ s)) ̸= 0, it follows that (F̂ , T̂ r) ∈ Spt

d . Therefore,
the conclusion of the lemma is immediate.

Definition B.19. We can list all non-isomorhpic parallel-tree decomposed graphs into an infinite
sequence (F1, T

r1
1 ) , (F2, T

r2
2 ) , . . . with the following order.

• The order requires |VTi
| ≤ |VT j | for any i < j.

• If |VTi
| = |VT j | for any i < j, then |FTi

| ≤ |FTj
|.

Then we define following function matrix and function vector based on the order defined above.

1. Let f : Spt × Spt → N be any mapping. Define the associated matrix Mf ∈ NN+×N+ ,
where Af

i,j = f
(
(Fi, T

ri
i ), (Fj , T

rj
j )
)
. Similarly, we consider the finite-iteration version. Let

f : Spt
d × Spt

d → N be any mapping. Define the associated matrix Mf ∈ NN+×N+ , where
M

f,(d)
i,j = f

(
(Fi, T

ri
i ), (Fj , T

rj
j )
)
.

2. Let g : Spt × G → N be any mapping. Given a graph G ∈ G, define the (infinite) vector
lgG ∈ NN+ , where lgG,i = g ((Fi, T

ri
i ), G). For the finite-iteration version, let g : Spt

d × G → N
be any mapping. Given a graph G ∈ G, define the (infinite) vector lg,(d)G ∈ NN+ , where lg,(d)G,i =

g ((Fi, T
ri
i ), G).

3. Let h : G×G → N be any mapping. Given a graphG ∈ G, define the (infinite) vector lhG ∈ NN+ ,
where lhG,i = h(Fi, G). In the finite-iteration setting, let h : G ×G → N be any mapping. Given

a graph G ∈ G, define the (infinite) vector lh,(d)G ∈ NN+ , where lh,(d)G,i = h(Fi, G).

Theorem B.20. For any two graphsG andH , we have hom((F, T r), G) = hom((F, T r), H) for all
parallel-tree decomposed graphs (F, T r) iff treeCount((F, T r), G) = treeCount((F, T r), H) for
all parallel-tree decomposed graphs. Similarly, in the finite-iteration setting, hom((F, T r), G) =

hom((F, T r), H) holds for all (F, T r) ∈ Spt
d iff treeCount((F, T r), G) = treeCount((F, T r), H)

for all (F, T r) ∈ Spt
d .

Proof. We consider each direction separately.

1. First, we prove that if treeCount((F, T r), G) = treeCount((F, T r), H) for all parallel-tree
decomposed graphs, then hom((F, T r), G) = hom((F, T r), H) for all such graphs (F, T r).
According to Theorem B.14, this result can be expressed in matrix form as lhomG = M strhom ·
ltreeCountG and lhomH = M strhom · ltreeCountH for all parallel trees F . This directly implies that
ltreeCountG = ltreeCountH leads to lhomG = lhomH . Similarly, in the finite-iteration setting, the result
from Theorem B.15 can be rewritten in matrix form as l

hom,(d)
G = M strhom,(d) · ltreeCount,(d)G .

Therefore, if ltreeCount,(d)G = l
treeCount,(d)
H , it follows that lhom,(d)

G = l
hom,(d)
H .
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2. For the second direction of the lemma, it suffices to prove the finite-iteration setting, as the
general case directly follows. According to Lemma B.18, we have the following equations:

l
strhom,(d)
G = M strsurj,(d) ·M strinj,(d) · (M aut,(d))−1 · ltreeCount,(d)G ,

l
strhom,(d)
H = M strsurj,(d) ·M strinj,(d) · (M aut,(d))−1 · ltreeCount,(d)H .

By simple observation, M aut is a diagonal matrix where all diagonal elements are positive
integers. Moreover, M strinj is an upper triangular matrix with positive diagonal elements. This
holds because strinj((Fi, T

ri
i ), (Fj , T

rj
j )) > 0 only when |VTi

| ≤ |VTj
|. Since M strsurj,(d) is a

lower triangular matrix with positive diagonal elements, it is invertible. Thus,

M strinj,(d) · ltreeCount,(d)G = M strinj,(d) · ltreeCount,(d)H .

Additionally, by the definition of an unfolding tree, there are only finitely many non-zero el-
ements in both l

treeCount,(d)
G and l

treeCount,(d)
H , and the corresponding non-zero indices are re-

stricted to a fixed (finite) set. In this case, the upper triangular matrix M strinj,(d) reduces to
a finite-dimensional matrix, so we conclude that ltreeCount,(d)G = l

treeCount,(d)
H . By enumerating

over all d ≥ 0, we obtain that ltreeCountG = ltreeCountH .

Combining item 1 and item 2, we finish the proof of the lemma.

B.4 STEP 3: FINDING PEBBLE GAME FOR SPECTRAL INVARIANT GNN

In this section, we introduce the pebble game and demonstrate its equivalence to the expressive
power of spectral invariant GNN.

B.4.1 PEBBLE GAME

We first formally define the rules of pebble game.

Definition B.21 (Pebble game for spectral invariant GNN). The pebbling game is conducted on
two graphs G = (VG, EG) and H = (VH , EH). Initially, each graph is equipped with two distinct
pebbles, denoted as u and v, which start off outside the graphs. The game involves two players: the
Spoiler and the duplicator. We now describe the procedure of the game as follows:

• Initialization:The Spoiler first selects a non-empty subset V S from either VG or VH , and the
duplicator responds with a subset V D from the other graph, ensuring that |V D| = |V S |. The
duplicator loses the game if no feasible choice is available. The Spoiler places a pebble u on a
vertex in V D, and the duplicator places a corresponding pebble u in V S . Similarly, the Spoiler
and duplicator repeat the process to place two pebbles, v. Specifically, the Spoiler selects a
non-empty subset V S from either VG or VH , and the duplicator responds by selecting a subset
V D from the other graph, maintaining |V S | = |V D|. The Spoiler then places v on a vertex in
V D, while the duplicator places the corresponding v in V S .

• Main Process: The game iteratively repeats the following steps, where, in each iteration, the
Spoiler may choose freely between the following two actions:

1. Action 1 (moving pebble v): The Spoiler first selects a non-empty subset V S from either
VG or VH , and the duplicator responds with a subset V D from the other graph, ensuring
that |V D| = |V S |. The Spoiler then moves pebble v to a vertex in V D, and the duplicator
moves the corresponding pebble v to a vertex in V S .

2. Action 2 (moving pebble u): The Spoiler first selects a non-empty subset V S from either
VG or VH , and the duplicator responds with a subset V D from the other graph, ensuring
that |V D| = |V S |. The Spoiler then moves pebble u to a vertex in V D, and the duplicator
moves the corresponding pebble u to a vertex in V S .

• Termination: The Spoiler wins if, after a certain number of rounds, ω⋆
G(u, v) for graphG differs

from ω⋆
H(u, v) for graph H . Conversely, the duplicator wins if the Spoiler is unable to achieve

a win after any number of rounds.
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B.4.2 EQUIVALENCE BETWEEN SPECTRAL GNNS AND PEBBLING GAMES

Lemma B.22. Let l ∈ N be any integer. For any vertices uG, vG ∈ VG and uH , vH ∈ VH , if
χ
Walk,(l)
G (u) ̸= χ

Walk,(l)
H (v), then the Spoiler can win the game in l− 1 rounds when the two pebbles

u are initially placed on vertices uG ∈ VG and uH ∈ VH in graphs G and H , respectively.

Proof. The proof proceeds by induction on l. First, consider the base case where l = 0. In this case,
the statement is trivially true.
Now, assume that the lemma holds for all l ≤ L, and consider the case where l = L + 1. Suppose
χ
Walk,(L+1)
G (uG) ̸= χ

Walk,(L+1)
H (uH). If χWalk,(L)

G (uG) ̸= χ
Walk,(L)
H (uH), then by the inductive

hypothesis, Spoiler wins. Otherwise, we have

{{(ω⋆
G(uG, vG), χ

Walk,(L)
G (vG)) : vG ∈ VG}} ≠ {{(χ⋆

H(uH , vH), χ
Walk,(L)
H (vH)) : vH ∈ VH}}.

Therefore, there exists a color c and x ∈ R|VG| such that |CG(uG, c, x)| ≠ |CH(uH , c, x)|, where

CG(uG, c, x) =
{
vG ∈ VG : χ

Walk,(L)
G (vG) = c, ω⋆

G(uG, vG) = x
}
.

If |CG(uG, c, x)| > |CH(uH , c, x)|, the Spoiler can select the vertex subset V S = CG(uG, c, x) ⊂
VG. Regardless of how the Duplicator responds with a subset V D ⊂ VH , there exists a vertex vH ∈
V D such that (ω⋆

H(uH , vH), χ
Walk,(L)
H (vH)) ̸= (x, c). The Spoiler then selects this vertex xS = vH ,

and no matter how the Duplicator responds with xD = vG ∈ V S , we have either ω⋆
G(uG, vG) ̸=

ω⋆
H(uH , vH) or χWalk,(L)

G (vG) ̸= χ
Walk,(L)
H (vH). If ω⋆

G(uG, vG) ̸= ω⋆
H(uH , vH), the Spoiler wins

the game immediately. If χWalk,(L)
G (vG) ̸= χ

Walk,(L)
H (vH), the remainder of the game is equivalent

to one where the two pebbles u are initially placed on vG ∈ VG and vH ∈ VH in graphs G and H
respectively. By the inductive hypothesis, the Spoiler wins the game.

If |CG(uG, c, x)| < |CH(uH , c, x)|, Spoiler can select the vertex subset V S = CH(uH , c, x) ⊂ VH ,
and the conclusion follows analogously.

Lemma B.23. For any vertices uG ∈ VG and uH ∈ VH , if χWalk,(l+1)
G (uG) = χ

Walk,(l+1)
H (uH),

then the Spoiler cannot win the game within l rounds when the two pebbles are initially placed on
vertices uG ∈ VG and uH ∈ VH in graphs G and H , respectively.

Proof. The proof proceeds by induction on l. The base case l = 0 is trivially true. Now, assume
the statement holds for l ≤ L, and consider the case l = L + 1. Suppose χWalk,(L+2)

G (uG) =

χ
Walk,(L+2)
H (uH). Then,

{{
(
ω⋆
G(uG, vG), χ

Walk,(L+1)
G (vG)

)
: vG ∈ VG}} = {{

(
ω⋆
H(uH , vH), χ

Walk,(L+1)
H (vH)

)
: vH ∈ VH}}.

If Spoiler selects a subset V S , and if V S ⊂ VG, Duplicator can respond with a subset V D ⊂ VH

such that

{{
(
ω⋆
G(uG, vG), χ

Walk,(L+1)
G (vG)

)
: vG ∈ V S}} = {{

(
ω⋆
H(uH , vH), χ

Walk,(L+1)
H (vH)

)
: vH ∈ V D}}.

Similarly, if V S ⊂ VH , Duplicator can respond with a subset V D ⊂ VG such that

{{
(
ω⋆
G(uG, vG), χ

Walk,(L+1)
G (vG)

)
: vG ∈ V D}} = {{

(
ω⋆
H(uH , vH), χ

Walk,(L+1)
H (vH)

)
: vH ∈ V S}}.

In both cases, it is clear that |V S | = |V D|. Next, regardless of how Spoiler moves the pebble v to a
vertex xS ∈ V D, Duplicator can always respond by moving the corresponding pebble v to a vertex
xD ∈ V S , such that(

ω⋆
G(uG, ṽG), χ

Walk,(L+1)
G (ṽG)

)
=
(
ω⋆
H(uH , ṽH), χ

Walk,(L+1)
H (ṽH)

)
,

where (ṽG, ṽH) represents the new positions of the pebbles. The remaining game is then equivalent
to a game in which the two pebbles are initially placed on vertices ṽG ∈ VG and ṽH ∈ VH in graphs
G and H , respectively.
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Combining previous two lemmas, we have the following result:
Lemma B.24. Given graph G and H , Spoiler cannot wins the pebble game in d steps iff
χ
Spec,(d)
G (G) = χ

Spec,(d)
H (H).

Therefore, we have proven Lemma 3.19 in the main paper.

B.5 STEP 4: INTRODUCING FÜRER GRAPHS

To continue, we draw introduce Fürer graphs, and we further prove that pebble games restricted on
Fürer graphs can be greatly simplified.

B.5.1 PROPERTIES OF FÜRER GRAPHS

We first introduce the definition of Fürer graphs, introduced by Fürer (2001).
Definition B.25 (Fürer graphs). Given any connected graph F = (VF , EF ), the Fürer graph
G(F ) = (VG(F ), EG(F )) is constructed as follows:

VG(F ) = {(x,X) : x ∈ VF , X ⊂ NF (x), |X| mod 2 = 0},
EG(F ) = {{(x,X), (y, Y )} ⊂ VG : {x, y} ∈ EF , (x ∈ Y ↔ y ∈ X)}.

Here, x ∈ Y ↔ y ∈ X holds when either (x ∈ Y and y ∈ X) or (x /∈ Y and y /∈ X) holds. For
each x ∈ VF , denote the set

MetaF (x) := {(x,X) : X ⊂ NF (x), |X| mod 2 = 0}, (4)
which is called the meta vertices of G(F ) associated to x. Note that VG(F ) =

⋃
x∈VF

MetaF (x).

We next define an operation called “twist”:
Definition B.26 (Twist). LetG(F ) = (VG(F ), EG(F )) be the Fürer graph of F = (VF , EF , ℓF ), and
let {x, y} ∈ EF be an edge of F . The twisted Fürer graph of G(F ) for edge {x, y}, is constructed
as follows: twist(G(F ), {x, y}) := (VG(F ), Etwist(G(F ),{x,y})), where

Etwist(G(F ),{x,y}) := EG(F )△{{ξ, η} : ξ ∈ MetaF (x), η ∈ MetaF (y)},
and △ is the symmetric difference operator, i.e., A△B = (A\B) ∪ (B\A). For an edge set S =
{e1, · · · , ek} ⊂ EF , we further define

twist(G(F ), S) := twist(· · · twist(G(F ), e1) · · · , ek). (5)
Note that Equation (5) is well-defined as the resulting graph does not depend on the order of edges
e1, · · · , ek for twisting.

The following result is well-known (see e.g., Zhang et al., 2023a, Corollary I.5 and Lemma I.7)):
Theorem B.27. For any connected graph F and any set S1, S2 ⊂ EF , twist(G(F ), S1) ≃
twist(G(F ), S2) iff |S1| mod 2 = |S2| mod 2.

We now present an essential property of Fürer graphs in terms of walk number:
Theorem B.28. Let G(F ) = (VG, EG) be the Fürer graph of F = (VF , EF ) and
Ĝ(F ) = twist(G(F ), E) for some E ⊂ EF . For any (x,X ), (y,Y) ∈ VG, and x =
x1, x2, . . . , xn−1, xn = y ∈ VF , the n−walk starting from (x,X ), ending at (y,Y) and passing
MetaF (x1),MetaF (x2), . . . ,MetaF (xn) in sequence on G(F ) is not equal to the one on Ĝ(F ),
namely |S| ≠ |Ŝ| where

S =
{
((x1,X1), (x2,X2), . . . , (xn,Xn)) : X1 = X ,Xn = Y

, {(xi,Xi), (xi+1,Xi+1)} ∈ EG(F ), i = 1, 2, . . . , n− 1
}

Ŝ =
{
((x1,X1), (x2,X2), . . . , (xn,Xn)) : X1 = X ,Xn = Y

, {(xi,Xi), (xi+1,Xi+1)} ∈ EĜ(F ), i = 1, 2, . . . , n− 1
}

iff the degree of x2, x3, . . . , xn−1 all equals to 2 in base graph F and
|{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E| ≡ 1 (mod 2)
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Proof. We separately prove the two direction of the theorem.

1. We first prove one direction of the statement, namely if the degree of x2, x3, . . . , xn−1 all equals
to 2 in base graph F and |{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E| ≡ 1 (mod 2), then |S| ≠ |Ŝ|.
If the degree of x2, x3, . . . , xn−1 all equals to 2 and |{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E| ≡
1 (mod 2), then |S| ̸= |Ŝ|, then we can obtain a precise description of S and Ŝ, categorized
according to X and Y .

(a) If x2 ∈ X and xn−1 ∈ Y , then we have

S = {((x,X ), (x2, {x, x3}), (x3, {x2, x4}), . . . , (xn−1, {xn−2, y}), (y,Y))} Ŝ = ∅

(b) If x2 /∈ X and xn−1 ∈ Y , we assume

{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E = {{xa1
, xa1+1}, {xa2

, xa2+1, . . . , {xam
, xam+1}}},

where m ≡ 1 (mod 2). Then we have

S = ∅ Ŝ ={((x,X ), (x2, ∅) . . . , (xa1
, ∅), (xa1+1, {xa1

, xa1+2}), . . . ,
(xa2

, {xa2−1, xa2+1}), (xa2+1, ∅), . . . , (xn−1, {xn−2, y}), (y,Y))}

(c) If x2 ∈ X and xn−1 /∈ Y , we still assume

{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E
={{xa1 , xa1+1}, {xa2 , xa2+1}, . . . , {xam , xam+1}, a1 < a2, . . . , am−1 < am},

where m ≡ 1 (mod 2). Then we have

S = ∅ Ŝ ={((x,X ), (x2, {x1, x3}) . . . , (xa1
, {xa1−1, xa1+1}), (xa1+1, ∅), . . . ,

(xa2
, ∅), (xa2+1, {xa2

, xa2+2}), . . . , (xn−1, ∅), (y,Y))}

(d) If x2 /∈ X and xn−1 /∈ Y , then we have

S = {((x,X ), (x2, ∅), (x3, ∅), . . . , (xn−1, ∅), (y,Y))} Ŝ = ∅

We can see that for all cases |S| ̸= |Ŝ|. Therefore, we have proven that if the degree of
x2, x3, . . . , xn−1 all equals to 2 in base graph F and |{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E| ≡
1 (mod 2), then |S| ≠ |Ŝ|.

2. We now prove the other direction of the theorem. We prove that if the degree of x2, x3, . . . , xn−1

all equals to 2 and |{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E| ≡ 0 (mod 2), then |S| = |Ŝ|. Sim-
ilar to previous item, we separately consider the precise expression of S and Ŝ categorized by
X and Y . We first assume that

{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E
={{xa1

, xa1+1}, {xa2
, xa2+1}, . . . , {xam

, xam+1}, a1 < a2, . . . , am−1 < am},

where m ≡ 0 (mod 2).

(a) If x2 ∈ X and xn−1 ∈ Y , then we have

S ={((x,X ), (x2, {x, x3}), (x3, {x2, x4}), . . . , (xn−1, {xn−2, y}), (y,Y))}
Ŝ ={((x,X ), (x2, {x1, x3}) . . . , (xa1

, {xa1−1, xa1+1}), (xa1+1, ∅), . . . ,
(xa2 , ∅), (xa2+1, {xa2 , xa2+2}), . . . , (xn−1, xn−2, y), (y,Y))}.

(b) If x2 /∈ X and xn−1 ∈ Y , then we obviously have

S = ∅ Ŝ = ∅.

(c) If x2 ∈ X and xn−1 /∈ Y , then we similarly have

S = ∅ Ŝ = ∅.
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(d) If x2 /∈ X and xn−1 /∈ Y ,
S ={((x,X ), (x2, ∅), (x3, ∅), . . . , (xn−1, ∅), (y,Y))}
Ŝ ={((x,X ), (x2, ∅) . . . , (xa1

, ∅), (xa1+1, {xa1
, xa1+2}), . . . , (xa2

, {xa2−1, xa2+1}),
(xa2+1, ∅), . . . , (xn−1, ∅), (y,Y))}.

We can see that for all cases |S| = |Ŝ|. Therefore, we have proven that if the degrees of
x2, x3, . . . , xn−1 all equals to 2 and |{{xi, xi+1} , i = 1, 2, . . . , n− 1} ∩ E| ≡ 0 (mod 2),
then |S| = |Ŝ|.

3. We eventually prove that if the degrees of x2, x3, . . . , xn−1 do not all equals to 2, then |S| = |Ŝ|.
We use ωĜ(F )

n ((x,X ),Meta(x2), . . . ,Meta(xn−1), (y,Y)) to denote the number of n−walk
starting from (x,X ), ending at (y,Y) and passing MetaF (x1), . . . ,MetaF (xn) sequentially in
Fürer graph Ĝ(F ) = twist(G(F ), E). We use notation degF (v) to denote the degree of v in
graph F . We do induction on n to prove a stronger statement:
If the degree of x2, x3, . . . , xn−1 do not all equals to 2, then there exists function fFn : V (F )n →
N, such that ωĜ(F )

n ((x,X ),Meta(x2), . . . ,Meta(xn−1), (y,Y)) = fn(x1, x2, . . . , xn) for all
X ∈ NF (x),Y ∈ NF (y) and any E ⊂ EF .
We first consider the case when n = 2. We can straightforwardly define function fFn as
f(x1, x2, x3) = 2deg(x2)−3.
We now assume that the statement holds for n ≤ N , we consider the case when n = N + 1.
We separately consider two cases

(a) Not all degrees of x3, x4, . . . , xn−1 equals to 2.
The n−walk passing MetaF (x1), . . . ,MetaF (xn) sequentially can be split into a 1−walk
from (x,X ) to MetaF (x2) and an n − 1 walk passing MetaF (x2), . . . ,MetaF (xn) se-
quentially and ending at (y,Y). According to the induction hypothesis, the number
of n − 1 walk passing MetaF (x2), . . . ,MetaF (xn) sequentially and ending at (y,Y)
equals to fFn−1(x2, x3, . . . , xn). Since the number of 1−walk from (x,X ) to MetaF (x2)

equals to 2degF (x2)−2, we can define function fFn as fFn (x1, x2, . . . , xn) = 2degF (x2)−2 ·
fFn−1(x2, x3, . . . , xn).

(b) All degrees of x3, x4, . . . , xn−1 equals to 2. Then we have degF (x2) ≥ 3. Then the number
of n−1 walk passing MetaF (x2), . . . ,MetaF (xn) sequentially and ending at (y,Y) equals
to 1 or 0. Therefore, we can simply define function fFn as fFn = 2degF (x2)−3.

Combining the two items, we can conclude that if the degrees of x2, x3, . . . , xn−1

do not all equals to 2, then there exists function fFn : V (F )n → N, such that

ω
Ĝ(F )
n ((x,X ),Meta(x2), . . . ,Meta(xn−1), (y,Y)) = fn(x1, x2, . . . , xn) for all X ∈

NF (x),Y ∈ NF (y) and any E ⊂ EF .

Combining all previous analysis, we have proven the result of the theorem.

B.5.2 SIMPLIFIED PEBBLE GAME ON FÜRER GRAPHS

Definition B.29 (Connected components). Let F = (VF , EF ) be a connected graph, and
let U ⊂ VF be a set of vertices, referred to as separation vertices. We define two edges
{u, v}, {x, y} ∈ EF as belonging to the same connected component if there exists a simple path
{{y0, y1}, {y1, y2}, . . . , {yk−1, yk}} such that {y0, y1} = {u, v}, {yk−1, yk} = {x, y}, and yi /∈ U
for all i ∈ [1, k−1]. It is straightforward to verify that this relation between edges induces an equiv-
alence relation. Consequently, the edge set EF can be partitioned into disjoint subsets, denoted by
CCF (U) = {Pi : i ∈ [m]}, where each Pi ⊂ EF represents a connected component for some m.
Definition B.30 (Simplified Pebble Game). The simplified pebble game is defined as follows. Let
F = (VF , EF ) represent the base graph of a proper Fürer graph. The game is played on F with
two pebbles, u and v, each of a different type. Initially, both pebbles are placed outside the graph
F . The game begins with Spoiler placing pebble u on any vertex of F , while pebble v remains
outside the graph. The game then proceeds in cycles, following these steps: Spoiler places pebble v
on any vertex of F , swaps the positions of u and v, and then places pebble v back outside the graph.
Duplicator, on the other hand, maintains a subset Q of connected components, where Q ⊂ CCS(F )
and S is the set of vertices in F where pebbles u and v are currently placed.
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When Spoiler places a pebble on a vertex of F , one of two scenarios occurs. If CCS(F ) remains
unchanged, Duplicator takes no action. However, if the new pebble placement causes a connected
component to split into smaller regions, Duplicator updates Q by replacing any original component
P ⊂ EF that splits into P1, . . . ,Pk (where

⋃k
i=1 Pi = P) with a subset of the newly formed

components. That is, Q̃ = (Q \ P) ∪ {Pj1 , . . . ,Pjl} for some j1, . . . , jl ∈ [k], ensuring that
|Q̃| ≡ 1 (mod 2). In other words, Duplicator removes the old component P (if present) and adds
some of the new components while preserving the parity of |Q|. When Spoiler removes a pebble and
places it outside the graph, two cases arise. If CCS(F ) remains unchanged, Duplicator again takes
no action. However, if the removal of the pebble causes multiple connected components P1, . . . ,Pk

to merge into a larger component P =
⋃k

i=1 Pi, Duplicator updates Q by either removing the
smaller components, i.e., Q̃ = Q \ {P1, . . . ,Pk}, or adding the merged component, i.e., Q̃ = (Q \
{P1, . . . ,Pk}) ∪ P , depending on which option preserves |Q̃| ≡ 1 (mod 2). When Spoiler swaps
the positions of the two pebbles, the connected components CCS(F ) do not change, so Duplicator
does not modify Q.

Spoiler wins the game if, after any round, Q contains a connected component that forms a path.
Duplicator wins if Spoiler is unable to achieve this outcome after any number of rounds.

Lemma B.31. Given a base graph F , Spoiler cannot win the simplified pebble game on F in d steps
iff χSpec,(d+1)

G (G(F )) = χ
Spec,(d+1)
H (H(F )).

Proof. Initially, we introduce a ”half-simplified” game as follows: Let F = (VF , EF ) be the base
graph of a proper Fürer graph. This version of the pebble game is also played on F , with two pebbles
u and v. Initially, both pebbles are outside the graph F .

• First, we describe the rules for the Spoiler. Spoiler maintains a subset Q1 ⊂ CCS(F ) of
connected components, where the set S consists of the vertices in F currently occupied by
the pebbles u and v. (If pebble v is outside F , then S contains only the vertex where u is
placed.) Initially, Spoiler places u on any vertex of F and leaves v outside the graph, maintain-
ing Q1 = {EF }. Then, the game proceeds cyclically as follows:

– Spoiler places v on any vertex of F . Two cases arise for maintaining Q1: if CCS(F ) does
not change, Spoiler leaves Q1 unchanged. Otherwise, the new pebble may split some con-
nected components into smaller regions. For each original component P ⊂ EF that splits
into P1, . . . ,Pk with

⋃k
i=1 Pi = P , Spoiler updates Q1 to Q̃1 = (Q1\P)∪{Pj1 , . . . ,Pjl},

where j1, . . . , jl ∈ [k] and |Q̃1| ≡ 0 (mod 2). This ensures that the parity of |Q1| remains
unchanged.

– Spoiler swaps the positions of u and v, leaving Q1 unchanged.
– Spoiler removes v from the graph, leaving it outside F . Again, two cases arise for maintain-

ing Q1: if CCS(F ) does not change, Spoiler does nothing. Otherwise, several connected
components P1, . . . ,Pk may merge into a larger component P =

⋃k
i=1 Pi. Spoiler then

updates Q1 to either Q̃1 = Q1\{P1, . . . ,Pk} or Q̃1 = (Q1\{P1, . . . ,Pk})∪P , whichever
satisfies |Q̃1| ≡ 0 (mod 2).

• Next, we describe the rules for the Duplicator, which are analogous to the Spoiler’s rules but
with a key difference: Duplicator maintains a subset Q2 ⊂ CCS(F ) where the parity of |Q2| is
always odd. Initially, Q2 = {EF }, and throughout the game, Duplicator performs the following
updates:

– When Spoiler places a pebble, Duplicator updates Q2 in the same manner as Q1, but ensur-
ing |Q̃2| ≡ 1 (mod 2).

– When Spoiler removes a pebble, Duplicator updates Q2 as in the previous case, ensuring
that the parity of |Q2| remains odd.

– When Spoiler swaps the pebbles, Duplicator does nothing, as CCS(F ) remains unchanged.

The result of the game is determined as follows: Suppose that pebbles u and v are placed on ver-
tices of F . Spoiler maintains the subset Q1, and Duplicator maintains Q2. We then construct two
twisted Fürer graphs: G̃(F ) = twist(G(F ), Ẽ) and Ĝ(F ) = twist(G(F ), Ê), where |Ẽ | = |Q1|
and, for each P ∈ Q1, we select a single edge Ẽ ∩ P = 1. Similarly, |Ê | = |Q2|, and for
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each P ∈ Q2, we select a single edge Ê ∩ P = 1. Spoiler wins if the walk vector satisfies
ω⋆
G̃(F )

((u, ∅), (v, ∅)) ̸= ω⋆
Ĝ(F )

((u, ∅), (v, ∅)), meaning that there exists an n-walk in G̃(F ) from

(u, ∅) to (v, ∅) that differs from the corresponding n-walk in Ĝ(F ). Following a similar analysis to
Theorem 17 in Zhang et al. (2023a), we can show that the ”half-simplified” pebble game is equiv-
alent to the original pebble game. Specifically, the Spoiler can win in d steps in the original pebble
game if and only if the Spoiler can win in d steps in the half-simplified pebble game. Therefore,
it remains to prove the equivalence between the half-simplified and the original pebble games. We
refer to the pebble game described in this section as the half-simplified game. Let F = (VF , EF )
be the base graph and G(F ) the corresponding Fürer graph. Furthermore, we denote the game
states in the simplified game by (S,Q), where S , which can be either (u, v) or (u), represents the
pebble positions on the base graph F , and Q denotes the set of connected components that the Du-
plicator is currently maintaining. Similarly, we define the game state in the half-simplified game as
(S,Q1,Q2), where S represents the placement of the pebbles on F , and Q1 and Q2 denote the sets
of connected components maintained by the Spoiler and Duplicator, respectively. We now proceed
to prove the following claim: If the Duplicator can win the half-simplified game, then they have
a strategy to ensure that, for every game state ((u, v),Q1,Q2), the symmetric difference Q1△Q2

contains no path connecting u and v in the base graph F .

If the Duplicator can win the game, then for every game state ((u, v),Q1,Q2), we can se-
lect an edge from each connected component in Q1 to form an edge set E1, and similarly, se-
lect an edge from each connected component in Q2 to form an edge set E2. Let G1(F ) =
twist(G(F ), E1) and G2(F ) = twist(G(F ), E2). Since the Duplicator can win the game, it fol-
lows that ω⋆

G1(F )((u, ∅), (v, ∅)) = ω⋆
G2(F )((u, ∅), (v, ∅)). Consequently, for n < |VG1(F )|, we have

ωn
G1(F )((u, ∅), (v, ∅)) = ωn

G2(F )((u, ∅), (v, ∅)), meaning that the number of n-walks connecting
(u, ∅) and (v, ∅) is equal. According to Theorem B.28, the number of paths of length n connecting
u and v in Q1 and Q2 is equal for all n ≤ |VF |. To construct a winning strategy for the Duplicator,
we modify it as follows: for every game state ((u, v),Q1,Q2), ensure that Q1△Q2 contains no path
connecting u and v in F . If there exists a game state ((u, v),Q1,Q2) such that Q1△Q2 contains
paths connecting u and v, then for every n ≤ |VF |, if Q1△Q2 contains an n-length path, the number
of n-length paths in Q1 and Q2 must be equal. Therefore, when the Spoiler places pebble v on the
base graph F , the Duplicator can modify their strategy to choose exactly the same n-paths as the
Spoiler. This modification does not affect previous or future stages of the game due to symmetry
principles, as the Spoiler can still apply their strategy in the remaining part of the game. However,
this adjustment strictly eliminates any game state where Q1△Q2 contains paths connecting u and v
in F . By recursively applying this modification from the initial state, we can construct a strategy for
the Duplicator such that, for every game state ((u, v),Q1,Q2), Q1△Q2 contains no path connecting
u and v in F .

With the result established above, we are now in a position to complete the proof of Lemma 3.20.
We will address the two directions of the lemma separately:

1. First, we show that if the Duplicator can win the half-simplified pebble game, then they can
also win the simplified pebble game. Let GS denote the game state graph of the half-simplified
pebble game, in which the Duplicator has a winning strategy. We can straightforwardly derive
the game state graph of the simplified pebble game, denoted by G̃S, by replacing each game state
(u,Q1,Q2) with (u,Q1△Q2), and each game state ((u, v),Q1,Q2) with ((u, v),Q1△Q2).
Without loss of generality, we can assume that in GS, for every game state ((u, v),Q1,Q2),
there exists no path connecting u and v in Q1△Q2. Thus, G̃S is a valid game state graph with
legal transitions for the simplified pebble game.

2. Next, we show that if the Duplicator can win the simplified pebble game, they can also win the
half-simplified pebble game. Suppose the Duplicator has a winning strategy in the simplified
pebble game, and let G̃S be the corresponding game state graph. The Duplicator will recursively
apply the following strategy in the half-simplified pebble game:

(a) For a game state (u,Q1,Q2) in the half-simplified game, we consider the game state
(u,Q1△Q2). If the Spoiler places a pebble on vertex v of the base graph F and selects
the connected component set Q̃1, then the Duplicator will select the connected component
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set Q̃2 such that the transition from (u,Q1△Q2) to ((u, v), Q̃1△Q̃2) is a legal move on
the game state graph G̃S.

(b) Similarly, for a game state ((u, v),Q1,Q2) in the half-simplified game, we consider the
game state ((u, v),Q1△Q2). If the Spoiler selects the connected component set Q̃1 after
swapping the pebbles on u and v and removing the pebble from u, then the Duplicator will
choose the connected component set Q̃2 such that the transition from ((u, v),Q1△Q2) to
(u, Q̃1△Q̃2) is a legal move on the game state graph G̃S.

From the construction of this strategy, it is evident that every game state (S,Q1,Q2) in the
half-simplified pebble game corresponds to a game state (S,Q1△Q2) in the game state graph
GS. Therefore, the strategy outlined above is well-defined.

By combining the two arguments above, we conclude that the Duplicator can win the simplified
pebble game in d steps if and only if they can win the original pebble game in d steps.

Thus, we finish the proof of Lemma 3.20 in the main body of our paper.

B.6 STEP 5: PROVING THE MAXIMALITY OF HOMOMORPHISM EXPRESSIVITY

Before presenting the proof, we redefine the concept of the game state graph for clarity in the tech-
nical exposition. Notably, there is a slight difference between the definition of the game state graph
here and the one in the previous section: we only consider game states with a single pebble in the
game state graph.
Definition B.32. We define the game state (u,Q) as in the previous section, where u ∈ VF repre-
sents the position of the pebble, and Q is the connected component maintained by the Duplicator.
The game state graph is formed by all game states (u,Q). There is an edge from (u,Q) to (ũ, Q̃) if
there exists a game transition from (u,Q) to ((û, v̂), Q̂), followed by a transition from ((û, v̂), Q̂)

to (ũ, Q̃), for some connected component set Q̂ ⊂ EF and vertex v̂ ∈ VF .
Definition B.33. A game state (u,Q) is called a terminal game state if there is a transition from
(u,Q) to a game state ((u, ṽ), Q̃) for some connected component set Q̃ ⊂ EF and vertex ṽ ∈ VF ,
such that Q̃ consists only of a single path. In this case, the game state (u,Q) is called a terminal
game state. It is straightforward to see that the Spoiler can win in the terminal state.
Definition B.34. Given a game state graph GS, a state (u,Q) is termed ”contracted” if, for any
transition (u,Q) → (u′,Q′) ∈ EGS , it holds that Q′ ⊂ Q. The state is called ”strictly contracted”
if, for any transition (u,Q) → (u′,Q′) ∈ EGS , it holds that Q′ ⊊ Q.
Definition B.35. A game state (u,Q) is defined as ”unreachable” if any path starting from the initial
state (∅, EF ) and ending at (u,Q) passes through a terminal state.

We do not need to consider unreachable states since the Spoiler always wins before reaching them.
Lemma B.36. For any graph F , if the Spoiler can win the pebble game on F , then there exists a
game state graph GS corresponding to a winning strategy for the Spoiler such that all reachable
and non-terminal states are strictly contracted.

Proof. 1. First, we prove that there exists a strategy for the Spoiler such that every reachable and
non-terminal state is contracted. Since the Spoiler can win the pebble game, they can win at
any reachable state (u,Q). Consider any strategy where (u,Q) is not contracted. Note that
the game state graph induced by all reachable states is a Directed Acyclic Graph (DAG), so we
can choose a state (u,Q) such that no path from the initial state (∅, {EF }) to (u,Q) passes
through any intermediate state that is not contracted. Next, we construct a new strategy to make
the state (u,Q) unreachable. We clearly have u ̸= ∅. Without loss of generality, assume there
is a transition (u,Q) → (u′,Q′) such that Q′ ̸⊂ Q. Let (u0,Q0), (u1,Q1), . . . , (uT ,QT ) be
any path from the initial state (∅, {EF }) to (u,Q). We modify the strategy as follows: at state
(uT−1,QT−1), the Spoiler places the pebble pv on u′, swaps the pebbles at u and v, and then
removes pv from the graph. This process can be repeated for every path from the initial state
(∅, EF ) to the state (u,Q). In the new strategy, (u,Q) will become unreachable. However,
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the state (uT−1,QT−1) may now violate the contraction condition. In this case, we recursively
apply the above procedure to (uT−1,QT−1). Note that this process will terminate after a finite
number of steps, as the length of the path from the initial state to (uT−1,QT−1) is strictly
shorter than the path to (u,Q).

2. Next, we prove that every reachable and non-terminal state can be strictly contracted. Suppose,
for contradiction, that (u,Q) is reachable and non-terminal, but not strictly contracted. Then
there exists a transition ((u,Q) → (u′,Q′)) ∈ EGS . Since u is at the boundary of all connected
components, we have u = u′. This implies that the game state graph is not acyclic, which
contradicts the assumption that it is a DAG.

Combining the above two points, we conclude that for any given graph F , if the Spoiler can win the
pebble game on F , then there exists a game state graph GS corresponding to a winning strategy for
the Spoiler such that every reachable and non-terminal state is strictly contracted.

Lemma B.37. Given any connected graph F , if the Spoiler can win the pebble game on F , then
F is a parallel tree. Specifically, there exists a tree skeleton T r = (VT r , ET r , βT r , γT r ) such that
(F, T r) ∈ Spt.

Proof. Let GS be the game state graph satisfying Lemma B.36. For each game state
s, denote nextGS(s) as the set of states s′ such that (s, s′) is a transition in GS and
s′ contains only a single component, i.e., s′ has the form (u, {P}). By definition,
nextGS(∅, {EF }) = {(u,Q1), . . . , (u,Qm)} for some u ∈ VF , where Q1, . . . , Qm is the
finest partition of CCF ({u}).

The tree T r will be recursively constructed as follows. First, create the tree root r with
βT (r) = u. As will be explained later, the root node will be associated with the set of states
S(r) := nextGS(∅, {EF }). We then proceed with the following procedure:

Let t be a leaf node in the current tree associated with a non-empty set of game states S(t)
such that | ∪(u,{P})∈S(t) P | > 1. For each state (u, {P}) ∈ S(t), create a new node t̃ and set its
parent to be t. Pick any state (v, {P ′}) ∈ nextGS(u, {P}), and set βT (t̃) = v. Then, node t̃ will be
associated with the set of states S(t̃) = {(v, {P̃}) : (v, {P̃}) ∈ nextGS(u, {P})}.

We now prove that T r is indeed a valid tree skeleton for F . By definition of a parallel tree,
when constructing T r and defining the label function βT : VT r → VF , we can naturally define the
label function for edges γT : ET r → 2EF . For any edge (t1, t2) ∈ ET r , there exist only paths
connecting βT (t1) and βT (t2) in F . Therefore, the image of (t1, t2) is naturally defined as the set
of paths connecting βT (t1) and βT (t2). Since βT is already defined for the nodes of T r, it remains
to prove that for every edge (t1, t2) ∈ ET r , there exist only paths connecting βT (t1) and βT (t2) in
F .

We revisit the construction of T r. Let t be a leaf node associated with the game states S(t).
For each game state (u, {P}) ∈ S(t), create a new node t̃ and set its parent to t. Pick any state
(v, {P ′}) ∈ nextGS(u, {P}), and set βT (t̃) = v. Since (v, {P ′}) ∈ nextGS(u, {P}), the transition
((u, {P}), (v, {P ′})) is a legal move in the pebble game.

Moreover, since we assume that GS satisfies Lemma B.36, we can conclude that the game state
(u, {P}) is strictly contracted. In other words, P ′ ⊂ P . This implies that when the Spoiler places
the pebble pv on vertex v ∈ VF , the Duplicator can only choose a strictly contracted connected
component set. Hence, we deduce that there are only paths connecting u and v. Consequently, there
exist only paths connecting βT (t) and βT (t̃).

By recursively applying this analysis throughout the construction of T r, we conclude that for every
edge (t1, t2) ∈ ET r , there exist only paths connecting βT (t1) and βT (t2) in graph F .

We now prove finite-iteration version of Lemma B.37 as follows:

Lemma B.38. Given any base graph F , Spoiler can win the simplified pebble game on F in d steps
iff there exsits a parallel tree skeleton T r of F such that T r has depth at most d+ 1.
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Proof. Initially, it is evident that if F is a parallel tree with a tree skeleton of depth at most d + 1,
then the Spoiler has a winning strategy in d steps. Therefore, we are left to consider the converse
direction of the lemma. Now, consider the case where, for a base graph F , the Spoiler has a winning
strategy in d steps. According to the analysis in Lemma B.36, if the Spoiler has a winning strategy
in d steps, then he can guarantee that all reachable non-terminal states in the game state graph GS

are strictly contracted. We will prove this statement by induction. The statement trivially holds for
d = 1. Assume that if the Spoiler has a winning strategy in d − 1 steps, then the base graph is a
parallel tree with a tree skeleton of depth at most d. Now, we consider the case where the Spoiler
can win in d steps.

By Lemma B.37, the Spoiler can win the game on F , implying that F is a parallel tree. Let T r be
the tree skeleton of F . At the beginning of the game, we first consider the case where the Spoiler
places a pebble on a vertex u such that u /∈ {v : ∃t ∈ VT , βT (t) = v}. We assume that the
Duplicator selects connected component P (since F is a parallel tree, the Duplicator can only select
one connected component in this case). Assume further that there exist t, t′ ∈ VT such that u is on
a path connecting βT (t) and βT (t′). We now consider two separate cases:

• If there is more than one path connecting βT (t) and βT (t′) in F , i.e., |γT (t, t′)| > 1, then
placing the pebble on u does not split F , and it remains as one connected component. In this
case, we can directly eliminate (u, P ) from the game state graph, and the remaining game state
graph still represents a winning strategy for the Spoiler.

• If there is only one path connecting βT (t) and βT (t′) in F , i.e., |γT (t, t′)| = 1, then placing the
pebble on u splits the base graph F into two connected components. In this case, we replace the
game state (u, {P}) in the game state graph with {u′, {P ′}}, where u′ ∈ {βT (t), βT (t′)} and
P ⊂ P ′.

Following this discussion, we only need to consider the case where, at the beginning of the game,
the Spoiler places the pebble on a vertex u ∈ VF such that there exists t ∈ VT and u = βT (t).
Without loss of generality, assume u = βT (r), and the children of r are {t1, . . . , tn}. Further,
assume that among all subtrees induced by t1, t2, . . . , tn, the subtree induced by t1 ∈ VT has the
greatest depth. We now consider the case where the Duplicator picks the connected component
formed by the subtree induced by t1 and the path in γT (r, t1). If the Spoiler must ensure that the
subsequent game state is strictly contracted, he must place the pebble on t1. The remaining game
now reduces to a game played on the graph induced by the subtree formed by all descendants of t1.
By the induction hypothesis, the subtree induced by t1 has depth at most d. Thus, T r has depth at
most d+ 1.

We now prove Lemma 3.21 from the main paper.

Lemma B.39. For any F /∈ FSpec,(d), the Spoiler cannot win the simplified pebble game on F in
d− 1 steps. Consequently, χSpec,(d)

G (G(F )) = χ
Spec,(d)
H (H(F )).

Proof. By Lemma B.38, since F /∈ FSpec,(d), the Spoiler cannot win the simplified pebble game on
the base graph F . Thus, by Lemma 3.20, we conclude that χSpec,(d)

G (G(F )) = χ
Spec,(d)
H (H(F )).

Combining all the results from steps 1 through 5, we now conclude the proof of our main theorem.

Theorem B.40. The homomorphism expressivity of spectral invariant GNNs with d iterations can
be characterized as follows:

FSpec,(d) = {F | F has parallel tree depth at most d}.

Specifically, the following properties hold:

• For graphs G and H , χSpec,(d)
G (G) = χ

Spec,(d)
H (H) if and only if, for all graphs F with parallel

tree depth at most d, hom(F,G) = hom(F,H).

• FSpec,(d) is maximal; that is, for any graph F /∈ FSpec,(d), there exist graphs G and H such
that χSpec,(d)

G (G) = χ
Spec,(d)
H (H) and hom(F,G) ̸= hom(F,H).
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Proof. By Theorem B.20 and Corollary B.10, we obtain that for graphs G and H , χSpec,(d)
G (G) =

χ
Spec,(d)
H (H) if and only if, for all graphs F with parallel tree depth at most d, hom(F,G) =

hom(F,H). Furthermore, by Lemma 3.21, there exist counterexamples G and H for any F /∈
FSpec,(d) such that χSpec,(d)

G (G) = χ
Spec,(d)
H (H) and hom(F,G) ̸= hom(F,H). Thus, we conclude

the proof of the main theorem.

C PROOF OF THEOREM 3.10

In this section, we provide the proof of Theorem 3.10 from the main paper.

Theorem C.1. The homomorphism expressivity of graph spectra is the set of all cycles Cn (n ≥ 3)
plus paths P1 and P2, i.e., {Cn|n ≥ 3} ∪ {P1, P2}.

Proof. We separately prove that the set of all cycles satisfies the two conditions of homomorphism
expressivity. For a graph G, we denote AG ∈ R|VG|×|VG| as the adjacency matrix of G, and
Spec(G) = {λG,1, λG,2, . . . , λG,|VG|} as the spectrum of G.

• We first prove that for any two graphs G and H , their spectra are identical if and only if for
every F ∈ {Cn|n ≥ 3} ∪ {P1, P2}, hom(F,G) = hom(F,H). Let Cn denote a cycle with n
vertices. For any graph G, we have hom(Cn, G) = tr(An

G) for all n ∈ N≥3, and for n = 2, we
denote C2 = P2. Moreover, by a basic result from linear algebra, we further obtain:

hom(Cn, G) = tr(An
G) = λnG,1 + λnG,2 + · · ·+ λnG,|VG|.

Therefore, if hom(Cn, G) = hom(Cn, H) for all n ∈ N+, then we have:

λnG,1 + λnG,2 + · · ·+ λnG,|VG| = λnH,1 + λnH,2 + · · ·+ λnH,|VH |, for all n ∈ N+.

Thus, Spec(G) = Spec(H). Conversely, if we are given that Spec(G) = Spec(H), then:

hom(Cn, G) = tr(An
G) = tr(An

H) = hom(Cn, H), for all n ∈ N+.

Therefore, we have proven that for any two graphs G and H , their spectra are identical if and
only if for every F ∈ {Cn|n ≥ 3} ∪ {P1, P2}, hom(F,G) = hom(F,H).

• We now prove that for any graph F that is not a cycle nor a path, there exists a pair of graphs
G and H such that their spectra are identical, but hom(F,G) ̸= hom(F,H). Specifically, we
show that for any graph F that is not a cycle, Spec(G(F )) = Spec(H(F )) holds, where G(F )
and H(F ) denote the pair of Fürer graphs constructed with F as the base graph.

If F is not nor a path, then there exist vertices x, y ∈ VF such that the degree of x is not 2. We
then consider the Fürer graph G(F ) and the twisted Fürer graph H(F ) = twist(G(F ), {x, y}).
According to Theorem B.28, for vertices v, x2, . . . , xn ∈ VF and V ⊂ VF , the number of n-
walks passing through (v,V),Meta(x2), . . . ,Meta(xn), (v,V) sequentially inG(F ) andH(F )
is unequal. Specifically, x2, . . . , xn satisfy the following properties:

1. (v, x2), (x2, x3), . . . , (xn−1, xn), (xn, v) ∈ EF .
2. The degree of x2, . . . , xn is 2 in the base graph F .
3. Let x1 = xn+1 = v, then:

|{{xi, xi+1} , i = 1, 2, . . . , n} ∩ {{x, y}}| ≡ 1 (mod 2).

From this, we deduce that v = x, and we have:∑
(v,V′)∈Meta(v)

cnG(F )((v,V
′), x2, . . . , xn) =

∑
(v,V′)∈Meta(v)

cnH(F )((v,V
′), x2, . . . , xn), (6)

where for any vertex (v,V ′) ∈ Meta(v), we use notations cnG(F )((v,V
′), x2, . . . , xn)

and cnH(F )((v,V
′), x2, . . . , xn) to denote the number of n-walks passing through

(v,V ′),Meta(x2), . . . ,Meta(xn), (v,V ′) in G(F ) and H(F ), respectively. If x2, . . . , xn do
not satisfy the above properties, then for all (v,V ′) ∈ Meta(v), the number of n-walks passing
through (v,V ′),Meta(x2), . . . ,Meta(xn), (v,V ′) inG(F ) andH(F ) is equal. Thus, equation 6
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(a) Counterexample for Theorem 3.10 (Graph G) (b) Counterexample for Theorem 3.10 (Graph H)

Figure 5: Counterexample for Theorem 3.10

holds for all v, x2, . . . , xn ∈ VF . Consequently, we observe the following property in terms of
walk counts: ∑

(v,V′)∈Meta(v)

ωn
G(F )((v,V

′), (v,V ′)) =
∑

(v,V′)∈Meta(v)

ωn
H(F )((v,V

′), (v,V ′)),

where ωn
G(F )((v,V

′), (v,V ′)) and ωn
H(F )((v,V

′), (v,V ′)) denote the number of n-walks start-
ing and ending at (v,V ′) in G(F ) and H(F ), respectively. This holds for all n ∈ N+ and
all (v,V) ∈ Meta(v). Thus, we conclude that tr(An

G(F )) = tr(An
H(F )) for all n ∈ N.

By a basic result from linear algebra, this implies that Spec(G(F )) = Spec(H(F )). How-
ever, since hom(F,G(F )) ̸= hom(F,H(F )), we have proven that for any graph F that is
not a cycle, there exists a pair of graphs G and H such that their spectra are identical, but
hom(F,G) ̸= hom(F,H).

• We now prove that for any path F of length at least 2, there exist graphs G and H such that
hom(F,G) = hom(F,H). A pair of counterexamples is provided in Figure 5. Initially, we
observe that the two graphs are cospectral. Furthermore, for any path P of length k (k ≥ 2),
hom(F,G) = 4 · 2k + 2. For the graph H , let the number of k-walks starting from the vertex
with degree 3 be denoted as ak. We then have the following recurrence relation:

ak = ak−1 + 2 · ak−2, a0 = 1, a1 = 3.

From this relationship, we can deduce that:

a2k+1 =22k+1 − 22k+1 + · · ·+ 22 − a0 = 1 + 2 · (1 + 4 + · · ·+ 22k) =
1

3

(
22k+3 + 1

)
,

a2k =22k+2 − 1

3

(
22k+3 + 1

)
=

1

3

(
22k+2 − 1

)
.

Therefore, the total number of homomorphisms from a path of length 2k + 1 to H is given by:

hom(P2k+2, H) =4 · a2k + 2 · a2k+1

=
1

3

(
2 · 22k+3 − 4

)
+

1

3

(
2 · 22k+3 + 2

)
+ 3

=
1

3

(
4 · 22k+3 − 2

)
.

Similarly, the total number of homomorphisms from a path of length 2k + 2 to H is:

hom(P2k+2, H) =4 · a2k+1 + 2 · a2k+2

=
4

3

(
22k+3 + 1

)
+

2

3

(
4 · 22k+5 − 2

)
=3 · 22k+5.

Thus, for all k ≥ 3, we conclude that:

hom(Pk, G) ̸= hom(Pk, H), for all k ≥ 3.

Combining the previous three results, we have proven that homomorphic expressivity is {Cn|n ≥
3} ∪ {P1, P2}..

D EXPERIMENTAL DETAILS

In this section, we provide details on the experiments in Section 4. For dataset setup and training
parameters, we follow Zhang et al. (2024a). We also use exactly the same model architecture for
MPNN, subgraph GNN, and local 2-GNN as Zhang et al. (2024a) did.
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Model architecture of spectral invariant GNN. For spectral invariant GNN, we use the same
feature initialization and final pooling layer as other models. The feature propogation in each layer is
implemented to incorporate the eigenvalues and their projection matrices of the graph. Specifically,
suppose {{(λ,Pλ(u, v))}} are all eigenvalues and eigenvectors of the input graph, hl(u) ∈ Rd is the
feature vector of node u in layer l. Then, the feature in next layer l + 1 is updated according to the
following rule:

h(l+1)(u) = ReLU(BN(l)(MLP
(l)
1 ((1 + ϵ(l))h(l)(u) + f (l)(u))),

f (l)(u) =
∑
v∈V

ReLU(h(l)(v) +
∑
λ

MLP
(l)
2 (λ)Pλ(u, v)),

(7)

where MLP1,2 are two-layer feed-forward networks with batch normalization in the hidden layer.

Similar to Zhang et al. (2024a), for graphs with edge features, we maintain a learnable edge embed-
ding, g(l)(u, v), for each type of edges, and add them to the aggregation rule f (l)(u). The number
of layers and hidden dimensions is set to match MPNN, such that all four models have roughly the
same, and obey the 500K parameter budget in ZINC, as Zhang et al. (2024a) did.

E HIGHER ORDER SPECTRAL INVARIANT GNN

E.1 UPDATE RULE OF HIGHER-ORDER SPECTRAL INVARIANT GNN

A natural update rule for higher-order spectral invariant GNNs is as follows:
Definition E.1 (Higher-Order Spectral Invariant GNN). For any k ∈ N+, the k-order spectral
invariant GNN maintains a color χk-Spec

G (u) for each vertex k-tuple u = (u1, . . . , uk) ∈ V k
G . Ini-

tially, χk-Spec,(0)
G (u) = (P(u1, u2), . . . ,P(u1, uk), . . . ,P(uk−1, uk)). In each iteration t + 1, the

color is updated as follows:

χ
k-Spec,(t+1)
G (u) = hash(χ

k-Spec,(t)
G (u), {{(χk-Spec,(t)

G (v, u2, . . . , uk),P(u1, v)) : v ∈ VG}}, · · · ,

{{(χk-Spec,(t)
G (u1, u2, . . . , uk−1, v),P(uk, v)) : v ∈ VG}}).

Denote the stable color of vertex tuple u ∈ V k
G as χk-Spec

G (u). The graph representation is defined
as χk-Spec

G (G) := {{χk-Spec
G (u) : u ∈ V k

G}}.

E.2 HOMOMORPHISM EXPRESSIVITY OF HIGHER-ORDER SPECTRAL INVARIANT GNN

To describe the homomorphism expressivity of higher-order spectral invariant GNNs, we draw in-
spiration from the concept of ”strong nested ear decomposition” from Zhang et al. (2024a). For the
reader’s convenience, we restate the relevant definitions here:
Definition E.2 (k-order Ear). A k-order ear is a graphG formed by the union of k paths P1, · · · , Pk

(possibly of zero length), along with an edge set Q, satisfying the following conditions:

• For each path Pi, let its two endpoints be ui (outer endpoint) and vi (inner endpoint). All edges
in Q are between inner endpoints, i.e., Q ⊂ {{vi, vj} : 1 ≤ i, j ≤ k, vi ̸= vj}.

• Any two distinct paths Pi and Pj intersect only at their inner endpoints (if vi = vj).

• G is a connected graph.

The endpoints of the k-order ear are the outer endpoints u1, · · · , uk.
Definition E.3 (Nested Interval). LetG andH be two k-order ears with inner(G) = {v1, · · · , vk},
outer(G) = {u1, · · · , uk}, and outer(H) = {w1, · · · , wk}, where each {ui, vi} corresponds to the
endpoints of a path Pi ∈ path(G). We say H is nested on G if at least one endpoint wi of H
(i ∈ [k]) lies on the path Pi, and all other vertices of H are not part of G. The nested interval is
defined as the union of the subpaths subpathPi

(wi, vi) for all i ∈ [k] such that wi lies on Pi.
Definition E.4 (k-Order Strong Nested Ear Decomposition (NED)). A k-order strong NED P of
a graph G is a partition of the edge set EG into a sequence of edge sets Q1, · · · , Qm, satisfying the
following conditions:
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• Each Qi is a k-order ear.

• Any two ears Qi and Qj with indices 1 ≤ i < j ≤ c do not intersect, where c is the number of
connected components of G.

• For each Qj with index j > c, it is nested on some k-order ear Qi with index 1 ≤ i < j.
Moreover, except for the endpoints of Qj on Qi, no other vertices in Qj belong to any previous
ear Qk for 1 ≤ k < i.

• Denote by I(Qj) ⊂ Qi the nested interval ofQj inQi. For allQj andQk with c < j < k ≤ m,
if Qj and Qk are nested on the same ear, then I(Qj) ⊂ I(Qk).

Definition E.5 (Parallel k-Order Strong NED). A graph F is said to have a parallel k-order strong
nested ear decomposition (NED) if there exists a graph G such that F can be obtained from G by
replacing each edge (u, v) ∈ EG with a parallel edge that has endpoints (u, v).

With the definition of parallel k-order strong NED, we now state the homomorphism expressivity of
k-spectral invariant GNN as follows:

Theorem E.6. The homomorphism expressivity of a k-spectral invariant GNN is characterized by
the set of all graphs that possess a parallel k-order strong NED.

E.3 PROOF OF THEOREM E.6

The proof of Theorem E.6 follows a similar structure to the analysis of Theorem 3.3 and Theorem 3.4
in Zhang et al. (2024a). Therefore, we provide only a brief sketch, emphasizing the key differences
between the proof of Theorem E.6 and the previous analyses.

Lemma E.7. For any given graphs G and H , we have χk−Spec
G (G) = χk−Spec

H (H) if and only if,
for every graph F that has a parallel k-order strong NED, hom(F,G) = hom(F,H).

Proof. We first define a parallel tree decomposition, which is a variant of the standard tree de-
composition. Given a graph G = (VG, EG), its tree decomposition is represented as a tree
T r = (VT , ET , βT , γT ). The label functions βT : VT → 2VG and γT : VT → 2PG are defined,
where PG denotes the set of paths in G. The tree T = (VT , ET , βT , γT ) satisfies the following
conditions:

1. Each tree node t ∈ VT is associated with a non-empty subset of vertices βT (t) ⊂ VG in G,
referred to as a bag. Each node t ∈ VT is also associated with a set of paths γT (t), called a
sub-bag, which includes paths in G that begin and end with vertices in βT (t). We say that a tree
node t contains a vertex u if u ∈ βT (t), and contains a path p if p ∈ γT (t).

2. For each path (u1, u2, . . . , un) with ui ∈ VG for i ∈ [n], there exists a tree node t ∈ VT that
contains the path, i.e., (u1, . . . , un) ∈ γT (t).

3. For each vertex u ∈ VG, the set of tree nodes t that contain u, denoted by BT (u) = {t ∈ VT :
u ∈ βT (t)}, forms a non-empty connected subtree of T .

4. The depth of T is even, i.e., maxt∈VT
depthT r (t) is an even number.

5. |βT (t)| = k if depthT r (t) is even, and |βT (t)| = k + 1 if depthT r (t) is odd.

6. For all tree edges {s, t} ∈ ET , where depthT r (s) is even and depthT r (t) is odd, we have
βT (s) ⊂ βT (t).

We refer to (G,T r) as a parallel tree-decomposed graph and k as the width of G’s parallel tree
decomposition. The set of parallel tree-decomposed graphs with width at most k is denoted as
Sk−Spec.

Similar to the low-dimensional case, we define the unfolding tree of a k-spectral invariant graph
neural network as follows. Given a graph G, a vertex k-tuple u = (u1, . . . , uk) ∈ V k

G , and
a non-negative integer D, the depth-2D spectral k-spectral invariant tree of G at u, denoted
(F

k−Spec,(D)
G (u), T

k−Spec,(D)
G (u)), is a parallel tree-decomposed graph (F, T r) ∈ Sk−Spec con-

structed as follows:
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1. Initialization. Initialize F = G[u], and T with a root node r such that βT (r) = {u1, . . . , uk}.
Define a mapping π : VF → VG by setting π(u) = u. For all i, j ∈ [k] with i ̸= j and
r ∈ [n], if there exists an r-length walk (v1, . . . , vr) with v1 = ui and vr = uj , we add a path
(w1, . . . , wr) with w1 = ui and wr = uj to F , and include (w1, . . . , wr) in the sub-bag γT (r).
Moreover, we extend π by setting π(wi) = vi for all i ∈ [r].

2. Iterate for D rounds. For each leaf node t ∈ T r, execute the following for each j ∈ [n]:

(a) If w /∈ {π(u1), . . . , π(uk)}, add a new vertex z to F and extend π by setting π(z) = w.
Set βT (tw) = βT (t) ∪ {z}. Initialize γT (tw) = γT (t), and update γT (tw) by adding paths
for all i ∈ [k] and r-length walks (w1, . . . , wr) with w1 = z and wr = π(ui).

(b) If w = π(ur) for some r ∈ [k], set βT (tw) = βT (t) ∪ {ur} without modifying F .

For each tw, add a child node t′w to T r, designate tw as its parent, and update βT (t′w) based on
the following cases:

(a) If w /∈ {π(u1), . . . , π(uk)}, set βT (t′w) = {u1, . . . , uj−1, w, uj+1, . . . , uk}.
(b) If w = π(ur) for some r ∈ [k], set βT (t′w) = {u1, . . . , uj−1, ur, uj+1, . . . , uk}.

Finally, set γT (t′w) as the set of all paths in F that connect pairs of vertices in βT (t′w).

Following a similar analysis as in the low-dimensional setting, we can first prove that for any
two graphs G and H , χk−Spec

G (G) = χk−Spec
H (H) if and only if treeCountk−Spec((F, T r), G) =

treeCountk−Spec((F, T r), H) holds for all (F, T r) ∈ Sk−Spec. We define

treeCountSpec((F, T r), G)

:=
∣∣∣{u ∈ V k

G : ∃D ∈ N+ such that
(
F

k−Spec,(D)
G (u), T

k−Spec,(D)
G (u)

)
∼= (F, T r)

}∣∣∣ .
With similar arguments as in Theorem 3.4 in Zhang et al. (2024a), we can further prove that for
any two graphs G and H , treeCount((F, T r), G) = treeCount((F, T r), H) holds for all tree-
decomposed graphs (F, T r) if and only if hom(F,G) = hom(F,H) holds. We now prove that
a graph F has a parallel tree decomposition with width at most k if and only if F admits a parallel
k-order strong NED. We prove each direction separately. First, we use induction on the number of
vertices in F to show that for any (F, T r) ∈ Sk−Spec with βT (r) = {u1, u2, . . . , uk}, there exists
a graph F̃ with a strong NED such that {u1, . . . , uk} are the endpoints of the first ear. We can
construct F by replacing edges in F̃ with parallel edges. For the converse direction, assume that F
admits a parallel k-order strong NED. We aim to prove that there exists a parallel tree decomposition
T r of F such that (F, T r) ∈ Sk−Spec. We proceed by induction on the number of vertices and prove
a stronger statement. For any connected graph F , if F can be constructed by replacing edges in a
graph F̃ with parallel edges, where F̃ has a k-order strong NED and the endpoints of the first ear
are {u1, u2, . . . , uk}, then there exists a tree decomposition T r of F . This decomposition satisfies
(F, T r) ∈ Sk−Spec, and βT (r) = {u1, u2, . . . , uk}. By combining the proofs for both directions,
we conclude the proof of the lemma.

We then prove the maximality of homomorphism expressivity as follows.
Lemma E.8. For any connected graph F /∈ Fk−Spec, there exist graphs G and H such that
hom(F,G) ̸= hom(F,H) and χk−Spec

G (G) = χk−Spec
H (H).

Proof. As in the low-dimensional case, we consider a pebble game between two players, the Spoiler
and the Duplicator. The game involves a graph F and several pebbles. Initially, all pebbles are
placed outside the graph. During the course of the game, some pebbles are placed on the vertices of
F , which divides the edges EF into connected components. In each round, the Spoiler updates the
position of the pebbles, while the Duplicator manages a subset of connected components, ensuring
that the number of selected components is odd. There are three main types of operations:

1. Adding a pebble p: the Spoiler places a pebble p (which was previously outside the graph)
on some vertex of F . If adding this pebble does not change the connected components, the
Duplicator does nothing. Otherwise, some connected component P is divided into several com-
ponents P =

⋃
i∈[m] Pi for some m. the Duplicator updates his selection as follows: if P was

selected, he removes P and adds a subset of {P1, . . . , Pm}, while ensuring that the total number
of selected components remains odd.
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2. Removing a pebble p: the Spoiler removes a pebble p from a vertex. If this action does not alter
the connected components, the Duplicator again does nothing. Otherwise, several connected
components P1, . . . , Pm merge into a single component P =

⋃
i∈[m] Pi. the Duplicator updates

his selection by removing all selected Pi and optionally adding P , while ensuring the total
number of selected components is odd.

3. Swapping two pebbles p and p′: the Spoiler swaps the positions of two pebbles, which does not
affect the connected components, and therefore the Duplicator does nothing.

the Spoiler wins the game if, at any point, there exists a path p such that both of its endpoints are
covered by pebbles and the connected component containing {p} is selected by the Duplicator. If the
Spoiler cannot achieve this throughout the game, the Duplicator wins. In the case of the k-spectral
invariant GNN, there are k + 1 pebbles, denoted pu1

, . . . , puk
, pv . Initially, all pebbles are placed

outside the graph. the Spoiler first sequentially adds the pebbles pu1
, . . . , puk

(using operation 1).
The game proceeds in a cyclical manner. In each round, Spoiler selects an r ∈ [k] and freely chooses
one of the following two actions:

• For r = 1, 2, . . . , k, Spoiler removes pebble pur
(operation 2), and then re-adds it (operation 1).

• For r = 1, 2, . . . , k, Spoiler adds pebble pw (operation 1) adjacent to pur , swaps pur with pw
(operation 3), and then removes pw (operation 2).

For a given graph F , let G(F ) and H(F ) denote the Fürer graph and the twisted Fürer graph with
respect to F . Using similar reasoning as in the low-dimensional case, we can show that if the
Spoiler cannot win the pebble game on F , then χk−Spec

G(F ) (G(F )) = χk−Spec
H(F ) (H(F )). Furthermore,

analogous to the analysis of Lemma B.37, we can conclude that if the Spoiler wins the pebble game
on F , then there exists a parallel tree decomposition T r of F such that (F, T r) ∈ Sk−Spec. Thus, for
any connected graph F /∈ Fk−Spec, there exist graphs G(F ) and H(F ) such that hom(F,G(F )) ̸=
hom(F,H(F )) and χk−Spec

G (G(F )) = χk−Spec
H (H(F )). This completes the proof of the lemma.

Finally, the proof of Theorem E.6 is completed by combining the results from Lemma E.7 and
Lemma E.8.

F PROOF FOR SYMMETRIC POWER

F.1 PROPERTIES OF LOCAL k−GNN

In this section, we review key properties of the local k-GNN as presented in previous works. We
begin by formally introducing the update rule for the local k-GNN.

Definition F.1. Local k-GNN maintains a color χL(k)
G (u) for each vertex k-tuple u ∈ V k

G . Initially,
χ
L(k),(0)
G (u) = atpG(u), called the isomorphism type of vertex k-tuple u, where atpG(u) is the

atomic type of u. Then, in each iteration t+ 1,

χ
L(k),(t+1)
G (u) = hash

(
χ
L(k),(t)
G (u), {{χL(k),(t)

G (v) : v ∈ N
(1)
G (u)}}, · · · , {{χL(k),(t)

G (v) : v ∈ N
(k)
G (u)}}

)
,

(8)
where N (j)

G (u) = {(u1, · · · , uj−1, w, uj+1, · · · , uk) : w ∈ NG(uj)}. Denote the stable color as
χ
L(k)
G (u). The representation of graph G is defined as χL(k)

G (G) := {{χL(k)
G (u) : u ∈ V k

G}}.

Definition F.2 (Canonical Tree Decomposition). Given a graph G = (VG, EG), a canonical tree
decomposition of width k is a rooted tree T r = (VT , ET , βT ) satisfying the following conditions:

1. The depth of T is even, i.e., maxt∈VT
depT r (t) is even;

2. Each tree node t ∈ VT is associated to a multiset of vertices βT (t) ⊂ VG, called a bag. More-
over, |βT (t)| = k if depT r (t) is even and |βT (t)| = k + 1 if depT r (t) is odd;

3. For all tree edges {s, t} ∈ ET where depT r (s) is even and depT r (t) is odd, βT (s) ⊂ βT (t)
(where “⊂” denotes the multiset inclusion relation);
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4. For each edge {u, v} ∈ VG, there exists at least one tree node t ∈ VT that contains the edge,
i.e., {u, v} ⊂ βT (t);

5. For each vertex u ∈ VG, all tree nodes t whose bag contains u form a (non-empty) collection.

We further define set SL(k) as follows:
Definition F.3. (F, T r) ∈ SL(k) iff (F, T r) satisfies F.2 with width k, and any tree node t of odd
depth has only one child. Moreover, all vertex of F is contained in at least one node of t.

Then, we can obtain the following theorem of the homomorphic expressivity of Local k-GNN.
Theorem F.4. Any graph G and H have the same representation under Local k−GNN (i.e.,
χ
L(k)
G (G) = χ

L(k)
H (H)) iff hom(F,G) = hom(F,H) for all (F, T r) ∈ SL(k).

F.2 MAIN RESULT

Since 2k-local GNN is strictly weaker than 2k-WL, we aim to extend previous result by showing
that 2k-local GNN can encode k-symmetric power of a graph. We state our main result as follows:
Theorem F.5. The Local 2k-GNN defined in Morris et al. (2020); Zhang et al. (2024a) can encode
the symmetric k-th power. Specifically, for given graphs G and H , if G and H have the same
representation under Local 2k-GNN, then G{k} and H{k} have the same representation under the
spectral invariant GNN defined in Section 2.1.

F.3 PROOF OF THEOREM F.5

Definition F.6. Let µ1 < µ2 < · · · < µm represent the distinct eigenvalues of the k-th order sym-
metric power matrix of a graphG. LetEi denote the eigenspace corresponding to µi, and PS

i the or-
thogonal projection matrix from RCk

n onto Ei. For u1, u2, . . . , u2k ∈ VG, if both {{u1, u2, . . . , uk}}
and {{uk+1, uk+2, . . . , u2k}} are multisets of k distinct vertices, then we define

PS
∗ (S1, S2) = (PS

1 (S1, S2), . . . , P
S
m(S1, S2)),

where S1 = {{u1, u2, . . . , uk}} and S2 = {{uk+1, uk+2, . . . , u2k}}. Otherwise, we define

PS
∗ ({{u1, u2, . . . , uk}}, {{uk+1, uk+2, . . . , u2k}}) = 0.

We encode the spectral information of the symmetric power into the aggregation of local 2k-GNN,
resulting in a variant of the local 2k-GNN, defined as follows:

Definition F.7. A local 2k-GNN with symmetric power maintains a color χSL(2k)
G (u) for each vertex

2k-tuple u ∈ V 2k
G . Initially, the color is defined as

χ
SL(2k),(0)
G (u) =

(
PS
∗ ({{u1, · · · , uk}}, {{uk+1, · · · , u2k}}), atpG(u)

)
.

Then, at each iteration t+ 1, the update rule is given by:

χ
SL(2k),(t+1)
G (u) = hash

(
χ
SL(2k),(t)
G (u), {{χSL(2k),(t)

G (v) : v ∈ N
(1)
G (u)}}, . . . ,

{{χL(2k),(t)
G (v) : v ∈ N

(k)
G (u)}}

)
,

(9)

where N (j)
G (u) = {(u1, · · · , uj−1, w, uj+1, · · · , uk) : w ∈ NG(uj)}.

The stable color is denoted as χSL(k)
G (u). The graph representation is then defined as

χ
SL(k)
G (G) := {{χL(k)

G (u) : u ∈ V 2k
G }}.

Next, we define the concept of a k-dimensional path as follows:
Definition F.8. For a graph G and vertices u1, . . . , uk ∈ VG, we define the neighboring multiset of
{{u1, u2, . . . , uk}} as:

NG ({{u1, u2, . . . , uk}}) =
k⋃

r=1

{{{u1, · · · , ur−1, v, ur+1, · · · , uk}} | v ∈ NG(ur)} .
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A k-dimensional path of length n is defined as a sequence (S1, S2, . . . , Sn), where each S1, . . . , Sn

is a multiset of k elements, and for all r ∈ [n− 1], Sr ∈ NG(Sr+1). If the path further satisfies the
condition that for all u ∈ Sr with r ∈ {2, 3, . . . , n− 1} and v ∈ VG, u ∈ NG(v) implies v ∈ Si for
some i ∈ {r − 1, r, r + 1}, then we denote (S1, . . . , Sn) as a k-dimensional path of length n.

We then define set SSL(k) base on the definition of set SL(k).

Definition F.9. (F, T r) ∈ SSL(2k) iff (F, T r) satisfies definition F.2 with width k, and any tree
node t of odd depth has only one child. Furthermore, for tree node t ∈ VT if depT r (t) is even, we
further associate it with a set of k−dimensional path γT (t), called sub-bag. Specifically, for node
t ∈ VT , let βT (t) = {{u1, . . . , u2k}}, then γT (t) contains k-dimensional path linking {{u1, . . . , uk}}
and {{uk+1, . . . , u2k}}. Each vertex of F is contained in at least one node of T r, either in bags or
sub-bags.

Lemma F.10. Any graph G and H have the same representation under Local 2k-GNN with sym-
metric power if hom(F,G) = hom(F,H) for all (F, T r) ∈ SSL(2k).

Proof. To prove the theorem, we first define unfolding tree of local 2k-GNN with symmetric power.
Given a graph G, 2k-tuple u ∈ V 2k

G and a non-negative integer D, the depth-D unfolding tree of
graph G at tuple u, denoted as (F SL(D)

G (u), T
SL(D)
G (u)) is constructed as follows:

1. Initialization. We assume multiset u = {{u1, u2, · · · , u2k}}. At the beginning, F =
G[{{u1, u2, · · · , u2k}}], and T only has a root node r with βT (r) = {{u1, u2, · · · , u2k}}.
Define a mapping π : VF → VG as π(ui) = ui,∀i ∈ [2k]. For every k-dimensional
walk {{u1, . . . , uk}} = S1, . . . , Sn = {{uk+1, . . . , u2k}} with n ≤ |VG|k, we introduce
a k-dimensional path {{u1, . . . , uk}} = S′

1, S
′
2, . . . , S

′
n = {{uk+1, . . . , u2k}}, and we add

(S′
1, S

′
2, . . . , S

′
n) to sub-bag γT (r).

2. Loop for D rounds. For each leaf node t in T r, do the following procedure for all i ∈ [2k]:
Let βT (t) = {{u1, . . . , u2k}}. For each w ∈ VG, add a fresh child node tw to T and designate t
as its parent. Then, consider the following two cases:

(a) If w /∈ {{π(u1), . . . , π(u2k)}}, then add a fresh vertex z to F and extend π with π(z) = w.
Define βT (tw) = βT (t) ∪ {{z}}. Then, add edges between z and βT (t), so that π is an
isomorphism from F [βT (tw)] to G[π(βT (tw))].

(b) Ifw ∈ {{π(u1), . . . , π(u2k)}}, letw = π(ur). Then, we simply set βT (tw) = βT (t)∪{{ur}}
without modifying graph F .

Next, add a fresh child node t′w in T r, designate tw as its parent, and set βT (t′w) and γT (t′w)
based on the following two cases:

(a) Ifw /∈ {{π(u1), . . . , π(u2k)}}, then βT (t′w) = {{u1, . . . , ui−1, z, ui+1, . . . , u2k}}. For every
k-dimensional walk S1, . . . , Sn with n ≤ |VG|k, we introduce k−dimensional path S1 =
S′
1, S

′
2, . . . , S

′
n = Sn. If i < k, then S1 = {{u1, . . . , ui−1, z, . . . , uk}}. If i = k, then

S1 = {{u1, . . . , ui−1, z}}, while if i > k, then S1 = {{u1, . . . , uk}}. We denote S2 =
{{u1, . . . , ui−1, z, ui+1, . . . , u2k}} \ S1. We add (S′

1, S
′
2, . . . , S

′
n) into sub-bag γT (t′w).

(b) Conversely, if w ∈ {{π(u1), . . . , π(u2k)}}, we assume that w = π(ur). Then βT (t′w) =
{{u1, . . . , ui−1, ur, ui+1, . . . , u2k}}. For every k-dimensional walk S1, . . . , Sn with n ≤
|VG|k, we introduce k−dimensional path S1 = S′

1, S
′
2, . . . , S

′
n = Sn. If i < k, then

S1 = {{u1, . . . , ui−1, ur, . . . , uk}}. If i = k, then S1 = {{u1, . . . , ui−1, ur}}, while if
i > k, then S1 = {{u1, . . . , uk}}. We denote S2 = {{u1, . . . , ui−1, ur, ui+1, . . . , u2k}}\S1.
We add (S′

1, S
′
2, . . . , S

′
n) into sub-bag γT (t′w).

We can see from the construction of unfolding tree that for all k-tuple u ∈ V 2k
G and D > 0,

(F
SL(D)
G (u), T

SL(D)
G (u)) ∈ SSL(2k). Given (F, T r), (F̃ , T̃ r) ∈ SSL(2k), we define a pair of mapping

(ρ, τ) as an isomorphism from (F, T r) to (F̃ , T̃ r), denoted by (F, T ) ∼= (F̃ , T̃ r), if the following
hold:

1. ρ is an isomorphism from F to F̃ .

2. τ is an isomorphism from T r to T̃ r (ignoring β and γ).

3. For any t ∈ VT r , ρ(βT r (t)) = βT̃ r (τ(t)), and ρ(γT r (t)) = γT̃ r (τ(t)).
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With similar analysis as Theorem B.8 we obtain that for any k-tuple u ∈ V k
G and v ∈ V k

H ,
χ
SL(2k)(D)
G (u) = χ

SL(2k)(D)
H (v) if there exists an isomorphism (ρ, τ) from (F

SL(D)
G (u), T

SL(D)
G (u))

to (F
SL(D)
H (v), T

SL(D)
H (v)). Given a graph G and (F, T r) ∈ SSL(2k), we define

treeCountSL(2k)((F, T r), G) :=
∣∣∣{u ∈ V 2k

G : ∃D ∈ N+s.t.
(
F

SL(D)
G (u), T

SL(D)
G (u)

)
∼= (F, T r)

}∣∣∣ .
Therefore, we can obtain that if treeCountSL(2k)((F, T r), G) = treeCountSL(2k)((F, T r), H)

for all (F, T r) ∈ SSL(2k), then χ
SL(2k)
G (G) = χ

SL(2k)
H (H). Additionally, with similar anal-

ysis as Theorem B.20 and Theorem B.14, we can obtain that treeCountSL(2k)((F, T r), G) =

treeCountSL(2k)((F, T r), H) for all (F, T r) ∈ SSL(2k) if and only if hom((F, T r), G) =
hom((F, T r), H) for all (F, T r) ∈ SSL(2k). Therefore, we can obtain that if hom((F, T r), G) =

hom((F, T r), H) for all (F, T r) ∈ SSL(2k), then χSL(2k)
G (G) = χ

SL(2k)
H (H). Thus, we finish the

proof of the lemma.

Lemma F.11. For all k ≥ 1, we have SL(2k) = SSL(2k).

Proof. We can directly see that SL(2k) ⊂ SSL(2k), so it is sufficed to prove that for all (F, T r) ∈
SSL(2k), there exists an alternative tree decomposition T̃ r such that (F, T̃ r) ∈ SSL(2k). We will
prove that for (F, T r) ∈ SSL(2k), if maxt∈VTr |γT (t)| ≥ 1, then we can construct T̃ r such that
maxt∈VT̃ r |γT̃ (t)| < maxt∈VTr |γT (t)|. For (F, T r) ∈ SSL(2k), let t = argmaxt̃∈VTr

∣∣γT (t̃)∣∣ and
suppose (S1, S2, . . . , Sn) ∈ γT (t). We apply the following modification to T r to construct T̃ r:

1. We construct tree node t1, t2, . . . , tn−1 and t̂1, t̂2, . . . , t̂n−1 such that βT̃ (tr) = Sr+1 ∪Sr ∪Sn

and βT̃ (t̂r) = Sr+1 ∪ Sn for all r ∈ [n− 1].

2. We add t̂r as the child node of tr for all r ∈ [n− 1] and add tr as the child node of t̂r−1 for all
r ∈ {2, 3, . . . , n− 1}. Eventually, we add t1 as the child node of t.

3. We delete k-dimensional path from γT (t) and keep the bags of all t ∈ VT and sub-bags of
vertices in VT \ {t} unchanged. Namely, we assume that γT̃ (t) = γT (t) \ {(S1, . . . , Sn)}.
Moreover, βT (t) = βT̃ (t) for all t ∈ VT and γT (t) = γT̃ (t) for all VT \ {t}.

With the procedure above we can obtain (F, T̃ r) ∈ SSL(2k) such that maxt∈T̃ r |γT̃ (t)| <

maxt∈T r |γT (t)|. If we recursively apply this procedure to modify T̃ r, we can eventually obtain
T̂ r such that maxt∈T̂ r |γT̂ (t)| = 0. Therefore, (F, T̂ r) ∈ SL(2k). Eventually, we have proven that
for all (F, T r) ∈ SSL(2k), there exists an alternative decomposition T̃ r such that (F, T̃ r) ∈ SL(2k).
Thus, for all k ≥ 1, SL(2k) = SSL(2k).

Finally, we can finish the proof of Theorem F.5.
Theorem F.12. The Local 2k-GNN defined in Morris et al. (2020); Zhang et al. (2024a) can encode
the symmetric k-th power. Specifically, for given graphs G and H , if G and H have the same
representation under Local 2k-GNN, then G{k} and H{k} have the same representation under the
spectral invariant GNN defined in Section 2.1.

Proof. According to Lemma F.11, the homomorphism expressivity of the vanilla Local 2k-GNN
is equivalent to that of the Local 2k-GNN with symmetric power. Hence, the expressive power of
the Local 2k-GNN is the same as that of the Local 2k-GNN with symmetric power. If there exist
graphs G and H such that χL(k)

G (G) = χ
L(k)
H (H), then it must follow that χSL(k)

G (G) = χ
SL(k)
H (H).

Therefore, we also have χSL(k),(0)
G (G) = χ

SL(k),(0)
H (H), meaning that the symmetric k-th powers

of G and H are cospectral.Moreover, it is straightforward that if graphs G and H have the same
representation under a Local 2k-GNN with symmetric power, then G{k} and H{k} also have the
same representation under the spectral invariant GNN. Thus, the proof of the theorem is complete.
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