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Figure 1: Four-step samples by our distilled text-conditioned flow map model (prompts in App. I).

Abstract

Diffusion- and flow-based models have emerged as state-of-the-art generative
modeling approaches, but they require many sampling steps. Consistency models
can distill these models into efficient one-step generators; however, unlike flow- and
diffusion-based methods, their performance inevitably degrades when increasing
the number of steps, which we show both analytically and empirically. Flow maps
generalize these approaches by connecting any two noise levels in a single step
and remain effective across all step counts. In this paper, we introduce two new
continuous-time objectives for training flow maps, along with additional novel
training techniques, generalizing existing consistency and flow matching objectives.
We further demonstrate that autoguidance can improve performance, using a low-
quality model for guidance during distillation, and an additional boost can be
achieved by adversarial finetuning, with minimal loss in sample diversity. We
extensively validate our flow map models, called Align Your Flow, on challenging
image generation benchmarks and achieve state-of-the-art few-step generation
performance on both ImageNet 64x64 and 512x512, using small and efficient neural
networks. Finally, we show text-to-image flow map models that outperform all
existing non-adversarially trained few-step samplers in text-conditioned synthesis.
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Figure 2: Overview of Flow Maps. Flow maps generalize both consistency models and flow
matching by connecting any two noise levels (s, ) in a single step. When s = 0, flow maps reduce to
consistency models; when s — ¢ they’re equivalent to standard flow matching models. Our proposed
EMD objective (see Theorem 3.2) similarly generalizes the continuous-time consistency and flow
matching losses. For detailed derivations, please see the Appendix.

1 Introduction

Diffusion and flow-based generative models have revolutionized generative modeling [25, 70, 45,
62, 14, 8], but they rely on slow iterative sampling. This has led to the development of approaches to
accelerate generation. Advanced, higher-order samplers [68, 50, 51, 12, 89, 34, 61] help, but cannot
produce high quality outputs with <10 steps. Distillation techniques [63, 67, 87, 72], in contrast, can
successfully distill models into few-step generators. In particular, consistency models [71, 69, 49] and
a variety of related techniques [38, 79, 80, 42, 94, 17, 22] have gained much attention recently. Con-
sistency models learn to transfer samples that lie on teacher-defined deterministic noise-to-data paths
to the same, consistent clean outputs in a single prediction. These approaches excel in few step gen-
eration, but have been empirically shown to degrade in performance as the number of steps increases.

In this work, we analytically show that consistency models are inherently incompatible with multi-step
sampling. Specifically, we show that their objective of strictly predicting clean outputs inevitably leads
to error accumulation over multiple denoising steps. Motivated by this limitation, we turn to the flow
map formulation as a unifying and more robust alternative. The flow map framework - also known
as Consistency Trajectory Models - was introduced in [38, 5] and encompasses diffusion and flow-
based models [45], consistency models [71, 69, 49], and other distillation variants [80, 17, 94, 95]
within a single coherent formulation. Flow maps allow connecting any two noise levels in a single
step, enabling efficient few-step sampling as well as flexible multi-step sampling. As flow maps,
figuratively speaking, learn a mapping that “aligns the teacher flow” into a few-step sampler, we
call our approach Align Your Flow (AYF). We propose two new continuous-time training objectives,
which can be interpreted as AYF’s versions of the Eulerian and Lagrangian losses described by
Boffi et al. [5]. The new objectives use a consistency condition at either the beginning or the end
of a denoising interval. Notably, the first of our objectives generalizes both the continuous-time
consistency loss [71, 49] and the flow matching loss [45]. While regular consistency models only
perform well for single- or two-step generation and degrade for multi-step sampling, e.g. for 4 steps
or more, flow map models such as AYF produce high-quality outputs in this multi-step setting, too.

To scale AYF to high performance, we leverage the recently proposed autoguidance [35], where
a low-quality guidance model checkpoint is used together with the regular model to produce a
model with enhanced quality. Specifically, we propose to distill an autoguided teacher model into
an AYF student and introduce several practical techniques that stabilize flow map training and push
performance further. Moreover, unlike prior distillation approaches that rely on adversarial training to
boost quality at the expense of sample diversity [67, 66, 87, 86, 38], we show that a short finetuning
of a pretrained AYF model with a combination of our proposed flow map objective and an adversarial
loss is sufficient to yield significantly sharper images with minimal impact on diversity.

We validate AYF on popular image generation benchmarks and achieve state-of-the-art performance
among few-step generators on both ImageNet 64x64 and 512x512, while using only small and
efficient neural networks (Fig. 4). For instance, 4-step sampling of AYF’s ImageNet models is as fast
or faster than previous works’ single step generation. Additionally, our adversarially finetuned AYF
also achieves significantly higher diversity compared to other adversarial training approaches. We
further distill the popular FLUX.1 model [41] and obtain text-to-image AYF flow map models that
significantly outperform all existing non-adversarially trained few-step generators in text-conditioned
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Figure 3: Samples (4 steps): LCM [54], TCD [94], FLUX.1 [schnell] [41], AYF (view zoomed in).

synthesis (Fig. 1). For these experiments, we use an efficient LoRA [27] framework, avoiding the
overhead of many previous text-to-image distillation approaches.

Contributions. (i) We prove that consistency models inherently suffer from error accumulation
in multi-step sampling. (ii) We propose Align Your Flow, a high-performance few-step flow map
model with new theoretical insights. (iii) We introduce two new training objectives and stabilization
techniques for flow map learning. (iv) We apply autoguidance for distillation for the first time
and show that adversarial finetuning further boosts performance with minimal loss in diversity. (v)
We achieve state-of-the-art few-step generation performance on ImageNet, and we also show fast
high-resolution text-to-image generation, outperforming all non-adversarial methods in this task.

2 Background

Diffusion Models and Flow Matching. Diffusion models are probabilistic generative models that
inject noise into the data with a forward diffusion process and generate samples by learning and
simulating a time-reversed backward diffusion process, initialized by pure Gaussian noise. Flow
matching [45, 48, 2, 1, 39] is a generalization of these methods that eliminates the requirement of the
noise being Gaussian and allows learning a continuous flow between any two distributions pg, p1 that
converts samples from one to the other.

Denote the data distribution by X9 ~ pgua and the noise distribution by X; ~ ppoise- Let
x¢ = (1 —t) - xo + t - x1 indicate the noisy samples of the data for time ¢ € [0, 1], corresponding to
the rectified flow [48] or conditional optimal transport [45] formulation. The flow matching training
objective is then given by Ex, x, ¢ [w(t)|[ve(xs, t) — (x1 — %0)3]; w(t) is a weighting function
and vy is a neural network parametrized by . The standard sampling procedure starts at ¢t = 1 by
sampling X1 ~ Pnoise- Then the probability flow ODE (PF-ODE), defined by % = vg(xy, t)dt, is
simulated from ¢ = 1 to ¢ = 0 to obtain the final outputs. We will assume to be in the flow matching

framework from this point on of the paper.

Consistency Models. Consistency models (CM) [71] train a neural network fy(x¢,t) to map noisy
inputs x; directly to their corresponding clean samples xg, following the PF-ODE. Consequently,
fo(x¢,t) must satisfy the boundary condition fy(x,0) = x, which is typically enforced by parame-
terizing fy(x¢,t) = coip(t) Xt + Cout(t)Fo(x¢,t) With caip(0) = 1, cou(0) = 0. CMs are trained to
have consistent outputs between adjacent timesteps. They can be trained from scratch or distilled
from given diffusion or flow models. In this work, we are focusing on distillation. Depending on how
time is dealt with, CMs can be split into two categories:

Discrete-time CMs. The training objective is defined between adjacent timesteps as
B, t [w(t)d(fo(xe, 1), fo- (xe—ae, t — At))], 1)

where 6~ denotes stopgrad(0), w(t) is a weighting function, At > 0 is the distance between adjacent
timesteps, and d(., .) is a distance function. Common choices include /5 loss d(x,y) = ||x — y||3,
Pseudo-Huber loss d(x,y) = /||x — y||3 + ¢2 — ¢ [69], and LPIPS loss [90]. Discrete-time CMs
are sensitive to the choice of At, and require manually designed annealing schedules [71, 18]. The
noisy sample x;_; at the preceding timestep ¢ — At is often obtained from x; by numerically
solving the PF-ODE, which can cause additional discretization errors.



Continuous-time CMs. When using d(x,y) = ||x — y||3 and taking the limit At — 0, Song et al.
[71] show that the gradient of Eq. (1) with respect to 6 converges to
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where dfg_di(tx“t) = Vi, - (x4, 1) %—l—@fgf (x¢, t) is the tangent of f5— at (x¢, t) along the trajectory
of the PF-ODE %. This means continuous-time CMs do not need to rely on numerical ODE solvers
which avoids discretization errors and offers better supervision signals during training. Recently, Lu
and Song [49] successfully stabilized and scaled continuous-time CMs and achieved significantly
better results compared to the discrete-time approach.

3 Continuous-Time Flow Map Distillation

Flow maps generalize diffusion, flow-based
and consistency models within a single uni-
fied framework by training a neural network
fo(x¢,t, s) to map noisy inputs x; directly to
any point x4 along the PF-ODE in a single step.
Unlike consistency models, which only perform
well for single- or two-step generation but de-
grade in multi-step sampling, flow maps remain
effective at all step counts.

In Sec. 3.1, we first show that standard
consistency models are incompatible with
multi-step sampling, leading to inevitable
performance degradation beyond a certain step  Figure 4: Two-step AYF samples on ImageNet512.
count. Next, in Sec. 3.2, we introduce two

novel continuous-time objectives for distilling flow maps from a pretrained flow model. Finally,
in Sec. 3.3, we explain how we leverage autoguidance to sharpen the flow map. Sec. 3.4 addresses
implementation details. The detailed training algorithm for AYF is provided in the Appendix.

3.1 Consistency Models are Flawed Multi-Step Generators

CMs are a powerful approach to turn flow-based models into one-step generators. To allow CMs to
trade compute for sample quality, a multi-step sampling procedure was introduced by Song et al. [71].
This process sequentially denoises noisy x; by first removing all noise to estimate the clean data and
then reintroducing smaller amounts of noise. However, in practice, this sampling procedure performs
poorly as the number of steps increases and most prior works only demonstrate 1- or 2-step results.

To understand this behavior, we analyze a simple case where the initial distribution is an isotropic
Gaussian with standard deviation c, i.€. pgaa(x) = N (0, c*I). The following theorem shows that
regardless of how accurate a (non-optimal) CM is, increasing the number of sampling steps beyond a
certain point will lead to worse performance due to error accumulation in that setting.

Theorem 3.1 (Proof in Appendix). Let pyuq(x) = N(0,c2I) be the data distribution, and let
£*(x¢, t) denote the optimal consistency model. For any 6 > 0, there exists a suboptimal consistency
model f(xy,t) such that

Bty [[IE(xe,t) — £ (x4, 1)[13] <6 forallt €0,1],

and there is some integer N for which increasing the number of sampling steps beyond N increases
the Wasserstein-2 distance of the generated samples to the ground truth distribution (i.e. a worse
approximation of the ground truth).

This suggests that CMs, by design, are not suited for multi-step generation. Interestingly, when
¢ = 0.5—a common choice in diffusion model training, where the data is often normalized to this std.
dev. [34]—multi-step CM sampling with a non-optimal CM produces the best samples at two steps
(Fig. 5). This is in line with common observations in the literature [49]. This behavior is the opposite
of standard diffusion models, which improve as the number of steps increases. Prior works have
attempted to address this issue (see Sec. 4), and they all ultimately reduce to special cases of flow maps.



3.2 Learning Flow Maps
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Figure 5: Wasserstein-2 distance be-
tween multi-step consistency samples
and data distribution (¢=0.5).

Unlike CMs, which perform poorly in multi-step sampling, flow maps are designed to excel in this
scenario. Additionally, their ability to fully traverse the PF-ODE enables them to accelerate tasks
such as image inversion and editing by directly mapping images to noise [43].

As we are interested in distilling a diffusion or flow matching model, we assume access to a pretrained

velocity model v4(x;,t). The flow map model is trained by aligning its single-step predictions with
dxy

the trajectories generated by the teacher’s PF-ODE, i.e. <3t = v (x¢,t). We propose two primary
methods for training flow maps. The first training objective aims to ensure that for a fixed s, the output
of the flow map remains constant as we move (X, t) along the PF-ODE. Let 8~ = stopgrad(6). The
theorem below summarizes the approach. We call this loss AYF-Eulerian Map Distillation (AYF-
EMD), as it can also be interpreted as a variant of the Eulerian loss of Boffi et al. [5]. The AYF-EMD
loss naturally generalizes the loss used to train continuous-time consistency models [71, 49], as
it reduces to the same objective when s = 0. Interestingly, it also generalizes the standard flow
matching loss, to which it reduces in the limit as s — . See Appendix for details.

Theorem 3.2 (Proof in Appendix). Let fy(x¢,t,s) be the flow map. Consider the loss function
defined between two adjacent starting timesteps t andt' =t + ¢(s — t) for a small € > 0,
Ext7tvs [U)(t, 5) ‘ |f9 (Xtﬂ tv 5) - fef (Xt/7 tlv 5) | |§] )

where xy/ is obtained by applying a I-step Euler solver to the PF-ODE from t to t'. In the limit as
€ — 0, the gradient of this objective with respect to 6 converges to:
dfy- (x¢,1, s
VoEx, 1.6 |W'(t,8)sign(t — s) - £ (x;,t,5) - % ,

where w'(t, s) = w(t,s) X |t — s|.

The second approach ensures consistency at timestep s instead. This method tries to ensure that
for a fixed (x¢,t), the trajectory f(x¢,t, -) is aligned with that points’ PF-ODE. We call this loss
AYF-Lagrangian Map Distillation (AYF-LMD), as it is related to the Lagrangian loss of Boffi et al.
[5]. The theorem below formalizes this approach.

Theorem 3.3 (Proof in Appendix). Let fy(x¢,t,s) be the flow map. Consider the loss function
defined between two adjacent ending timesteps s and s' = s + ¢(t — s) for a small ¢ > 0,

]Exmts [w(t7 S)er(xta t, S) - ODES’—MS[f@* (Xt7 t, S/)] ‘ |§} )

where ODE,_, ;(x) refers to running a I-step Euler solver on the PF-ODE starting from x at timestep
t to timestep s. In the limit as € — 0, the gradient of this objective with respect to 0 converges to:

VoEx, 1.6 |W'(t,8)sign(s —t) - £ (x4,,5) - <dfa_(:;t’t’8) —vy(fy- (x¢, 1, 9), s))] ,
s

where w'(t, s) = w(t,s) X [t — s|.

In our 2D toy experiments, comparing the two objectives above, we found the AYF-LMD objective
to be more stable. However, when applied to image datasets, it leads to overly smoothened samples
that drastically reduce the output quality (see Appendix for detailed ablation studies).



3.3 Sharpening the Distribution with Autoguidance

The training objective of diffusion- and flow-based models strongly encourages the model to cover
the entire data distribution. Yet it lacks enough data to learn how to generate good samples in the tails
of the distribution. The issue is even worse in distilled models which use fewer sampling steps. As
a result, many prior distillation methods rely on adversarial objectives to achieve peak performance,
often sacrificing diversity and ignoring low-probability regions altogether. The most commonly used
technique to partially address this in conditional diffusion and flow-based models is classifier-free
guidance (CFG) [24]. CFG trains a flow or diffusion model for both conditional and unconditional
generation and steers samples away from the unconditional regions during sampling. Prior works [57,
49] have explored distilling CFG with great success. However, CFG struggles with overshooting the
conditional distribution at large guidance scales, which leads to overly simplistic samples [40].

Recently, Karras et al. [35] introduced autoguidance as a better alternative for CFG. Unlike CFG,
this technique works for unconditional generation as well. Autoguidance uses a smaller, less trained
version of the main model for guidance, essentially steering samples away from low-quality sample
regions in the probability distribution, where the weaker guidance model performs particularly poorly.
We found that distilling autoguided teacher models can significantly improve performance compared
to standard CFG. To the best of our knowledge, we are the first to demonstrate the distillation of
autoguided teachers. Specifically, during flow map distillation we define the guidance scale A and use
the autoguided teacher velocity

Viuided(xt, t) — )\V¢(Xt7 t) + (1 — A)vgeak(xt’ t), 3

where v‘fﬂk represents the weaker guidance model. In summary, we use autoguidance in the teacher
as a mechanism to “sharpen” the distilled flow map model. See Appendix for a visual comparison

between autoguidance and CFG on a 2D toy distribution.

3.4 Training Tricks

Training continuous-time CMs has historically been unstable [69, 18]. Recently, sCM [49] addressed
this issue by introducing techniques focused on parameterization, network architectures, and mod-
ifications to the training objective. Following their approach, we stabilize time embeddings and apply
tangent normalization, while also introducing a few additional techniques to further improve stability.

Our image models are trained with the AYF-EMD objective in Theorem 3.2, which relies on the

tangent function W Under our parametrization, this tangent function is computed by
df97 (Xt7tas) dx; dFQ’ (Xt7t7s)
———— = — —Fy- t —t) X ———— 4
dt dt 0 (xt7 ,8) +(S )X dr ) ( )

where % = vy (xy,t) represents the direction given by the pretrained diffusion or flow model
along the PF-ODE. We find that most terms in this formulation are relatively stable, except for
W = Vx, Fo(xy,t, s)% + 0:Fo(x¢,t, s). Among these, the instability originates mainly
from 0;Fg(xy, t, s), which can be decomposed into
aCnoise (t) aemb(cnoise) 8F0

ot OCroise Oemb’
where emb(-) refers to the time embeddings, most commonly in the form of positional embed-

dings [25, 78] or Fourier embeddings [70, 73]. sCM [49] proposes several techniques to stabilize
this term including tangent normalization, adaptive weighting, and tangent warmup.

O Fo(x¢,t,8) =

- o df,_ | df, qdf, . .
We use tangent normalization [49], i.e. —f— — —&—/(||—4~| + ¢) with ¢ = 0.1, as we find it to

be critical for stable training. However, in our experiments, adaptive weighting had no meaningful
impact and can be removed. We make a few tweaks to the time embeddings and tangent warmup to
ensure compatibility with flow matching and better training dynamics which we describe below.

Stabilizing the Time Embeddings The time embedding layers are one of the causes for the
instability of 9;Fg (X, t, s). As noted in [49], the cpeise parameterization used in most CMs is based on
the EDM [34] framework, where the noise level is defined as cpise (0) = log(o). In the flow matching
framework, which we use, the noise level for a timestep ¢ is given by o, = ﬁ, which can lead to
instabilities when passing through a log operation as ¢t — 0 or ¢ — 1. To address this, we modify the



time parameterization by setting cpoise (t) = ¢, ensuring stable partial derivatives. To utilize pretrained
teacher model checkpoints trained with different time parameterizations, we first finetune the student’s
time embedding module to align with the outputs of the original checkpoints. For example, if we
want to adapt EDM?2 checkpoints, which use 0, = 77, we minimize the following objective:

2
]Etrvp(t) Hembnew(t) - emborigina] (log (Ut))HQ .

This approach enables us to re-purpose nearly any checkpoint, making it compatible with our flow
matching framework with minimal finetuning, rather than training new models from scratch.

Regularized Tangent Warmup We initialize the student model with pretrained flow matching
or diffusion model weights, following prior work to speed up training [49, 71]. Lu and Song [49]
proposed a gradual warmup procedure for the second term in Eq. (4), i.e., w. Specifically,
they introduced a coefficient r that linearly increases from O to 1 over the first 10k training iterations,
gradually incorporating the term. This warmup has a clear intuitive motivation. When considering
only the first term in Eq. (4) (i.e., the » = 0 case), the objective simplifies to a regularization term that
encourages flow maps to remain close to straight lines (please see the Appendix for the derivation):

d
Vo {Sign(t — s)f;(xht,s) X (;;t —Fy- (xt7t,s))] x Vo[||Fo(x¢,t,8) — v¢(xt,t)|\§]. %)

Therefore, for r < 1, the warmed-up loss with coefficient 7 is equivalent to a weighted sum of the
actual loss and this regularization term:

d
Ve {sign(t - s)ng(xt, t,s) (;tt —Fo- (x¢,t,8) +r(s—1t)

dfy- (x4, ¢, 8)
ds

dFy- E;t’t75)ﬂ

=1rVy [sign(t — s)f;—(xt,t, s) } +(1—-7)Vy [|t — |- [|[Fo(xe, t,8) — v (xe, t)||§] )

In our experiments, training these models for too long after the warmup phase can cause destabiliza-
tion. A simple fix is to clamp r to a value smaller than 1, ensuring some regularization remains. We
found 7.« = 0.99 to be effective in all cases.

Timestep scheduling As in standard diffusion, flow-based, and consistency models, selecting an
effective sampling schedule for (¢, s) during training is crucial. Similar to standard consistency mod-
els, where information must propagate from ¢ = 0 to ¢ = 1 over training, flow map models propagate
information from small intervals |s — ¢| = 0 to large ones |s — ¢| = 1. For details on our practical
implementation of the schedules, as well as a complete training algorithms, please see the Appendix.

4 Related Work

Consistency Models. Flow Map Models generalize the seminal CMs, introduced by Song et al.
[71]. Early CMs were challenging to train and several subsequent works improved their stability
and performance, using new objectives [69], weighting functions [18] or variance reduction
techniques [79], among other tricks. Truncated CMs [42] proposed a second training stage,
focusing exclusively on the noisier time interval, and Lu and Song [49] successfully implemented
continuous-time CMs for the first time.

Flow Map Models. Consistency Trajectory Models (CTM) [38] can be considered the first flow
map-like models. They combine the approach with adversarial training. Trajectory Consistency Dis-
tillation [94] extends CTMs to text-to-image generation, and Bidirectional CMs [43] train additionally
on timestep pairs with £<s, also accelerating inversion and tasks such as inpainting and blind image
restoration. Kim et al. [37] trained CTMs connecting arbitrary distributions. Multistep CMs [22] split
the denoising interval into sub-intervals and train CMs within each one, enabling impressive gener-
ation quality using 2-8 steps. Phased CMs [80] use a similar interval-splitting strategy combined with
an adversarial objective. These methods can be seen as learning flow maps by training on (¢, s) pairs,
where s is the start of the sub-interval containing ¢. Flow Map Matching [5] provides a rigorous analy-
sis of the continuous-time flow map formulation and proposes several continuous-time losses. Shortcut
models [17] adopt a similar flow map framework, but these two works struggle to produce high-quality
images—in contrast to our novel AYF, the first high-performance continuous-time flow map model.

Accelerating Diffusion Models. Early diffusion distillation approaches are knowledge
distillation [52] and progressive distillation [63, 57]. Other methods include adversarial distil-
lation [67, 66], variational score distillation (VSD) [87, 86], operator learning [93] and further



Table 1: Sample quality on class- Table 2: Sample quality on class-conditional ImageNet
conditional ImageNet 64x64. Recall met- 512x512. For additional baselines, which AYS all out-
ric is also included. performs, please see the Appendix.
Method NFE() FID() Recall (f) Method NFE (}) FID(]) #Params Gflops Time (s)
Diffusion Models & Fast Samplers

Teacher Diffusion Model

ADM [11] 250 207 0.63
RIN [29 1000 123 -
R 31 P : EDM2-S [36] 63x2 223 280M 12852 83l
DPM-Solver [50] 20 342 - EDM2-XXL [36] 63x2 1.81 1.5B 69552 31.50
EDM (Heun) [34] 79 244 0.68 EDM2-S + Autoguid. [35] 63x2 1.34 280M 12852 8.31
EDM2 (Heun) [36] 63 133 0.68 ° :
EDM? + Autoguidance [35] & 1 06 EDM2-XXL + Autoguid. [35] 63x2 1.25 1.5B 69552 31.50
Adversarial & Joint Training Adversarial & Joint Training
BigGAN-deep [7] 1 4.06 0.48 - -
StyleGAN-XL [65] 1 1.52 - SiDA-S [97] (best adv. baseline) 1 1.69 280M 102 0.06
Diff-Instruct [5] 1 557 - AYF-S + adv. loss (ours) 1 1.92 280M 102 0.06
DMD [87] 1 262 -
DMD? [56] H 58 : 2 1.81 280M 204 0.12
2‘?1\}9[%]81 1 13§ ggg 4 1.64 280M 408 0.24
3 1 1. 5
2 173 - Consistency Distillation
Moment Matching [64] 1 3.00
2 3.86 - sCD-
GDD-I [92] 1 1.16 0.60 sCD-S§ [49] é 22(7) %ng ;gi 8?2
SiDA [97] 1 L1 0.62 - .
AYF + adv. loss (ours) 1 1.32 0.65 sCD-M [49] 1 2.75 498M 181 0.10
§ }:g 8-22 2 2.26 498M 362 0.20
8 107 0.65 sCD-L [49] 1 2.55 778M 282 0.14
Diffusion Distillation without Adversarial Objectives 2 2.04 778M 564 0.28
DENO (93] 1 783 0561 sCD-XL [49] ; %3(3) Hg ‘S‘?fz’ 8;2
PID [74] 1 8.51 - . . 3
TRACT [4] 1 7.43 -
ATl N SCD-XXL [49] 1 228 1.5B 552 025
PD [63] 1 10.70 0.65 2 1.88 1.5B 1104 0.50
(reimpl. from Heek et al. [22]) 2 ‘21‘73 050 AYF-S (ours) 1 332 280M 102 0.06
e H o 3 2 1.87 280M 204 0.12
MultiStep-CD [22] 2 1.90 - 4 1.70 280M 408 0.24
SCD [49] 1 244 0.66*
2 1.66 0.66" Consistency Training
(o) i %32 822 CT-S [49] 1 10.13 280M 102 0.06
2 : sCT- .13 .
PO 2 9.86 280M 204 0.13
Consistency Training sCT-M [49] é gg‘; g;ﬁ ;2 853
T oep 169 - SCT-L [49] 1 505 778M 282 014
ECT (18] 1 277 - 2 4.65 778M 564 0.28
sCri) [ SCT-XL [49] 1 433 1.IB 406 0.19
TCM-S [42] ; 22? - 2 3.73 1.1B 812 0.38
23 ) sCT-XXL [49] 1 4.29 1.5B 552 0.25
oML 2] s e : 2 376 1.5B 1104 050

techniques [55, 20, 4, 74, 85, 48, 82, 46, 98, 96], many of them relying on adversarial losses,
too. However, although popular, adversarial methods introduce training complexities due to their
GAN:-like objectives. VSD exhibits similar properties and does not work well at high guidance
levels. Moreover, these methods can produce samples with limited diversity. For these reasons
we avoid such objectives and instead rely on autoguidance to achieve crisp high-quality outputs.
Finally, many training-free methods efficiently solve diffusion models’ generative differential equa-
tions [50, 51, 32, 34, 12, 89, 61], but they are unable to perform well when using <10 generation steps.

S Experiments

We train AYF flow maps on ImageNet [10] at resolutions 64 x 64 and 512 x 512, measuring sample
quality using Fréchet Inception Distance (FID) [23], as previous works. We also use our AYF frame-
work to distill FLUX.1 [dev] [41], the best text-to-image diffusion model, using an efficient LoRA [27]
framework and reduce sampling steps to just 4. Experiment details explained in the Appendix.

ImageNet Flow Maps. We adopt the

EDM2 [36] framework, using their 30
small “S” models, and modify network 25
parametrization and time embedding ¢ ‘
layer as detailed in Sec. 3. Pretrained . 2
checkpoints available online are used 15
both as teacher network and as flow map

—e— AYF (ours) 10 —e— AYF (ours)
—e— 1-step sCD —e— 1-step sCD
—e— 2-step sCD —e— 2-step sCD
—e— 1-step sCT 8 —e— 1-step sCT

2-step sCT 2-step sCT

% step

initialization. We incorporate autoguidance 0 OO ety b e
into the flow map model by introducing an
p y & (2) TmageNet-64 (b) ImageNet-512

additional input, ), corresponding to the
guidance scale [49, 57]. During training, Figure 6: FID | as function of wall clock time.

A is uniformly sampled from [1,3] and

applied to the teacher model via autoguidance. At inference, we leverage the y-sampling algorithm
from [38] for stochastic multistep sampling of flow map models. Results are reported using the opti-
mal v and X values. For ImageNet 512 x 512, the teacher and distilled models are in latent space [60].

In Tab. 1 we show ImageNet 64 x 64 results, reporting FID and recall scores along with number
of neural function evaluations (NFE). Our flow maps achieve the best sample quality among all



non-adversarial few-step methods, given only 2 sampling steps by sacrificing optimal 1-step quality.
This is because learning a flow map is a more challenging task compared to only a consistency model.
In Tab. 2 we compare AYF against the state-of-the-art consistency model sCD/sCT [49] on ImageNet
512 x 512, also reporting total wall sampling clock time, Gflops, and #parameters. We show that
although our small-sized model achieves slightly worse one step sample quality, it is on par with the
best sCD model at only two steps while using only 18% of the larger models’ compute. Increasing
the sampling steps to four improves the quality even further while still being over twice as fast as
the large 1-step sCM model (wallclock time). We further analyze the performance vs. sampling
speed trade-off in Fig. 6, showing that AYF is much more efficient than sCD/sCT (also see Appendix
for additional comparison). Autoguidance allows AYF to use a small network and still achieve strong
performance and the efficient network results in 2-step or 4-step synthesis still being lightning fast.

Adpversarial finetuning of AYF. Given a pretrained AYF flow map model, we found that a short
finetuning stage using a combination of the EMD objective and an adversarial loss can significantly
boost the performance across the board, especially for 1-step generation, with a minimal impact
to sample diversity as measured by recall scores. Using this approach, we achieve state-of-the-art
performance on few-step generation on ImageNet64 (see Tab. 1). For implementation details, please
see Appendix. Additional GAN and diffusion model baselines on ImageNet 512 x 512 can be found
in the Appendix; AYF outperforms all of them.

Text-to-Image Flow Maps. We apply AYF to distill the open-source
text-to-image model FLUX.1 [dev] [41] into a few-step generator,
finetuning a FLUX.1 base model into a flow map model using
LoRA [27] with the objective in Theorem 3.2 for 10,000 steps. This
distillation process took approx. four hours on § NVIDIA A100
GPUs, which is highly efficient, in contrast to several previous
large-scale text-to-image distillation methods.

Samples from the model are shown in Fig. 1. We compare to
LCM [53, 54] and TCD [94], two consistency-distilled LoRAs
trained on top of SDXL [59] without adversarial objectives. To
evaluate quality we ran a user study. The results (Fig. 7) show
a clear preference for our method. We also provide qualitative
comparisons in Fig. 3. Compared to LCM and TCD, our images
are more aesthetically pleasing with finer details. We also included
FLUX.1 [schnell] [41], a commercially distilled model trained with
Latent Adversarial Diffusion Distillation [66]. Our method achieves
comparable image quality to the [schnell] model, while requiring
only four sampling steps and 32 GPU hours without the use of
adversarial losses. In conclusion, AYF achieves state-of-the-art few-
step text-to-image generation performance among non-adversarial
methods. Detailed ablation studies on different components of
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Figure 7: User preferences com-
paring LoRA-based consistency
and flow map models (4-step sam-
ples). LCM and TCD use SDXL
and AYF uses FLUX.1 [dev] as
base model, respectively.

AYF (EMD vs. LMD; autoguidance vs. CFG, AYF vs. Shortcut) are presented in the Appendix.
Additional qualitative examples of images generated by AYF are shown in the Appendix, too.

6 Conclusions

We have presented Align Your Flow (AYF), a novel continuous-time distillation method for training
flow maps, which generalizes flow-matching and consistency-based models. Importantly, flow maps
remain effective generators across all denoising step counts, unlike standard consistency models; a
fact we prove analytically for the first time.

In addition, we use autoguidance to enhance the quality of the teacher model, resulting in an
improved distilled student, and an additional boost can be achieved by adversarial finetuning, with
minimal impact in sample diversity. We achieve state-of-the-art performance among non-adversarial
distillation methods on both ImageNet64 and ImageNet512 generation. Since AYF requires only
relatively small neural networks, which further reduces the computational burden and boosts
sampling efficiency, even 2-step or 4-step sampling from AYF is as fast or faster than previous
single-step generators. We also distill FLUX.1 using an efficient LoORA framework, resulting in
state-of-the-art text-to-image generation performance among non-adversarial distillation approaches.



Future work could explore applying AYF to video model distillation or in other domains, for instance
in drug discovery for efficient molecule or protein modeling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize the contributions of our work in the introduction and the
abstract. We conduct comprehensive experiments and analytical derivations to support all
claims and proofs.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our approach in both the experiments section and
the conclusion, and we include a dedicated section on this in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We give complete proofs for our theoretical results in our appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We share all implementation details needed to replicate our results in the
method section and the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to publicly release our code upon publication. Together with the
implementation details given in the paper, our results can be reproduced.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all training and sampling details, including all hyperparameters,
in our method and experiments sections as well as the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the standard practice of the field of reporting FID and recall scores
in a table format which do not involve error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide our hardware specifications and report the number of GPU hours
in our experiments section and the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work fully confirms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include a discussion on broader impact in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We will only be publicly releasing our small-scale ImageNet codebase which
does not pose any safety risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all research works be build on and use the code of others according to
their licenses. We list all licenses in the Appendix.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release our code for our ImageNet experiments after publication.
This will include a complete README with detailed instructions and license.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: To measure the performance of our distilled text-to-image model, we perform
a user study, the details of which are presented in the Appendix.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We de not perform any research on human subjects that may have any potential
risks.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not make use of LLMs for developing our core methods and results.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impact

Generative models have recently seen major advances and one can now routinely synthesize realistic
and highly aesthetic images, videos and other modalities. Align Your Flow represents a universal
approach to significantly accelerate model sampling from diffusion and flow-based generative models
through distillation. Real-time generation can unlock new interactive applications and help artistic
and creative expression enabled by generative modeling tools. Moreover, accelerated generation
also makes inference workloads more computationally efficient, thereby reducing generative models’
energy footprint. Although we evaluated Align Your Flow on image generation benchmark, our
proposed methodology is in principle broadly applicable. For instance, one could also imagine future
applications in drug discovery, where fast generative models can propose novel molecules rapidly and
enable efficient in-silico drug candidate screening. However, generative models like diffusion and
flow models, and their distilled versions, can also be used for malicious purposes and, for instance,
produce deceptive imagery. Hence, they generally need to be applied with an abundance of caution.

B Limitations

As shown in our ablation studies (App. G; also see Fig. 8), our AYF models stabilize performance
across multi-step sampling. However, this comes at the cost of slightly degraded one-step performance
compared to methods focused solely on one-step generation (e.g. sCD [49] or SiDA [97]). Note
that adversarial finetuning can mitigate this and improve performance across the board, as shown
Fig. 8 and with minimal loss in diversity. We believe that it would be possible to further improve
upon that with a more carefully tuned post-training stage, possibly leveraging recent variational
score distillation techniques [87, 81]. Additionally, a small gap remains between the AYF model and
its multi-step teacher flow-based model, regardless of the number of sampling steps used. This is
expected, given that both models have roughly the same number of parameters, yet AYF is trained on
a more challenging task and preserves the same noise-to-data mapping. Scaling up model capacity
may help bridge this performance gap. Finally, our work focuses on distillation and assumes access
to a pretrained flow-based teacher. Prior works [49] suggest that direct consistency training can
outperform distillation in certain scenarios. Since our AYF-EMD loss is directly compatible with this
paradigm, exploring flow map training without distillation is a promising direction for future work.

—e— Diffusion Models

—e— Consistency Models

41 —e— AYF Flow Map

AYF Flow Map + Adv. finetuning

~

1 2 4 8 16 24 32 48 64
Number of Sampling Steps

Figure 8: FID versus number of sampling steps on ImageNet 512x512 (lower is better). Diffusion
models require dozens of steps to reach good quality, and consistency models deteriorate after only a
few, whereas our AYF flow maps maintain low FID across the board. AYF is slightly weaker at a
single step generation, but a brief adversarial fine-tuning stage closes this gap and improves quality
for all numbers of sampling steps.
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C Proofs, Derivations and Theoretical Details

C.1 Theorem: Consistency Models are Flawed Multi-step Generators

Theorem C.1 (Restated from Theorem 3.1). Let pgua(x) = N(0, ¢*1) be the data distribution. Then
the optimal consistency model £* (x4, t) is given by

C X Xt

B 1) = 2+ (1—t)22

For any € > O consider the following non-optimal consistency model

(c+1tXe)xy

fe(Xt7t) = t2 T (1 — t)QCQ.

Then, there exists an integer N for which increasing the number of sampling steps during multistep
CM sampling beyond N increases the Wasserstein-2 distance of the generated samples to the ground
truth distribution.

Proof. In this Gaussian setting, all intermediate noisy distributions p(x;), where x; = t X x; + (1 —
t) X X0,X0 ~ PdataX1 ~ N(0,I), and ¢ € [0, 1], remain Gaussian. As a result, the error of the
non-optimal consistency model £, is:

3
VET A1)z "
(6)

t2¢2
= Fr e et £ (- Ox0ff] = 2 < &,

Ex [[[fe(xe,t) — £ (x1, 1) 3] = Ex, [t°€7]

and satisfies the error bound in Theorem 3.1 by choosing a small enough e that satisfies €2 < 6.

Due to the Gaussian setting, both the optimal velocity from flow matching, v*(x;, t), and the optimal
denoiser, D*(x¢, t), have closed-form solutions.

We first derive the denoiser. Following the framework of [34], let p(x; o) denote the distribution
obtained by adding independent Gaussian noise with standard deviation ¢ to the data. Then,

2
—X c

p(x;0) = N(0,(¢* + 0°)I) = Vilogp(x;0) = 57— = D" (x,0) = 57—,

where the final step follows from the identity
Vxlogp(x;0) = (D(x;0) — x)/0”

from [34]. Using this, the optimal velocity from flow matching, v*(x¢, t), can be computed as

V¥ (0, t) = Efx1 — %0 | %] = E [Xt — %o xt} _%

1

Substituting D* ( X, %_t) for E[xo | x¢], we obtain

-t
1 t
v (x4, ) = o ;D* ( Xt ) .

t 1—t'1—t
Using the closed-form expression for D*(x, o

v¥(xy,t) =

)9
Xt 1 C2 Xt
—_— _ 2 . — .
ot o, (ﬁ) 1—¢

Simplifying further,
2 2
. Xt c(1—1) t—c*(1—1t)
t = — 1 —_ = .
Vil t) = 5 ( 2(1—t)? +t2) (t2 F(1-t)2e2 )™
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Integrating this velocity along the PF-ODE,

dx; = v*(xq, t)dt,
from ¢ to 0 yields the optimal consistency model:
C- Xt

£ (x¢,t) = 71 —t)202.

Consider the non-optimal consistency model
(c+1tXe)xy
2+ (1—1)22

Note that f.(x,0) = x satisfies the boundary condition and is a valid consistency model.

fe(Xt, t) =

N

Let us analyze a single multistep transition from timestep ¢ to timestep s. This process consists of
two steps: 1. The noise is removed by predicting the clean data using the consistency model, yielding
x( = fe(x¢,t). 2. The estimated clean data x{, is then noised back to timestep s using

xs=sxz+(1—s)xxp z~N(0I).

Assuming that x; ~ N (0, 071), x, will also follow an isotropic zero-mean Gaussian distribution and

is obtained as follows:
(c+ te)x;

24+ (1—t)22

xs=sxz+(1—3s)x

Therefore, the variance of x is given by
(1 — 5)%(c + te)?

_ 2
Var(xs) = s“ + P R

Var(x;). 3

Using this recurrence relation, we can compute the variance of the distribution obtained by running
multistep CM sampling on a uniform n-step schedule:
1 n—1

0,~,...,
n n

1.

Since both the ground truth distribution and the distribution of x( derived by n-step sampling are
isotropic zero-mean Gaussians, the Wasserstein-2 distance between them has the following closed

form solution:
Wa(p(X0); Pdata (X)) = (v/ Var(xg) — 0)2

Let Var(s) := Var(x,) for convenience. We will show that as n — oo, the variance Var(0)
when computed via the recurrence defined in Eq. (8) on the uniform n step schedule diverges, i.e.
Var(0) — oo. This means performing multi-step sampling with the consistency model will result in
accumulated errors beyond a certain point.

Define
Var(s)

s2+ (1 —8)2c2’

h(s) :=
Plugging this into Eq. (8) gives:
524+ (1 —s)%(c+te)h(t)

h =
() s24 (1 —s)2¢?
We know h(1) = 1 and h(0) = Var(0)/c2. So, it’s enough to show that h(0) — oo as n — oo.

It’s easy to see by induction that h(¢) > 1. Define g(t) := h(¢) — 1 to measure how much it grows.
Then:

€))

(1 —8)2(c+te)?(g(t) +1) — (1 —s)%c?

9(s) = 2+ (1—s)%c?
_ (1-s)? 2.2 2
REEN (2cte + t%€* + (c + te)*g(t)) (10)
(1)

> m(me + g(t)).
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All terms are positive, so let’s lower bound ¢(¢) by defining a simpler sequence:

, 1—35)2
10 = i

Clearly g(s) > ¢'(s), so it’s enough to show ¢'(0) — oo as n — .

(2cte + cg'(1)). (11

Now define:

Then the recurrence becomes:
B (1-3s)2
r(s) = s24+ (1 —s)2c?
with 7(1) = 0 and r(0) = ¢’(0)/(2ce). So we just need to show r(0) — oo as n — oo.

(t + c2r(t)), (12)

To analyze this, fix s and ¢, and consider the function:

fusle) = (et ) (13)
SR 2 (1= s)2¢2 '
This is an affine map with a unique fixed point:
t(1 —s)?
o(s,t) = ——5—. (14)
Subtracting o(s, t) from both sides, we get:
f(x) —o(s,t) = A(s)(x — ofs, ). (15)

where:
1

A(s) = 7(ﬁ)2 11 <

1.
So fs,(z) pulls every point toward its fixed point o(s, t), with a pull factor of A(s). As s — 0, since

o(s,t) > @, the fixed point o(s,t) — oo, and the pull factor A(s) approaches 1, meaning the
pull gets weaker.

This means the recurrence in Eq. (12) is applying a sequence of weaker and weaker pulls toward
bigger and bigger targets. To prove r(0) — oo, we now proceed by contradiction. Assume there

exists some > 0 and an infinite sequence n; < my < ... such that 7(0) < ¢ when using the
schedule [0, -, ..., 1].
Since o(s, t) > @ and the function @ — o0 as ¢ — 0, we can pick t* € [0, 1] such that for
all s € [0,t*]:
1 —¢* 2 1— 2
7( = ) =20 = o(s,t) > (1=s) > 24. (16)
s

So every fixed point in [0, t*] is at least 24.
Now we split the problem into two cases:

Case 1: There exists some s € [0, t*] where (s) > 4. Since all future pulls are toward values > 24,
() will stay above ¢, so r(0) > é—a contradiction.

Case 2: For all s € [0,t*], we have r(s) < d. Pick any s* € (0,¢*). Let £ := A(s*) < 1, which is
the maximum pull factor (corresponding to the weakest pull) on [s*, ¢*]. Then for s* < s < ¢ < ¢*:

20 — r(s) = (o(s,t) — r(s)) + (20 — o(s, t))
= (0(s,t) = fst(r(t))) + (20 — o(s, 1))
= A(s)(o(s,t) —r(t)) + (20 — o(s,t))
< A(s*)(o(s,t) —r(t)) + (20 — o(s, 1))
=L(o(s,t) —r(t)) + (26 — o(s, 1))
=((26 —r(t)) + (1 —=0)(26 —o(s,t))
<026 —r(t)).
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Applying this inequality M times (where M is the number of steps between s* and ¢* on the schedule),
we get:

§ <26 —r(s*) < 200M. (17)
If M is large enough so that 26¢* < §, we get a contradiction. This happens when n > M /(t* — s*).

Since both cases lead to a contradiction, we conclude that r(0) — oo as n — oo, completing the
proof.

O

Intuition: When doing multi-step sampling with consistency models we first perform denoising
by removing all noise from a noisy image to obtain a clean one, and then re-add a smaller amount
of noise. But because the model is not perfect, the denoised image drifts slightly off the true data
manifold. When noise is added back in, the resulting image is now slightly off the noisy manifold the
model was trained on. This mismatch compounds: each denoising step starts from a slightly worse
input, pushing the sample further off-manifold over time. As a result, errors accumulate with more
sampling steps, leading to degrading image quality beyond a certain point.

C.2 Theorems: Flow Map Objectives
C.2.1 AYF-EMD

Theorem C.2 (Restated from Theorem 3.2). Let f5(x¢,t, s) be the flow map and v 4(x¢,t) denote
the pretrained flow matching model. Define 0~ = stopgrad(0). Let t and t' =t + €(s — t) denote
two adjacent starting timesteps for a small € > 0. Note thatt' € [t, s] is derived by taking a small
step from t towards s. Consider the following consistency loss function defined

Lonp(0) = Bx, 1.0 [w(t, s)|[fo(xe, £, 5) — fo- (xur, ', 9)|3] (18)
where Xy is obtained by using a 1-step euler solver on the PF-ODE, i.e. dx; = vg(x¢,t)dt, from ¢
tot'. In the limit as ¢ — 0, the gradient of this objective with respect to 6 converges to:
dfg— (Xt, t, S)

T (19)

lim (1/€)Vo L1 p(0) = Vol 10 [w(t,5)(t — $)F] (x0,1,5)

Proof. For this proof, we follow a similar logic as the proof of Theorem 5 in [71]. We start by
computing the gradient of Eq. (18) with respect to 6 and simplifying the result to obtain

1 1
EVO‘CGEMD (9) = Engxt,t,S [w(t7 S)||f9(xt7 ta S) - f@‘ (Xt’a t/a S)Hg}

1 /
- EExt,t,s [U)(t, S)Vefe(Xm ta S)T (fﬂ(xtv ta S) - f0_ (Xt’a t 38))]
1 r . o,
= EExt»qu ’w(t,S)VQfg(Xt,t,S) fg(Xt,t,S) — fg— (Xt,t,S) + aT(Xt/ 7Xf)+
_ 8f0* ’ 2
1 [ Ofy- Ofy-
= gEx“t,S _w(t, 5)Vofy(xs,t,5) " (— ( 3;0( (e(s —t) - vp(xe,t)) + 87(1(6(8 — t))))] + O(e)

fy- Ofg-
=Fx, s [w(t, s)(t — 5)Vofg(xy,t,s) " (aaivd)(xht) + ;t)} + O(e)
dfy- t
= Ex,t.s [w(t, $)(t — ) Vofo(xs,t,5) < i %‘tt’ .5) )} +0(e),
Taking the limit of both sides as e — 0 completes the proof. O

Corollary C.3. Theorem 3.2 assumes that the step size is proportional to the interval length, i.e.
[t — t'| o< |t — s|, leading to the introduction of a (t — s) term in the weighting function. This can be
eliminated by using t' =t + sign(s — t) X € and leads to the following objective:

dfy- (x¢,t,8)
dt )

VoEx, s {w(t, s)sign(t — s)foT(xt, t,s) (20)
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C.2.2 AYF-LMD

Theorem C.4 (Restated from Theorem 3.3). Let fy(xy,t,s) be the flow map, v(x,t) be the
pretrained flow matching model, and define 0~ = stopgrad(0). Let s and s' = s + €(t — s) denote
two adjacent ending timesteps for a small ¢ > 0. Note that s' € [t, s is obtained by taking a small
step from s towards t. Consider the following consistency loss function defined

EMD(H) = ]Ext,t,s ['lU(t, S)||f9(xt7 t, S) - ODES/—M(f@* (Xt7 t, S/))Hg] ) (21)

where ODE _, () refers to running a I-step euler solver on the PF-ODE, i.e. dx; = v (xy,t)dt,
starting from x at timestep s' to timestep s. In the limit as € — 0, the gradient of this objective with
respect to 0 converges to:

df@‘ (Xta tv S)

lm(1/€)Vo LG pp(0) = VoEy, 1.5 |w(t, s)(s — t)f;—(xt,t, s) <
e—0 i ds

— vy (fo- (x¢, 1, 8), s)ﬂ
(22)

Proof. We start by computing the gradient of Eq. (21) with respect to 8 and simplifying the results to
obtain

1 1
EvGﬁeLMD(e) = EVGExt,t,s [w(t,s)||fo(xs,t,5) — ODEs'as(fef(th,5/))”%]

1
= EExf,,t,s [w(t, s)Vofy(xy, t, 8)T (fo(x4,t,5) — ODEgy_(fo- (x4, 1, )]

1
= gExt,t,s [w(t, $)Vofg(x,t,8) T (Fg(x4,t,8) — (Fg— (x4,1,8') + (s — ) - vy(fo- (x¢,t, ), s’)))]
- 1]Exf,l‘,,s |:w(t7 S)VQfO(Xf,; t? S)T <f9(xt7 ta S) - <f9 (Xf,a t7 5) + %{:t@(sl — 5) =+ 0(62)
+(s = 8") - (vo(fo- (xt, 1, 5), 8) + O(e)))]
_ ]'E T af@‘ (Xtatvs) / !
= Bt w(t, s)Vofe(xs,t,s) | — T(s —8)+ (s — s )vyp(fo- (%, 1, 9), 5) + O(e)
~ Bt [0t = 0ttt (P vy nt9).9)) | + 00
Taking the limit of both sides as ¢ — 0 completes the proof. O

Corollary C.5. Theorem 3.3 assumes that the step size is proportional to the interval length, i.e.
|s — §'| & |t — 8|, leading to the introduction of a (t — s) term in the weighting function. This can be
eliminated by using s' = s + sign(t — s) X € which leads to the following objective:

VoEx, s [w(t, s)sign(s — t)f(;r(xt,t,s) (W — vy (fp- (xt,t,s),s))] . (23)

C.3 Derivation: Tangent Warmup as Linearity Regularization

Here, we derive Eq. (5). This equation shows the equivalence between the tangent warmup technique
and a regularization term on flow maps that encourages linearity.

Vo {sign(t — 5)f, (x4, t,5) x (Cz;t —Fo— (x4, 1, 5))}

= Vo [sign(t — s)(x¢ + (s — )Fo(xs, 1, 5)) X (Ve (X, t) — Fo- (x4, 2, 8))]
= Vo[-t — s| x Fo(x4,t,8) X (Vg (x¢,t) — Fo- (x4, 1, 5))]

(022 Vo [Fo(xe,t,8) X (Fg-(%¢,t,8) — (x4, 1))] 24)
= (VoFo(x4,t,8)) X (Fo- (x4, 1, 8) — vp(xy, 1))

2 (Voo (e, ) x (Fo (1.1, 5) = V(1))

(2) (VolFo(xt,t,5) — vg(xe,t)]) x (Fo(xt,t,5) — vg(xi,t))

= 0.5 X Vy||Fo(x¢,t,8) — V¢(Xt,t,8)||§,
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where (i) is because we discard |t — s| > 0, which doesn’t change the gradient direction, (ii) is
because Fy = Fy, and (iii) is because Vv (x,t) = 0.

D Connections to Existing Methods

In this section, we highlight the connections between AYF and existing methods. We show how AYF
generalizes several prior approaches and discuss its relationship to recent concurrent works. See
Fig. 9 for a schematic overview of these connections. In the following subsections, we will derive

these relationships in detail.
MeanFlow Models

fo(xt,t,5) = x¢ + (s — t) X Fo(x, ¢, )

=2

Align Your Flow gbIEEEFS
time

Consistency Models
Flow Matching Flow Map Matching

Figure 9: AYF can be seen a a generalization of many prior works such as Flow Matching [45],
Continuous-time Consistency Models [49], Flow Map Matching [5], Consistency Trajectory Distilla-
tion [94], and the concurrent MeanFlow Models [19].

s—t
No StopGrad

D.1 Flow Matching

We show that the AYF-EMD objective introduced in Theorem 3.2 generalizes the standard flow
matching objective. In particular, we prove that the gradient of the AYF-EMD objective reduces to
the flow matching gradient in the limit as s — ¢, up to a constant factor.

Recall the flow map parameterization:
fe(Xtat,S) :Xt+(5_t) Fe(xtata 5) (25)
Substituting into the AYF-EMD objective gives:

dfy— t
VoEx, t.s {w'(t, s)sign(t — s) £, (xq,t, 5) M]

dt
[ . d dF,-
= VoEx, 1.0 |w(t,5)sign(t — s) (x¢ + (s — t)Fy) " (% ~Fo + (s~ 1)~ )]
: d dF (26)
_ L _ T (9% ~ _ 0—
= VoEx, t.s _ w'(t,8) |t — s|Fy (dt Fo- + (s —1) in )]
[ dx, dF,-
Ex,ts |Fg (Fo- — — 4 (t — .
o Volix 1, _9<"’ a T )]
Taking the limit as s — ¢ gives:
dx dx, ||?
VoEy, .t [F;,r(xt,t,t) <F9_(xt,t,t) - d_tt>] = VoEy, 4 ’Fe(xt,t, t) — d—tt 1 , (27)
2

which is exactly the standard flow matching loss.
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D.2 Continuous-Time Consistency Models

We show that the AYF-EMD objective introduced in Theorem 3.2 also generalizes the continuous-
time consistency model objective. Specifically, we prove that the AYF-EMD objective reduces to the
continuous CM objective when s = 0, up to a constant factor.

Consider the AYF-EMD objective:

dfy— (xy,t
VoEx, 1.5 [w'(t,s) sign(t — s) f (xt,t,s)W] : (28)
Setting s = 0 gives:
dfy- (x¢,t,0
VgExhtLu%uO)ﬂ;(xmt,O)9%;”)}, (29)

since sign(t) = 1 for ¢ € [0, 1]. Noting that fy(x;,t,0) corresponds to the CM prediction at noise
level ¢, this recovers the standard continuous-time CM objective [49].

D.3 Consistency Trajectory Models

In this part, we discuss the connection to Consistency Trajectory Models (CTMs) [38, 94]. Recall
from the derivation of the AYF-EMD objective in App. C.2.1 that its gradient corresponds to the
continuous-time limit of a discrete consistency loss. Interestingly, TCD uses this exact same discrete
consistency loss to train its flow map, with a fixed discretization schedule. Therefore, the TCD
objective can be seen as a discrete approximation of the AYF-EMD loss.

D.4 Flow Map Matching

In this part, we highlight the similarities and differences between our AYF objectives and the losses
proposed by Boffi et al. [5].

D.4.1 EMD

Here, we will show the connection between our AYF-EMD objective and the EMD loss proposed by
Boffi et al. [5]. Recall the EMD loss from their work:

2
VGExt,t,s |"LU(t, S)

2
dXt

df, t
Oifg (x4, t, s) + Vfo(xs,t, s) - Fr M

1 = VoEx, ¢, lw(t,s) H T

2 2

(30)

This loss can be derived in a similar fashion as our AYF-EMD loss by introducing a modification
to Eq. (18). Specifically, by replacing the second term fy- (x4, ', s) with fp(x;, ¢, s) and allowing
gradients to flow through both terms, we recover the EMD loss from Boffi et al. [5].

Concretely, we can show that in the limit as ¢ — 0, the gradient of this objective with respect to ¢
converges to:

1 dfy(x,,t, 8) |7
lim < VyEx, +.5 [w(t7 s)||fo(x¢,t, 8) — fo(xp, ', s)||§] = VoEx, .5 lw'(t, s) He();tts)

e—0 62 ’

2

(3D

where w’(t,s) = w(t, s) x |t — s|>.
The proof is as follows:

1
?ngxmt,S [U)(t, S)er(xta t? S) - fe(xt/a tla S)”g]

dfy(x¢,t, s) N

e(t —s) 3t

1
= ?veExt’t’s |"w<t7 S)

‘@—QMNZL$+O@

= VoEx, s [w(t, s)
2
dfy(x¢,t, s)

at +0(),

2

= VGExt,t,s |:LU’(t, S) H
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which converges to the gradient of the EMD loss as € — 0. Note that when deriving AYF-EMD,
taking the limit of the discrete consistency loss when € — 0 only required dividing by ¢, since the
relevant term decays linearly in e. In contrast, the gradient in this case decays quadratically with
respect to ¢, which is why we divide by €2 before taking the limit.

The small difference in the AYF-EMD derivation, namely applying a stop-gradient operation on
the second term in Eq. (18), has a significant effect on training dynamics. Without it, one must

backpropagate through the Jacobian-vector product (JVP) used to compute W. This often
introduces instability and slows down training. However, with the stop-gradient operation, one must
only compute the JVP without needing to backpropagate through it. Fortunately, modern autograd
libraries like PyTorch support forward-mode automatic differentiation, which allows computing the
JVP efficiently with minimal overhead.

Intuitively, applying the stop-gradient means the output of a large step with the flow map is pushed
toward the output of following the PF-ODE trajectory for a bit and then doing a smaller step with
the flow map. Without the stop-gradient, the small step is also encouraged to match the outcome
of the large step, which is counterintuitive. This is because learning a flow map becomes more
difficult as the interval length increases. Smaller steps are typically more reliable and offer better
approximations.

Ultimately, the decision to include or omit the stop-gradient operation in Eq. (18) leads to two
fundamentally different derivations and objectives. In our experiments, only the AYF-EMD variant,
where the stop-gradient is applied, was able to scale effectively to large-scale image datasets and
produce high-quality outputs.

D.4.2 LMD

An analogous connection can also be made between our AYF-LMD objective and the LMD loss from
Boffi et al. [5]. Recall the LMD loss from their work:

VoEx, .6 [w(t, $) 1080 (X, £, 5) — Vo (Fa(x1, 1, 5), 5)]2] . (32)

Similar to before, we will show that by removing the stop-gradient operation from Eq. (21) and
allowing gradients to flow through both terms, we recover the LMD loss from Boffi et al. [5].

Concretely, we can show that as e — 0, the gradient of this objective with respect to 6 converges to:
.1
lim — By, 1, [w(t7 s)|Ifo(x¢,t,8) — ODEg . (fo(x4, t, 5/))‘@]
e—0 € (33)
2
= VSExt,t,s |:w(t7 5) Hasfe(xta t7 S) - V¢(f9(xta t7 5)7 S) ||2:| )

where w'(t, s) = w(t,s) x |t — s|%.

The proof is as follows:

. 1
lim —Ex, 1 [w(t7 s)|Ifo(x¢t,t,8) — ODEg 5(fo(x¢, ¢, s’))H%]

e—0 €

1 .
= 5l B [0t )00, 1,5) = (Bl t,8') + (5 — ) Vo fa (xt,57),5) ]

1 ..
5 T B0 [0, (B (e, ) = fo 3, 57)) = (€5 — 1) Vi (o Ox0, 1, 5), )]

;2 lim By, 1.« [w(t, 5)]|((s — 5")0Fo (xs, 8, 5) + O(%)) — (e(t — 5) - v (fa (xt, 1, 5), 5) + O(e?))[13]
1 lim Ey, ; [w(t, $)||(e(t — 8)0sFa (x4, t,8) + O(€?)) — (e(t — 5) - vy (fa(xs, 1, 8), 8) + 0(62))||§]

€< e—0

- eh—r>% Extyt,s [w/(t, S)”(asf9(xtﬂ t, S) + 0(6)) - (V¢>(f9(xt7 L, 3)7 S) + 0(6))“%}

= Ex, b5 [0'(t,9)]10sF0 (e, 8, 5) — v (fo(xs,t,5), 5)|3] -

As before, applying the stop-gradient operation allows us to avoid backpropagating through the JVP,
which speeds up training. Unlike the EMD case though, we found that the LMD loss from Boffi et al.
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[5] was already stable in practice and did not introduce training instabilities. Since both versions
performed similarly in our experiments, we recommend using AYF-LMD for its improved training
efficiency (note, however, that in all image generation experiments, we found AYF-EMD to perform
better; see ablation study Tab. 6).

Intuitively, the stop-gradient in this loss plays a similar role as in the other objective: we want the
output of a large step of the flow map to match the result of taking a smaller step with the flow map,
followed by integrating the PF-ODE.

Another way to understand this is through Eq. (21). This loss fixes the smaller step fy (¢, t, s’) and
optimizes the larger step fp(x, ¢, s) so that it aligns with the velocity field at the smaller step. As
s" — s, we can think of fy(x, ¢, s) as fixed. The model then adjusts the slope of the flow map with
respect to s so that it matches the teacher flow at that point. Without the stop-gradient, the endpoint is
no longer fixed and can also move to match the teacher, which changes the optimization behavior.

D.S MeanFlow Models

In this section, we will show the connection to MeanFlow Models [19], which are a concurrent
work focused on training flow maps from scratch. We will show that the AYF-EMD objective
reduces to the MeanFlow loss assuming an Euler parametrization of the flow map fy(x;,¢,s) =
x¢ + (s — t)Fg(x¢,t, s). This parametrization is inspired by the first-order DDIM [68] solver of
diffusion models, which uses Euler Integration to solve the probability flow ODE.

Recall the MeanFlow objective:

dx dFg- (x¢,t, s
»CMeanFlow(e) = Ext,t,s U F@(Xt,t7 5) - (t - (t - S)G(t))

Taking the gradient with respect to 6:

2
] : (34)

[ dx dFy- (x4,t, s 2
v‘Q‘CMeanFlow(g) = VQExt,t,s HFO(Xt; t7 5) - <t - (t - S)Q(t)) ]

dt dt 2
=Fy, 16 |:2V0Fg (Fe - % ) dﬂi_ )} (35)
=Ex, 1. {2V0FJ (Ft‘) - % + (- S)dﬂii )]
- v 17 (B 250050

which matches the AYF-EMD objective using an Euler parametrization up to a constant, as shown in
Eq. (26).

E Flow Maps in Prior and Concurrent Works

Flow maps (or specific instances of them) have appeared in various prior works. In the previous
section, we have derived relations to some prior and concurrent works already. In this section, we
provide a broader overview. Broadly, prior works on flow maps can be grouped into discrete-time
and continuous-time methods.

E.1 Discrete-time Flow Maps

Flow maps were initially proposed as a natural generalization of consistency models (CMs), and early
work primarily focused on discrete-time formulations built on discrete consistency losses.

Consistency Trajectory Models (CTM) [38] were the first to explicitly introduce and study flow
maps. CTM trains discrete-time flow maps using a combination of discrete consistency loss, flow
matching loss, and an adversarial loss. Notably, CTM was also the first to introduce y-sampling
for stochastic sampling of flow maps. While the models produced high-quality samples, their
performance depended heavily on the adversarial component, with a significant FID drop when it
was removed.
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Trajectory Consistency Distillation [94] builds on CTM, extending it to text-to-image generation.
They empirically demonstrate that standard CMs degrade in quality as the number of function
evaluations (NFEs) increases, a problem which is solved when using flow maps. These models can
be viewed as a discrete variant of AYF, as shown in App. D.3.

Bidirectional CMs [43] observe that most prior work only trained flow maps in the denoising
direction (s < t). They propose training on unordered timestep pairs, accelerating application like
inversion, inpainting, interpolation, and blind restoration.

Kim et al. [37] trained CTMs connecting arbitrary distributions by operating within the flow matching
framework instead of diffusions.

In parallel, Multistep CMs [22] attempted to address the poor multi-step behavior of standard
CMs. They divide the denoising trajectory into subintervals and train separate CMs within each,
achieving strong performance with as few as 2—8 steps. Phased CMs [80] adopt a similar idea but
add adversarial training within each subinterval. These models effectively learn flow maps by training
on (¢, s) pairs where s is the start of a fixed subinterval containing ¢. This requires the inference step
count to be pre-determined during training, and cannot be changed to trade off compute and quality.

E.2 Continuous-time Flow Maps

More recently, several methods have tackled training flow maps in continuous time.

Flow Map Matching [5] provides a formal and rigorous analysis of continuous-time flow maps and
proposes several continuous-time losses. However, their empirical validation is limited to small-scale
experiments. In App. D.3, we discuss the connection between AYF and Flow Map Matching.

Shortcut Models [17] also operate in the continuous-time flow map setting. They propose an
objective combining flow matching and a self-consistency loss. Their full loss (up to constants) is:

2
t t
fg(Xht,S)—fg— fG_ Xtvtv s ) +Svs )
2 2 ,

(36)
where the flow map is parameterized as fy(x,t,s) = x¢ + (s — t)Fg(x¢,t, s). Intuitively, the
self-consistency term encourages agreement between one large step and two smaller intermediate
steps along the PF-ODE denoising path. To train from scratch, they use the empirical estimate
(x1 — X0) in place of % .Although their results on ImageNet-256 and CelebAHQ-256 are promising,
they use suboptimal architectures and achieve significantly worse FID scores than state-of-the-art
methods.

2

+
2

dx,
dt

[,(9) = Ext,t,s [“Fg(xt,t,t) —

The Shortcut loss can also be used for distillation by replacing % with outputs from a pretrained

velocity model. We include this variant in our ablations (see Tab. 6 for details).

Inductive Moment Matching [95] is a recent method for training flow maps from scratch. It
proposes using an MMD loss to align the distributions of fy(x¢,t, s) and fy— (x,.,7, s) over tuples
(s,r,t) satisfying s < r < t.

E.3 Concurrent Works

Two concurrent works have also investigated training continuous-time flow maps.

MeanFlow Models [19] study training flow maps from scratch using a loss closely related to our
AYF-EMD objective. In fact, their formulation corresponds to a special case of AYF-EMD under an
Euler flow map parameterization: f5(x¢,%,s) = x; + (s — t) x Fg(xy, t, s), as shown in App. D.5.
They refer to Fy(x¢,t, s) as the Mean Flow and use their objective to train flow maps from scratch,
thereby being complementary to our work, which focuses on distillation. Their method achieves
strong one- and two-step results on ImageNet 256x256, showing that the AYF-EMD objective is
effective not just for distillation, but also for training from scratch.

How to Build a Consistency Model [6] extends the authors’ prior work on Flow Map Matching [5],
offering a deeper analysis of the EMD and LMD objectives. They also investigate the role of
higher-order derivatives, finding them helpful in low-dimensional settings but largely ineffective in
high-dimensional ones.
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Table 3: Optimal sampling hyperparameters.

Model NFE Stochasticity v Guidance scale )
ImageNet-64, AYS-S 1 1.0 2.0

2 1.0 2.0

4 0.8 2.0
ImageNet-512, AYS-S 1 1.0 2.0

2 1.0 2.1

4 0.9 2.0

In contrast to these prior and concurrent works, AYF proposes new training objectives, leverages
autoguidance for distillation, and shows how brief adversarial fine-tuning can boost performance
without reducing diversity. Moreover, we provide new theoretical insights and for the first time
analytically prove CMs’ deterioration with increased numbers of sampling steps. Finally, we overall
scale flow map models to text-to-image generation and state-of-the-art few-step performance on
ImageNet benchmarks.

F Experiment Details

F.1 ImageNet Experiments

For our ImageNet experiments, we use publicly available checkpoints from EDM?2 [36]. These
models are first fine-tuned to align with the flow matching framework (see Sec. 3.4 for details) before
being used as teacher models to distill a flow map. We run this finetuning stage for 10, 000 steps
using a learning rate of 0.001.

For the teacher model, we use checkpoints corresponding to the S and XS models, trained on 2147
million and 134 million images, respectively. During training, we randomize the guidance scale by
sampling A uniformly from the range [1, 3].

In all experiments, we apply tangent normalization and tangent warmup, following the approach
introduced in sCM [49], setting ¢ = 0.1 and H = 10000. To ensure stable training, we define
w(t,s) = ﬁ, which removes the (s — t)? term—one arising from the proportional assumption
(see App. C.2.1 for details) and another from the (s — t) coefficient of Fy(xy, t, s) in our flow map
parameterization. We use a learning rate of 10~% and a batch size of 2048 for all experiments for a
total of 50, 000 iterations. These experiments were performed using 32 NVIDIA A100 gpus and took
approximately 24-48 hours to converge.

A detailed algorithm can be seen in Algorithm 1.

Timestep scheduling We sample the interval distance |t — s| from a normal distribution
N (Prean, P2y), followed by a sigmoid transformation. This prioritizes medium-length intervals
and improves overall training stability. Once the interval length is determined, a random interval of
that length is uniformly selected, with ¢ > s set as the two endpoints. Since we are only concerned
with generation, we do not train on (¢ < s) pairs.

We find (Ppean, Psta) = (—0.8,1.0) works well for ImageNet-512, while ( Pyean, Pota) = (—0.6, 1.6)
works well for ImageNet-64.

Sampling hyperparameters At inference time, we sweep the guidance scale ) in the range [1, 3]
and the sampling stochasticity - in [0, 1] to determine optimal hyperparameters. Tab. 3 summarizes
the selected values. For n-step sampling, intermediate timesteps ¢; are uniformly distributed over the
interval [0, 1].

Additional ImageNet512 baselines: For completeness, we include the additional baselines from
Table 2 of sCM [49] in Tab. 4. Our AYF models are able to outperform all methods using only 4
sampling steps.
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Table 4: Sample quality on class-conditional ImageNet 512x512. This is an extension of Tab. 2 with
further baseline methods.

Method NFE () FID(]) #Params
Diffusion Models
ADM-G [11] 250 7.72 559M
RIN [29] 250 4.05 501M
U-ViT-H/4 [3] 250 4.05 50IM
DiT-XL/2 [58] 250 3.04 675M
SimDiff [26] 512x2 3.02 2B
VDM-++ [39] 512x2 3.15 2B
DiffIT [21] 250%x2 2.67 561M
DiMR-XL/3R [47] 250x2 2.50 725M
DiFFUSSM-XL [84] 250%x2 341 673M
DiM-H [75] 250x2 3.78 860M
U-DiT [77] 250x2 3.50 604M
SiT-XL [56] 250%x2 2.62 675M
MaskDiT [93] 79%x2 2.24 736M
Dis-H/2 [15] 250%x2 2.88 900M
DRWvVK-H/2 [16] 250x2 2.95 879M
EDM2-S [36] 63x2 2.23 280M
EDM2-M [36] 63x2 2.00 498M
EDM2-L [36] 63x2 1.87 T78M
EDM2-XL [36] 63x2 1.80 1.1B
EDM2-XXL [36] 63x2 1.73 1.5B
GANs & Masked Models
BigGAN [7] 1 8.31 160M
StyleGAN-XL [65] 1x2 3.92 266M
VQGAN [13] 1024 12.57 232M
MaskGIT [9] 64x2 9.24 284M
MAGVIT-V2 [88] 64x2 9.11 1B
MAR [44] 64x2 1.95 2.3B
VAR-d36-s [76]) 10x2 2.63 2.3B
AYF-S (ours) 1 3.32 280M
2 1.87 280M
4 1.70 280M
AYF-S + adv. loss (ours) 1 1.92 280M
2 1.81 280M
4 1.64 280M

We also compare our flow map models against several training-free accelerated diffusion samplers [51,
91], as shown in Tab. 5. While these training-free methods enable the base model to approach near-
optimal performance with fewer steps, they still require roughly 32 steps or more to achieve good
results. In contrast, our AYF models reach strong FID scores using only 1-4 sampling steps.

Table 5: Comparing AYF against training-free accelerated diffusion samplers on class-conditional
ImageNet 512x512.

Inference configurations | FID({)
\ 1-step 2-step 4-step 8-step 16-step 32-step 64-step
EDM?2 + Heun solver 566.14 453.14 388.00 14290  9.32 1.68 1.40

EDM?2 + DPM-Solver-2M [51] | 290.28 287.78 10036  14.20 2.19 1.49 1.39
EDM?2 + DPM-Solver-3M [51] | 290.28 287.78 100.36  21.48 2.74 1.41 1.38

EDM?2 + UniPC-2M [91] 290.28 287.78 101.16  12.86 2.07 1.43 1.38
EDM?2 + UniPC-3M [91] 290.28 287.78 101.16  30.02 4.40 1.40 1.37
AYF 3.32 1.87 1.70 1.69 1.72 1.73 1.75
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Algorithm 1 Flow Map Distillation with AYF-EMD Loss.

1: Input: dataset D with std. o4, autoguided pretrained flow model viuided(xt, t, \) with guidance

weight A, model Fy(x;,t, s, \), learning rate 7, distance schedule (Ppean, Py ), guidance interval
[Amin, Amax]» constant ¢, warmup iteration H.
2: Imit: Iters < 0
3: repeat
4: x0 ~ D, x1 ~ N(0,021), 7 ~ N (Puean, P2;); A ~ Unif(Amin, Amax)
5: d < o(7), s ~Unif(0,1 —d), t < s+d, x¢ < (1 —t)xo + tx1
6 e Vimded(xt, t,\)
7 r < min(0.99, Iters/ H )
8 g (Fop-(x4,t,80) — ) 4t —s) > Tangent warmup
9: g+ g/(lgll+¢) > Tangent normalization
10: L(0) « ||Fg (x4,t,5,\) — Fo— (x1,,5,\) + g2
11: 0« 60— 'I]V@E(e)
12: Iters < Iters + 1
13: until convergence

dF,— (x¢,t,5,A)
dt

F.2 Adversarial Finetuning

For adversarial finetuning, we use the StyleGAN2 discriminator [33] and follow the relativistic
pairing GAN (RpGAN) formulation [28, 31]. The complete algorithm is provided in Algorithm 2.

The flow map is optimized by minimizing a combination of the AYF-EMD loss and a weighted
RpGAN objective. To compute the adversarial loss, we perform one-step sampling with the flow map
(i.e. setting (¢,s) = (1,0)) to generate negative samples. Following prior work [13], we apply an
adaptive weighting scheme to balance the AYF-EMD and adversarial terms. Additionally, we multiply
the adversarial loss by a fixed coefficient & = 0.1 to ensure stable training. For the discriminator, we
apply R; and R, regularization [28] with a regularization weight of 5 = 0.1.

We use a learning rate of 2 x 10~ for both networks and a batch size of 1024. Finetuning is run for
approximately 3000 iterations using 32 NVIDIA A100 GPUs, taking around 4 hours in total.

F.3 Training Algorithms

We provide the full AYF algorithm in Algorithm 1, and the variant with adversarial finetuning in
Algorithm 2.

F.4 Text-to-Image Experiments

For our text-to-image experiments, we distill FLUX.1-[dev] [41] into a few-step generator by fine-
tuning a LoRA [27] on top of the FLUX base model. We use the AYF-EMD objective and train
the LoRA for 10,000 iterations on 8 NVIDIA A100 GPUs. Each GPU fits a single 512 x 512
image, resulting in a total batch size of 8. To manage memory, gradient checkpointing and gradient
partitioning is used. We also warm up the tangent over the first 2000 iterations. Since FLUX.1-[dev]
is guidance-distilled, we cannot use autoguidance and instead rely solely on the distilled guidance.

We train our model using the text-to-image-2M dataset [30] from Hugging Face, which contains
over 2 million real and synthetic images. We filter this dataset and train only on the 100K images
generated by FLUX.1-[dev] using text prompts from GPT-4o.

F.5 User Study Details

To evaluate our AYF-LoRA and compare it against TCD-LoRA [94] and LCM-LoRA [53] (both
based on SDXL [59]), we conduct a user study with 47 participants. We use a holdout set of 200
prompts generated by GPT-4o from the text-to-image-2M dataset. For each prompt, we generate five
images using each of the three methods, all sampled with four steps from the same random seed,
resulting in 1000 sets of three generated images. Each participant is given a text prompt and one
image from each method, with the image order randomized to prevent bias. Participants are asked
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Algorithm 2 Adversarial Flow Map Finetuning with AYF-EMD and Adversarial losses.

1: Input: dataset D with std. o4, autoguided pretrained flow model viuided(xt, t, \) with guidance

weight A\, model Fy(xy,t, s, \), learning rates 7¢, np, distance schedule (Prean, Pida), guidance
interval [Amin, Amax|, constant ¢, warmup iteration H, discriminator D, (x), adversarial weights

a, .
2: repeat
3: if Generator step then
4: x0 ~ D, x1 ~ N(0,021), 7 ~ N (Prean, P23); X ~ Unif(Amin, Amax)
5: d+ o(r), s ~Unif(0,1 —d), t + s+d, x¢ + (1 —t)xo + tx1
6: % +— viulded(xt, t,\)
7: r « 0.99
8: g < (Fo-(x¢,t,8,\) — %) +r(t— S)W > Tangent warmup
9: g+ g/(lgll+¢) > Tangent normalization
10: x( + fop(x1,1,0,\) = %1 — Fo(x1,1,0, )
11: Lemp(0) < |Fo (xi,t,8, ) — Fo- (x1,1,5,)\) + g2
12: Lapv (8) < Softplus(Dy (x() — Dy (x0))
13: Wadaptive < adaptive_weight(ﬂADV, CEMD)
14: ﬁ(g) — EAdv +a X Wadaptive X »CEJWD
15: 0+ 60— nngﬁ(H)
16: else if Discriminator step then
17: xo ~ D, x1 ~ N(0,02])
18: x( + fo(x1,1,0,\) = x3 — Fo(x1,1,0, )
19: £{1)) - Softplus(Dy (xo) — Dys(x4)) +  x ([ VDo (x0)I13 + VDo (x0) )
20: w — 1ﬁ — nDV¢£(1/J)

21: until convergence

to select the best image based on quality and text alignment or indicate a tie. Fig. 7 summarizes
the results. See Fig. 10 for a screenshot of the instruction. The participants were paid 0.10$ per
evaluation with an average evaluation time of 15-30s per decision, with an hourly average pay of
18$/hr.

Additionally, we compare our distilled AYF models against the base model (FLUX.1 [dev]) and an
adversarially distilled approach (FLUX.1 [schnell]) through three pairwise user studies. We generate
260 images from each model, using 50 sampling steps for FLUX.1 [dev] and 4 steps for both AYF
and FLUX.1 [schnell]. Each pairwise study compares two methods at a time, with human raters
voting for the preferred image or selecting “Tie’. A summary of the results can be seen in Fig. 11.

As shown in the results, both distilled models exhibit some quality degradation relative to the base
diffusion model, which is expected given FLUX.1 [dev]’s much higher sampling cost (50 steps).
When comparing our AYF model to FLUX.1 [schnell], both achieve a similar number of preference
votes in terms of image fidelity. However, FLUX.1 [schnell] shows slightly stronger text alignment,
which we attribute to the limited number of rendered-text examples in our finetuning dataset. Note
that our method’s results are achieved by a brief LoRA-based finetuning of the base model, whereas
FLUX.1 [schnell] performs full fine-tuning of the model. Future extensions could further enhance
quality by adding an adversarial finetuning phase, which we found to significantly improve fidelity
without loss in diversity in our ImageNet experiments.

G Ablation Studies

In this section, we isolate the effects of AYF’s core design choices and compare our method against
recent baseline consistency model and flow map approaches.

G.1 Loss Function and Guidance Ablation

We begin by analyzing two key design decisions behind AYF: (1) using the AYF-EMD loss instead
of AYF-LMD, and (2) applying autoguidance on the teacher model instead of classifier-free guidance
(CFG), which is used by existing CM methods. To compare AYF-EMD and AYF-LMD, we first
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Compare the given images.

Instruction

In this study, you will be shown 3 images and a text prompt. You must evaluate their quality and how well they match the text.

Please limit your participation to a maximum of 30 HITs for this study. We are seeking diverse input and wish to involve a large number of people in
the process.

Images:

Image 1 Image 2 Image 3

Text prompt: Neon-blue glowing gecko on finger in cyberpunk city at night

Q1: Assess the quality of the three images. Consider aspects like overall clarity, sharpness, and level of detail. Which image is the
best?

O Image fisthebest O Image 2isthe best O Image 3is the best O No major difference

Q2: how each image the text. Considering aspects like and of
i ‘Which image the text prompt most closely?

O Image 1alignsbest O Image 2 alignsbest O Image 3 alignsbest O All align similarly
Submit

Figure 10: Screenshot of instructions provided to the participants for the human evaluation study.

Text Alignment Text Alignment Text Alignment

||

0 0
FLUX.1 [dev] AYF Tie FLUX.1 [dev] FLUX.1 [schnell] Tie FLUX.1 [schnell] AYF Tie

Visual Fidelity Visual Fidelity Visual Fidelity

iwwww B

0 0
FLUX.1[dev]  AYF Tie FLUX.1 [dev] FLUX.1 [schnell]  Tie FLUX.1 [schnell]  AYF Tie

Figure 11: Pairwise user preferences between FLUX.1 [dev] (50-step samples), FLUX.1 [schnell]
(4-step samples, adversarially trained), and our LoRA-based flow map model (4-step samples).

evaluate both qualitatively on a 2D toy dataset (Fig. 12). In this setting, AYF-LMD significantly
outperforms AYF-EMD. However, the trend reverses on image datasets, where AYF-EMD consis-
tently yields better results. As shown in Tab. 6, AYF-EMD leads to significantly improved generation
quality.

We also evaluate the impact of autoguidance. Replacing it with CFG consistently degrades perfor-
mance across all sampling steps, highlighting the benefit of autoguidance during distillation. This
difference can also be visually seen in the 2D setting (Fig. 13).

Next, we compare AYF against baseline methods. Against sCD [49], the current state-of-the-art
consistency model, we observe that increasing the number of steps consistently degrades performance
beyond 4 steps. In contrast, AYF’s performance stabilizes after 8 steps and remains consistently
better at 4 steps, narrowing the gap between the few-step student and the multi-step teacher. AYF
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achieves this improved multi-step performance by having slightly worse single-step generations. This
is expected considering that both models share the same parameter budget but AYF solves a more
difficult task. However, performing a short adversarial finetuning on top of a pretrained AYF model
significantly boosts performance across all sampling steps (see Fig. 8), overcoming this limitation.

Note that also with autoguidance replaced by CFG, we still outperform sCD for all steps except for
single-step generation. This trend remains when re-training sCD with an autoguided teacher and
comparing with the full AYF with autoguided teacher. These analyses show that while autoguidance
boosts performance, our model is superior to the previous state-of-the-art CM for all sampling step
settings except single-step generation also when comparing under the same guidance scheme. This is
due to our novel objectives for state-of-the-art continuous-time flow map training.

Compared to Shortcut models [17], which we re-implemented, AYF again outperforms them consis-
tently. While Shortcut models improve steadily with increasing NFEs, their few-step performance is
significantly worse than both AYF and sCD. Unlike shortcut models, AYF reaches strong performance
earlier and plateaus around 8 steps.

Ground Truth

Distilled with EMD Distilled with LMD Ground Truth

PG

No Guidance Aﬁtoguf&aﬁce Classifier-free Guid.

Figure 12: Four-step samples from distilled AYF Figure 13: Four-step samples from distilled AYF
flow maps trained using the AYF-EMD and AYF- flow maps using no guidance, autoguidance, and
LMD objectives for a 2D distribution. CFG (scale 3) for a 2D distribution.

Table 6: Ablation study on ImageNet 512x512. * indicates our reproduction of prior methods. Also
see Fig. 8 for a visualization of the key results.

Training configurations | FID()
\ 1-step 2-step 4-step 8-step 16-step 24-step 32-step 48-step 64-step
AYF-S (with autoguided teacher and AYF-EMD objective)

3.32 1.87 1.70 1.69 1.72 1.75 1.73 1.74 1.75
12.45 8.90 6.70 6.10 5.85 - - - -
4.12 2.57 232 229 2.31

- with AYF-LMD objective instead of AYF-EMD
- with CFG teacher instead of autoguidance

sCD-S* (with autoguided teacher) 2.90 1.87 1.84 2.08 2.32 2.68 291 3.72 4.62
- with CFG teacher instead of autoguidance 3.26 2.68 2.72 2.81 3.33 - - - -
Shortcut model* (with autoguided teacher) | 47.60 13.12 5.37 231 2.05 1.92 1.85 1.83 1.81
EDM-S + autoguidance (teacher) | 566.13 298.60 89.88  26.41 6.08 3.09 221 1.65 1.51
Adversarial finetuning ‘

AYF-S + adv. loss | 192 1.81 1.64 1.62 1.63 1.61 1.63 1.62 1.61

G.2 Clamped Gradient Warmup and Stable Time Embeddings Ablations

Next, we ablate the two stabilization techniques introduced in Sec. 3.4: (i) stabilizing the teacher
model’s time embeddings and (ii) applying gradient warmup with clamping. We track the 2-step
FID throughout training, as shown in Tab. 7. The results indicate that both techniques are critical for
maintaining stable training dynamics and removing either leads to divergence.

G.3 LoRA Rank Ablations
Finally, we ablate the effect of the LORA rank in our text-to-image experiments. We trained four

models with ranks 16, 32, 64, and 128. Qualitatively, all variants produced nearly identical outputs
when given the same noise input. Quantitatively, we conducted a user study with 260 images per rank,
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Table 7: 2-step FID values during training on ImageNet 512x512.

Training configurations ‘ Number of Images Seen
[|4M 8SM 12M 16M 20M 24M 28M 32M

AYF (stable time embeddings + clamped gradient warmup r,,,4, = 0.99) | 492 291 265 270 2.69 244 225 2.11
- without stable time embeddings 8.64 504 491 543 538 583 1033 20.54
- without clamped gradients (7,4, = 1.0) 491 275 253 246 272 403 51.04

asking human raters to evaluate outputs based on fidelity and text alignment (voting for the “best”
image or selecting “Tie””). As shown in Fig. 14, all LoRA ranks performed comparably, with rank 16
showing slightly lower fidelity. Overall, our results indicate that performance is largely insensitive to
the choice of LoRA rank.

Text Alignment Visual Fidelity

0.26 0.26
0.195 0.195
0.13 0.13

0.065 0.065

0
Rank16 Rank32 Rank64 Rankl128  Tie Rankl6 Rank32 Rank64 Rank128  Tie

Figure 14: Ablation study on the impact of LoRA ranks in distilling FLUX.1-
dev.

H Additional Samples

H.1 Text-to-Image

In Fig. 15, we show additional text-to-image samples generated by our FLUX.1 [dev]-based AYF
flow map model using efficient LORA fine-tuning. We also show the effect of increasing the number
of sampling steps of this model in Fig. 17. Additionally, we show some side-by-side comparisons
between our model and prior LORA based consistency models in Fig. 16. We find that our model
produces sharper and more detailed images with better prompt adherence.

H.2 ImageNet-512
In Figs. 19 to 28, we show additional one- and two-step samples generated by our ImageNet-512

AYF model. We also show the effect of increasing the number of sampling steps of this model in
Fig. 18. Only very tiny quality differences are visible.

H.3 ImageNet-64

In Figs. 29 and 30, we show additional one- and two-step samples generated by our ImageNet-64
AYF model.
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based AYF flow map model

Figure 15: Selected 4-step samples generated by our FLUX.1 [dev]

using efficient LoRA fine-tuning.
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“Misty mountain lake at dawn, with calm water and lush pine trees”

LCM TCD AYF (ours)

“Colorful village square with a fountainrand flower-lined houses”

Figure 16: Qualitative comparison between 4-step samples from LCM [54], TCD [94], and AYF
(view zoomed in).

“A hooded warrior with a glowing crimson sword in a misty shadowy forest.”

1 - 7 ~ap Sl - >

b e — -
“A lone samurai at dusk near a crimson maple forest, koi pond, and distant sunlit temple”

Figure 17: The effect of increasing number of steps when sampling from the text-to-image AYF
model.
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Figure 18: The effect of increasing the number of steps when sampling from the AYF model on
ImageNet512 (best viewed zoomed-in).

Figure 19: Selected one-step samples generated by our ImageNet512 AYF-S model, shown for classes
1 (goldfish) and 22 (bald eagle).
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TN }8 o
Figure 20: Selected two-step samples generated by our ImageNet512 AYF-S model, shown for
classes 1 (goldfish) and 22 (bald eagle).

Figure 21: Selected one-step samples generated by our ImageNet512 AYF-S model, shown for classes
29 (axolotl) and 88 (macaw).
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Figure 22: Selected two-step samples generated by our ImageNet512 AYF-S model, shown for
classes 29 (axolotl) and 88 (macaw).

L'f‘“f' £ e B b cctee . |

Figure 23: Selected one-step samples generated by our ImageNet512 AYF-S model, shown for classes
270 (white wolf) and 978 (coast).
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Figure 24: Selected two-step samples generated by our ImageNet512 AYF-S model, shown for
classes 270 (white wolf) and 978 (coast).

Figure 25: Selected one-step samples generated by our ImageNet512 AYF-S model, shown for classes
979 (valley) and 980 (volcano).
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Figure 26: Selected two-step samples generated by our ImageNet512 AYF-S model, shown for
classes 979 (valley) and 980 (volcano).

Figure 27: Selected one-step samples generated by our ImageNet512 AYF-S model, shown for classes
89 (sulphur-crested cockatoo) and 985 (daisy).
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Figure 28: Selected two-step samples generated by our ImageNet512 AYF-S model, shown for
classes 89 (sulphur-crested cockatoo) and 985 (daisy).
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Figure 29: Uncurated one-step samples generated by our ImageNet64 AYF-S model, with randomly
chosen class labels.
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Figure 30: Uncurated two-step samples generated by our ImageNet64 AYF-S model, with randomly
chosen class labels.
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I Text Prompts for Generated Images

Here we will list all the text prompts used to generate the images in Figs. 1, 3 and 15.

"A surreal and dreamlike scene featuring a small island with a lush green mountain encased
in a giant, translucent sphere. The sphere reflects warm golden and green tones, blending
harmoniously with the soft orange hues of a serene sunset. The scene is set on a calm,
reflective body of water, with gentle ripples creating perfect reflections of the sphere and the
sky. A lone wooden boat floats peacefully in the foreground, adding a sense of scale and
solitude. Distant mountains frame the horizon, completing the ethereal and otherworldly
atmosphere."

"A dark, atmospheric forest shrouded in mist, with towering, shadowy trees. At the center
stands a hooded warrior clad in black armor and a flowing cloak, holding a massive, glowing
crimson sword. The blade emits an intense, fiery red light that contrasts sharply with the
cool blue tones of the misty forest. Scattered red flowers grow on the forest floor, their
vivid color echoing the sword’s glow. Fiery red embers float through the air, adding to the
ominous and mystical mood. The scene is cinematic and otherworldly, with a strong sense
of power and mystery."

"A mystical forest bathed in moonlight, with glowing blue and green bioluminescent plants.
A gentle mist rolls through the trees, and faint magical runes glow on ancient stone pillars
scattered throughout the scene. In the background, a shimmering waterfall cascades into
a crystal-clear pool. The atmosphere is serene, with soft light beams piercing through the
canopy above."

"A hyper-realistic photograph of a delicate yet powerful creature, a rabbit with the striped
fur of a tiger, combined with the soft, powdery wings and antennae of a moth. The rabbit’s
body is small and fluffy, with bold orange and black stripes covering its fur, and its back
is adorned with large, soft moth wings that shimmer in muted tones. The scene is set in a
moonlit garden, with the creature nestled among flowers, its wings gently fluttering as it
sniffs at a bloom."

"A luminous koi fish with translucent fins and shimmering galaxy-like patterns on its scales,
gracefully swimming in a mystical pond under the soft light of a glowing full moon. The
setting features delicate lotus flowers, glowing orbs, and vibrant foliage with intricate golden
details weaving through the scene. The water reflects a celestial ambiance, with tiny stars
and glowing accents creating a dreamlike atmosphere. The composition is highly detailed,
with rich, deep colors of navy and gold contrasted by the vivid reds and oranges of the koi
and flowers. The overall style combines fantasy realism with a touch of ornate elegance."

"A serene bald monk in vibrant orange robes meditating and levitating above a pristine
swimming pool, with a modern minimalist house and lush trees in the background. The
atmosphere is calm and sunny, with bright daylight casting clean shadows. The scene
captures a surreal and harmonious balance of spirituality and luxury, with vibrant colors,
sharp details, and a reflective pool surface."

"A cinematic and hyper-detailed and hyper-realistic portrait photograph captured in the
rugged beauty of the scottish moor, a gorgeous young woman with wild, fiery red hair sits
gracefully under a large, gnarled, ancient tree, leaning against the rough bark, her vibrant
locks catching the golden hour light and flowing freely around her shoulders, her piercing
green eyes sparkle with life and joy as she smiles warmly, her expression radiates youthful
energy."

"A weathered, yellow robotic cat kneels gently in a muddy alley, its mechanical paws
tenderly holding a small, pure white rabbit. The robot’s design is a mix of sleek and
worn, with scratches and rust marks telling a story of resilience. Its glowing blue eyes
exude warmth and curiosity as it carefully examines the rabbit, which has a vibrant yellow
flower sprouting from its back. Around them, abandoned concrete buildings loom in the
background, shrouded in a soft mist, while faint droplets of rain fall, creating tiny ripples in
the puddles. The scene is quiet and melancholic, with a subtle touch of hope."

"A lone samurai stands at the edge of a crimson maple forest, his silhouette dark against the
golden light of dusk. Fallen leaves swirl around him as a gentle breeze carries the scent of
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autumn through the air. A narrow wooden bridge stretches across a tranquil koi pond, its
surface reflecting the fiery hues of the trees above. In the distance, the curved rooftop of a
hidden temple peeks through the dense foliage, bathed in the last light of the setting sun."

"A carnival floats above the clouds, its colorful tents and twisting roller coasters suspended
in midair. The Ferris wheel glows with radiant neon lights, each cabin holding a different
surreal sight—one with a floating goldfish, another with a miniature city inside. Hot air
balloons drift lazily between the attractions, carrying visitors who gaze down at the soft,
cotton-like clouds below. The air is filled with the sounds of distant laughter and the smell
of caramel popcorn carried by the wind."

"A warm and inviting cottage interior, lit by a crackling fireplace. The room features rustic
wooden furniture, a patchwork quilt on a cozy armchair, and shelves lined with books and
potted plants. Sunlight streams through a window, casting soft golden light across the space.
A cat naps on a woven rug in front of the fire."

"A charming, bright-eyed octopus sports a miniature, pointed witch’s hat, its brim adorned
with a delicate, sparkling broom. The octopus’s eyes, shining like two bright, black jewels,
sparkle with excitement as it gazes out from beneath its witchy disguise. One of its tentacles
grasps a tiny, wooden broom, its bristles perfectly proportioned to the octopus’s miniature
size. Another tentacle holds a cauldron-shaped candy pail, its metal surface adorned with a
miniature, glowing jack-o’-lantern face. The atmosphere is playful and lighthearted, with
a hint of spooky, Halloween fun. The octopus’s very presence seems to radiate a sense of
joyful, mischievous energy, as if it’s ready to cast a spell of delight on all who encounter it.
highest-Quality, intricate details, visually stunning, Masterpiece"

"A baby dragon with vibrant, golden-yellow scales sits on a forest floor, its enormous, glossy
black eyes sparkling with curiosity. Its tiny horns curve gently upward, and a soft tuft of
orange fur runs along its head, adding to its charm. The dragon’s delicate claws rest on its
chest as it tilts its head slightly, radiating an innocent, playful energy. The dappled sunlight
filters through the trees, casting soft shadows around the creature while emphasizing the
intricate textures of its scales and the gentle details of the forest floor."

"A towering, moss-covered golem with glowing blue eyes trudges gently through an en-
chanted forest. Tiny birds nest in the cracks of its ancient stone body, and wildflowers bloom
along its shoulders. Each step it takes leaves behind shimmering footprints, as if the earth
itself is waking beneath it. A small, mischievous fairy perches on its shoulder, whispering
secrets into its ear."

"A celestial bard with flowing, star-speckled robes strums a crystalline harp that hums with
the music of the cosmos. Their silver hair drifts as if caught in an eternal breeze, and their
eyes shine like twin galaxies. As they play, glowing constellations dance around them,
weaving stories of forgotten legends. The air vibrates with an ethereal melody, bending
reality itself to their song."

"A tiny mushroom spirit with a cap like a spotted toadstool scurries through a moonlit
meadow, carrying a lantern made from a firefly trapped in a crystal jar. Their tiny hands
clutch a satchel filled with enchanted spores, which they scatter as they run, causing
luminescent fungi to sprout in their wake. The night air is filled with a soft, magical glow as
they embark on their secret midnight errand.”

"A mischievous clockwork cat made of brass and polished wood prowls through an ancient
library, its glowing emerald eyes scanning the towering bookshelves. Gears whir softly as it
moves, its tail ticking like a pocket watch. Whenever it pounces, time seems to stutter for
just a fraction of a second, as if reality itself is playing along with its game."

"A wandering candy alchemist, dressed in a coat of shimmering, sugar-spun fabric, mixes
glowing elixirs in crystal vials. Their hair is a cascade of molten caramel, and their eyes
sparkle like rock candy. Each step they take leaves behind a trail of edible blossoms, and
their belt is lined with tiny jars of potions that fizz, swirl, and pop with magical flavors."

"A towering jellyfish queen glides gracefully through an underwater kingdom, her translucent
tendrils trailing behind her like an elegant gown. Bioluminescent patterns ripple across her
ethereal body, pulsing in sync with the deep ocean currents. Tiny fish swim in mesmerizing
formations around her, drawn to the soft, hypnotic glow that follows her every movement."
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* "A giant, four-armed baker made entirely of gingerbread hums a deep, rumbling tune as he
kneads dough in a cozy, fire-lit kitchen. His icing-swirled eyebrows lift in delight as he pulls
a tray of enchanted pastries from the oven—each one shaped like a tiny, dancing creature.
The warm scent of cinnamon and sugar fills the air as his candy-button eyes twinkle with
pride."

* "In the heart of an ancient cathedral, Excalibur rests upon an altar of marble, encased in
shimmering, ethereal light. The stained-glass windows cast multicolored beams across
the blade, illuminating the intricate runes carved into its steel. A quiet reverence fills the
chamber—no one dares to approach, for legends say that only the true king may grasp its
hilt without being turned to dust."

* "A mischievous minion transformed into a dark side warrior, inspired by Darth Vader, stands
menacingly in a dimly lit chamber. Its yellow, cylindrical body is painted matte black, with
glossy red accents glowing faintly. It wears a flowing black cape, a custom helmet with
sharp edges and a single menacing goggle-eye glowing red. In its hand, a tiny yet powerful
red lightsaber hums with energy. The minion’s expression is a mix of determination and its
usual playful mischief, as if ready to wreak havoc while still being adorably chaotic. The
dark background is illuminated by faint red and blue lights, evoking the ominous atmosphere
of a Sith lair."

* "A cunning anthropomorphic wolf wearing a coat made of sheep’s wool stands amidst a
flock of sheep. The wolf’s face is sharp and expressive, with piercing golden eyes and a sly,
toothy grin. The wool coat is textured and fluffy, blending seamlessly into the surrounding
flock, while curved ram-like horns add an unusual twist to the disguise. The sheep in the
background look curious but unaware of the predator among them. The scene is set in a
misty, overcast countryside, with soft lighting emphasizing the eerie yet whimsical mood."

* "A bustling cyberpunk metropolis at night, filled with towering neon-lit skyscrapers, hover-
ing vehicles, and busy streets lined with holographic advertisements. The city is alive with
vibrant pink, purple, and blue lights reflecting off wet pavement. People in futuristic attire
walk below, while drones fly overhead. A giant screen displays an Al figure speaking to the
crowd."

» "A vibrant, cherry-red 1970s muscle car, gleaming under a warm afternoon sun. Chrome
accents sparkle, reflecting the azure sky. The car is parked on a winding asphalt road,
surrounded by lush green countryside. Show the car’s powerful engine and classic design
details. Capture a sense of nostalgia and freedom."

J Licenses

Our models and code are built upon the following codebases and datasets:

e EDM2 (https://github.com/NVlabs/edm2): Used for our ImageNet experiments. Li-
censed under CC BY-NC-SA 4.0.

* StyleGAN3 (https://github.com/NVliabs/stylegan3): We use its metric calculation
logic to compute recall scores. Licensed under the NVIDIA Source Code License.

* StyleGAN2 (https://github.com/NVlabs/stylegan2): We use its discriminator im-
plementation for our adversarial finetuning experiments. Licensed under the NVIDIA Source
Code License.

* Diffusers (https://github.com/huggingface/diffusers): Used for our text-to-
image experiments. Licensed under the Apache License 2.0. We fine-tune a LoRA
on top of FLUX.1-dev, which is under a proprietary non-commercial license (https:
//huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).

* Text-to-Image-2M  Dataset (https://huggingface.co/datasets/jackyhate/
text-to-image-2M): Used to train our distilled text-to-image LoRAs. Licensed under the
MIT License.

* ImageNet Dataset: Used for our main experiments. Distributed under a non-commercial
research license.
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