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Abstract
Applications of the recently introduced graphi-
cally structured diffusion model (GSDM) family
show that sparsifying the transformer attention
mechanism within a diffusion model and meta-
training on a variety of conditioning tasks can
yield an efficiently learnable diffusion model ar-
tifact that is capable of flexible amortized infer-
ence in probabilistic graphical models. While
extremely promising in terms of applicability
and utility, implementations of GSDMs prior to
this work were not scalable beyond toy graphical
model sizes. We overcome this limitation by de-
scribing and and solving two scaling issues related
to GSDMs; one engineering and one methodolog-
ical. We additionally propose a new benchmark
problem of weight inference for a convolutional
neural network applied to 14× 14 MNIST.

1. Introduction
Diffusion models have proven wildly successful as gener-
ative models of sensory data like images (Ho et al., 2020;
Rombach et al., 2022), audio (Kong et al., 2020), and
video (Ho et al., 2022; Harvey et al., 2022). Conditional
variants of these (Tashiro et al., 2021), such as image com-
pletion artifacts, can be understood as performing amortized
inference in these spaces. While these domains are com-
plex and high-dimensional, it seems that the structure they
possess is amenable to learning through gradient descent in
architectures with simple inductive biases like convolutions.

Now consider performing a factorization of a 100 × 100
matrix with rank 10. This problem is trivial with a hand-
designed algorithm but almost impossible for a naively-
applied neural network (Weilbach et al., 2022). This prob-
lem space exhibits much more explicit structure than image

*Equal contribution 1Department of Computer Science, Univer-
sity of British Columbia, Vancouver, Canada. Correspondence to:
Christian Weilbach <weilbach@cs.ubc.ca>.

Accepted to ICML workshop on Structured Probabilistic Infer-
ence & Generative Modeling. 40 th International Conference on
Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

completion, in that we know that the product of the fac-
tors should be exactly equal to the input matrix, but the
dependencies are very non-local and so this structure is not
amenable to learning with standard architectures. In addi-
tion, permutation invariances in valid factorizations mean
that there are multiple solutions and so it is a difficult prob-
lem for conventional methods.

The recently introduced graphically structured diffusion
model (GSDM) skirts around these issues by (a) using a
stochastic diffusion model to allow for the possibility of mul-
tiple solutions, and (b) explicitly integrating known problem
structure via a graphical model specification to better model
complex dependencies, as we describe in Section 2. By
doing so, it exhibits gracefully scaling in performance with
problem size and can be trained on 30× 30 rank 8 matrices
towards low error. Training does not scale, though, to signif-
icantly larger graphical models than this. For larger models
the runtime requirements are high, meaning that training is
slow and quickly turns infeasible due to accelerator memory
limitations. As a first, engineering, contribution, we modify
the implementation of GSDM’s attention mechanism in or-
der to improve its scaling with respect to both of these. We
describe this in Section 3.

As a second, methodological, contribution, we introduce a
technique which we call plate sampling (PS). This technique
stochastically selects only a few graphical model nodes at
training time, so that we may save memory and computation
by only considering a small fraction of the total number of
graphical model nodes. Intuitively, this may be helpful if
there is a lot of redundant computation in a graphical model.
As an example of this, our graphical model in Figure 1
contains a plate in which the same computation is repeated
N times. We describe a heuristic method for selecting such
“informative” subgraphs for any given graphical model in
Section 4.

Our final contribution is a new benchmark for testing amor-
tized inference in highly structured domains. Specifically,
the challenge is to infer a Bayesian posterior over convo-
lutional neural network weights given an observed set of
inputs and outputs. We describe this in Section 5 and, to en-
able experimentation with varying problem sizes, we release
our code1 which maps from a neural network specification

1https://github.com/plai-group/gsdm

https://github.com/plai-group/gsdm
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Figure 1. Left: A simplified version of the graphical model we propose for a new amortized inference benchmark, with latent variables
x = {W1,b1,W3,b3,W4} ∪ {Ci
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4}Ni=1 and observed variables y = {ui,vi}Ni=1. It corresponds to the compute

graph of a convolutional neural network, with {W1,b1,W3,b3,W4} being the model weights. The plate represents N separate network
passes, each of which takes an input u and transforms it into an output v via the hidden states h1, h2, and h3. The intermediate variables
denoted C1, C3, and C4 are intermediate quantities computed during tensor multiplication; including them makes the graphical model
graph more sparse. For visual clarity the graphical model shown is significantly simplified: we show only 3 input pixels; we show all
hidden states as having only one channel; we show the first convolution as having a 1× 1 kernel; and we omit the internals of all layers
but the first. Right: The resulting structured attention mask for GSDM with dimensions annotated. The mask is binary, where black
entries are ignored and only white entries of the mask can be atteneded to. We set the number of network passes (i.e. number of input
images) N = 1 and the first and second layer channel sizes to 1 to simplify the mask for this exposition.

to the corresponding compute graph and all graphical model
edges.

2. Graphically Structured Diffusion Models
Overview GSDM (Weilbach et al., 2022) is a technique
for constructing and training a conditional diffusion model
for approximate inference in a given probabilistic graphi-
cal model. It translates the graphical model’s connectiv-
ity structure to the adjacency matrix of a graphical neural
network (GNN) which parameterizes the diffusion model.
It also uses side-information extracted from the graphical
model to share certain embeddings within the neural net-
work and further enhance performance. We provide some
background on conditional diffusion models before dis-
cussing the key features of GSDM, structured attention and
embedding sharing. In the following we denote GSDM’s
latent variables x and observed variables y, but note that
these may each contain a multitude of different tensors or
types of data; e.g., in Figure 1, x refers to all neural network

weights and hidden states. The division of nodes into x
and y can also vary between training examples if there are
variables which we wish to sometimes condition on and
sometimes infer.

Conditional diffusion models We provide a brief de-
scription of the conditional diffusion framework underlying
GSDM which should be sufficient to understand this pa-
per’s constributions. See Weilbach et al. (2022) or Tashiro
et al. (2021) for a more complete description. Let x0 be
the latent variables we wish to model, and y denote ob-
served variables we wish to condition on. GSDM is a con-
ditional diffusion model which fits to the posterior under
the data distribution, q(x0,y). Underlying it is a diffusion
process which progressively adds noise to x, yielding a
chain of increasingly noisy copies of the latent variables,
which we call x1, x2, and so on until xT . These have
the joint distribution q(x0:T ) = q(x0)

∏T
t=1 q(xt|xt−1)

where q(xt|xt−1) is a diagonal Gaussian distribution
and, consequently, other marginals including q(xt|x0)



Scaling Graphically Structured Diffusion Models

are Gaussian for any t ∈ {1, . . . , T}. Under the
conditional diffusion framework, we invert this pro-
cess as pθ(x0:T |y) = p(xT )

∏T
i=1 pθ(xt−1|xt,y). where

pθ(xt−1|xt,y) is typically approximated as a Gaussian with
non-learned diagonal covariance. Ho et al. (2020) obtain
its mean as an affine function of the conditional expectation
E[x0|xt,y] and so reduce the problem to one of fitting this
conditional expectation. We follow them in using the simple
mean-squared error loss

L(θ) =
T∑

t=1

Eq(x0,xt,y)

[
∥x̂θ(xt,y, t)− x0∥22

]
. (1)

Structured attention In this section we describe how
GSDM maps from a probabilistic graphical model to a GNN
adjacency matrix. If the graphical model is directed, the
procedure to do so is simple: we make a symmetrized graph
such that, if node i connects to node j in the directed graph-
ical model, node i connects to node j and node j connects
to node i in the symmetrized graph. The adjacency matrix
of this symmetrized graph is then applied to the GNN. We
show an example of this process in Figure 1, where the
graphical model on the left is transformed into the adja-
cency matrix on the right. See Weilbach et al. (2022) for
a proof that this symmetrization is necessary for the GNN
to be able to faithfully model the data distribution and for
the procedure for dealing with undirected graphical models
like factor graphs. The GNN adjacency matrix, which we
denote M , is then applied to mask the transformer attention
mechanism within GSDM’s architecture such that node i
can attend to node j iff. Mi,j is 1.

Compared to a dense transformer attention mechanism, the
resulting extremely sparse attention mechanism reduces the
computational cost and ensures that it scales with the num-
ber of graphical model edges e as O(e) instead of with
the number of nodes n as O(n2). The structured atten-
tion also provides an inductive bias which Weilbach et al.
(2022) show is necessary for learning at all on some graph-
ical models, and improves the scaling law between model
performance and problem size in others.

Embedding sharing Known permutation invariances of
the graphical model can be enforced in the distribution
learned by GSDM through structured parameter sharing
with a technique that Weilbach et al. (2022) call “exchange-
able embeddings”, or EE. Weilbach et al. (2022) also demon-
strate “array embeddings”, or AE, which do not enforce
permutation invariances but instead use information about
which graphical model nodes are within the same multi-
dimensional arrays in a generative model. For example, in
the CNN model in Figure 1, this approach would provide
correlated embeddings to all nodes that make up the input
u, to all nodes that make up the weight matrix W1, and so
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Figure 2. Different marginalization strategies on matrix factoriza-
tion for subgraphs of sizes up to 5% and 10%.

on. This information is easier to automatically extract from
a model than permutation invariances and Weilbach et al.
(2022) show that it works similarly well or sometimes bet-
ter than EE. Finally, Weilbach et al. (2022) also compared
against independent embeddings, or IE, in our experiments.
In this setting, embeddings are learned per-node with no
weight sharing. This is a baseline which we will use in our
experiments to verify that the benefits of embedding sharing
are maintained as we scale to larger problem sizes.

3. Efficient Implementation
Given a graphical model with n nodes, the GSDM atten-
tion mechanism implementated by Weilbach et al. (2022)
had computational cost O(nm), where m is the maximum
degree of any node. With this mechanism, it is possible to
train on matrix factorization problem instances with size up
to roughly 50 000 nodes (enabling rank-10 factorization of
65× 65 matrices) on an A5000 GPU. We replace it with a
functionally equivalent attention mechanism from the GNN
literature (Kreuzer et al., 2021) that instead scales as O(e),
where e is the number of graph edges. The number of edges
is a lower bound on nm, being equal only if all nodes have
the same degree. This implementation allows us to scale
to matrix factorization problems with as many as 190, 000
nodes, enabling rank-10 factorization of 130×130 matrices,
over four times as many as with the original implementation.

4. Plate Sampling
A fundamental issue with scaling further is that, on ev-
ery training iteration, we must operate on every graphical
model node. For graphical models with many symmetries
and millions of nodes, this may involve repeating a lot of
near-identical computations, increasing computational cost
without meaningfully improving the gradient estimate. We
therefore propose to train on each training example by sam-
pling a “subgraph” which includes the nodes to keep and
include in x or y, and then discarding the rest of the nodes.
Using a distribution over subgraphs which discards 95% of
nodes, we can scale to matrix factorization problems with
2 800 000 nodes, enabling rank-10 factorization of 500×500
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Figure 3. Reconstruction error on the CNN benchmark problem.

matrices, over fifty times as many as with the original im-
plementation.

Multiple approaches to sampling subgraphs for GNNs al-
ready exist, which we briefly describe before introducing
our novel approach to incorporating known graphical model
structure into the sampling. Node sampling (NS) Zeng et al.
(2019) independently samples a set of nodes in each step
and trains the GNN on the subgraph spanned by these nodes.
While being simple this approach has the downside that it
captures few edges of the graph and can sample a lot of iso-
lated nodes in each step. Following GraphSAGE (Hamilton
et al., 2017), k-hop subgraph sampling (KS) alleviates this
problem by uniformly sampling one or multiple nodes and
then iteratively expanding the neighborhood until a thresh-
old is reached. See Liu et al. (2021) for a comprehensive
survey of other techniques. Our proposed method, plate
sampling (PS), is similar to KS but instead of incrementally
expanding the subgraph we leverage our additional knowl-
edge of the graphical model to ensure that we sample all
nodes along one plate dimension first and then subsample
the remaining dimensions to be below the desired size. We
call this property of PS the plate maximization invariant
(PMI). Since PS has the additional PMI constraint which
can be impossible to match exactly we accept graphs in
the range down to half the maximum allowed size. PS
addresses the problem that just sampling dense subgraphs
without considering plates can create a lot of training ex-
amples in which some plate dimensions are rarely or never
maximized. In this case the corresponding nodes cannot
attend to the same number of edges connecting to a plate as
will be observed during inference, turning them out of distri-
bution. Take the matrix factorization example of Weilbach
et al. (2022) where the goal is to find a rank k factorization
of a matrix E into its factors A and R with intermediate
variables Cijk = AikRjk and Eij =

∑
k Cijk. The rank

k is typically much smaller than the ranges for i and j and
therefore its plate gets sampled more often by KS while
PS ensures that all plates are fully sampled with the same
probability. The problem gets more pronounced in bigger

models such as the proposed neural network benchmark in
Section 5 where most nodes are close to the input of the
neural network and KS hence would rarely reach all network
output dimensions for the plate over data points.

In Figure 2 we compare PS to NS and KS on the matrix
factorization problem for i = 100, j = 100, k = 10. Due to
the i× j × k intermediate variable nodes necessary for this
problem, the full graphical model has more than 100, 000
nodes. We sample 1000 subgraphs for each strategy before
training, sample one marginal in each training step and fill
it with fresh values. We explore maximum sizes of 5 and
10 % of nodes. We evaluate three training runs for each
strategy on a full sized problem after each epoch and plot
mean RMSE with a confidence band over min and max
values. NS performs poorly and saturates early in training.
PS consistently outperforms KS and keeps improving during
training.

5. Bayesian neural network benchmark
We propose amortized Bayesian neural network weight in-
ference as a benchmark problem. We denote the function
that the neural network parameterizes fθ and its weights
θ. Given the architecture in Figure 1, we have θ =
[W1,b1,W3,b3,W4]. As a prior p(θ) over the weights
we simply use pytorch’s default weight initialization dis-
tribution, which is independent between all dimensions
of θ. For a prior over u, which we denote p(u), we use
the empirical distribution of MNIST training images at
14 × 14 resolution. All other graphical model nodes can
be deterministically computed as a function of θ and u
and so we can write the distribution of each given its par-
ents as a Dirac in the graphical model. For the weight
inference problem, we observe the network inputs and out-
puts for network passes 1, . . . , N , which together we call
{ui,vi}Ni=1, and wish to infer the posterior over its weights,
p(θ|{ui,vi}Ni=1). We do not evaluate the fidelity of the
inferred h and intermediate variables C but include them
in Figure 1 because modeling the compute graph in this
fine-grained manner can be extremely beneficial for in-
ference (Weilbach et al., 2022). To summarise, given N
network passes, we have x = {W1,b1,W3,b3,W4} ∪
{Ci
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i
3,h

i
3,C

i
4}Ni=1 and y = {ui,vi}Ni=1. We use

the architecture described in Table 1 and N = 2 network
passes, giving rise to a total of 4814 graphical model nodes,
4794 of which are latent and 20 of which are observed.
The benchmark can be incrementally scaled up both by in-
creasing the neural network size and the number of network
passes, rendering it suitable to explore scaling properties of
different inference methods.

We evaluate methods on sets of observations {ui,vi}2i=1

sampled from the data distribution (via sampling 2 MNIST
images u1, u2, sampling network weights θ from the prior,
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Table 1. Network architecture for the convolutional network we model. No padding is applied. The 10 dimensional output of the network
could be used to parametrize a softmax distribution.

layer in channels out channels kernel size stride activation input shape output shape
conv 1 4 3 2 - 1× 14× 14 4× 6× 6

maxpool 4 4 2 2 - 4× 6× 6 4× 3× 3
conv 4 10 3 1 ReLU 4× 3× 3 10× 1× 1
linear 10 1 1 1 - 10× 1× 1 10× 1× 1

Table 2. Final reconstruction RMSE achieved by each method on the neural network weight inference benchmark.
GSDM w/ EE GSDM w/ AE GSDM w/ IE Non-sparse. VAEAC Regr. + GS Regressor
0.039 ± 0.008 0.039 ± 0.012 0.052 ± 0.015 0.391 ± 0.116 0.228 ± 0.044 0.210 ± 0.073 0.210 ± 0.065

and then setting v1 := fθ(u1) and v2 := fθ(u2)). Then we
use each method to estimate θ given each pair of observa-
tions. Calling the estimate θ̂, we estimate the error for the
method as

∑2
i=1 ||fθ(ui)− fθ̂(ui)||22. We take the square

root of this and average over all sets of observations to ob-
tain the final RMSE. We evaluate a range of approaches,
showing their training progress in Figure 3 and final RMSEs
in Table 2. Specifically, we evaluate: GSDM with each
of EE, AE, and IE as described in Section 2; Non-sparse
is an ablation of GSDM with the structured attention re-
placed by a dense transformer mechanism; VAEAC (Ivanov
et al., 2019) is a VAE-based approach; Regressor + GS
is an ablation which uses the same architecture as GSDM
w/ EE but is trained with a mean-squared error loss to de-
terministically predict x given y instead of parameterizing
a diffusion model.; Regressor also makes a deterministic
mean-squared error prediction, but uses the same architec-
ture as “Non-sparse”. Both deterministic methods learn
to predict constants almost independent of y because they
cannot account for the problem’s permutation invariances.
The “non-sparse” ablation and VAEAC both fail to learn
the complex relationships between variables and so do even
worse than these deterministic baselines. The EE and AE
variations of GSDM perform best, both achieving a final
RMSE of 0.039.

6. Conclusion
We scale GSDM by improving its implementation, provid-
ing a benchmark and suggesting a better plate base subgraph
method. Future work will explore plate sampling on the
proposed benchmark and large scale scientific simulators.
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