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ABSTRACT

Trapped by the label scarcity in molecular property prediction and drug design,
graph contrastive learning came forward. A general contrastive model consists of
a view generator, view encoder, and contrastive loss, in which the view mainly
controls the encoded information underlying input graphs. Leading contrastive
learning works show two kinds of view generators, that is, random or learnable
data corruption and domain knowledge incorporation. While effective, the two
ways also lead to molecular semantics altering and limited generalization capa-
bility, respectively. Thus, a decent view that can fully retain molecular semantics
and is free from profound domain knowledge is supposed to come forward. To this
end, we relate molecular graph contrastive learning with the line graph and pro-
pose a novel method termed LGCL. Specifically, by contrasting the given graph
with the corresponding line graph, the graph encoder can freely encode the molec-
ular semantics without omission. While considering the information inconsistency
and over-smoothing derived from the learning process because of the mismatched
pace of message passing in two kinds of graphs, we present a new patch with edge
attribute fusion and two local contrastive losses for performance fixing. Compared
with state-of-the-art (SOTA) methods for view generation, superior performance
on molecular property prediction suggests the effectiveness of line graphs severing
as the contrasting views.

1 INTRODUCTION

A deep understanding of molecular properties plays a vital role in the chemical and pharmaceutical
domains. In order to computationally discover novel materials and drugs, the molecules will be
abstractly regarded as graphs, in which atoms are vertices and bonds are edges Gilmer et al. (2017);
Goh et al. (2017); Chen et al. (2018a). Thus, the marriage between molecular property prediction
and graph learning captured a bunch of researchers and showed their happiness in several fields Yang
et al. (2019); Song et al. (2020); Chen et al. (2021); Wu et al. (2022a). However, this relationship
faces the challenges of label scarcity, as deep learning methods are known to consume massive
amounts of labeled data, and annotated data are often of limited size and hard to acquire when
considering many specific domains. In addition, given the immense differentiation among chemical
molecules, existing supervised models could be barely reused in unseen cases Hu et al. (2020); Rong
et al. (2020). Therefore, there are increasing demands for molecular representation learning in an
unsupervised or self-supervised manner.

Plenty of works have attempted to learn molecule representations discarding the supervision of la-
bels, like graph context prediction Liu et al. (2019), graph-level motif prediction Rong et al. (2020)
and masked attribute prediction Hu et al. (2020). In light of the contrastive learning from com-
puter vision, researchers go one step further to model molecules in a contrastive manner with data
augmentations You et al. (2020); Suresh et al. (2021). Considering the inherent characteristics of
chemical molecules, graph contrastive learning incorporating well-designed domain knowledge has
also shown excellent capacity in molecular properties prediction Sun et al. (2021); Fang et al. (2022).

Analogously, everything comes with a price. Inspecting the generated views in previous molecular
graph contrastive learning unveils two intrinsic limitations. First, data augmentation-based methods
adopting random or learnable corruption (e.g., node/edge dropping and graph generation) would
lead to inevitable variance in the crucial semantics and further misguide the contrastive learning
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Figure 1: Framework overview of LGCL. Contrasted views consist of the original graph and
the corresponding line graph. Input graphs are encoded by a dual-helix graph encoder with edge
attribute fusion for information consistency. The whole model is jointly optimized via minimizing
the NT-Xent loss and the two local contrastive losses.

You et al. (2020); Sun et al. (2021). Second, based on predefined sub-structure substitution rules
Sun et al. (2021) or contrasted with 3-dimension geometric views Liu et al. (2022); Stärk et al.
(2022), domain knowledge-based methods intend to alleviate the problem of semantic alteration.
While effective, they are stinted to the profound domain knowledge that is unfriendly to researchers
without such knowledge, thus limiting their generalization capability in other domains.

In this context, we are seeking for a decent view that will not be bothered by prefabricated domain
knowledge and can maintain the molecular semantic information integrally. Fortunately, we met
the line graph, also known as congruent graph in graph theory Whitney (1932); Harary & Norman
(1960); Jung (1966). In a line graph, the nodes correspond to the edges of the original graph, and
the edges refer to the common nodes of the pair edges in the original graph. In particular, the iso-
morphism of two line graphs is judged to be consistent with the corresponding two original graphs
Whitney (1932); Jung (1966), which ensures the congruent semantic structure after line graph trans-
formation. In light of the line graph, we propose a method termed LGCL to tackle our expectations.

The framework of LGCL is shown in Figure 1. Specifically, to fill the framework demanding two
views, all input molecular graphs are transformed into the corresponding line graph. On such a basis,
LGCL equips with a dual-helix graph encoder to learn the hidden representation of two views. Note
that, due to the different pace of message passing in the original graph and the corresponding line
graph, two issues derive from the learning process, that is, information inconsistency and over-
smoothing. For information consistency, we further update the graph encoder with edge attribute
fusion to bridge the edge attributes between the two kinds of graphs. Over-smoothing is addressed
by a novel intra-local contrastive loss based on the idea of NT-Xent loss; put differently, the intra-
local contrastive loss aims to maximize the consense between the edge pairs in the two corresponding
views and minimize the consense between different edge pairs within the same views. Moreover,
we further give an inter-local contrastive loss to enhance the representation learning.

The effectiveness of LGCL is verified under the ubiquitous setting of transfer learning for molecular
property prediction Hu et al. (2020). Through pre-training on two million molecular graphs from
ZINC15, LGCL shows superior performance on six out of eight benchmarks for molecular property
prediction and acquires the highest position on both average ROC-AUC and average ranking. Addi-
tionally, we delve deeper into the proposed components via analytical experiments to further assess
their benefits. The contributions are elaborated below:

• To the best of our knowledge, we are the first to figure out a way to freely and fully excavate
molecular semantics within graph contrastive learning.

• Inspired by the line graph, we present an approach, termed LGCL, to tackle our expecta-
tions, in which edge attribute fusion and two local contrastive losses are united to address
the concomitant issues and enhance molecular representation learning.
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• Leveraging eight benchmarks for molecular property prediction under the setting of transfer
learning, LGCL exhibits its superiority against the SOTA methods for view generation.

2 RELATED WORKS

This research focuses on molecular graph contrastive view generation, especially considering the
case that is free from the intricate domain knowledge. We will elaborate on these topics below.

Molecular graph contrastive learning. Along with the development of graph contrastive learning,
plenty of research efforts have been devoted to designing contrastive learning models for molecular
graphs Sun et al. (2021); Xu et al. (2021); Fang et al. (2022); Stärk et al. (2022); Liu et al. (2022); Li
et al. (2022a). Besides random or learnable corruption, several works presented various contrastive
learning models to embed the molecular geometry information by means of contrasting the generic
2D graph with its 3D conformers Liu et al. (2022); Stärk et al. (2022); Li et al. (2022a). They in-
deed get rid of the semantic altering issue caused by random corruption on molecular graphs, while
introducing another semantic altering issue caused by 3D conformers, because a single 2D molec-
ular graph generally has multiple conformers with different chemical properties Stärk et al. (2022).
To enhance the performance in molecular property prediction, the domain knowledge-driven con-
trastive learning frameworks were proposed to preserve the semantics of graphs in the augmentation
process Sun et al. (2021); Fang et al. (2022). However, their learning capability heavily relies on the
dissolved domain knowledge, that is the well-designed substitution rules in MoCL Sun et al. (2021)
and the prefabricated associations among chemical elements in KCL Fang et al. (2022). Further-
more, the domain knowledge varies across domains, which limits the application of these methods.

Recently, besides the contrasting view exploration, GraphLoG Xu et al. (2021) and OEPG Yang &
Hong (2022) are built upon the generic graph contrastive learning methods to discover the global
semantic structure underlying the whole dataset and present excellent performance. In this work,
we are devoted to the domain of contrasting view generation, which is orthogonal to the works for
dataset semantic structure exploration; put differently, extensive works for contrasting view genera-
tion can work with the framework of GraphLoG and OEPG to produce more superior performance.

Line graph. The line graph is a classic concept and has a long history in graph theory Whitney
(1932); Harary & Norman (1960); Jung (1966). In a line graph, the nodes correspond to the edges
of the original graph, and the edges refer to the common nodes of the pair edges in the original graph.
Thus, the graph neural networks (GNNs) built on line graphs are capable of encoding edge features
and enhancing feature learning on graphs. Recently, based on the line graph structures, several line
graph neural networks have shown promising performance on various graph-related tasks Chen et al.
(2018b); Jiang et al. (2019); Bandyopadhyay et al. (2020). In the chemistry domain, the structure
of a compound can be treated as a graph, where the edges derived from chemical bonds link the
corresponding atom nodes. Thus, the edges in such graphs have different properties and various
functions. In generic GNNs, however, message-passing operations among nodes do not pay enough
attention to the edge properties. Fortunately, the line graph structure enables generic GNNs to take
advantage of the edges as equals as nodes Jiang et al. (2019); Chen et al. (2018b).

To this far, there is still no graph contrastive learning model to encode the molecular semantics
integrally without well-designed domain knowledge. In this paper, we revisit the line graph from
the angle of graph contrastive learning. Based on it, we design a novel contrastive model, termed
LGCL, to freely and fully excavate molecular semantics.

3 PRELIMINARIES

Here, we first present some preliminary concepts and notations. In this work, let G =
{G1, G2, · · · , GN} be a graph dataset with size N , and a molecular graph can be formulated as
G = (V,E,XV , XE), where V is the node set, E is the edge set, XV ∈ R|V |×V denotes the node
features, and XE ∈ R|E|×E stands for the edge attributes.
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3.1 GRAPH REPRESENTATION LEARNING

In generic GNNs, the message-passing scheme is adopted for information transmission among nodes
Xu et al. (2019); Wu et al. (2022b). Through stacking L layers, a GNN will produce a hidden
representation hv ∈ R with L-hop neighbor information for each node and a feature vector hG ∈ R
via a global readout function for the entire graph G. Each node v is initialized with node feature Xv

and sent to the GNN input. Formally, the l-th layer of a GNN Xu et al. (2019) can be written as

ĥ(l)
v = AGGREGATE(l)({h(l−1)

u |u ∈ N(v)}), (1)

h(l)
v = COMBINE(l)(ĥ(l)

v , h(l−1)
v ), (2)

where h(l)
v represents the feature vector of node v at the l-th iteration, N(v) covers the 1-hop neigh-

bors of v, AGGREGATE denotes the crucial message-passing scheme in GNNs, and COMBINE is
used to update the hidden feature of v via merging information from its neighbors and itself. Finally,
a GNN can produce the feature vector hG of the entire graph with a prefabricated readout function:

hG = READOUT({hv|v ∈ V}), (3)

where READOUT aggregates the final set of node representations.

3.2 GRAPH CONTRASTIVE LEARNING

In a generic graph contrastive learning model, two correlated views from the same graph Gi are
required for contrasting and generally produced by two augmentation operations. Here, we denote
the augmented views as G̃1

i and G̃2
i . Then, a graph encoder and a projection head are stacked

behind the two augmentation operators to map the correlated views into an embedding space and
yield corresponding feature vectors h1

i and h2
i . The released hidden representations are supposed to

contain the essential features of the original graph G so that they can recognize themselves from the
others. Thus, the objective of graph contrastive learning is to maximize the consensus between the
two positive views via the widespread NT-Xent loss Chen et al. (2020):

Li = − log
esim(h1

i ,h
2
i )/τ∑N

j=1,j ̸=i e
sim(h1

i ,h
2
j )/τ

, (4)

where N is the batch size, τ refers to the temperature parameter, and sim(h1, h2) denotes a cosine
similarity function h1⊤h2

||h1||·||h2|| . The numerator part is the similarity of the correlated views as positive
pair. The rest pairs that consist of views from different graphs are regarded as negative pairs and act
as the denominator part. Note that the negative pairs can come from two directions, put differently,
h1
i can pair with all h2

j , and h2
i can pair with all h1

j .

4 METHODOLOGY

In this section, we bring about the proposed graph contrastive learning framework, termed LGCL,
by revisiting the line graph of corresponding molecules. Given the issue of label scarcity in real-
world graph data, LGCL is designed to encode the molecular semantics integrally and free from
well-designed domain knowledge. Specifically, to produce two contrastive views without any loss
of molecular semantics, we first need to transform the given molecule to the corresponding line
graph. On such a basis, LGCL equips with a dual-helix graph encoder to learn the hidden represen-
tation of two views with edge attribute fusion. In particular, besides the ubiquitous contrastive loss
for the readout graph representations, we further propose two local contrastive losses to enhance
representation learning and alleviate the over-smoothing issue in deep GNNs. Next, we elaborate on
the LGCL framework below.

4.1 LINE GRAPH TRANSFORMATION

Here, we first present an illustration of line graph transformation from a simple graph. As shown
in Figure 2, let G = (V,E) be a simple undirected graph, the output line graph L(G) after trans-
formation is such a graph that reveals the adjacencies of edges in G. Specifically, each edge in G
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Figure 2: An illustration of line graph transformation. (a) shows a simple undirected graph G;
(b) reveals the derivation of vertices in line graph, every vertex of line graph is marked with green
and labeled with the pair nodes of the corresponding edge in G; (c) establishes the associations in
L(G) based on the common nodes of two edges; (d) delivers the output line graph L(G) of the
original graph G.

is mapped into a node of L(G) and each edge in L(G) indicates that the corresponding two ver-
tices have a common node in G. Formally, the line graph can be written as L(G) = (VL, EL),
where VL = {(vi, vj)|(vi, vj) ∈ E)} and EL = {((vi, vj), (vj , vk))|{(vi, vj), (vj , vk)} ⊂ E}.
At this point, we have settled the topology transformation of line graphs. Besides the relationships
among nodes and edges, the node and edge attributes underlying the molecular graph should also
be delivered to the corresponding line graph. In this paper, based on the one-to-one correspondence
between the edges of G and the nodes of L(G), the node attributes of the line graph can be directly
obtained from the edge attributes of original graphs, that is, XVL

= XE . As for the edge attributes
of L(G), because several edges in the line graph would correspond to the same node in the original
graph, a mapping function with such relationships is required to endow the line graph edge with
the original node attribute. In the light of EL after the line graph transformation, the edge attribute
mapping function can be formulated as M(eL) = (vi, vj) ∩ (vj , vk), thus the edge attributes of the
line graph can be obtained via XEL

= MXV . Finally, the line graph of a molecular graph is given
by L(G) = (VL, EL, XVL

, XEL
). According to Roussopoulos’s algorithm Roussopoulos (1973),

the time complexity of line graph transformation is O(max(|V |, |E|)).
As stated in the Whitney graph isomorphism theorem Whitney (1932), the isomorphism of two line
graphs is judged to be consistent with the corresponding two original graphs, which convinces us
that the semantic structure information of G is encoded in the line graph L(G). In particular, as
described in the line graph transformation, there is a one-to-one correspondence between the edges
in the graph G and the vertices in the line graph L(G). Therefore, a vertex with e edges in G
will produce e × (e − 1)/2 edges in L(G). Meanwhile, the message-passing frequency around
this node will drift from O(e) in G to O(e2) in L(G), put differently, this node feature in G is
only passed to e neighbors, while the corresponding line graph will pass such information to e ×
(e − 1)/2 nodes. Actually, in light of the line graph capacity in Table A.1, the line graph encoder
only requires about 50% more computation than the original graph encoder. While this nature of
the line graph could cause two inevitable issues in the contrastive learning framework with stacked
graph convolutional layers, that is information inconsistency and over-smoothing. In this paper, we
propose two approaches, edge attribute fusion and two local contrastive losses, to alleviate the two
issues and strengthen molecular representation learning. Next, we give a detailed description.

4.2 EDGE ATTRIBUTE FUSION

In the chemistry domain, the structure of a compound can be treated as a graph, where the edges
derived from the chemical bonds link the corresponding atom nodes. Thus, the edges in such graphs
have different properties and various functions. Besides the topology information weaved by atoms,
a well-designed graph convolution with edge attributes plays a crucial role in molecular property
and protein function prediction.
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Given a molecular graph, its input node features and edge features are both represented as a 2-
dimensional categorical vector (see Appendix A for details), denoted as XV ∈ R|V |×2 and XE ∈
R|E|×2, respectively. In previous works regarding molecular property prediction Hu et al. (2020),
the raw node categorical vectors are embedded in the input layer by

h(0)
v = EMBEDDING(x0

v) + EMBEDDING(x1
v), (5)

where x0
v and x1

v are the atomic number and chirality tag of node v, respectively. EMBEDDING(·)
denotes an embedding function that transfers a single integer into a d-dimensional vector space.
Meanwhile, the raw edge categorical vectors are embedded in each layer by

h(l)
e = EMBEDDING(x0

e) + EMBEDDING(x1
e), (6)

where x0
e and x1

e represent the bond type and bond direction, respectively, and l denotes the index
of GNN layers. At the l-th layer, the node representation can be updated by

h(l)
v = σ(MLP(l)(h(l−1)

v +
∑

u∈N(v)

h(l−1)
u +

∑
e∈{(v,u)|u∈N(v)∪{v}}

h(l−1)
e )), (7)

where σ(·) is an activation function, and (v, v) represents the self-loop edge.

Under this GNN architecture, the output molecular representations will be decorated with edge at-
tributes. However, as discussed above, there is a significant difference in message-passing frequency
between the original graph and the corresponding line graph, which could lead to information in-
consistency between the outputs. Here, we present a novel edge attribute fusion approach to tackle
this issue. Specifically, we bridge the edge information between the molecular graph and line graph
to help the original graph encoder keep pace with the line graph encoder. The edge and node em-
beddings are still employed as the initial edge attributes in the first layer (i.e., l = 0). As for l ≥ 1,
the edge attributes of the original graph are obtained from the node hidden features in the line graph,
which is formally given by

h
(l)
G·(vi,vj) = h

(l−1)
L(G)·(vi,vj)

, (8)

where (vi, vj) ∈ E and (vi, vj) ∈ VL. Correspondingly, the edge attributes of the line graph can be
updated by the node hidden features in the original graph, which is formally formulated as:

h
(l)
L(G)·((vi,vj),(vj ,vk)) = h

(l−1)
G·vj , (9)

where (vi, vj) ∈ E, (vj , vk) ∈ E and ((vi, vj), (vj , vk)) ∈ EL. Based on the dual-helix graph
encoder with edge attribute fusion, the hidden features from the line graph will be dissolved into the
original graph representations, allowing information consistency between the two contrastive views
and enhancing molecular representation learning.

4.3 INTRA-LOCAL CONTRASTIVE LOSS

In this part, we look forward to tackling the over-smoothing issue introduced by the line graph.
Motivated by NT-Xent loss for contrastive learning, an intra-local contrastive loss is proposed. The
design concept of NT-Xent loss aims to maximize the representation similarities of positive pairs
consisting of hidden features of the same molecules and enforce dissimilarity of negative pairs com-
prising hidden features of different molecules simultaneously. Similarly, the proposed intra-local
contrastive loss seeks to optimize the consensus between the same nodes as opposed to different
nodes in a single graph. Considering the one-to-one correspondence between the edges in G and the
vertices in L(G), the contrastive samples of this loss are composed of the edge hidden features in G
and the node hidden features in L(G). Thus, given a graph G, the intra-local contrastive loss of one
edge pair is formally defined as:

Lei
IntraC = − log

esim(h̃G·ei ,hL(G)·ei )/τ∑|E|
j=1,j ̸=i e

sim(h̃G·ei ,hL(G)·ej )/τ
, (10)

where ei = (vm, vn), ei ∈ E and (vm, vn) ∈ VL. In particular, the edge representations
from G are formed by such hidden features of the two endpoints of each edge, that is, h̃G·ei =
MLP([hvm , hvn ]). In light of this contrastive loss designed inside the graph, we look forward to
reducing the similarity between different nodes and further alleviating the over-smoothing.
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4.4 INTER-LOCAL CONTRASTIVE LOSS

Here, we give another contrastive loss to enhance molecular graph contrastive learning. As we
are capable of enforcing dissimilarity between different edge representations, we move forward to
generalizing the edge dissimilarity to all contrasted samples. Our critical insight is that the wide-
spread NT-Xent loss only provides graph-level contrast, while a contrastive angle based on node
representations would also be meaningful in crucial structure identification. In light of the intra-
local contrastive loss, the inter-local contrastive loss can be formally formulated as:

Lei
InterC = − log

esim(h̃G·ei ,hL(G)·ei )/τ∑G
Ĝ ̸=G

∑|EĜ|
j=1 e

sim(h̃G·ei ,hL(Ĝ)·ej
)/τ

, (11)

where ei ∈ EG, ej ∈ VL(Ĝ) and G represents a training batch. Note that the negative pairs of the
inter-local contrastive loss also come from two directions.

Currently, we have presented the main components of the proposed LGCL that aims to help molec-
ular graph contrastive learning free from well-designed domain knowledge and maintain the seman-
tics. For unsupervised molecular graph representation learning, the final objective function of LGCL
for pre-training is given by

min L = LG + αLInterC + βLIntraC , (12)

where LG denotes the NT-Xent loss, α and β are two hyper-parameters for loss weight controlling.

5 EXPERIMENT

In this section, we are devoted to evaluating LGCL with extensive experiments 1. Following the
procedure of pre-training and fine-tuning, we validate the effectiveness of our approach against
SOTA competitors for view generation. Furthermore, we carry out analytical studies to assess each
proposed component. Unsupervised and semi-supervised learning are shown in appendix.

5.1 EXPERIMENTAL SETUP

To be in line with the previous graph contrastive learning methods without prefabricated domain
knowledge and make the comparisons fair, we follow the experimental setup under the guidance of
Hu et al. (2020).

Pre-training dataset. ZINC15 Sterling & Irwin (2015) dataset is adopted for LGCL pre-training.
In particular, a subset with two million unlabeled molecular graphs are sampled from the ZINC15.

Pre-training details. In the graph encoder setting in Hu et al. (2020), a Graph Isomorphism Network
(GIN) Xu et al. (2019) with five convolutional layers is adopted for message passing. In particular,
the hidden dimension is fixed to 300 across all layers and a pooling readout function that averages
graph nodes is hired for NT-Xent loss calculation with the scale parameter τ = 0.1. The hidden
representations at the last layer are injected into the average pooling function. An Adam optimizer
Kingma & Ba (2015) is employed to minimize the integrated losses produced by the 5-layer GIN
encoder. The batch size is set as 256, and all training processes will run 100 epochs. The two
hyper-parameters (i.e., α and β) for loss weight controlling are both set as 1.

Fine-tuning dataset. We employ the eight ubiquitous benchmarks from the MoleculeNet dataset
Wu et al. (2018) to validate LGCL as downstream experiments. These benchmarks include a variety
of molecular tasks like physical chemistry, quantum mechanics, physiology, and biophysics. For
dataset split, the scaffold split scheme Chen et al. (2012) is adopted for train/validation/test set
generation. Table A.1 summarizes the basic characteristics of the datasets, such as the size, tasks
and molecule statistics. Detailed descriptions can be found in Appendix A.

Fine-tuning details. For downstream tasks, a linear layer is stacked after the pre-trained graph
encoders for final property prediction. The downstream model still employs the Adam optimizer for
100 epochs fine-tuning. All experiments on each dataset are performed for ten runs with different

1The code of LGCL will be public after acceptance.
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seeds, and the results are the averaged ROC-AUC scores (%) ± standard deviations. The hyper-
parameters tuned for each dataset are: (a) the learning rate ∈ {0.01, 0.001, 0.0001}; (b) the batch
size ∈ {32, 128}; (c) the dropout ratio ∈ {0, 0.5}. The node representations for graph pooling are
adopted from the last layer or the concatenation of all layers. These hyper-parameters are selected
by the grid search on the validation sets.

Baselines. In this paper, we choose the SOTA competitors that follows the experimental setup in Hu
et al. (2020). The first category is self-supervised graph learning algorithms, including EdgePred,
AttrMsking, ContexPred Hu et al. (2020), Infomax Velickovic et al. (2019), and GraphMAE Hou
et al. (2022). The second category are graph contrastive learning methods for view generation, such
as GraphCL You et al. (2020), JOAO(v2) You et al. (2021), LP-Info You et al. (2022), AutoGCL Yin
et al. (2022), GraphMVP Liu et al. (2022), RGCL Li et al. (2022b) and D-SLA Kim et al. (2022).

5.2 RESULTS

The results of LGCL along with SOTA competitors for molecular property prediction on eight
benchmarks are shown in Table 1. To summarize, the proposed graph contrastive learning frame-
work with the line graph, LGCL, obtains superior performance compared with the previous works.
Specifically, in light of the last column for average rank, our method seizes the highest ranking po-
sition from SOTA contrastive learning methods as well as self-supervised learning methods, and a
significant ranking improvement can be witnessed as opposed to the second place (D-SLA gives the
A.R. 5.0). In particular, LGCL achieves the best performance on six out of eight benchmarks, and
the best comprehensive performance is also with us (see the penultimate column). Thus, we can con-
clude that LGCL captures the molecular semantic information well in the absence of well-designed
domain knowledge, and the line graph provides an excellent contrastive view without altering the
molecular semantics.

Table 1: Average test ROC-AUC (%) ± Std. over different 10 runs of LGCL along with all baselines
on eight downstream molecular property prediction benchmarks. The results of baselines are derived
from the published works. Bold indicates the best performance among all baselines. Avg. shows
the average ROC-AUC over all datasets. A.R. denotes the average rank.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg. A.R.
No Pre-Train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 66.96 13.5
Infomax 68.8±0.8 75.3±0.6 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 70.29 11.2
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 70.28 9.3
AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 69.90 8.9
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 70.89 8.1
GraphMAE 72.0±0.6 75.5±0.6 64.1±0.3 60.3±1.1 82.3±1.2 76.3±2.4 77.2±1.0 83.1±0.9 73.85 5.8
GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 70.77 10.9
JOAO(v2) 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27 72.12 9.0
LP-Info 71.40±0.55 74.54±0.45 63.04±0.30 59.70±0.43 74.81±2.73 72.99±2.28 76.96±1.10 80.21±1.36 71.71 9.9
AD-GCL 70.01±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 72.30±1.61 78.28±0.97 78.51±0.80 72.72 7.1
AutoGCL 73.36±0.77 75.69±0.29 63.47±0.38 62.51±0.63 80.99±3.38 75.83±1.30 78.35±0.64 83.26±1.13 74.18 4.1
GraphMVP 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.70 9.9
RGCL 71.42±0.66 75.20±0.34 63.33±0.17 61.38±0.61 83.38±0.91 76.66±0.99 77.90±0.80 76.03±0.77 73.16 5.9
D-SLA 72.60±0.79 76.81±0.52 64.24±0.50 60.22±1.13 80.17±1.50 76.64±0.91 78.59±0.44 83.81±1.01 74.14 3.8
LGCL 70.99±1.05 76.95±0.43 64.71±0.72 63.37±0.56 77.59±1.54 77.70±3.00 78.69±1.10 84.68±0.73 74.33 2.6

5.3 ABLATION STUDY

Here, we delve deeper into the performance influence of each proposed component. First, we an-
alyze the performance boosting from the introduction of the line graph and edge attribute fusion
without ZINC15 pre-training. As for the two local contrastive losses, we present the test results of
various combinations from these parts following the transfer learning settings. The detailed discus-
sions are as follows.

The effect of line graph. In Figure 3, we analyze the effect of the line graph. In comparison with
the red bar (i.e., ‘No Pre-Train’) that denotes the results from random initialization, introducing the
line graph (i.e., ‘No Pre-Train w/LG’) shows an overall superior performance, which empirically
suggests that the semantics underlying the edges can be better captured by the line graph.

The effect of edge attribute fusion. Based on the performance boosting of the line graph, we
further present the results with edge attribute fusion in Figure 3 (i.e., ‘No Pre-Train w/LG w/AF’).
Besides the general promotion compared with the results of random initialization, the edge attribute
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Figure 3: Average test ROC-AUC (%) gain within ‘No Pre-Train’ from the line graph (w/LG) and
edge attribute fusion (w/AF) across all datasets.

Table 2: Average test ROC-AUC (%) of LGCL with different components. Avg. shows the average
ROC-AUC over all datasets. A.R. denotes the average rank.

# LG AF LG LIntraC LInterC BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg. A.R.
1 ✓ ✓ 69.97±2.62 75.60±0.50 62.70±0.55 59.32±1.26 67.79±2.52 75.70±1.75 75.72±0.84 82.50±0.73 71.16 5.4
2 ✓ ✓ ✓ 70.61±1.21 75.85±0.49 63.83±0.74 59.33±0.51 75.82±2.35 76.37±1.81 77.32±0.95 80.79±1.41 72.49 3.6
3 ✓ ✓ ✓ 69.87±1.27 74.97±0.52 64.01±0.68 60.49±1.32 76.44±4.32 75.52±1.45 77.40±1.69 84.00±0.66 72.84 4.0
4 ✓ ✓ ✓ ✓ 70.94±0.68 75.74±0.63 63.50±0.65 60.47±1.08 76.48±4.82 76.12±1.93 77.49±0.79 84.23±0.87 73.12 2.9
5 ✓ ✓ ✓ 70.01±0.45 75.57±0.56 63.59±0.60 61.15±0.49 74.95±3.27 75.97±1.88 76.51±1.47 83.67±1.49 72.68 4.1
6 ✓ ✓ ✓ ✓ ✓ 70.99±1.05 76.95±0.43 64.71±0.72 63.37±0.56 77.59±1.54 77.70±3.00 78.69±1.10 84.68±0.73 74.33 1.0

fusion also brings five out of eight better results in contrast to the solo line graph. Furthermore,
following the setting of transfer learning, the performance differences between the first and fifth
rows as well as the fourth and sixth rows in Table 2 also validate the effectiveness of edge attribute
fusion. Thus, we may conclude that edge attribute fusion can alleviate information inconsistency
and enhance molecular graph representation learning.

The effect of intra-local contrastive loss. The test results under the supervision of the proposed
losses are shown in Table 2. To achieve a comprehensive comparison, we first give a baseline only
pre-trained with the NT-Xent loss (see the first row). The effectiveness of the proposed intra-local
contrastive loss is confirmed by the performance differences between the second and first rows as
well as the fourth and third rows, in which the only experimental setup difference is the LIntraC .
Specifically, at least six out of eight better results are obtained via deploying this contrastive loss,
which informs us of its effectiveness in over-smoothing addressing.

The effect of inter-local contrastive loss. Analogously, when comparing the results of the first
and third rows as well as the second and fourth rows in Table 2, we can observe that six and five
datasets achieve performance exaltation, respectively. This metric promotion indicates the effec-
tiveness of the inter-local contrastive loss in crucial structure identification. Finally, despite several
failures within these ablation studies, the last row that simultaneously adopts all proposed compo-
nents performs best; thus, the proposed parts of LGCL are complementary to each other in molecular
semantic exploration regardless of the intricate domain knowledge.

6 CONCLUSIONS

In this work, we try to figure out a decent view for molecular graph contrastive learning that can
maintain the integrity of molecular semantic information and is friendly to researchers without pro-
found domain knowledge. Inspired by the line graph, we propose a method, called LGCL, to tackle
our expectations. Due to the different pace of message passing in the original graph and the corre-
sponding line graph, we further present three crucial components to address the concomitant issues
and enhance molecular graph representation learning. Under the setting of transfer learning, we
empirically present the superior performance of LGCL over SOTA works.
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Supplementary Materials for

Look in The Mirror: Molecular Graph Contrastive Learning with Line Graph

A DETAILS OF MOLECULAR DATASETS

As discussed in Section 4.1, a vertex with e edges in G will produce e× (e− 1)/2 edges in L(G),
which could lead to severe runtime complexity when the original graphs are dense. Therefore,
our method only suits sparse graphs. As for molecules adopted in this work, we can see from
Table A.1 that the computation of the line graph encoder is 1.5 times that of the original graph
encoder according to the average degrees in the transformed line graphs. However, as for the realistic
time required for model pre-training, detailed comparisons are shown in Appendix C.2.

Input graph representation. For simplicity, we use a minimal set of node and bond features
that unambiguously describe the two-dimensional structure of molecules. We use RDKit Landrum
(2013) to obtain these features.

• Node features:

– Atom number: [1, 118]
– Chirality tag: {unspecified, tetrahedral cw, tetrahedral ccw, other}

• Edge features:

– Bond type: {single, double, triple, aromatic}
– Bond direction: {–, endupright, enddownright}

Table A.1: Datasets statistics summary.

Dataset #Tasks #Graphs Avg.Node Avg.Degree LG Avg.Degree
ZINC15 2,000,000 26.63 57.72 80.98
BBBP 1 2,039 24.06 51.90 75.10
Tox21 12 7,831 18.57 38.58 53.03
ToxCast 617 8,576 18.78 38.52 52.95
SIDER 27 1,427 33.64 70.71 99.97
ClinTox 2 1,477 26.15 55.76 79.76
MUV 17 93,087 24.23 52.55 73.06
HIV 1 41,127 25.51 54.93 78.42
BACE 1 1,513 34.08 73.71 105.78

Downstream task datasets. 8 binary graph classification datasets from MoleculeNet Wu et al.
(2018) are used to evaluate model performance.

• BBBP Martins et al. (2012). Blood-brain barrier penetration (membrane permeability),
involves records of whether a compound carries the permeability property of penetrating
the blood-brain barrier.

• Tox21 Tox (2014). Toxicity data on 12 biological targets, which has been used in the 2014
Tox21 Data Challenge and includes nuclear receptors and stress response pathways.

• ToxCast Richard et al. (2016). Toxicology measurements based on over 600 in vitro high-
throughput screenings.

• SIDER Kuhn et al. (2016). Database of marketed drugs and adverse drug reactions (ADR),
grouped into 27 system organ classes and also known as the Side Effect Resource.

• ClinTox Novick et al. (2013); Gayvert et al. (2016). Qualitative data classifying drugs
approved by the FDA and those that have failed clinical trials for toxicity reasons.

• MUV Gardiner et al. (2011). Subset of PubChem BioAssay by applying a refined nearest
neighbor analysis, designed for validation of virtual screening techniques.
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• HIV HIV. Experimentally measured abilities to inhibit HIV replication.

• BACE Subramanian et al. (2016). Qualitative binding results for a set of inhibitors of
human β-secretase 1.

Dataset splitting. For molecular prediction tasks, following Ramsundar et al. (2019), we cluster
molecules by scaffold (molecular graph substructure) Bemis & Murcko (1996), and recombine the
clusters by placing the most common scaffolds in the training set, producing validation and test sets
that contain structurally different molecules. Prior work has shown that this scaffold split provides
a more realistic estimate of model performance in prospective evaluation compared to random split
Chen et al. (2012); Sheridan (2013). The split for train/validation/test sets is 80%:10%:10%.

B MOLECULAR PROPERTY PREDICTION VIA UNSUPERVISED LEARNING
AND SEMI-SUPERVISED LEARNING

As discussed above, LGCL only suits sparse graphs to avoid too bad runtime complexity. As shown
in Table A.2, the capacities of all social network datasets and dense bioinformatics dataset (i.e.,
DD) heavily increase after the line graph transformation, which leads to unaffordable computation
consumption in graph representation learning. Therefore, we only employ sparse bioinformatics
datasets for unsupervised and semi-supervised learning. Experiment details are elaborated below.

Table A.2: Summary statistics of ubiquitous benchmarks from TUDataset.

Dataset #Graphs #Classes Avg.Nodes Avg.Degree LG Avg.Degree
Social Networks

COLLAB 5,000 3 74.49 4914.43 786967.36
REDDIT-BINARY 2,000 2 429.63 995.50 184826.67
REDDIT-MULTI-5K 4,999 5 508.52 1189.74 81066.29
IMDB-BINARY 1,000 2 19.77 193.06 2782.11
IMDB-MULTI 1,500 3 13.00 131.87 2037.64
GITHUB 12,725 2 113.79 469.27 19574.33

Bioinformatics
MUTAG 188 2 17.93 39.58 57.74
NCI1 4,110 2 29.87 64.60 93.21
PROTEINS 1,113 2 39.06 145.63 448.99
DD 1,178 2 284.32 1431.31 6581.59

B.1 UNSUPERVISED LEARNING

Datasets. Three sparse bioinformatics datasets are adopted from TUDataset Morris et al. (2020)
for unsupervised learning, including NCI1 and MUTAG, and PROTEINS. Table A.2 summarizes
the characteristics of the three employed datasets.

• NCI1 is a dataset made publicly available by the National Cancer Institute (NCI) and is
a subset of balanced datasets containing chemical compounds screened for their ability to
suppress or inhibit the growth of a panel of human tumor cell lines; this dataset possesses
37 discrete labels.

• MUTAG has seven kinds of graphs that are derived from 188 mutagenic aromatic and
heteroaromatic nitro compounds.

• PROTEINS is a dataset where the nodes are secondary structure elements (SSEs), and there
is an edge between two nodes if they are neighbors in the given amino acid sequence or in
3D space. The dataset has 3 discrete labels, representing helixes, sheets or turns.

Configuration. To keep in line with GraphCL You et al. (2020), the same GNN architectures are
employed with their original hyper-parameters under individual experiment settings. Specifically,
GIN Xu et al. (2019) with 3 layers is set up in unsupervised representation learning. The encoder
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hidden dimensions are fixed for all layers to keep in line with GraphCL under individual experiment
setting. Models are trained 20 epochs and tested every 10 epochs. Hidden dimension is 32, and
batch size is ∈ {32, 128}. An Adam optimizer Kingma & Ba (2015) is employed to minimize the
contrastive lose and learning rate is ∈ {0.01, 0.001, 0.0001}.

Learning protocol. Following the learning setting in SOTA works, the corresponding learning
protocols are adopted for a fair comparison. In unsupervised representation learning Sun et al.
(2020), all data is used for model pre-training and the learned graph embeddings are then fed into a
non-linear SVM classifier to perform classification. Experiments are performed for 5 times each of
which corresponds to a 10-fold evaluation as Sun et al. (2020), with mean and standard deviation of
accuracies (%) reported.

Compared methods. We adopt nine baselines that are composed of three categories. The pub-
lished hyper-parameters of these methods are adopted. The first set is three SOTA kernel-based
methods that include GL Shervashidze et al. (2009), WL Shervashidze et al. (2011) and DGK Ya-
nardag & Vishwanathan (2015). The second set is four heuristic self-supervised methods, in-
cluding node2vec Grover & Leskovec (2016), sub2vec Adhikari et al. (2018), graph2vec Anna-
malai Narayanan & Jaiswal (2017), and InfoGraph Sun et al. (2020). The final compared methods
are GraphCL You et al. (2020), JOAO(v2) You et al. (2021), AD-GCL Suresh et al. (2021), Auto-
GCL Yin et al. (2022) and RGCL Li et al. (2022b).

Results. The results of LGCL along with SOTA competitors on three benchmarks are shown in
Table A.3. To summarize, the proposed graph contrastive learning framework with the line graph,
LGCL, obtains superior performance compared with the previous works. In particular, except for
NCI1, LGCL achieves the best performance on two out of three benchmarks. Thus, we can conclude
that LGCL captures the molecular semantic information well in the setting of unsupervised learning.

Table A.3: Average accuracies (%) ± Std. of compared methods via unsupervised learning. Bold
indicates the best performance over all methods. Italic marks the second best performance.

NCI1 PROTEINS MUTAG
GL 62.33±0.3 71.75±0.6 81.66±2.11
WL 80.01±0.50 72.92±0.56 80.72±3.00
DGK 80.31±0.46 73.30±0.82 87.44±2.72
node2vec 54.89±1.61 57.49±3.57 72.63±10.2
sub2vec 52.84±1.47 53.03±5.55 61.05±15.8
graph2vec 73.22±1.81 73.30±2.05 83.15±9.25
InfoGraph 76.20±1.06 74.44±0.31 89.01±1.13
GraphCL 77.87±0.41 74.39±0.45 86.80±1.34
JOAO 78.07±0.47 74.55±0.41 87.35±1.02
JOAOv2 78.36±0.53 74.07±1.10 87.67±0.79
AD-GCL 75.86±0.62 75.04±0.48 88.62±1.27
AutoGCL 82.00±0.29 75.80±0.36 88.64±1.08
RGCL 78.14±1.08 75.03±0.43 87.66±1.01
LGCL 79.76±0.46 76.47±0.39 90.32±1.14

B.2 SEMI-SUPERVISED LEARNING

Datasets. Two sparse bioinformatics datasets are adopted from TUDataset Morris et al. (2020) for
semi-supervised learning, including NCI1 and PROTEINS.

Configuration. ResGCN with 128 hidden units and 5 layers is set up in semi-supervised learning.
For all datasets we perform experiments with 10% label rate for 5 times, each of which corresponds
to a 10-fold evaluation as You et al. (2020), with mean and standard deviation of accuracies (%)
reported. For pre-training, learning rate is tuned in {0.01, 0.001, 0.0001} and epoch number in
{20, 40, 60, 80, 100} where grid search is performed. For fine-tuning, we following the default
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setting in You et al. (2020), that is, learning rate is 0.001, hidden dimension is 128, bath size is 128,
and the pre-trained models are trained 100 epochs.

Learning protocols. Following the learning setting in SOTA works, the corresponding learning
protocols are adopted for a fair comparison. In semi-supervised learning You et al. (2020), there
exist two learning settings. For datasets with a public training/validation/test split, pre-training is
performed only on training dataset, finetuning is conducted with 10% of the training data, and final
evaluation results are from the validation/test sets. For datasets without such splits, all samples are
employed for pre-training while finetuning and evaluation are performed over 10 folds.

Compared methods. Under the setting of semi-supervised learning, eight baselines are adopted,
including (1) the naive GCN without pre-training You et al. (2020), which is directly trained with
10% labeled data from random initialization; (2) GAE Kipf & Welling (2016), a predictive method
by edge-based reconstruction in the pre-training phase; (3) Infomax Velickovic et al. (2019), a node
embedding method with global-local representation consistency; (4) ContextPred Hu et al. (2020),
a method via sub-structure information preserving; (5) GraphCL You et al. (2020), the first graph
contrastive learning method with data augmentations. (6) JOAO(v2) You et al. (2021), an opti-
mization framework to automatically select data augmentations; (7) AD-GCL Suresh et al. (2021),
a framework aim to exclude redundant information during the training by optimizing adversarial
graph augmentation strategies; (8) AutoGCL Yin et al. (2022), a model with learnable graph view
generators orchestrated by an auto augmentation strategy.

Results. The results of LGCL along with SOTA competitors on the two benchmarks are shown
in Table A.4, in which LGCL suppresses the SOTA view generation works on the two employed
datasets. Thus, we can conclude that LGCL captures the molecular semantic information well in the
setting of semi-supervised learning.

Table A.4: Average accuracies (%) ± Std. of compared methods via semi-supervised representation
learning with 10% labels. Bold indicates the best performance over all methods. Italic marks the
second best performance.

NCI1 PROTEINS
No Pre-Train 73.72±0.24 70.40±1.51
GAE 74.36±0.24 70.51±0.17
Infomax 74.86±0.26 72.27±0.40
ContextPred 73.00±0.30 70.23±0.63
GraphCL 74.63±0.25 74.17±0.34
JOAO 74.48±0.27 72.13±0.92
JOAOv2 74.86±0.39 73.31±0.48
AD-GCL 75.18±0.31 73.96±0.47
AutoGCL 73.33±2.86 74.57±3.29
LGCL 75.82±0.28 74.87±0.39

C FURTHER ABLATION STUDY

C.1 HYPER-PARAMETER SENSITIVITY

In the design of LGCL, besides the general hyper-parameters (i.e., learning rate, batch size, dropout
ratio, etc.), we introduce two hyper-parameters, α and β, for loss balance in pre-training stage. To
clearly show the essential effectiveness of the two losses rather than the two hyper-parameters, we
fix α and β to 1 in the main text. The other hyper-parameters in pre-training phase are also fixed and
consistent with Hu et al. (2020).

To further inspect the hyper-parameter sensitivity of LGCL, we tuned the candidates of α and β
in the range of [0.01, 0.1, 1, 10, 100], respectively. In the tunning of α, we fix the β to 1 and vice
versa. In the fine-tuning stage, the learning is fixed to 0.001; the batch size is fixed to 32; the dropout
ratio is fixed to 0.5. The node representations for graph pooling are adopted from the last layer. All
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Figure A.1: Sensitivity w.r.t. hyper-parameter α and β.

experiments on each dataset are performed for ten runs with different seeds, and the results are the
averaged ROC-AUC scores (%) ± standard deviations.

The average ROC-AUC scores of downstream tasks are shown in Figure A.1. As can be seen,
different downstream tasks prefer different loss controls. Specifically, ClinTox and BACE prefer
small α but large β, while SIDER would like large α and is insensitive to β, which suggests that
ClinTox and BACE suffer more from the over-smoothing. It is worth noting that more superior
results can be obtained from tuning these two hyper-parameters, such as the 85.88% of ClinTox
with α = 1 and β = 10 compared to 77.59% in the main text with α = 1 and β = 1, which implies
the huge potential of LGCL with the tuning of the two hyper-parameters.

C.2 EFFICIENCY

In this paper, to address the issues of molecular semantics alteration and generalization capability
in molecular contrastive learning, we introduce the line graph and further propose edge attribute
fusion, intra-local contrastive loss, and inter-local contrastive loss to enhance contrastive learning. In
Section 5, we have shown the superior performance of LGCL. Here, we further present the efficiency
of LGCL by comparing the pre-training time on 2 million molecular graphs of ZINC15 with the
baselines. In addition, the actual runtime of LGCL through introducing each item is also given,
including LGCL with only line graph (i.e., LGCL w/o AF LIntraC LInterC); LGCL with line graph
and edge attribute fusion (i.e., LGCL w/o LIntraC LInterC); LGCL with line graph, edge attribute
fusion and intra-local contrastive loss (i.e., LGCL w/o LInterC). The setting of pre-training time
comparison is consistent with the main text Hu et al. (2020). All baselines and LGCL are rerun
in our platform (Tesla V100 GPU and Intel(R) Xeon(R) Silver 4214 CPU). Note that, we set the
num workers in dataloader to default for fair comparison.

0 20 40 60 80 100 120 140 160
Pre-train Time (Hours)

GraphCL

JOAOv2

AD-GCL

AutoGCL

RGCL

LGCL

(a) Comparison between baselines and LGCL.

0 5 10 15 20 25 30
Pre-train Time (Hours)

LGCL-w/o
AF IntraC InterC

LGCL-w/o
IntraC InterC

LGCL-w/o
InterC

LGCL

(b) Comparison among parts of LGCL.

Figure A.2: Pre-training time comparison. The time required by LGCL is much less than the time
needed by baselines except AutoGCL.

Figure A.2 shows the pre-training time required for 2 million molecular graphs from ZINC15 pre-
training with 100 epochs. As shown in Figure A.2a, because the contrastive views of LGCL are
static, the time required by LGCL is much less than the time needed by baselines except AutoGCL,
which reveals that LGCL has not only superior performance but also excellent efficiency. In partic-
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ular, LP-Info requires almost 16 hours for one epoch pre-training, that is about 1,600 hours for 100
epochs, thus we do not report its pre-training time in Figure A.2a.

Furthermore, as shown in Figure A.2b, comparing to the model only with line graph (i.e., LGCL w/o
AF LIntraC LInterC), the additional time from the introduction of edge attribute fusion is nearly
negligible. The biggest time consumption gap comes from the proposal of two local contrastive
losses, but they still only occupy 16.26% of the total time, which is a small price in contrast to the
accompanying performance boosting.

C.3 VISUALIZATION OF OVER-SMOOTHING ALLEVIATING
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(a) Node similarity distribution of GraphCL and
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0.0 0.2 0.4 0.6 0.8 1.0
KS Test P-value=0.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

LGCL w/o IntraC InterC

LGCL

(b) Node similarity distribution of GraphCL and
LGCL.

Figure A.3: Visualization of intra-local contrastive loss in over-smoothing alleviating. We ex-
amine the two groups of distributions by a Kolmogorov–Smirnov test (KS test), where the KS test
p-values show that the two groups of distributions are distinct (i.e., the p-values are less than 0.01).

In the ablation study, we empirically inspect the effect of intra-local contrastive loss in over-
smoothing alleviating. Here, a visualization case study is presented to further directly show how
the intra-local contrastive works. Specifically, we calculate the similarities among nodes within the
same graph from the pre-training dataset via the model after 100-epoch pre-training. As shown in
Figure A.3, we give the node similarity distribution of GraphCL, LGCL, and LGCL without the two
local contrastive losses. First, based on the distribution shown in Figure A.3a, we can see that the in-
troduction of line graph leads to a right shift of node similarity distribution, that is, over-smoothing.
Then, the left shift of node similarity distribution in Figure A.3b suggests that the proposed loss
could alleviate the over-smoothing.

C.4 VISUALIZATION OF INFORMATION INCONSISTENCY ALLEVIATING
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Figure A.4: Visualization of edge attribute fusion in information inconsistency alleviating. We
examine the two view similarity distributions by a Kolmogorov–Smirnov test (KS test), where the
KS test p-values show that the two groups of distributions are distinct (i.e., P-value ≤ 0.01).
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In the ablation study, we empirically validate the effectiveness of edge attribute fusion in information
inconsistency alleviating. Here, visualization case studies are further presented to show how edge
attribute fusion works. First, we calculate the view similarity of positive pairs from the pre-training
dataset via the model after 100-epoch pre-training. As shown in Figure A.4a, we present the view
similarity distribution of LGCL with and without the edge attribute fusion 2. We can see that the
introduction of edge attribute fusion significantly increases the view similarity between positive
pairs. Second, we inspect the convergence of NT-Xent loss of LGCL with and without edge attribute
fusion. As shown in Figure A.4b, LGCL equipped with edge attribute fusion converges faster and
has a lower loss, which suggests the higher alignment of the view embeddings. In summary, edge
attribute fusion can address the information inconsistency accompanying the line graph.

D OTHER BASELINES

Here, we further compare LGCL with other self-supervised molecular representation learning:

• GROVER Rong et al. (2020) predicts the contextual properties based on atom embeddings
to encode contextual information into node embeddings.

• MGSSL Zhang et al. (2021) aims to capture the rich information in graph motifs.
• 3D-Infomax Stärk et al. (2022) aims to reason about the geometry of molecules given only

their 2D molecular graphs by pre-training model with existing 3D molecular datasets.

The results are shown in Table A.5. As can be seen, LGCL suppresses GROVER on all datasets,
MGSSL on six out of eight datasets, and 3D-Infomax on six out of seven datasets. Moreover, LGCL
also achieves the highest average results among the these baselines.

Table A.5: Average test ROC-AUC (%) ± Std. over different 10 runs of LGCL along with all
baselines on eight downstream molecular property prediction benchmarks. The results of baselines
are derived from the published works. Bold indicates the best performance among all baselines.
Avg. shows the average ROC-AUC over all datasets. A.R. denotes the average rank. - indicates the
data missing in the such works.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg.
GROVER 68.0±1.5 76.3±0.6 63.4±0.6 60.7±0.5 76.9±1.9 75.8±1.7 77.8±1.4 79.5±0.8 72.3
MGSSL(DFS) 70.5±1.1 76.4±0.4 63.8±0.3 60.5±0.7 79.7±2.2 78.1±1.8 79.5±1.1 79.7±0.8 73.5
MGSSL(BFS) 69.7±0.9 76.5±0.3 64.1±0.7 61.8±0.8 80.7±2.1 78.7±1.5 78.8±1.2 79.1±0.9 73.7
3D-Infomax 69.1±1.07 74.46±0.74 64.41±0.88 53.37±3.34 59.43±3.21 - 76.08±1.33 79.42±1.94 -
3D-Infomax+ 68.64±2.19 73.73±0.69 63.95±0.38 58.43±1.28 83.59±3.64 - 75.38±0.95 79.28±3.61 -
LGCL 70.99±1.05 76.95±0.43 64.71±0.72 63.37±0.56 77.59±1.54 77.70±3.00 78.69±1.10 84.68±0.73 74.33

E THEORETICAL UNDERSTANDING OF LGCL

Besides the superior performance of LGCL shown in the main text for molecular property prediction,
here, we further present a theoretical understanding of how LGCL obtains better performance.
Definition E.1. (Graph Quotient Space). Define the equivalence ∼= between two graphs G1

∼= G2

if G1, G2 cannot be distinguished by the 1-WL test. Define the quotient space G = G/ ∼=.

So every element in the quotient space, i.e., G ∈ G, is a representative graph from a family of graphs
that cannot be distinguished by the 1-WL test. Note that our definition also allows attributed graphs.
Theorem E.2. Suppose G is a countable space and thus G′ is a countable space. Because G and
G′ are countable, PG and PG′ are defined over countable sets and thus discrete distribution. Later
we may call a function z(·) can distinguish two graphs G1, G2 if z(G1) ̸= z(G2). Moreover, for
notational simplicity, we consider the following definition. Suppose the encoder f is implemented by
a GNN. The optimal encoder f∗ is the best model which GNN can find. Because f∗ is as powerful as
the 1-WL test. Then, for any two graphs G1, G2 ∈ G, G1

∼= G2, f∗(G1) = f∗(G2). We may define
a mapping over G′, also denoted by f∗ which simply satisfies f∗(G′) :≜ f∗(G), where G ∼= G′,
and G ∈ G and G′ ∈ G′. Suppose t(·) is the data augmentation function and L(·) is the line graph
transformation function. We have

2The two models are both not equipped with the two local contrastive losses.
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1. I(L(G);G) ≥ I(t(G′);G′);

2. I(L(G);Y ) ≥ I(t(G);Y ).

The statement 1 in Theorem E.2 indicates that the retained information after line graph transforma-
tion from given graphs is more than contrastive views with data augmentation.

The statement 2 in Theorem E.2 suggests that the essential information underlying the line graph for
target prediction is more than contrastive views with data augmentation.

Proof. Given G, G ⇒ L(G) is an injective deterministic mapping. Therefore, for any random
variable Q,

I(L(G);Q) = I(G;Q). (13)

Of course, we may set Q = G. So,

I(L(G);G) = I(G;G). (14)

Then, we have
I(L(G′);G′) = I(G′;G′)

(a)

≥ I(t(G′);G′), (15)
where (a) is because the data processing inequality Cover (1999). Moreover, because f∗ could
be as powerful as the 1-WL test and is injective in G′. Meanwhile, as stated in the Whitney graph
isomorphism theorem Whitney (1932), the isomorphism of two line graphs is judged to be consistent
with the corresponding two original graphs, thus we have

I(L(G′);G′) = I(f∗(L(G′)); f∗(G′))

= I(f∗(L(G)); f∗(G))

= I(L(G);G). (16)

Here, the second equality is because the transformation of line graph will not change the isomorphic
relationship between two graphs G′ and G, meanwhile f∗(G′) = f∗(G). Therefore, we achieve the
statement 1:

I(L(G);G) ≥ I(t(G′);G′). (17)

Again, because by definition f∗ = argmaxfI(f(G);G), f∗ must be injective. Given G∗, G∗ ⇒
f∗(G∗) is an injective deterministic mapping. Of course, we may set Q = Y . So,

I(f∗(G);Y ) = I(G∗;Y ). (18)

Because G ⇒ L(G) is an injective deterministic mapping.
I(f∗(G);Y ) = I(f∗(L(G));Y ),

= I(L(G);Y ). (19)

Further because of the data processing inequality Cover (1999),
I(f∗(G);Y ) = I(G;Y )

≥ I(t(G);Y )

= I(f∗(t(G));Y ). (20)
Combining above equations, we have the statement 2:

I(L(G);Y ) = I(f∗(L(G));Y )

= I(f∗(G);Y )

≥ I(f∗(t(G));Y )

= I(t(G);Y ), (21)
which concludes the proof of the essential information of line graph.
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