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Abstract

Despite existing 3D cloth simulators producing realistic results, they predominantly
operate on discrete surface representations (e.g., points and meshes) with a fixed
spatial resolution, which often leads to large memory consumption and resolution-
dependent simulations. Moreover, back-propagating gradients through the existing
solvers is difficult, and they hence cannot be easily integrated into modern neural
architectures. In response, this paper re-thinks physically accurate cloth simulation:
We propose NeuralClothSim, i.e., a new quasistatic cloth simulator using thin shells,
in which surface deformation is encoded in neural network weights in the form of a
neural field. Our memory-efficient solver operates on a new continuous coordinate-
based surface representation called neural deformation fields (NDFs); it supervises
NDF equilibria with the laws of the non-linear Kirchhoff-Love shell theory with a
non-linear anisotropic material model. NDFs are adaptive: They 1) allocate their
capacity to the deformation details and 2) allow surface state queries at arbitrary
spatial resolutions without re-training. We show how to train NeuralClothSim
while imposing hard boundary conditions and demonstrate multiple applications,
such as material interpolation and simulation editing. The experimental results
highlight the effectiveness of our continuous neural formulation. See our project
page: https://4dqv.mpi-inf.mpg.de/NeuralClothSim/.

1 Introduction

Realistic cloth simulation is a central, long-standing and challenging problem in computer graphics.
It arises in game engines, computer animation, movie production, digital art, and garment digitisation,
only to name a few areas. To date, it has been mostly addressed with physics-based simulators
operating on explicit geometric representations, i.e., meshes and particle systems. While recent
simulators [24, 60, 36, 33, 32, 38] can produce realistic 3D simulations that obey various types of
boundary conditions and consider secondary effects, but their operational principle remains limited
in several ways. First, they work on discrete surface representations such as meshes and points
inherently assuming a pre-defined spatial resolution that cannot be easily changed once the simulation
is accomplished. Second, re-running with different meshing of the same initial template leads to
different folds and wrinkles, which is often problematic for downstream applications. Third, explicit
geometries require notoriously large amounts of storage for the detailed simulation: the memory size
grows linearly with the number of points. Moreover, it is difficult to integrate simulators into learning
frameworks and to edit the output 3D state without re-running the simulation.

The recent advances in physics-informed neural networks [49, 25] as well as the success of neural
fields [43, 64, 62, 65], makes us question if continuous coordinate-based representations can alleviate
these limitations. All these considerations motivate us to rethink the fundamentals of physically
accurate cloth simulation and we introduce a new approach for cloth quasistatics, in which the surface
deformation is encoded in neural network weights. The proposed neural architecture is coordinate-
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Figure 1: NeuralClothSim is the first neural cloth simulator representing surface deformation as a
neural field. It is supervised for each target scenario with the laws of the Kirchhoff-Love thin shell
theory with non-linear strain (left). Once trained, the simulation can be queried continuously and
consistently enabling different spatial resolutions (center). NeuralClothSim can also incorporate
learnt priors such as material properties that can be edited at test time (right).

based and has multiple advantages compared to previous simulators; see Fig. 1 for an overview. Our
neural fields are adaptive, i.e., the parameters are used to encode the deformations as they occur.
As a matter of efficiency, we neither need to know the resolution in advance before the simulation
nor do we require complex re-meshing schemes [45]. Realistic cloth simulation requires modelling
geometric non-linearities and non-linear anisotropic elasticity. It involves large bending deformations
and rigid transformations leading to non-linear point displacements. To efficiently model this, we
rely on neural networks as they are good universal (non-linear) function approximators.

We model cloth simulation as a thin shell boundary-value problem with the deformation governed
by the Kirchhoff-Love shell theory. In contrast to previous simulators using Kirchhoff-Love shell
relying on isogeometric analysis [40] or subdivision surface algorithms [24, 20], we model thin shell
deformations as implicit neural representations, i.e., 3D deformation fields encoding cloth quasistatics.
During training, our formulation supervises a neural deformation field (NDF), minimising the cloth’s
potential energy functional. In contrast to classical simulators [38, 36] sensitive to the finite element
discretisations of the initial surface, which could lead to inconsistent folds, we generate simulations
with consistent drapes, folds, and wrinkles. This is important for downstream applications that might
query (e.g., in the case of a renderer) or even modify (e.g., like inverse methods) the simulation
with adaptive sampling. Next, our representation is memory-efficient, and the simulation states are
generated directly in a compressed form. In summary, our core technical contributions are as follows:

• A new continuous coordinate-based neural representation (Sec. 4.1)—and a new neural
solver for cloth quasistatics based on thin shell theory that accepts boundary conditions such
as external forces or guiding motions (Sec. 4.2).

• Modelling of thin shell’s deformation with non-linear Kirchhoff-Love theory supervising
the neural deformation fields (Sec. 4.3). Upon convergence, the equilibrium state can be
queried continuously and consistently.

• Applications of the proposed neural simulator including material interpolation and fast
editing of simulations according to updated simulation parameters (Sec. 5.4).

We want to point out that we do not claim qualitative superiority over classical cloth simulation meth-
ods and completeness of our formulation (e.g., our method does not consider collisions). However, we
believe that our new way of deeply integrating neural networks as a surface representation and solver
into cloth simulation has the potential to stimulate future research in this direction, and we show that
our formulation overcomes multiple fundamental limitations of existing discrete approaches.

2 Related Work

Cloth Simulation is a well-studied problem [1, 9, 21, 26, 59, 38, 34, 51], with the first methods dating
back to the 1980s [2, 55]. The computational flow of the modern simulation approaches includes:
Discretisation using the finite element method (FEM) [18, 45], implicit time-integration [1, 32],
frictional contact [33, 42], and collision handling [46, 54, 26]. Cloth simulators model real fabric
behaviors [15, 61], which is typically done by fitting constitutive material models. Liang et al. [38]
and Li et al. [36] introduced differentiable cloth simulators, which were subsequently shown to be
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also useful in 3D reconstruction as a physics-based prior [28, 37]. Zhang et al.’s approach [67, 68]
enables interactive exploration of cloth parameters with progressively consistent quasistatics. Another
category of methods constitutes neural cloth simulators. Pfaff et al. [48] proposed to learn simulations
using graph neural networks. Bertiche et al. [7] is a neural simulator for static draping of garments
on a virtual character. It is further extended with self-supervised approaches [51, 8] to learning
garment dynamics. They leverage physics-based loss terms and do not require simulated ground-truth
data. However, these methods are application-oriented rather than approaches for general cloth
simulation, as the garments are skinned to the human body and garment deformations are driven
by body shape and poses. Several methods for cloth simulation rely on the Kirchhoff-Love shell
theory [19, 24]. The energy functionals in the theory require higher-order derivatives, which are not
available for general unstructured triangle meshes. In their pioneering work, Cirak et al. [14] present
Loop subdivision with control meshes that meet this additional C1 interpolation requirement, which
is extended to dynamic cloth simulation with corotational strains [56]. NURBS isogeometry [40]
also enables continuity, whereas recent methods [16, 31] rely on Catmull-Clark subdivision surfaces
and model the geometric non-linearity of shells. All the aforementioned cloth simulators (traditional
FEM, neural, and Kirchhoff-Love) use discrete surface representation (i.e., meshes) with several
inherent limitations. The representation is not adaptive, and simulations suffer from coarse-to-fine
inconsistency and are sensitive to initial discretisation.

Neural Fields. Recent approaches parameterising surfaces as neural fields [62, 53, 44, 43, 58] offer a
promising alternative to meshes. As a common theme, these methods use coordinate-based MLP for
neural field parameterisation, which takes coordinates in the spatio-temporal domain and returns the
task-specific property, e.g. occupancy or SDF values. For a detailed discussion, we refer to the survey
of Xie et al. [64]. However, none of the works focus on integrating such neural fields into the cloth
simulation, which is the main goal of the proposed work.

Neural Networks for Solving PDEs/ODEs. Several recent approaches [50, 49, 12, 66, 35], also dubbed
Physics-Informed Neural Networks (PINNs), leverage neural networks for solving tasks that are
supervised by the laws of physics; we refer to a recent survey from Hao et al. [25] for a detailed review.
Chen et al. [11, 10] use implicit neural representation to accelerate [11] or replace [10] PDE solvers.
However, they do not demonstrate thin-shell simulation. While previous works such as Rao et al. [50]
and Zehnder et al. [66] applied neural implicit representations for volumetric elastodynamic problems,
our approach focuses on realistic thin-shell and cloth simulation. It addresses important simulation
aspects such as geometric non-linearities and the integration of non-linear anisotropic models that are
crucial for simulating large deformations and rotations. Another method [65] allows the processing
of neural fields encoding geometric structures. Conceptually, the most closely related to ours is the
work of Bastek and Kochmann [5], however, there are important differences to our work. First, they
model linear small-strain regime for Naghdi shells, whereas we model the full non-linear stretching
and bending behaviour of clothes. Second, we propose several architectural improvements —periodic
activation functions, periodic boundary conditions, data-driven orthotropic material model— that are
necessary for producing realistic wrinkles and folds, and demonstrate generalisation to point loads,
different material and boundary values. Next, we present a short background on Kirchhoff-Love
theory that enables us to model a cloth deformation as a thin shell.

3 Kirchhoff-Love Thin Shell Theory for Cloth Modeling

Before we explain our method, we define our cloth representation. We characterise cloth as a thin
shell and model its behaviour with the Kirchhoff-Love theory [39, 63]. A thin shell is a 3D geometry
with a high ratio of width to thickness. The shell continuum can be kinematically described by the
midsurface located in the middle of the thickness dimension and the director, a unit vector directed
along fibres in the shell that are initially perpendicular to the midsurface. The Kirchhoff hypothesis
states the director remains straight and normal, and the shell thickness h ∈ R does not change with
deformation (see inset). We provide a detailed review of Kirchhoff-Love thin shell theory in App. B.

Notation. Throughout the document, we use Greek letters for indexing quantities on the midsurface,
e.g., aα, α, β, ... = 1, 2, and Latin letters for indexing quantities on the shell, e.g., gi, i, j, ... = 1, 2, 3.
Italic letters a,A indicate scalars, lower case bold letters a indicate first-order tensors (vectors), and
upper case bold letters A indicate second-order tensors. An index can appear as a superscript or
subscript. Superscripts (·)i refer to contravariant components of a tensor, which scale inversely with
the change of basis, whereas subscripts (·)i refer to covariant components that change in the same
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Figure 3: NeuralClothSim takes as input a thin shell in the reference state and its material properties,
boundary motion and external forces. It then learns an NDF, i.e., a coordinate-based implicit 3D
deformation field. At inference, NDF can be continuously queried for the deformed state of the surface
at equilibrium using curvilinear coordinates from the parametric domain. We use the Kirchhoff-Love
thin shell modelling to supervise the cloth quasistatics with the potential energy functional.

way as the basis transforms. Moreover, we use upper dot notation for time derivatives, lower comma
notation for partial derivatives with respect to the curvilinear coordinates, ξi, and vertical bar for
covariant derivatives, e.g., u̇ = ∂u/∂t, x,α = ∂x/∂ξα, and uα|β , respectively. Geometric quantities
with overbar notation (̄·) refer to the reference configuration. Additionally, Einstein summation
convention of repeated indices is used for tensorial operations, e.g., φαλφ

λ
β = φα1φ

1
β + φα2φ

2
β . A

detailed list of notations can be found in Tab. II in Appendix B.

4 Method

Figure 2: Kirchhoff-Love shell

We propose NeuralClothSim, i.e., a new approach for continuous
and consistent quasistatic cloth simulation relying the thin shell
theory. We seek to generate a complex simulation state at equilibria
given a cloth geometry in a reference configuration, its material
properties and external forces. The physical basis for our cloth
quasistatics is the nonlinear Kirchhoff-Love thin shell equations that model the stretching and bending
of cloths in a unified manner. We parameterise the cloth states as a neural deformation field (NDF)
defined over a continuous parametric domain (Sec. 4.1). We explicitly account for positional and
periodic boundary conditions, incorporated as hard constraints (Sec. 4.2). NDF is optimised using a
loss function based on the potential energy functional (Sec. 4.3). Fig. 3 provides a method overview.

4.1 Neural Deformation Field (NDF)

At the core of our approach is a neural deformation field (NDF), a continuous representation of cloth
quasistatics, entirely parameterised by a neural network. Following Sec. 3, we model cloth geometry
as a Kirchhoff-Love thin shell. Given the rest state x̄(ξ) of a cloth, we describe the equilibrium state
x(ξ) of its midsurface under the action of external forces f(ξ) and boundary constraints Bd(ξ) using

x(ξ) = x̄(ξ) + u(ξ), with ξ := (ξ1, ξ2) ∈ Ω. (1)

The curvilinear coordinate space (ξ1, ξ2) can (but does not need to) naturally correspond to the
orthotropic warp-weft structure of woven clothes. As examples, the reference state associated with a
flat square cloth of side L in the xy-plane and that of a garment sleeve (radius R, length L) admitting
a natural parameterisation with cylindrical coordinates are:

x̄(ξ) = [ξ1, ξ2, 0]⊤, ∀(ξ1, ξ2) ∈ [0, L]2,

x̄(ξ) = [R cos ξ1, ξ2, R sin ξ1]⊤, ∀ξ1 ∈ [0, 2π); ξ2 ∈ [0, L].
(2)

Analytically defining surface parameterisations might not be feasible for reference geometries given
as meshes. In such cases, we learn the reference parametrisation by fitting an MLP x̄(ξ; Υ) with
parameters Υ to the reference mesh. Specifically, we learn x̄ by supervising it with the ℓ2-loss
L(Υ) = ||x̄(ξ̂; Υ)− ˆ̄x||22, where ˆ̄x ∈ R3, ξ̂ ∈ R2 are the vertices and texture coordinates of the given
reference mesh. The advantage of this preprocessing over directly using the reference mesh is that
we can continuously sample in the parametric domain by querying the MLP and compute all the
geometric quantities at these points, similar to analytical access to the reference surface. Our key
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idea is to regress the displacement field u(ξ) using an MLP FΘ : Ω → R3 and optimise its weights
Θ to minimise the total potential energy of the thin-shell cloth. Specifically, the NDF u is formulated
as follows:

u(ξ; Θ) = FΘ(Bp(ξ))Bd(ξ), (3)
where Bp(ξ) and Bd(ξ) are functions that respectively account for periodic and Dirichlet boundary
conditions. In Sec. 4.2, we elaborate on encoding such conditions as hard constraints.

Apart from being parameter-differentiable, i.e., the gradient ∇ΘFΘ is defined everywhere, FΘ needs
to be input-differentiable, i.e., ∇2

ξFΘ must exist likewise, in order to compute the strains required for
the Kirchhoff-Love energy functional. This restricts the activation function used in the network; only
C2-continuous non-linearities can be used. Therefore, we use periodic sine as the preferred activation
function [53] as it can represent high-frequency signals (needed for folds and wrinkles) while allowing
for computing higher-order derivatives. Note that unlike NDF u(ξ; Θ), we use GELU [27] activations
for smoothly fitting the reference shape, x̄(ξ; Υ). Sec. 4.3 describes the optimisation procedure to
train the deformation field u(ξ; Θ).

Once trained, FΘ provides continuous access to the cloth quasistatics, where the network can be
queried at any point in the spatial domain Ω. Based on the requirement for downstream applications,
parametric input samples during inference can be different and their number can be higher than
those during training, since it does not require the expensive computations of physical quantities;
see Fig. 1. Thanks to our continuous formulation, at inference, different discretised meshing and
texturing operations in the parametric domain Ω can be lifted from 2D to 3D using u(ξ; Θ), which
will lead to consistent result irrespective of the specific discretisation (see also Fig. 6).

4.2 Boundary Conditions

Figure 4: Boundary conditions. In con-
trast to Dirichlet conditions that alter the
network output (c), we impose periodic
boundaries by remapping the network in-
put to its sine and cosine values (d).

A practical cloth simulator allows for imposing conditions
such as a user-specified corner motion; for most garments,
the simulation needs to be continuous and consistent along
the seams. We seek to strictly enforce these conditions
in our method. We achieve this by formulating boundary
conditions as spatial distance functions, and seams as pe-
riodicity constraints along a curvilinear coordinate (such
as the azimuthal angle of a cylindrically parameterised
sleeve), and directly apply them to the NDF in Eq. (3).

Dirichlet Boundary Conditions. To constrain boundary
positions, we require u(ξ∂Ω) = 0 for some specified
list of parameter space points ξ∂Ω along the boundary
segment ∂Ω. While we elaborate on the simpler case
here, it is also possible to specify complex conditions i.e.,
u(ξ∂Ω) = b(ξ∂Ω), detailed in Appendix D. One solution is to sample points in the boundary segment
and enforce the boundary conditions through separate loss terms. As shown in previous physics-
informed neural networks [25], having competing objectives during training can lead to unbalanced
gradients, which causes the network to often struggle with accurately learning the underlying solution.
Further, there is no guarantee that the boundary conditions will always be enforced. Therefore,
we propose to modify the NDF to embed essential boundary conditions as hard constraints [41].

Specifically, a distance function Bd(ξ) satisfying Bd(ξ) =

{
0, if ξ ∈ ∂Ω

>0, otherwise if ξ ∈ Ω
ensures that

any instance of deformation field u(ξ, t; Θ) automatically satisfies the boundary conditions. We set

Bd(ξ
1, ξ2) := 1− e−((ξ1−ξ1∂Ω)2+(ξ2−ξ2∂Ω)2)/σ s.t. (ξ1∂Ω, ξ

2
∂Ω) ∈ ∂Ω, ∀(ξ1, ξ2) ∈ Ω (4)

as a distance function with small support σ = 0.01. Fig. 4 provides an illustrative example.

The above formulation supports point and shape constraints in the cloth interior, i.e., ∂Ω can likewise
be a boundary segment inside the domain (Fig. IV-appendix). Moreover, if the initial geometry is
provided as a mesh (instead of an analytical definition), point constraints can be directly provided as
mesh vertices, with (ξ1∂Ω, ξ

2
∂Ω) corresponding to texture coordinates of the vertex; see Fig. 6-(right).

Periodic Boundary Conditions. In contrast to the positional or motion-dependent boundary conditions
specified as per the user’s desires, additional boundary conditions can arise from the geometric
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cloth parametrisation. Points along the panel seams of the garment share the world-space position
and velocity, though they are mapped to different values in the parametric domain. We express
continuity in geometry and simulation using periodic conditions. Consider any simulation involving
a sleeve: Our method needs to guarantee the additional condition due to the parametrisation, i.e.,
u(ξ1, ξ2) = u(ξ1 ± 2nπ, ξ2). Whereas the Dirichlet condition is imposed by altering the network
output, we strictly impose periodic boundaries by modifying its input. Recall that any continu-
ous periodic function can be written using its Fourier series. If u(ξ) is a periodic deformation
field with period P w.r.t. the input coordinate ξλ, u(ξ) can be decomposed into a weighted sum
{1, sin(2nπξλ/P ), cos(2nπξλ/P )}, n ∈ N. Due to the universal approximation power of MLP,
only the first cosine and sine terms need to be considered, as the others can be expressed as the
nonlinear continuous functions of cos(2πξλ/P ) and sin(2πξλ/P ) [41]. Hence, we map ξλ using
ξλ 7→ {cos ξλ, sin ξλ} when feeding it to the MLP, enforcing periodicity of the predicted NDF along
ξλ. This completes the definition of boundary conditions applied during both training and inference.

4.3 NDF Optimisation

We next explain optimisation in NDF learning. Note ξ for u(ξ) and derived quantities are dropped.

Strain Computation. To compute the geometric strains due to the thin shell deformation, we evaluate
the NDF on samples from the curvilinear coordinate space Ω. We generate NΩ points using a
stratified sampling approach. This ensures that the samples are random, yet well-distributed. At
each training iteration, we re-sample coordinates to learn an NDF that fully explores the continuous
domain over the course of the optimisation. We evaluate NDF u(ξ) at all samples using Eq. 3 and this
prediction (i.e., ûi) is assumed to be in the Cartesian coordinate system, i.e., u = ûiei. Our further
strain computations (Eq. 6) require covariant deformation components in the reference contravariant
basis, i.e., u = uαā

α + u3ā
3, therefore we use the basis transformation matrix T = [ā1 ā2 ā3]−1

for converting from Cartesian deformation coordinates to covariant coordinates (see Appendix B
for detailed Kirchhoff-Love preliminaries). While it is possible to predict in the local contravariant
basis directly, the global basis is better suited for NDF training since the local basis vectors are
not normalised, and the basis varies with the input position ξ, especially noticeable for reference
geometries such as sleeve (Fig. I-(b)-appendix).

Next, we describe the ingredients required to evaluate the internal strain energy Ψ. Membrane strain
ε = [εαβ ] and bending strain κ = [καβ ] measure the in-plane stretching and the curvature change,
respectively, and are defined as εαβ := 1

2 (aαβ − āαβ), and καβ := b̄αβ − bαβ where (āαβ , aαβ),
and (b̄αβ , bαβ) are the metric and curvature tensors of reference and deformed midsurface. With the
assumptions of Kirchhoff-Love theory and following [3], we simplify these equations to directly
operate on u and evaluate strains as

εαβ =
1

2
(φαβ + φβα + φαλφ

λ
β + φα3φβ3),

καβ = −φα3|β − b̄λβφαλ + φλ
3 (φαλ|β +

1

2
b̄αβφλ3 − b̄βλφα3),

(5)

where the deformation gradients φαλ, φα3 are the components of u,α such that

u,α = φαλā
λ + φα3ā

3, φαλ := uλ|α − b̄αλu3, and φα3 := u3,α + b̄λαuλ. (6)

We do not linearise the strain. Orange and teal correspond to the linear and the non-linear components,
respectively. To evaluate the derivatives of geometric quantities based on NDF u w.r.t. inputs ξ (as
part of strain computation), we use automatic differentiation of machine learning frameworks [47].

Cloth Material Model. A thin shell develops an internal potential energy due to deformation and
the material’s hyperelasticity. As in the cloth simulation literature [34, 67], we write the internal
hyperelastic energy density as a function of the stretching and bending strains, Ψ(ε,κ, ξ3; z(x̄),Φ, h).
Here, Φ are the cloth’s material parameters and ξ3 ∈ [−h

2 ,
h
2 ] is the thickness coordinate, and z(x̄)

are geometric quantities derived from the reference midsurace x̄. Our neural field-based cloth
simulation is orthogonal to the research on material modelling and can, thus, be formulated with
many different elastic models, as long as the elasticity can be represented as an energy density
function. For example, a linear isotropic [52] stress-strain relationship leads to strain energy of the
form Ψ = 1

2 (DHαβλδεαβελδ + BHαβλδκαβκλδ), where D is the in-plane stiffness and B is the
bending stiffness computed as D := Eh

1−ν2 and B := Eh3

12(1−ν2) , with Young’s modulus E, Poisson’s
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Table 1: Quantitative evaluation. We validate the displacements obtained with our method on
the Belytschko obstacle course with analytical solutions from [6, 57]. Guo et al. [23] use different
material and match the corresponding reference result. Below, we show the ablation. We highlight
that our method outperforms prior works and baselines by a large margin.

Method Square plate Scordelis-Lo roof Rigid-end cylinder Free-end cylinder

Analytical 0.487 0.3024 1.825e−5 4.52e−4
Guo et al. 2.566* n/a n/a n/a
Bastek et al. n/a 0.297 n/a n/a
Ours, full 0.487 0.3018 1.81e−5 4.58e−4

Ours, no periodicity n/a n/a 3.6e−9 3.13e−6
Ours, GELU 0.496 0.288 1.74e−5 5.7e−4

ratio ν, and Hαβλδ := νāαβ āλδ + 1
2 (1 − ν)(āαλāβδ + āαδāβλ) with āαβ being the contravariant

metric tensors. Alternatively, we support the data-driven non-linear anisotropic material model of
Clyde et al. [15] that has been carefully constructed to fit measured woven fabrics. We refer to
Appendix B.3 for the mathematical details of the non-linear model.

Energy Optimisation. A thin shell’s stable equilibrium is characterised by the principle of minimum
potential energy, i.e. the sum of external potential energy owing to forces f and internal potential
energy Ψ due to material elasticity. The total potential energy E reads as E [u] =

∫
Ω
Ψ dΩ−

∫
Ω
f ·u dΩ,

and the stable equilibrium deformation u∗ can be found by minimising the energy functional subject
to boundary constraints u(ξ1, ξ2) = b(ξ1, ξ2) on ∂Ω. We take advantage of the variational structure
of E [u] and minimise it directly with gradient descent. All operations of our energy computation are
naturally differentiable, and we estimate the integral as a sum over continuous parametric domain.
For linear isotropic materials, we arrive at the following loss function to optimise the MLP weights
for a physically-principled cloth simulation encoded as u∗(ξ; Θ):

L(Θ) = |Ω|
NΩ

∑NΩ

i=1

(
1
2Dε⊤(ξi; Θ)H(ξi)ε(ξi; Θ) + 1

2Bκ⊤(ξi; Θ)H(ξi)κ(ξi; Θ)− f⊤(ξi)u(ξi; Θ)
)√

ā(ξi), (7)

where ε(ξ; Θ) ∈ R4, κ(ξ; Θ) ∈ R4 are vectorised strains computed using (5); |Ω| =
∫
Ω
dξ1dξ2

is the area of the parametric domain; H(ξ) ∈ R4×4 depends only on the reference surface. For
data-driven materials [15], the strain energy is additionally a function of thickness coordinate ξ3.
Hence, we integrate E along the thickness with the Simpson’s 3-point rule (similar to [16]) i.e.,

E [u] =
∫
Ω

∫ h
2

−h
2

Ψ dξ3 dΩ−
∫
Ω

∫ h
2

−h
2

f · ũ dξ3 dΩ, where ũ = u+ ξ3w is the deformation for a point
on the shell continuum and w quantifies the change in the midsurface orientation (see Appendix B.2).

5 Experimental Evaluation

Figure 5: Belytschko obstacle course for which
we generate accurate displacements (rescaled for
better visualisation).

We next present the qualitative and empirical re-
sults highlighting the new characteristics of our
continuous neural fields, including validation
(Sec. 5.1), simulation results (Sec. 5.2), compar-
ison to prior works (Sec. 5.3), and applications
(Sec. 5.4).

5.1 Obstacle Course

A scrupulously modelled thin shell, and conse-
quently cloth, must be able to handle inextensional bending modes, complex membrane states of
stress, and rigid body motion without straining. Therefore, for validation, we use the engineering
obstacle course of benchmark problems from Belytschko et al. [6], for which the analytical solutions
are known for linearised functionals. Such problems were previously used in computer graphics
[22] for testing the performance of finite mesh elements. Specifically, we test our method on the
square plate [57], the Scordelis-Lo roof, and the pinched cylinder with rigid diaphragms and free
ends examples, for which the original and our deformed shells are shown in Fig. 5. See Tab. 1 for
converged numerical results. The results, which show that our method outperforms prior works by a
significant margin, demonstrate our method’s excellent modelling ability. We further present details
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of the experiments with the square plate and pinched cylinder, including the experimental setup and
visualisations of the full displacement fields, in App. C.

Scordelis-Lo Roof is a non-flat reference shape subject to complex membrane strains, i.e. an open
cylindrical shell with radius R = 25m, length L = 50m and subtends an angle of 80◦. It is
supported with two rigid diaphragms at the ends and loaded by gravity f = [0,−90, 0]⊤. The shell’s
material is given as E = 4.32e8Pa, ν = 0 and thickness h = 0.25m. We obtain the maximum
vertical displacement u2 at the centre of the edge (averaged over the two sides) as 0.3018, closely
approximating the analytical u2 = 0.3024 [6].

5.2 Qualitative Results

We next present our simulation results. The experiments are performed with the values E =
5000Pa, ν = 0.25, h = 0.0012m for the linear isotropic material, and with parameters from Clyde
et al. [15] for the nonlinear orthotropic material. For the supplemental video, we extend the method
to visualise the deformation trajectory (i.e., transition from the reference to the equilibrium state).
Details on boundary conditions, external forces, and time-stepping can be found in Appendix D.

Napkin. We first consider a square napkin of length L = 1m, falling freely under the effect
of gravitational force. The napkin has a flat reference state in the xy-plane given by (2), and
the gravitational force field is applied along the negative y-axis, i.e., external force density f =
[0,−9.8ρ, 0]⊤. We specify a fixed boundary condition at the top left corner to constrain the napkin
movement. The meshes extracted from the trained NDF are visualised in Fig. 1-(center). Note
that apart from its realism, one can also query the simulation at arbitrary resolution in the case of
NeuralClothSim. Next, we perform another experiment with a napkin subject to gravity and dynamic
boundary condition, i.e., in which the corners move inwards. This leads to fold formation at the top,
as visualised in Fig. 4-(a) and in Fig. II for varying fabrics such as cotton and silk.

Sleeve. We also consider a cylindrical shell and perform sleeve compression and twisting. In both
cases, we consider the reference state (2) with L = 1m and R = 0.25m. See Figs. 4-(b) and 7-(b)
for visualisations. In the first case, we apply torsional motion on the sleeve, i.e., a total rotation of 3π

4
around the y-axis to both the top and bottom rims. The optimised NDF forms wrinkles at the centre
as expected [24]. In the second case, we compress the sleeve to produce the characteristic buckling
effect. There are no external forces here and the compression is entirely specified by boundary
conditions. We achieve a total displacement of 0.2m due to compression with the inward motion of
the top and bottom rims along the cylinder axis; see Fig. 4-(right). The demonstrated simulation is a
representative example of strain localisation, with noticeable diamond patterns of shell buckling.

5.3 Comparisons to Previous Methods

In this section, we compare NeuralClothSim to state-of-the-art FEM cloth simulators and physics-
informed neural networks for shell structures. We do not compare to other neural simulators [8, 51],
as they do not support simulating non-garment cloths, whereas ours is a general neural cloth simulator.

Cloth Simulators. Next, we validate the consistency of cloth simulations at different discretisations
of the reference state. We consider two scenarios: 1) A napkin with a fixed corner under gravity
simulated with our approach and DiffARCSim [38] (Fig. 6-left), and 2) a flag with two fixed corners
deforming under wind and gravity simulated with our approach and DiffCloth [36] (Fig. 6-right). In
both scenarios, we simulated ours and compared methods thrice, starting with a marginally perturbed
meshing of the same initial geometry resulting in different mesh discretisations. In the case of
NeuralClothSim, we learn the reference parameterisation by fitting an MLP x̄(ξ; Υ) for each initial
discretisation followed by NDF optimisation. We find that the simulated meshes extracted from NDF
are consistent for all discretisations. In contrast, for competing FEM-based methods, simulation is
sensitive to the discretisation; while multiple simulations with the same initial mesh produce identical
results, slightly different meshing generates inconsistent simulations. Theoretically, a well-defined
FEM-based cloth solver should lead to consistent simulation results under different discretisation at
high mesh resolutions. To investigate this, we perform an additional experiment where we increase
the resolution of the ARCSim simulation (10k vertices) so that the computation time roughly matches
ours. However, the results still contain noticeable inconsistencies (Fig. XIV-appendix), possibly
due to several operations that are highly discretisation-dependent [61] (such as the bending model
relying on the dihedral angles). In contrast, our method leads to consistent results already at much
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Figure 6: Simulation consistency. At different initial state discretisations, FEM-based simulators
lead to inconsisies with often differences in the folds or wrinkles. In contrast, ours overfits an MLP to
the reference mesh and encodes the surface evolution using another MLP (continuous neural fields).
lead to inconsistent results with often occurring differences in the folds or wrinkles.

coarser discretisations (400 vertices, Fig. 6).We next evaluate the memory efficiency for simulations
generated by NeuralClothSim, DiffARCSim and DiffCloth. The simulations are chosen to be of
similar complexity, and qualitative results are visualised in Fig. XIII-appendix. In Fig. XV-appendix,
we then plot the memory requirement as a function of spatial resolution. Memory is recorded for the
simulated mesh states for the compared methods and weights of the NDF network for ours. While the
memory requirement of finite-element-based methods grows linearly as the function of the number
of vertices in the simulated cloth, our approach requires a constant and comparably small memory
volume to store the quasistatic simulations. For better memory efficiency, existing simulators offer
adaptive refinement (such as ARCSim [45]) by re-meshing at each time step (coarse triangulation is
used at smooth regions, and fine meshes are used for wrinkles). However, this requires additional
computation and loss of important characteristics, such as differentiability. In contrast, our approach
is adaptive without the overhead and without losing correspondence and differentiability due to
re-meshing.

Figure 7: Comparison to Bastek et al.
on sleeve twisting. While the cylinder in
(a) twists without wrinkles, our result (b)
is correctly wrinkled, similar to [24].

PINNs for Shells. Bastek et al. [5] focus on engineering
scenarios, and we compare the solutions to the Scordelis-
Lo roof and a square plate in Tab. 1; both ours and theirs
closely match the reference solutions. Bastek et al. note
instabilities during training a neural network trained on a
point load, therefore, define the Gaussian force kernel in
their pinched hemisphere example. In contrast to theirs,
we propose a new loss function for point loads (see App. C)
addressing the pinched cylinder obstacle course. While
Bastek et al. show converged results on engineering ex-
amples, their method cannot capture the high-frequency
signal (folds and wrinkles) required for cloth simulation;
see Fig. 7 for an illustrative example. The main reasons
for their failure are 1) the linear strain and 2) that their acti-
vation function (GELU) can capture only smooth signals.

5.4 Ablation and Applications

Ablation. We evaluate the following ablated versions of our approach: 1) Contravariant coordinate
system for NDF components, 2) Using a linear approximation of the strains instead of our model, 3)

9



Variants of boundary constraint imposition and 4) Choice of activation functions for NDF. For the
latter two, we present the numerical results in Tab. 1. See Appendix E for further details.

Material-conditioning. NeuralClothSim can incorporate learnt priors: Our NDF can be directly
extended by making it dependent on the material properties, i.e., it can accept the material parameters
as an extra input. This is possible since the material parameter space is typically low-dimensional.
Once such NeuralClothSim modification is trained, we can edit the simulated geometry at test time,
as shown in Fig. 1-(bottom right). We provide implementation details of conditioning in Appendix F.

Simulation editing. For high-dimensional scene parameters such as reference pose and external
forces, we can edit simulations: The user can interrupt the training of NDF at any point, change the
parameters and continue the training. Moreover, editing can also be done after full convergence (aka
pre-training) and then fine-tuned with gradually modified design parameters. Editing an NDF has
multiple advantages over NDF training from scratch: It is computationally and memory efficient, and
provides access to interpolated simulations. We provide further details and results in Appendix F.

6 Discussion and Conclusion

NeuralClothSim closely matches reference values in challenging cloth deformation scenarios (e.g. the
Belytschko course), thanks to compact NDF representation governed by the non-linear Kirchhoff-
Love shell theory with (non-)linear orthotropic material. An extended NDF allows test-time interpola-
tion of material properties and simulation editing. In contrast to the previous mesh-based simulators,
NeuralClothSim enables querying continuous and consistent equilibrium cloth states. The shown
results are physically plausible in different scenarios under time-varying external forces and boundary
motions. We also see multiple avenues for future research, such as adding dynamic effects, i.e. inertia
and damping. Our simulator currently does not support contacts and friction necessary for many
applications beyond what is demonstrated here (cf. Appendix J on this standalone research problem).

In conclusion, we see NeuralClothSim as an exciting step towards neural-field-based continuous and
differentiable cloth simulation. Inverse problems in vision could benefit from its multi-resolution
consistency. While there is a long way until other functionalities such as collision handling are
unlocked, we believe it can pave the way towards a new generation of physics simulation engines.
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Table II: Notations. We omit separation of quantities in undeformed (overbar, e.g. x̄) and deformed
configurations. Moreover, we list the tensors with their covariant components but omit the contravari-
ant and mixed variant versions. Instead of subscripts (covariant components), they are represented
with superscripts or a mix of superscripts and subscripts.

Symbol Description Symbol Description

ξα ∈ Ω, ξ = (ξ1, ξ2) Curvilinear coordinates t ∈ [0, T ] Time
ξ3 ∈ [−h

2 ,
h
2 ], h ∈ R Thickness coordinate u̇ : Ω× [0, T ] → R3 Velocity

x : Ω → R3 Midsurface representation I : [0, T ] → R Initial distance function
aα : Ω → R3 Midsurface tangent vectors B : Ω → R Boundary condition
a3 : Ω → R3 Unit normal to midsurface FΘ : Ω → R3 Neural deformation field (NDF)
aαβ : Ω → R Metric tensor on midsurface ρ ∈ R Mass density
bαβ : Ω → R Curvature tensor on midsurface E ∈ R Young’s modulus
r : Ω× [−h

2 ,
h
2 ] → R3 Shell representation ν ∈ R Poisson’s ratio

gi : Ω× [−h
2 ,

h
2 ] → R3 Tangent base vectors on shell k11, k12, k22, G12 Infinitesimal strain parameters

gij : Ω× [−h
2 ,

h
2 ] → R Metric tensor on shell µji, αji, dj Nonlinear material response

f : Ω → R3 External force d1,d2 Warp/weft material directions
u : Ω → R3 Midsurface deformation Ẽαβ : Ω× [−h

2 ,
h
2 ] → R Orthotropic strain

ũ : Ω× [−h
2 ,

h
2 ] → R3 Shell deformation vα|β : Ω → R Covariant derivative

w : Ω → R3 Midsurface orientation change Γλ
αβ : Ω → R Christoffel symbol

φαβ : Ω → R Deformation gradients E : Ω → R Potential energy
Eij : Ω× [−h
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h
2 ] → R Green-Lagrange strain Ψ : Ω → R Hyperelastic strain energy

εαβ : Ω → R Membrane strain καβ : Ω → R Bending strain
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Sections referenced with numbers refer to the main matter. All referenced figures and equations are
per default from this document, unless they are followed by the “(main matter)” mark.

A Implementation Details

We implement NeuralClothSim in PyTorch [47] and compute the geometric quantities on the reference
shape and on the NDF using its tensor operations; the first and second-order derivatives are calculated
using automatic differentiation. Our network architecture for NDF is an MLP with sine activations
(SIREN) [53] with five hidden layers and 512 units in each layer. We empirically set SIREN’s
frequency parameter to ω0 = 30 for all experiments (we observed that choosing ω0 = 1 does not
permit folds). Although we sample from (ξ1, ξ2) ∈ Ω, t ∈ [0, T ], T = 1, we normalise samples to
(ξ1, ξ2, t) ∈ [0, 1]3 when feeding the input to MLP as per the initialisation principle of SIREN. Note
that all physical quantities are computed in the original domains Ω, [0, T ] and the gradients are tracked
in their scaled versions. For training, we use NΩ = 20×20 and Nt = 20. At test time, we sample
much higher for visualisation, usually with NΩ = 100×100 and Nt = 30. For material conditioning,
we use a single random material sample per training iteration. NeuralClothSim’s training time
amounts to ∼10 − 30 minutes for most experiments, and the number of training iterations equals
∼2000− 5000. We use ADAM [30] optimiser with a learning rate of 10−4 and run our simulator on
a single NVIDIA Quadro RTX 8000 GPU with 48 GB of global memory.

B Kirchhoff-Love Thin Shell Theory

In this section, we briefly review the Kirchhoff-Love thin shell theory following [14, 29]; detailed
treatment of the subject can be found in [3]. We already introduced physical and mathematical
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notations in Sec. 3-(main matter). A detailed list of notations can be found in Tab. II. We next
present concepts from the differential geometry of surfaces to explain the midsurface and director
(Appendix B.1). We then follow with the shell parameterisation and computation of strain measures
on and off the midsurface (Appendix B.2). Further, we present the hyperelastic material models
that relate the strains to the internal stress (Appendix B.3) and finally review the energy principles
for equilibrium deformation (Appendix B.4). Moreover, we provide a proof of the simplified strain
formulation in Appendix B.6 as well as additional results from tensor algebra that are relevant for the
computations (Appendix B.5).

B.1 Geometric Preliminaries

In Kirchhoff-Love shell theory, the shell midsurface completely determines the strain components
throughout the thickness. Therefore, we review those aspects of the differential geometry of surfaces
that are essential for understanding the shell theory.

Let us represent the midsurface as a 2D manifold in the 3D space, as shown in Fig. I. It can be
described by a smooth map, x : Ω ⊂ R2 → R3 on the parametric domain Ω. Any position x(ξ1, ξ2)
on the surface is uniquely identified using the convective curvilinear coordinates (ξ1, ξ2) ∈ Ω. As
positions can be specified using Cartesian coordinates x = xiei, it follows that the invertible maps
xi = xi(ξ

1, ξ2) and ξα = ξα(x1, x2, x3) exist. We define a local covariant basis to conveniently
express local quantities on the surface. Such a basis is constructed using aα, the set of two vectors
tangential to the curvilinear coordinate lines ξα:

aα := x,α. (8)

To measure the distortion of length and angles, we compute the covariant components of the symmetric
metric tensor (also known as the first fundamental form):

aαβ = aβα := aα · aβ . (9)

The corresponding contravariant components of the surface metric tensors denoted by aαλ can be
obtained using the following identity:

aαλaλβ = δαβ , (10)

where δαβ stands for the Kronecker delta. aαλ can be used to compute the contravariant basis defined
as aα · aβ = δαβ , as follows:

aα = aαλaλ. (11)

While the covariant base vector aα is tangent to the ξα line, the contravariant base vector aα is normal
to aβ when α ̸= β. Generally, aα and aα need not be unit vectors.

The shell director coincides with a3, the unit normal to the midsurface, and, therefore, computed as
the cross product of the tangent base vectors:

a3 :=
a1 × a2
|a1 × a2|

, a3 = a3. (12)

The second fundamental form—which measures the curvature of the midsurface—can be defined
with a3 as:

bαβ := −aα · a3,β = −aβ · a3,α = aα,β · a3. (13)

Finally, the surface area differential dΩ relates to the reference coordinates via the determinant of the
metric tensor:

dΩ =
√
a dξ1 dξ2, where

√
a := |a1 × a2|. (14)

B.2 Kirchhoff-Love Shell Kinematics

The Kirchhoff-Love model proposes a reduced kinematic parameterisation of a thin shell characterised
by a 2D midsurface and shell director. It relies on the Kirchhoff hypothesis, i.e., the director initially
perpendicular to the midsurface remains straight and normal, and the shell thickness h ∈ R does not
change with deformation; see Fig. I.
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Figure I: (a) Kirchhoff-Love thin shell. A thin shell can be kinematically described by the
midsurface (here: reference and deformed midsurfaces) and the director (here, ā3). Any material
point P on the midsurface is then parameterised with curvilinear coordinates (ξ1, ξ2), whereas a point
on the shell continuum requires an additional thickness coordinate ξ3. Geometric quantities on the
midsurface (off the midsurface or on the shell continuum) are coloured red (blue). (b) Contravariant
basis for midsurfaces in the reference configuration. While a local contravariant basis coincides
with the global Cartesian coordinate system for a planar reference shell, such a basis varies in
magnitude and direction across any circular section of the cylinder. Local basis relies on the surface
parameterisation, therefore the derived basis vectors need not be normalised (notice how ā1(ξ) scales
inversely with the radius).

The position vector r̄ of a material point in the reference configuration of the shell continuum can be
parametrised with curvilinear coordinates (ξ1, ξ2) and thickness coordinate ξ3 as:

r̄(ξ1, ξ2, ξ3) = x̄(ξ1, ξ2) + ξ3ā3(ξ
1, ξ2), s.t. − h

2
≤ ξ3 ≤ h

2
, (15)

where x̄(ξ1, ξ2) represents the midsurface.

The shell adopts a deformed configuration under the action of applied forces f . Analogously, the
deformed position vector r is represented as

r(ξ1, ξ2, ξ3) = x(ξ1, ξ2) + ξ3a3(ξ
1, ξ2), s.t. − h

2
≤ ξ3 ≤ h

2
, (16)

where the deformed director a3 coincides with the unit normal.

As a consequence, the overall deformation of the Kirchhoff-Love shell is fully described by the
displacement field u(ξ1, ξ2) of the midsurface, i.e.,

x(ξ1, ξ2) = x̄(ξ1, ξ2) + u(ξ1, ξ2). (17)

Analogous to the deformation field u := x − x̄ of the midsurface, we define w as the difference
vector of unit normals to the midsurface, i.e.,

w := a3 − ā3 = wλā
λ + w3ā

3 = wλāλ + w3ā3. (18)

Using this formulation, deformations on the shell continuum can be described by the field
ũ(ξ1, ξ2, ξ3) = u(ξ1, ξ2) + ξ3w(ξ1, ξ2). The difference vector w describes the change in the
orientation of the midsurface, enabling us to quantify bending. A simplified way to compute the
components wi of w is provided in (51).

The tangent base vectors at a point on the shell continuum are denoted by gi := r,i and expressed by
those of the midsurface as:

gα = aα + ξ3a3,α,

g3 = a3.
(19)
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Figure II: Material model. Simulation of stable equilibria of 1m× 1m napkin with corners held
60 cm apart. From left to right, we visualise linear isotropic, linear anisotropic St.Venant-Kirchhoff
(canvas), and non-linear anisotropic canvas, silk and cotton materials from Clyde et al. [15].

The corresponding covariant components of the metric tensor are then obtained using

gij := gi · gj . (20)

To measure strain, we use the symmetric Green-Lagrange strain tensor E = Eij ḡ
i ⊗ ḡj , since it

discards the rotational degrees of freedom from tangent base vector gi while retaining the stretch and
shear information. It is defined as the difference between the metric tensors on the deformed and
undeformed configurations of the shell, i.e.,

Eij :=
1

2
(gij − ḡij). (21)

Using (19) and (20), note that transverse shear strain measuring the shearing of the director vanishes
(Eα3 = 0) and the stretching of the director is identity, i.e., E33 = 1; hence, the strain simplifies to

Eαβ = εαβ + ξ3καβ , (22)

with membrane strain measuring the in-plane stretching defined as

εαβ :=
1

2
(aαβ − āαβ), (23)

and bending strain measuring the change in curvature defined as

καβ := b̄αβ − bαβ . (24)

B.3 Material Elasticity Model

Our NeuralClothSim is orthogonal to the research on material modelling and can, thus, be formulated
with many different elastic behaviours. We demonstrate results with a simple linear isotropic
model [14], and the data-driven anisotropic non-linear model from Clyde et al. [15], as well as the St
Venant-Kirchhoff variant of the Clyde’s model.

Linear Isotropic Material. Given the material Young’s modulus E, Poisson’s ratio ν, a linear
isotropic stress-strain relationship leads to hyperelastic strain energy density [52] of the form

Ψ =
1

2
(DHαβλδεαβελδ +BHαβλδκαβκλδ), (25)

where D is the in-plane stiffness and B is the bending stiffness computed as

D :=
Eh

1− ν2
and B :=

Eh3

12(1− ν2)
, (26)

and

Hαβλδ := νāαβ āλδ +
1

2
(1− ν)(āαλāβδ + āαδāβλ). (27)

Here, Ψ is the sum of the membrane strain energy density (the first term) and the bending strain
energy density (the second term).
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Non-linear Orthotropic Material. While the linear isotropic model is simple and sufficient to
demonstrate our NeuralClothSim formulation, a data-driven model with estimated fabric material
parameters can generate highly realistic cloth simulations. Therefore, we additionally demonstrate our
method with the non-linear anisotropic material model from Clyde et al. [15], and its simplification
to St. Venant-Kirchhoff model [4]. We show the simulation results with the material model with
varying materials, such as cotton and silk in Fig. II, and describe the model next.

Clyde et al. present an orthotropic constitutive model that accurately represents the anisotropy
introduced by the warp and weft structure of woven cloth. More concretely, they write the hyperelastic
strain energy density as Ψ(E,D,Φ) where E is the Green-Lagrange strain (21), D = [d1,d2,d3]
is the reference configuration warp/weft orthotropy (d1,d2) and normal (d3) directions, and Φ
being the fabric parameters. We follow the technique of [4] to determine the material directions
D. Orthotropy directions are computed as tangents to the midsurface with the warp direction d1

coinciding with the normalised covariant base vector, i.e.,

d1 =
ā1

∥ā1∥
,d3 = ā3, and d2 = d3 × d1. (28)

Next, the orthotropic components Ẽij of the strain are obtained by expressing E in the material basis,
with Ẽ = D⊤ED. Due to the Kirchhoff-Love kinematic assumptions, any stretches and shears in
the out-of-plane direction d3 vanish, i.e. Ẽi3 = Ẽ3i = 0. Finally, the Clyde model’s strain energy
density intuitively separates the distinct deformation modes and is defined as,

Ψ =
k11
2

η1(Ẽ
2
11) + k12η2(Ẽ11Ẽ22) +

k22
2

η3(Ẽ
2
22) +G12η4(Ẽ

2
12), (29)

where {k11, k12, k22, G12} describe the cloth’s infinitesimal (linear) strain behaviour, whereas the
function ηj describes the nonlinear response to larger strains with,

ηj(x) =

dj∑
i=1

µji

αji
((x+ 1)αji − 1). (30)

We obtain the values for material parameters Φ = {k11, k12, k22, G12, µji, αji, dj}
dj

i=1,j∈[1,...,4] from
[17] and model the silk, canvas and cotton fabrics. Additionally, we can arrive at the orthotropic
(linear) St. Venant-Kirchhoff model [4] by simply choosing ηj(x) = x for all j (see Fig. II).

When optimising the NDF, the non-linear response (30) gives unpredictable results for strains outside
the fitting dataset. For a reasonable strain extrapolation, we use quadratic Taylor expansion around
the closest valid strain, as proposed in [17] (see [34]-supplement for the derivatives). Towards this,
we leverage the strain cutoffs Ẽmin

αβ , and Ẽmax
αβ provided as part of the material dataset.

B.4 Equilibrium Deformation

Under the action of external forces and boundary conditions, a thin shell deforms and achieves an
equilibrium configuration. Its stable equilibrium state is characterised by the principle of minimum
potential energy, which is the sum of external potential energy owing to applied forces and internal
potential energy due to material elasticity.

While all the geometric quantities in (8)–(27) are defined at each material point (ξ1, ξ2) ∈ Ω, the
energy is integrated over the parametric domain Ω. Considering the total potential energy of the shell
E [u] is given by the sum of elastic potential energy Ψ and the potential energy due to the external
force density f , we obtain:

E [u] =
∫
Ω

Ψ dΩ−
∫
Ω

f · u dΩ. (31)

Next, the stable equilibrium deformation of the shell can be found by minimising the potential energy
functional subject to boundary constraints:

u∗ = argmin
u

E [u], subject to

u(ξ1, ξ2) = b(ξ1, ξ2) on ∂Ω.
(32)

The above definition of hyperelastic energy of the shell requires the displacement field u ∈ H2(Ω 7→
R3) that must necessarily have square-integrable first and second derivatives.
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B.5 Tensor Algebra

We provide additional results from tensor algebra [63]) that are relevant for strain computations on
shells (see Sec. B.6).

Based on the coordinate system for the tensor components, a tensor can be covariant (e.g., Aαβ),
contravariant (e.g., Aαβ) and may even have mixed character, i.e., partly contravariant and partly
covariant in different indices (e.g., Aβ

α). For computing φλ
β , and φλ

3 in (5)-(main matter), we use the
following rule from shell theory that transforms a covariant tensor to a mixed one:

Aα
β = Aβλā

λα,

Aα
3 = Aλ3ā

λα.
(33)

A tensor of n-th order has n indices. For example, vα is first-order, and Hβαλδ is fourth. For
computing the covariant derivatives of the first-order tensor uρ|α and the second-order tensor φαλ|β
in (5), we use the following rules:

vα|β = vα,β − vλΓ
λ
αβ , and

Aαβ |γ = Aαβ,γ −AλβΓ
λ
αγ −AαλΓ

λ
βγ ,

(34)

where Γλ
αβ is the Christoffel symbol given by

Γλ
αβ := āλ · āα,β . (35)

Some tensors arising in the kinematic description of Kirchhoff-Love thin shells are symmetric with
respect to indices α and β, i.e., Aαβ = Aβα. We exploit the symmetry for efficient computations of
the following tensors: aαβ , bαβ , εαβ , καβ , and Γλ

αβ .

In the case of linear elastic material, we also exploit the symmetry of fourth-order symmetric tensor
H:

Hαβλδ = Hβαλδ = Hβαδλ = Hαβδλ = Hλδαβ .

This property means that only six independent components (after applying symmetry) need to be
computed (i.e., H1111, H1112, H1122, H1212, H1222, and H2222).

B.6 Proof of Strain Computation

According to the Kirchhoff-Love theory, the Green-Lagrange strain associated with the deformation
of a thin shell is decomposed into the stretching and bending strains of the midsurface. One could
compute them using Eqs. (23) and (24), written in terms of the reference state x̄ and the deformed
state x of the midsurface. As an easier alternative, we directly evaluate strains with the NDF u
of the midsurface using (5)-(main matter). Next, we prove that the two formulations are identical
following [3]).
Lemma B.1 (Deformation gradient). Deformation gradient u,α can be written as u,α = φαλā

λ +
φα3ā

3 where the components of the gradients φαλ, φα3 are defined as

φαλ := uλ|α − b̄αλu3, and

φα3 := u3,α + b̄λαuλ.
(36)

Proof. Given deformation field u of the midsurface described in contravariant basis as u = uλā
λ +

u3ā
3 , we compute the deformation gradient as follows:

u,α = u|α = uλ|αāλ + uλā
λ|α + u3|αā3 + u3ā

3|α
= uλ|αāλ + uλb̄

λ
αā

3 + u3,αā
3 − u3b̄αλā

λ,
(37)

where we use the following identities from the shell theory [3] to arrive at the bottom part of the
previous equation:

ā3|α = ā3,α = −b̄αλā
λ = −b̄λαāλ,

āλ|α = b̄λαā
3.

(38)
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Finally, we rewrite them as

u,α = φαλā
λ + φα3ā

3. (39)

Theorem B.2 (Membrane strain). Membrane strain (quantifying/measuring in-plane stretching) can
be written as a function of the deformation gradient in the following form:

εαβ =
1

2
(φαβ + φβα + φαλφ

λ
β + φα3φβ3). (40)

Proof. We start with membrane strain given as the difference of metric tensors (first fundamental
form) (23):

εαβ :=
1

2
(aαβ − āαβ),

εαβ =
1

2
(aα · aβ − āα · āβ).

(41)

Substituting the tangent basis vectors aα

aα = x,α = x̄,α +u,α = āα + u,α (42)

gives us updated strain in terms of deformation u:

εαβ =
1

2
(āα · u,β + āβ · u,α + u,α ·u,β ). (43)

Assuming the following identities from Kirchhoff-Love shell hypothesis [3]:

āα · āβ = δβα, ā
3 = ā3, āα · ā3 = āα · ā3 = 0, ā3 · ā3 = 1, and

āαβ = āα · āβ , Aα
β = Aβλā

λα,
(44)

and considering the above lemma for the deformation gradient u,α, we finally obtain the target
formulation for strain:

εαβ =
1

2
(φαβ + φβα + φαλφ

λ
β + φα3φβ3). (45)

Theorem B.3 (Bending strain). Bending strain (measuring the change in curvature) can be written
as a function of the deformation gradient in the following form:

καβ ≈ −φα3|β − b̄λβφαλ + φλ
3 (φαλ|β +

1

2
b̄αβφλ3 − b̄βλφα3). (46)

Proof. The bending strain of the midsurface is defined as the difference of curvature tensors (second
fundamental form) in the reference and deformed configurations:

καβ := b̄αβ − bαβ
καβ = aα · a3,β − āα · ā3,β

(47)

Using (42) and (18), we rewrite strain using deformation gradients as:

καβ = (āα + u,α) · (ā3,β +w,β)− āα · ā3,β (48)

Further simplification and applying identity (38) leads to:

καβ = āα ·w,β + u,α ·w,β − b̄λβu,α · āλ (49)

Using Lemma B.1 for deformation gradients u,α and w,β , i.e, w,β = (wλ|β − b̄λβw3)ā
λ + (w3,β +

b̄λβwλ)ā
3 and with the shell identities of (44), we arrive at:

καβ = wα|β − b̄αβw3 − b̄λβφαλ + φλ
α(wλ|β − b̄λβw3)

+φα3(w3,β + b̄λβwλ)
(50)
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Figure III: Belytschko obstacle course: Visualisation of the deformation fields predicted by
our NeuralClothSim. From the left to the right: Square plate, Scordelis-Lo roof, pinched cylinder
with fixed boundary conditions and pinched cylinder with free boundary conditions. For the pinched
cylinder, the results are re-scaled versions with E = 30.

With the Kirchhoff-Love normal hypothesis and neglecting cubic terms, we can approximate the
components of w as the following:

w3 ≈ −1

2
wλw

λ= −1

2
φα3φ

α
3 ,

wα ≈ −φα3 + φλ
αφλ3.

(51)

First eliminating the component w3 and subsequently wα, we arrive at the target strain formulation:

καβ ≈ wα|β − b̄λβφαλ +
1

2
b̄αβwλw

λ + wλ|βφαλ + b̄λβwλφα3

καβ ≈ −φα3|β − b̄λβφαλ + φλ
3 (φαλ|β +

1

2
b̄αβφλ3 − b̄βλφα3).

(52)

C Belytschko Obstacle Course

In the following, we provide detailed information for reproducing the Belytschko obstacle course
experiments from Sec. 5.1-(main matter). We visualise the NDF along the direction of applied load
in Fig. III that closely matches the reference solutions [6].

C.1 Square Plate

In the first test case, we consider a simple bending problem of a flat square shell [14]. It is simply
supported at all edges and is subject to a uniform load. The plate has a side length of L = 100m and
a thickness h = 1m and, therefore, falls under the scope of Kirchhoff-Love thin shell theory. The
material parameters are given as E = 1e7Pa and ν = 0. We represent the reference geometry with
(2)-(main matter) and impose Dirichlet boundary constraints by constructing a distance function to the
plate edges. This is followed by training an NDF to solve for quasi-static displacement minimising the
total potential energy (31) subject to uniformly distributed external load f = [0, 0,−1]⊤. With the
simply supported constraints along the boundary defined by ∂Ω = {(ξ1, 0), (0, ξ2), (ξ1, L), (L, ξ2)},
we define NDF as follows:

u(ξ; Θ) = FΘ(ξ)B(ξ),
s.t. B(ξ) := ξ1ξ2(L− ξ1)(L− ξ2).

(53)

We train with the loss (7)-(main matter) for 2500 iterations and illustrate the solution in Fig. 5-(main
matter) where the displacement is scaled up by a factor of 50. The maximum displacement u3 at
the centre of the plate is found to be 0.487 after convergence and exactly matches the reference
solution [57]. Fig. III-(left) shows the obtained NDF along the z-axis for the square plate.

C.2 Scordelis-Lo Roof

The reference geometry of the Scordelis-Lo roof is given by the following parametric expression:
x̄(ξ) = [R cos(ξ1 + 50◦), R sin(ξ1 + 50◦), ξ2]⊤,

∀ξ1 ∈ [0, 80◦); ξ2 ∈ [0, L], with R = 25m, L = 50m, and h = 0.25m.
(54)
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Concerning the boundary conditions, the structure is supported with a rigid diaphragm along the
edges, i.e., ∂Ω = {(ξ1, 0), (ξ1, L)}. The material properties are set as E = 4.32e8Pa, ν = 0 and a
uniformly distributed load f = [0,−90, 0]⊤ is applied to it.

We optimise NDF under boundary conditions as follows:

u(ξ; Θ) = [FΘ1B(ξ),FΘ2B(ξ),FΘ3]
⊤,

s.t. B(ξ) := ξ2(L− ξ2).
(55)

Fig. III-(second on the left) visualises the computed NDF along the y-axis.

C.3 Pinched Cylinder

Pinched Cylinder. Finally, we consider the pinched cylinder problem, i.e., one of the most severe
tests for both inextensional bending modes and complex membrane states. As shown in Fig. 5-
(main matter), a cylindrical shell is pinched with two diametrically opposite unit loads applied
at the middle of the shell. We consider two cases: First, a shell with ends supported by rigid
diaphragms [6] (similar to Scordelis-Lo roof), and second, a cylinder with free ends [57]. We define
the cylinder geometry with (2)-(main matter), where R = 300m, L = 600m and the thickness
is set to h = 3m; the material properties are given as E = 3e6Pa, ν = 0.3. In contrast to the
previous test geometries, which required specifying only the Dirichlet boundary conditions, we
additionally account for the periodicity constraint along the circular cross-sections. To model this,
we define NDF as FΘ(cos ξ

1, sin ξ1, ξ2), instead of the default case FΘ(ξ
1, ξ2). A crucial challenge

of pinched cylinder test case is modelling load at singular points in the sample space. To achieve this,
we adapt the potential energy functional (31)-(main matter)—described previously for uniformly
distributed forces —to the point load setting, rewriting it as Epot[u] =

∫
Ω
Ψ dΩ−

∑
Ω0

f · u, where
Ω0 is the set of points of the load application. We apply point loads f ∈ {[0, 0, 1]⊤, [0, 0,−1]⊤} at
diametrically opposite points Ω0 = {(90◦, 300), (270◦, 300)}. In the case of distributed load, we
previously proposed computing external and hyperelastic strain energy at an identical set of stratified
samples in the parametric domain. We depart from this setting for point loads: At each training
iteration, we sample all points from Ω0 for external energy, whereas random stratified samples are
used for computing strain energy. To speed up the convergence, we set E = 30Pa instead of the
original value E = 3e6Pa; this simply scales the displacement field in the linear setting as shown
in [5]. As mentioned, the constrained cylinder is supported with a rigid diaphragm along the edges,
i.e., ∂Ω = {(ξ1, 0), (ξ1, L)}, therefore, we optimise NDF using

u(ξ; Θ) = [FΘ1B(ξ),FΘ2,FΘ3B(ξ)]⊤,
s.t. B(ξ) := ξ2(L− ξ2).

(56)

Next, we consider a pinched cylinder with free ends, i.e. ∂Ω = ∅. Without any boundary constraints,
the cylinder can move rigidly due to the applied force, and such rigid body motion should be factored
out. Therefore, to suppress it, we restrict the displacement of the point under the load in directions
other than the direction of the force vector. We achieve this by enforcing û1 = 0, û2 = 0 at load
points. The NDF parametrisation factoring out the rigid motion reads as:

u(ξ; Θ) = [FΘ1B1(ξ)B2(ξ),FΘ2B1(ξ)B2(ξ),FΘ3]
⊤,

s.t. B1(ξ) := 1− e−((ξ1−90◦)2+(ξ2−300)2)/σ, and

B2(ξ) := 1− e−((ξ1−270◦)2+(ξ2−300)2)/σ.

(57)

In both examples with the pinched cylinder, we monitor the displacements under the loading point. As
shown in Fig. 5-(main matter) and Tab. 1-(main matter), it qualitatively and quantitatively converges
to the reference solution. Fig. III-(second from the right, and the rightmost) shows the obtained NDFs
along the z-axis for the two cases of the pinched cylinder.

D Simulation Details

We first describe the extension of NeuralClothSim for visualising trajectory to equilibria. Then,
similar to the previous section, we provide boundary and loading conditions for all experiments here.
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D.1 Cloth Trajectory Visualisation

Figure IV: Napkin simulation upon convergence
under gravity with non-boundary constraints.

We next visualise the transition from the ref-
erence to the equilibrium state: We extend
the NDF (3) to u(ξ, t; Θ) modelling time-
dependent deformations, ∀t ∈ [0, T ], with T =
1. For a smooth and physically-plausible interpo-
lation from the initial state x̄(ξ) to the deformed
x(ξ, T ), we impose initial conditions and a tem-
poral regulariser.

Initial Cloth Configuration. If we optimise the
time-dependent NDF only with the potential
energy loss (7), the model finds the converged
equilibrium states of the underlying cloth model
∀t ∈ [0, T ]. To start from the initial undeformed cloth state, initial conditions leading to zero dis-
placement and velocity need to be explicitly incorporated. Hence, we use the function I(t) := t2 as
an additional multiplying factor in (3) leading to u(ξ, 0) = 0, and u̇(ξ, 0) = 0.

Temporal Smoothing. Without any temporal prior, the transition from the reference to the equilibrium
state will be too swift and not smooth. Therefore, we use an additional regularisation loss Lt(Θ) :=
|Ω|

NΩNt

∑NΩ

i=1

∑Nt

j=1
1
2ρ|u̇(ξi, tj ; Θ)|2 constraining the cloth velocity u̇. Specifically, the smooth

optimised trajectory u∗(ξ, t; Θ) is obtained with the final loss L+ Lt, where, similar to Lt(Θ), the
physics loss L(Θ) is now evaluated over the entire parametric-temporal domain. Additionally, for
some examples, such as sleeve compression/torsion, we drive changes in the deformation trajectory
by imposing time-varying Dirichlet boundary conditions. We note that the time-stepping is performed
purely for visualisation, and we do not model the simulation dynamics that would require taking into
account inertial and damping effects. For linear isotropic material, we set ρ = 0.144 kgm−2 and for
the non-linear orthotropic material from Clyde et al. [15].

D.2 Napkin

The force in this experiment is defined as f = [0,−9.8ρ, 0]⊤ and the boundary conditions read
∂Ω = {(0, 0), (0, L)}. The result of a napkin droop with a fixed corner is shown in Fig. 1-(main
matter). NDF in this experiment is parametrised as follows:

u(ξ, t; Θ) = FΘ(ξ, t)I(t)Btop_left_corner(ξ),

s.t. Btop_left_corner(ξ
1, ξ2) := 1− e−((ξ1)2+(ξ2−L)2)/σ.

(58)

The experimental result of a napkin droop with moving corners is shown in Fig. 3-(main matter).
The boundary condition read ∂Ω = {(0, L), (L,L)}. The NDF parametrisation in this scenario is as
follows:

u = FΘIBtop_leftBtop_right + (1− Btop_left)Bmotion − (1− Btop_right)Bmotion,

s.t. Btop_left(ξ
1, ξ2) := 1− e−((ξ1)2+(ξ2−L)2)/σ,

Btop_right(ξ
1, ξ2) := 1− e−((ξ1−L)2)+(ξ2−L)2)/σ, and

Bmotion(t) := [0.2t, 0, 0]T .

(59)

The experimental result for napkin droop with fixed edges is shown in Fig. VII. The boundary
conditions are defined as ∂Ω = {(ξ1, 0), (0, ξ2)},∀(ξ1, ξ2) ∈ [0, L]2 and the NDF parameterisation
reads

u = FΘIBleft_edgeBright_edge

s.t. Bleft_edge(ξ
1) := 1− e−(ξ1)2/σ, and

Bright_edge(ξ
2) := 1− e−(ξ2)2/σ.

(60)

24



D.3 Sleeve

In the experiment with a sleeve, no external force is exerted: f = [0, 0, 0]T . The boundary region is
defined by: ∂Ω = {(ξ1, 0), (ξ1, L)},∀ξ1 ∈ [0, 2π). The NDF is parametrised as follows:

u = FΘIBbottom_rimBtop_rim + (1− Bbottom_rim)Bmotion − (1− Btop_rim)Bmotion,

s.t. Bbottom_rim(ξ
2) := 1− e−(ξ2)2/σ,

Btop_rim(ξ
2) := 1− e−(ξ2−L)2/σ, and

Bmotion(t) := [0, 0.1t, 0]⊤.

(61)

Sleeve twist is achieved by introducing rotation displacement θ = 3π
4 . The NDF in this scenario is

parametrised as follows:

u = FΘI(1− Bbottom_rim)(1− Btop_rim)− Bbottom_rimBbottom_motion + Btop_rimBtop_motion,

s.t. Bbottom_rim(ξ
2) := e−(ξ2)2/σ,

Btop_rim(ξ
2) := e−(ξ2−L)2/σ,

Bbottom_motion(ξ
1, t) :=

R(cos(ξ1 − θt)− cos ξ1)
0

R(sin(ξ1 − θt)− sin ξ1)

 , and

Btop_motion(ξ
1, t) :=

R(cos(ξ1 + θt)− cos ξ1)
0

R(sin(ξ1 + θt)− sin ξ1)

 .

(62)

We demonstrate sleeve torsion in Fig. V-(left) and buckling in V-(right).

D.4 Skirt

See Fig. XIII for the experimental results with skirt. The reference skirt geometry is defined as:

x̄(ξ) = [r cos ξ1, ξ2, r sin ξ1]T , ∀ξ1 ∈ [0, 2π); ξ2 ∈ [0, L],

s.t. r(ξ2) :=
(Rtop −Rbottom)ξ

2

L
+Rbottom.

(63)

The skirt deform in this experiment under gravity, i.e., f = [0,−9.8ρ, 0]T ; the boundary region is
given by ∂Ω = {(ξ1, L)},∀ξ1 ∈ [0, 2π). NDF is parametrised as follows:

u = FΘI(1− Btop_rim),

s.t. Btop_rim(ξ
2) := e−(ξ2−L)2/σ.

(64)

The conditions for skirt twisting (angular displacement) are similar to those of the sleeve twist
(applied at the top rim) in Sec. D.3.

E Ablations

E.1 Activation Function

Experimental results for a sleeve twist with different activation functions in the NDF network are
shown in Fig. V. While ReLU lacks support for higher-order derivatives leading to artefacts, a
network with GELU activation can only represent low-frequency deformations. Our usage of sine
activation [53] overcomes these limitations and successfully represents fine folds.
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Figure V: Activations (left). Results of our method with different activation functions (ReLU, GELU
and Siren). Contravariant vs Cartesian basis (right). Prediction of NDF output in the Cartesian
coordinate system is well conditioned compared to the local contravariant coordinate system.

Figure VI: Ablation study for boundary conditions, with Dirichlet (top) and periodic (bottom)
boundary conditions.

E.2 NDF Coordinate System

Figure VII: Linear vs non-linear strain. We
demonstrate napkin drooping under a down-
ward force. Kirchhoff-Love strain is inher-
ently highly non-linear.

In the Kirchhoff-Love formulation, strain energy
computation is performed in the local contravariant
(or covariant) basis. This leaves us with an obvi-
ous choice of predicting covariant components of the
NDF in a locally varying contravariant basis (Fig. I-
(b)). Hence, (a) we predict NDF in a contravariant
basis and use it directly in strain calculation (ablated
version), and (b) we predict NDF in a global basis
and transform its components to a local basis before
strain calculation. The second case leverages the
knowledge of local basis (which is not guessed) and
leads to better convergence (Fig. V).

E.3 Non-linearity of Strains

In the small-strain regime, linearised kinematics is often employed. However, accurate simulation of
cloth quasistatics requires modelling of both rigid motion and non-linear deformation. Kirchhoff-
Love membrane and bending strains are non-linear functions of the displacement field and non-linear
strain calculation is decisive for obtaining realistic results. Thus, we evaluate the linear approximation
of Kirchhoff-Love strain by omitting the non-linear terms in (5)-(main matter). In Fig. VII, we show
that a linear approach leads to significant inaccuracies in modelling cloth bending under gravity.

E.4 Boundary Constraints

We perform ablations on the Dirichlet and periodic boundary conditions. We try a soft constraint
variation, in which we impose the boundary condition as a loss term in addition to the Kirchhoff-Love
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energy. This requires empirically determining the optimal loss weight, takes much longer to train and
does not guarantee satisfying boundary constraints, as shown in Fig. VI-(left). Our approach with
hard constraints avoids all these problems. In the second example, we simulate the compression of a
cylindrical sleeve as described in Appendix D.3. As seen in Fig. VI-(right), at ξ1 = π, cylinder (a:)
is disconnected if no constraint is specified; (b:) is connected with ξ1 7→ cos ξ1; (c:) fully models
continuity and differentiability forming folds with ξ1 7→ {cos ξ1, sin ξ1}.

F Applications

F.1 Material-conditioned NDFs

For simplicity, we choose the linear elastic materials, i.e. Φ := {ρ, h,E, ν}. Conditioning on Φ
allows us to adjust at test time mass density ρ, cloth thickness h, as well as the linear isotropic
elastic properties of the material, i.e., Young’s modulus E and the Poisson’s ratio ν. The updated
NDF—which is now a function of material as well—reads: u(ξ, t,Φ; Θ) = FΘ(ξ, t,Φ)I(t)B(ξ),
where Φ ∈ [Φmin,Φmax] is the continuous range of material parameters. At each training iteration,
we uniformly (at random) re-sample Φ to explore the entire material domain. At test time, novel
simulation can be generated with a single forward pass for any material Φ in the valid material range.
Unlike latent space conditioning in other fields and problems, the material space conditioning in
NeuralClothSim has a direct physical (semantic) interpretation.

As an example, we train an NDF conditioned on cloth thickness and Φ ∈ {ρ,E, ν} × [hmin, hmax]
with hmin = 0.0005m and hmax = 0.0025m. We visualise the simulated result for h =
{0.0005, 0.0015, 0.0025}, in Fig. 1-(bottom right).

F.2 NDF Editing

Figure VIII: Simulation editing with Neural-
ClothSim. We show an example of a simulation
pre-trained with a fixed reference state and external
force. Once converged, we fine-tune the NDF with
smoothly varying external force (top) or the pose
of the reference geometry (bottom) in each itera-
tion. Fine-tuning a pre-trained NDF with updated
design parameters is faster and offers querying of
physically-plausible intermediate simulations.

In movie and game production, a 3D artist’s
workflow includes updating design parameters,
which requires multiple repeated simulations
from scratch. Such scene parameters include
reference state geometry, external forces, and
material properties. Material parameters typi-
cally constitute a low-dimensional space, so we
propose to condition the NDF on material prop-
erties. However, other inputs such as shape and
pose of reference state, as well as external force,
are high-dimensional. Instead of learning sim-
ulations over the entire scene space, we offer
simulation editing the following way: the user
can interrupt the training of NDF at any point,
change the scene parameters and continue train-
ing for successive improvement. On the other
hand, editing can also be done after full con-
vergence (aka pre-training) and then fine-tuned
with gradually modified design parameters. Edit-
ing an NDF provides multiple advantages over
training a new NDF from scratch: It is computa-
tionally and memory efficient and allows access
to interpolated simulations.

In the following, we demonstrate editing of the following scene parameters: (a) external force, and
(b) reference state geometry. The key idea is to use the modified scene parameters in the loss function
and update the NDF weights with gradient-based optimisation. Specifically, given a cloth geometry
x̄, external forces f , we train an NDF to obtain a simulation u∗ parameterised by network weights
Θ∗, as described in the main method. As an editing objective, we would like to arrive at a novel
simulation corresponding to external force f I and/or reference geometry x̄I with I ∈ N training
iterations. Here, I is much smaller than the iterations needed for the convergence of the original
simulation. We can then fine-tune the pre-trained NDF over iterations i ∈ {0, ..., I} by minimising
the loss function, L(Θ; f i, x̄i) to obtain edited and interpolated simulations ui,Θi. Here, we assume
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Figure IX: Runtime analysis of NeuralClothSim. On the left, we visualise the evolution of the
last frame (T = 1) over the training iterations. On the right, the plot shows NDF convergence as a
function of training time leading to refined simulations.

a smooth transition of external force or the reference shape from the initial to the edited value, which
can be obtained, for example, by linear interpolation, i.e., f i = lerp(f , f I , i

I ).

We next demonstrate results for dynamic editing of the pre-trained simulations. We conduct two
experiments, i.e., editing external forces and editing the 6DoF pose of the reference geometry; the
results are visualised in Fig. VIII. First, a short simulation of a napkin is pre-trained as an NDF
with a fixed reference state and external force, which takes ≈12 minutes. In the first example (top
row), we gradually vary the direction and magnitude of the external force by linearly interpolating
between the original and the final forces. This leads to the motion of cloth towards the instantaneous
force direction. In the second example (bottom row), we smoothly vary the reference poses and
the corresponding position of the handles, generating novel edited simulations. Editing reference
pose leads to the motion of the cloth towards a fixed force direction but originates from varying
initial poses. Note how the change in the input scene parameters propagates to the entire simulation.
Notably, fine-tuning is much faster and takes ≈2 minutes, leading to a time-saving of ≈83%. We
show two intermediate simulations in Fig. VIII, and other edited simulations corresponding to each
iteration can be queried as well. As the simulation is parameterised by the weights of a neural network
(instead of meshes), our proposed way of simulation editing is memory-efficient.

G Performance

Figure X: Analysis of the sampling strategies.
We show the influence of the number of training
points on the performance of our method.

The performance of a cloth simulator—such as
computation time—is a crucial aspect of its us-
ability. This work focuses on the fundamen-
tal challenges of developing an implicit neu-
ral quasistatic simulator with new characteris-
tics. Our method does not outperform the clas-
sical simulators in all aspects as they are well-
engineered and highly optimised. Next, we pro-
vide a detailed analysis of NeuralClothSim’s
performance.

G.1 Runtime

NeuralClothSim encodes the cloth equilibrium
state as an NDF, and, consequently, the bulk of
computation time lies in the NDF training (i.e.,
optimisation of the network weights). At inference, extracting the simulated states from NDF as
meshes or point clouds requires a single forward pass and is, therefore, fast. In Fig. IX, we provide
a runtime analysis of three representative simulations as a function of training time. On the left,
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we visualise the evolution of the last frame (i.e., equilibria state), showing the refinement of the
simulated state with increased training time. Before training, the simulation state is the sum of
the reference state and random noisy output from NDF. Within a few minutes of training, NDF
generates a reasonable simulated state, which then converges within 30 minutes to one hour; see our
supplementary video for the evolution of simulation states over training iterations. On the top-right of
Fig. IX, we plot loss values as a function of training time, which shows that our training is stable. As
NeuralClothSim is an instance of a physics-informed neural network with a physics loss only (but no
data term), the loss is not expected to converge to zero. We monitor the mean NDF over all sampled
spatio-temporal points (Fig. IX-(bottom right)) as an additional cue on the simulation refinement.
Along with the loss, saturation in mean NDF can be used as a stopping criterion. Note that all our
experiments are carried out on a single NVIDIA Quadro RTX 8000 GPU.

Similar to classical methods [13], simulation with our approach is not unique, as bifurcation due
to buckling can lead to solutions with different folds and wrinkles. Among them, the selection of
the simulation outcome depends on the NDF convergence. Specifically, the randomness in training
samples and weight initialisation introduces desirable optimisation path variations. In all cases, we
observe NDF training to be numerically stable.

G.2 Sampling Strategy

Figure XI: NDF weight initialisation allows us to
control the simulation outcome. We can generate
multiple valid equilibrium solutions or reproduce
a simulation.

Next, we study the influence of the number
of training points on the performance of our
method. Input samples to NDF include curvilin-
ear NΩ and temporal stratified Nt coordinates
(for trajectory visualisation) over which the loss
is computed at each training iteration. For a nap-
kin of size Ω = [0, 1]2, we simulate for t ∈ [0, 1]
by training NDF for 10k iterations with num-
ber of sampling points NΩ ∈ {5, 10, 15, 20, 25}.
Computation times for all experiments are com-
parable (and slightly higher for the higher num-
ber of samples) as they share the GPU memory
and are processed in parallel. Fig. X shows the
qualitative and quantitative performance. We
observe that higher NΩ leads to faster learning,
as seen in the qualitative result in the top row
and the mean displacement plot in the bottom
row. Furthermore, it leads to stable optimisation, as seen in the loss plot. Future work could explore
advanced sampling techniques for improved performance.

G.3 Simulation Reproducibility

Next, we investigate whether NeuralClothSim simulations are deterministic. Cloth simulation does
not have a single ground truth; rather, it can have multiple equilibria solutions under the same input
parameters (template, material, and boundary conditions). While FEM-based cloth simulators are
designed to be deterministic, in practice, there are several factors—such as numerical precision and
parallel computing—that can lead to slight variations in the simulation results between runs. We note
that a mesh-based simulator running the same simulation scenario on different machines generates
non-identical results (but reproducible ones on the same machine). Interestingly, we can replicate
such behaviour by employing the sensitivity of our method to the initialisation of the neural network
weights. We conducted two experiments leading to the following observations: 1) We can obtain
reproducible results if we set the random seed leading to the same network initialisation (Fig. XI-
(left)), and 2) We observe non-identical results if we do not set the random seed (Fig. XI-(right)).

H Additional Comparisons

NeuralClothSim is the first step towards neural implicit cloth quasistatics. Although less mature
compared to FEM-based simulators, it offers several desired characteristics; See Table III for a
comparison between existing cloth simulators and our approach.
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Figure XII: Runtime comparison of DiffARCSim [38] and our approach. Like most classical
simulators, DiffARCSim integrates forward in time, solving for a 3D deformation field at each
time step, in contrast to our approach which optimises for the 4D spatio-temporal NDF. With
decreasing computational budget, DiffARCSim produces converged simulated states of the cloth at
low resolutions or only early frames at high resolutions. On the other hand, NeuralClothSim offers
partially converged simulations at arbitrary resolutions as the computational budget decreases.

Table III: Conceptual comparison of our NeuralClothSim to previous state-of-the-art cloth
simulators. Our approach enables highly desired properties such as surface continuity, and consistent
simulations (folds/wrinkles) at different discretisations of the initial mesh, material conditioning and
simulation editing for updated parameters.

Continuous Consistency Sim. Editing Mat. Interpolation

Narain et al. [45] ✗ ✗ ✗ ✗
Liang et al. [38] ✗ ✗ ✗ ✗
Li et al. [36] ✗ ✗ ✗ ✗
Zhang et al. [67] ✗ ✓ ✓ ✗
Ours ✓ ✓ ✓ ✓
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Figure XIII: Spatial and temporal surface consistency of state-of-the-art differentiable simula-
tors and our approach. Classical simulators such as ARCSim [38] and DiffCloth [36] reproduce
simulation outcomes when re-running at the same resolution. However, changing spatio-temporal
resolution requires multiple runs and generates possibly different folds or wrinkles instead of re-
fining (or previewing) the geometry. Since we learn a continuous neural parameterised model, a
converged (or partially converged) NDF provides consistent simulation when queried at different
spatio-temporal inputs. Note that NeuralClothSim does not provide consistent refinement as a func-
tion of computation time (no speed vs fidelity trade-off), but rather consistent simulation with respect
to the spatio-temporal sampling (at a given computational budget).

H.1 Runtime

Figure XIV: Visualisation of the inconsisten-
cies observed in the results by FEM-based ARC-
Sim [45], even at high resolutions. Our method
leads to consistent results for much coarser dis-
cretisations (Fig. 6-main).

We compare the runtime of our method to
those of the FEM-based simulator DiffARC-
Sim [38, 45]. Since our approach does not
support collisions, we turn off collision han-
dling in DiffARCSim due to the computational
overheads for a fair comparison. We simu-
late a napkin sequence, and our quasistatic re-
sult and the dynamic simulated state (after 1 s)
from DiffARCSim are visualised in Fig. XII.
For the same computation budget (runtime), we
show the best simulated states for both methods.
Therefore, we present two sets of results for Dif-
fARCSim, i.e., simulated states for the given
computational budget 1) with maximum mesh
resolution (Fig. XII-(top row)) and 2) with fixed
mesh resolution (Fig. XII-(middle row)). We
notice that both methods refine the simulated
states with increased runtime. With a decreasing computational budget, DiffARCSim produces
converged simulated states of the cloth at low resolutions or only early frames at high resolutions. On
the other hand, NeuralClothSim offers partially converged simulations at arbitrary resolutions as the
runtime decreases.

H.2 Multi-Resolution Consistency

Next, we show the comparison of NeuralClothSim to DiffARCSim, and DiffCloth [36] in terms of the
multi-resolution simulation consistency. We simulate 1) a napkin with a fixed corner under gravity,
with our approach and ARCsim (Fig. XIII, top two rows) and 2) a twisting and twirling motion of the
skirt with our approach and DiffCloth (Fig. XIII, two bottom rows). The compared simulators operate
on meshes of pre-defined resolution (as provided initially). Hence, they need to run from scratch for
different mesh resolutions, and the simulation outcome are not guaranteed to be the same across these
runs under different discretisations. Thus, increasing (or decreasing) spatial resolution can result in
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Figure XVI: Limitations. Our approach does not handle collisions, contacts and frictions at the
moment, since the focus of this work is on the fundamental challenges of developing a neural
cloth simulator. These examples show inaccuracies due to the simplifications made in one possible
extension (65).

different folds or wrinkles instead of refining simulations at coarser resolutions. Unlike DiffARCSim
and DiffCloth, our method provides consistent simulation at arbitrary resolutions. The same 3D
points remain unaltered in meshes extracted from NDF at different resolutions. We emphasise that we
do not claim consistent refinement as a function of runtime but rather a consistent equilibrium state
with respect to spatial sampling (at a given computational budget). This means that both converged
or partially converged NDF provide consistent quasistatics when queried at different spatial inputs.

Figure XV: Memory efficiency. We plot the
memory requirements for simulations gener-
ated by ours and DiffARCSim [38], and Dif-
fCloth [36]. The simulations are chosen to
be of similar complexity and are visualised in
Fig. XIII. The constant memory requirement
of our approach is due to the compressing
property of the MLP weights that encode the
simulations.

Our comparison deviates from the literature, as the
primary reason for using different spatio-temporal
resolutions is to adjust runtime and memory usage.
For example, the recent method of [67] produces
artefact-free previewing geometries (at various ap-
proximation levels) by biasing their solutions with
shell forces and energies evaluated on the finest-level
model. This approach offers a trade-off between
runtime vs resolution while maintaining simulation
consistency. In contrast, with NeuralClothSim, sim-
ulation is consistent at arbitrary resolutions at any
moment during the NDF training, which, we believe,
is still beneficial for many downstream tasks. Of
course, ARCSim and DiffCloth also support very
high resolutions, which eventually enables browsing
the simulations at different mesh resolutions (while
maintaining mesh consistency across the levels); how-
ever, at the cost of high memory consumption. More-
over, in their case, methods for inverse problems that
estimate the simulation parameters from simulated
states cannot use adaptive, e.g., coarse-to-fine and
importance sampling. In contrast, our continuous
formulation offers clear advantages in this regard.

I Collision

In a preliminary experiment, we model collisions with external objects following earlier neural
methods [51, 8], i.e., we define an additional loss term Lcollision(Θ) that penalises collisions, leading

32



to:

L = Lphysics(Θ) + λLcollision(Θ), with

Lcollision(Θ) =
|Ω|

NΩNt

NΩ∑
i=1

Nt∑
j=1

max(ϵ− SDF(x(ξi, tj ; Θ)), 0),
(65)

where SDF(x) is the signed distance to the object, ϵ is a small safety margin between cloth and object
to ensure robustness, λ is the weight for the collision term, and Lphysics(Θ) is our main thin-shell
loss in Eq. (7)-(main matter). We set λ = 1000, ϵ = 0.001, and use a pre-trained SDF network
encoding signed distance function. Specifically, we employ the method of Sitzmann et al. [53] to fit
an SDF network on an oriented point cloud, where an Eikonal regularisation is used in addition to
the SDF and normal loss. Fig. XVI-(left) visualises a simulation result for a piece of cloth falling
on the Stanford bunny; see our supplementary video for the full simulation. We observe that the
cloth coarsely respects the object contours, although constraints in Eq. (65) are soft and do not
guarantee physically realistic deformations. Difficulties in training PINN with multiple loss terms
were previously reported in the literature [25] and future research is necessary to further investigate
collision handling in the context of NDFs.

J Extended Discussion and Limitations

This article addresses the fundamental challenges of cloth simulation with NDFs. All in all, we
find the proposed design and the obtained experimental results very encouraging and see multiple
avenues for future research. Our current quasistatic approach is the first step towards implicit neural
simulation. It would be a promising direction to add dynamic effects such as inertia and damping in
this setting. Moreover, our simulator does not handle contacts, friction and collisions which will be
necessary for many potential applications beyond those demonstrated in this article. This is, however,
a standalone research question in the new context. Several limitations of NeuralClothSim originate
from NDF modelling as a single MLP: First, MLP weights have a global effect on the simulation,
whereas the movement of mesh vertices affects only the local neighbourhood. While this global nature
offers continuity and differentiability, we believe exploring alternative network parameterisations
that bring the best of both representations could bring improvements in future. Second, our results
are currently empirical: While we observe expected results in all our experiments, there are no
convergence guarantees or upper bounds on accuracy. Finally, periodic boundary conditions aid
mainly with simple geometries; the extension to more complex garments needs further exploration.
Future work could also explore modelling different types of human clothing with the help of the
proposed implicit neural framework.

Summa summarum, NeuralClothSim is the first step towards neural implicit cloth simulation, which
we believe can become a powerful addition to the class of cloth simulators. Inverse problems in
vision and graphics could also benefit from its consistency (e.g., multi-resolution data generation),
and adaptivity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We mention the claims clearly in the abstract and introduction. We support the
claims with theory and sufficient results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We state the out-of-scope items at the end of the introduction; we discuss the
limitations in ‘Discussion and Conclusion’ section. Further, we provide additional material
in the Appendix, which evaluates the current limitations and computational efficiency and
discusses directions for future research.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We do not have new theoretical results. However, we employ theories from the
mechanics and engineering community, which we now bring into the world of the neural
fields. For these, we provide sufficient theoretical background and proofs of theorems
(please see supplemental) and refer to the appropriate sources.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper should be fully reproducible, as the architecture and the experiments
are fully described. We do not contribute any dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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