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Abstract

While large transformer models excel in predictive performance, their lack of
interpretability restricts their usefulness in high-stakes domains. To remedy this,
we propose the Generalized Induction-Head Model (GIM), an interpretable model
for next-token prediction inspired by the observation of “induction heads” in
LLMs. GIM is a retrieval-based module that identifies similar sequences in
the input context by combining exact n-gram matching and fuzzy matching
based on a neural similarity metric. We evaluate GIM in two settings: lan-
guage modeling and fMRI response prediction. In language modeling, GIM
improves next-token prediction by up to 25%p over interpretable baselines, sig-
nificantly narrowing the gap with black-box LLMs. In an fMRI setting, GIM
improves neural response prediction by 20% and offers insight into the lan-
guage selectivity of the brain. GIM represents a significant step toward unit-
ing interpretability and performance across domains. The code is available at
https://github.com/ejkim47/generalized-induction-head.

1 Introduction

While modern transformer models have achieved impressive performance across a wide array of
next-token prediction tasks [1–3], these models remain black-boxes, limiting their use in real-world
applications. Their opacity is detrimental in fields such as neuroscience [4] and social science [5],
where trustworthy interpretation, specifically, token-level attribution that traces outputs back to input
data, is often the end goal. Their lack of transparency also hinders adoption in high-stakes applications
such as medicine [6], raising concerns around regulatory compliance, safety, and alignment [7–10].

As an alternative to these black-box models, interpretable models have been proposed for various
tasks [11–13], but they continue to struggle on the task of next-token prediction. For example, in
next-token prediction for natural language, the state-of-the-art interpretable model is Infini-gram [14],
which trails GPT-2 by 30%p on the BabyLM dataset (see Table 1). Our analysis suggests that this
performance gap stems from Infini-gram’s inability to adapt to novel contexts or handle minor input
variations such as typos and rephrasings.
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We address this gap by proposing the Generalized Induction-Head Model (GIM). GIM is inspired by
the observation of “induction heads” in LLMs [15, 16] that support in-context learning by detecting
and extending patterns in prior input. In pre-trained LLMs, this behavior arises implicitly and is
inferred through post-hoc approximations over dense internal states. In contrast, GIM is not a post-hoc
tool for interpreting opaque systems, but an inherently interpretable system that explicitly models
this behavior in a transparent and auditable manner.

GIM is an interpretable retrieval-based framework that operates entirely within the model’s input
context to retrieve suggestions for next-token completion. It extends traditional exact matching by
incorporating a lightweight fuzzy similarity function to match sequences that yield similar next-token
distributions. Importantly, this neural component is used solely for scoring similarity between input
phrases rather than generating outputs. The final next-token prediction is computed as a similarity-
weighted distribution over tokens that follow the matched phrases, enabling each prediction to be
directly attributed to specific input sequences, supporting full interpretability and human auditability.
GIM is designed as a standalone, model-agnostic module that supports both exact and fuzzy matching
and can be integrated across modalities.

We first evaluate the performance and interpretability of GIM in next-token prediction for language
modeling. We integrate GIM into Infini-gram, and GIM improves next-token prediction accuracy by
25%p over Infini-gram using OpenWebText [17] as a reference corpus, significantly narrowing the
performance gap with GPT-2 (see Table 1).

Second, we focus on a single, real-world neuroscience problem, deviating from a typical machine-
learning conference paper. Grounding in a neuroscience context allows us to avoid common pitfalls
in evaluating interpretation methods [18, 19] that seek to test “interpretability” in the abstract. We
find that when used to predict fMRI responses to language stimuli, GIM yields a 20% improvement
over the state-of-the-art interpretable model (see Table 2), and its transparency enables the attribution
of predicted neural responses in each region across the cortex to specific linguistic features.

Taken together, these results challenge the assumption that interpretability and predictive performance
are fundamentally at odds, showing that reverse-engineered neural components can be leveraged to
enhance transparency. Importantly, our aim is not to claim parity with black-box LLMs, but to show
that meaningful gains in predictive performance can be achieved without compromising transparency.

2 Related Work

N-gram language models Early language modeling techniques revolved around n-gram models [20,
21], which generally stored next-token probabilities in large tables learned from data [22]. While
largely surpassed by neural LLMs, recent works have continued to improve n-gram LMs, e.g., by
scaling up the n-gram reference data [23] and improving the n-gram probability representations
using suffix arrays and suffix trees [24–26]. This line of work culminated in Infini-gram [14], which
efficiently scales n-gram models to massive datasets and is the starting point for our work.

Bridging interpretable models and LLMs Some works have studied bridging n-gram models
and LLMs. For example, Khandelwal et al. [27] interpolated neural LMs with an n-gram model and
Li et al. [28] trained a neural model to complement an n-gram model. Other approaches augment
black-box LMs with nonparametric components, such as k-nearest neighbors [27, 29]. While
these methods improve performance, they lack transparency in prediction behavior and token-level
attribution.

Interpretable models have been proposed for simplified settings such as text classification. Some
offer fully interpretable decision processes [30–32], while others offer partial interpretability by
approximating model behavior with natural language concepts [33–37]. However, these approaches
are not designed for open-ended generation.

In parallel, there has been a recent surge of interest in mechanistic interpretability, which seeks to
understand what mechanisms are learned by transformer-based LLMs [38–41]. This line of work
identified induction heads in toy LLM models [15] as well as large-scale pre-trained LLMs [42, 16].
Despite these efforts, frameworks to make these findings useful in real settings remain underexplored.
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Figure 1: Performance on the BabyLM dataset with Infini-gram built from various reference datasets.
(a) Next-token prediction accuracy by effective n, with the dashed line indicating the average. (b)
The histogram of the count for each effective n.

Natural language representations in fMRI In recent years, predicting brain responses to natural
language using LLM representations has become common in the field of language neuroscience [43–
47]. Predictive “encoding models” have been used to explore the relative contributions of syntax,
semantics, and discourse to neural activity [48–55] and to study the cortical organization of language
timescales [56, 57], sometimes making use of LLMs to help annotate and generate stimuli [58–
61]. However, these models largely operate as black boxes. While they reveal which language
representations best predict neural activity, they offer limited insight into where in the cortex these
features exert their influence or when in the linguistic stimulus they become relevant.

Separately, behavioral studies have examined how humans recall and process repeated text [62–65]
and how similar recall patterns emerge in LLMs [66, 67]. Yet the cortical mechanisms involved in
contextual recall remain unclear, motivating our investigation through interpretable modeling.

3 Methods

We begin by discussing Infini-gram, the scalable n-gram method for interpretable next-token predic-
tion (Sec. 3.1), and introduce the Generalized Induction-Head Model (GIM) (Sec. 3.2). In describing
the method, we focus on the familiar scenario of next-token prediction for language modeling, but
note that the method straightforwardly generalizes to generic next-token prediction tasks (e.g., fMRI
responses, time series, video frames). We later show how GIM improves interpretable next-token
prediction by integrating it with Infini-gram for language modeling (Sec. 4) and combining it with
linear regression for fMRI response prediction (Sec. 5).

3.1 Preliminaries and Motivation: Infini-gram

Given an input text sequence, Infini-gram [14] searches a reference corpus for the longest exact suffix
match to the input, then calculates the next-token distribution based on the token following each
of the matches. This search is made efficient by building large-scale suffix arrays that can scale to
trillions of reference tokens. The length of the longest match is referred to as the effective n, with the
accuracy of the estimated probabilities increasing as the effective n becomes larger.

Infini-gram is limited by its reliance on exact matches, which becomes problematic under distribution
shifts between the input and reference corpus. For instance, when evaluating on the BabyLM3 [68]
test set, Infini-gram built on larger corpora, such as OpenWebText [17], shows lower performance and,
on average, has fewer instances of higher effective n compared to the model built on the BabyLM
(Fig. 1). With far larger corpora like Pile-train [69], Infini-gram is able to increase the number of
instances with a high effective n, resulting in improved performance. However, Infini-gram built on
BabyLM, which contains only 0.005% of the tokens found in Pile-train, still achieves the highest
performance. This highlights the difficulty Infini-gram faces when there is a substantial gap between
the reference corpus and the input prompt, making it hard to find matching cases with a large effective
n. We address this limitation with the concept of the induction head.

3https://babylm.github.io/
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Figure 2: (a) Overview of training Fuzzy Matching Model via distillation from a pretrained LLM. (b)
Calculation of sequence similarity within the input prompt for next-token prediction.

3.2 Building a Generalized Induction Head

LLMs excel at in-context learning by capturing the statistical distribution of tokens in a given context.
One key mechanism enabling this capability is the induction head, a critical component in LLMs
responsible for recognizing and extending repeated sequences [15, 16, 42]. Induction heads operate
by detecting prior occurrences of a token sequence and leveraging this recurrence for next-token
prediction (e.g., given [A][B] ... [A], the model predicts [B]). However, these heads emerge implicitly
within LLMs, making their operation difficult to interpret and control.

To this end, we introduce the Generalized Induction-Head Model (GIM) that explicitly models this
behavior in a structured, interpretable manner. It functions like Infini-gram but is restricted to the
input context. GIM treats the end of the context as a query, searches for the best match within the
context and takes the token following the match as the next-token prediction.

What constitutes a “good match”? When identifying n-gram-level matches in context, exact
matching can perform well if a high effective n is guaranteed (Sec. 3.1), but it can be overly restrictive
to minor changes such as rephrasings or typos. To remedy this, we allow for fuzzy n-gram matching,
which makes the model more robust to minor changes. Since the fuzzy matching is performed at the
level of n-grams, predictions remain interpretable and auditable by a human.

Fuzzy matching requires appropriately computing the similarity between sequences. While similarity
can be defined in many ways, in building an induction head, we desire two sequences to be similar if
they yield similar next-token distributions. To quantify this, we define the similarity between two
sequences, x1 and x2, for fuzzy matching using Jensen–Shannon divergence (JSD):

s(x1, x2) = exp (−JSD (Pnext(x1), Pnext(x2))) , (1)

where Pnext(·) is the estimated next-token probability distribution for a given sequence.

Computing s efficiently One approach for computing s would be to use a pre-trained LLM to
obtain Pnext, but this can be computationally expensive. Instead, we develop a small Fuzzy Matching
Model, which consists of a few transformer layers and is trained via knowledge distillation from
existing LLMs. This model is designed to output feature embeddings that facilitate the calculation of
next token probabilities for similarity assessments. With the Fuzzy Matching Model, the similarity
between x1 and x2, whose feature embeddings from the model are e1 and e2, is obtained as follows:

sFM(x1, x2) = exp (− (1− CosSim (e1, e2)) /T ) , (2)

where T is a temperature, which is set to 0.1. The Fuzzy Matching Model is trained with a combination
of Cross Entropy (CE) loss and reverse Kullback-Leibler divergence (KLD) loss (Fig. 2(a)). In each
training batch, we generate similarity pairs from randomly sampled sequences. The CE loss aids
in identifying the most similar pairs. The reverse KLD loss guides the model to follow the overall
similarity distribution, ensuring that close pairs receive high scores while distant pairs receive low
scores. Further details can be found in Appendix A.2.

Predicting the next token Given the similarity scoring function sFM, we construct an induction
head that yields the predicted next-token probability distribution P (fuzzy)

induction given an input sequence
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Figure 3: Overview of the GIM pipeline. GIM predicts the next token by efficiently searching for
potential next-token completions in the input context with either exact or fuzzy matching.

x. To achieve this, we identify matches for the end of x, w:i−1, using a sliding window of size k
(Fig. 2(b)). We then count the occurrence of each token wi in the vocabulary set V following these
matches and normalize to obtain the next-token probability:

P (fuzzy)
induction(w:i−1wi|x) =

cfuzzy(wi−k−1:i−1wi|x)∑
wj∈V cfuzzy(wi−k−1:i−1wj |x)

, (3)

where cfuzzy(wi−k−1:i−1wi|x) =
∑

wj−k−1:j⊂x

1wj=wisFM (wj−k−1:j−1, wi−k−1:i−1). (4)

This similarity score serves as a floating count for the next token. In cases where the sequences
x1 and x2 are exactly matched, as in the case of Infini-gram, we have sFM(x1, x2) = 1, which is
equivalent to increasing the count by one. The window size k specifies the number of tokens to be
considered in fuzzy matching.

3.3 Prediction of Generalized Induction head Model

By employing both the Infini-gram algorithm and Fuzzy Matching Model, GIM searches for the most
relevant match—either exact or fuzzy—within the preceding tokens given a query at the end of the
context (Fig. 3). Once a match is identified, it retrieves the token that followed the prior occurrence
as the next-token prediction. By explicitly modeling this process, our method provides a transparent
and controllable alternative to implicit in-context learning mechanisms in LLMs.

4 Results: Next-token Prediction for Language Modeling

4.1 Experimental Setup

Datasets & evaluation We use 4 text datasets for evaluation: BabyLM [68], OpenWebText [17],
Pile [69], and FineWeb ([70]; sample-10BT subset), using some as the reference corpus and some as
test datasets (Table 1). When testing, we report performance on 100k sequences randomly sampled
with a context length of 1024 and a stride of 512 [14, 27].4 We evaluate next-token prediction via
accuracy, i.e. whether the top-predicted token was the correct token.5

Baselines We compare against Infini-gram as our sole baseline, as it is the state-of-the-art n-gram
model and the only fully interpretable model with token-level attribution for generation. We found
that it consistently outperformed prior interpretable language models, e.g., a standard 5-gram model
based on OpenWebText achieves 26.4% accuracy in next-token prediction on the Pile-val, lower than
Infini-gram’s 27.1%. For a detailed discussion of interpretable frameworks, please refer to Sec. 2.

4The BabyLM test set contains fewer than 100k sequences, yielding approximately 32k and 34k cases for the
GPT-2 and LLaMA-2 tokenizers, respectively.

5We do not use perplexity, as the sparse next-token predictions from n-gram models often assign zero
probability to the top-ranked token, resulting in undefined or extremely high perplexity scores [14].
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Table 1: Next-token prediction accuracy (%) for language modeling. Gray shading represents
alignment between the reference corpus and the test dataset.

Reference Corpus Model Test Dataset

Type # of Tokens BabyLM-test FineWeb Pile-val

Tokenizer: GPT-2
- - GIM (exact) 36.7 17.2 37.0
- - GIM (fuzzy) 41.1 25.2 38.7

BabyLM-dev 17.4M Infini-gram 37.6 14.7 16.0
+GIM 42.2 (+4.6) 25.3 (+10.6) 40.0 (+24.0)

Pile-val 383M Infini-gram 16.6 20.1 -
+GIM 41.5 (+24.9) 25.5 (+5.4) -

OpenWebText 9.04B Infini-gram 16.7 25.5 22.7
+GIM 41.8 (+25.1) 27.2 (+1.7) 42.7 (+20.0)

Unknown ∼10B LLM (GPT-2) 46.9 39.0 52.3

Tokenizer: LLaMA-2
- - GIM (exact) 37.0 19.6 32.6
- - GIM (fuzzy) 42.7 28.3 38.5

BabyLM-dev 18.9M Infini-gram 39.0 17.1 13.2
+GIM 43.1 (+4.1) 28.6 (+11.5) 39.6 (+26.4)

Pile-val 394M Infini-gram 19.0 24.1 -
+GIM 42.9 (+23.9) 28.4 (+4.3) -

OpenWebText 10.3B Infini-gram 20.1 29.5 27.1
+GIM 43.2 (+23.1) 30.3 (+0.8) 42.1 (+15.0)

Pile-train 383B Infini-gram 33.5 39.3 49.2
+GIM 49.4 (+15.9) 38.0 (-1.3) 50.3 (+1.1)

Unknown ∼2T LLM (LLaMA2-7B) 62.2 57.1 64.4

Integrating GIM with Infini-gram For language modeling, we integrate GIM with Infini-gram,
enabling the use of both reference corpus statistics and in-context distributions:

P (y|x) =


P (exact)
∞ (y|x) n∞ > nx and n∞ > τ,

P (exact)
induction(y|x) nx ≥ n∞ and nx > τ,

P (fuzzy)
induction(y|x) Otherwise,

(5)

where n∞ and nx are the effective n when matching from a reference corpus or the input context,
respectively. When these values are low, fuzzy matching is employed to compensate for the limited
effective n. When the effective n values from both the input context and reference corpus are equal,
the estimate from the input context is prioritized. The hyperparameter τ determines how frequently
exact matching is used over fuzzy matching; we set τ to 8 and 9 for the GPT-2 and LLaMA-2
tokenizers, respectively, based on cross-validation results (see Appendix A.3 for details).

4.2 Improving Next-token Prediction Accuracy with Contextualization

Prediction performance of in-context matching GIM relies solely on the input context to predict
the next token (limited to 1024 tokens in our evaluation). Table 1 shows that, despite this, GIM
(exact) can outperform Infini-gram—which uses the OpenWebText dataset as a reference corpus,
comprising approximately 10B tokens when tokenized with LLaMA-2 and 9.04B with GPT-2—by a
margin of 5.5%p to 20%p on the BabyLM and Pile datasets. Infini-gram using BabyLM-dev as the
reference corpus slightly outperforms GIM (exact) on the BabyLM-test, with performance gaps of
0.9%p and 2.0%p for the GPT-2 and LLaMA-2 tokenizers, respectively, under the aligned setting of
reference corpus and input context. As shown in Fig. 4(a), Infini-gram (green) performs better in
cases with a high effective n, even surpassing LLM (blue). However, significantly more cases have
a low effective n (histogram), where GIM (exact) (orange) outperforms Infini-gram. This finding
underscores that in-context matching reflects the input query’s distribution, leading to more accurate
next-token predictions than reference matching, even when the reference corpus contains abundant
tokens, especially under distribution shifts between the reference corpus and the test input.
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Figure 4: Comparison of next token prediction accuracy on BabyLM-test dataset, depending on
effective n from (b) Infini-gram and (b) GIM (exact). LLaMA-2 tokenizer is used.
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Figure 5: GIM’s token-level attribution by tracing predictions to (a) exact or (b) fuzzy matches in
prior context. Yellow highlight shows the match, and red box marks the source of the final prediction.

Prediction improvements from GIM GIM (fuzzy), using Fuzzy Matching Model, consistently
outperforms GIM (exact) with a margin of 1.7%p to 8.7%p (Table 1). This improvement is particularly
evident in cases with low effective n. As illustrated in Fig. 4(b), the majority of cases within the input
context have low effective n (histogram), indicating that finding exactly matched long sequences
within the limited amount of tokens is challenging. Fuzzy matching helps to provide better estimations
for next-token predictions in these scenarios. Specifically, when the effective n is less than 3, GIM
(fuzzy) (yellow) demonstrates better performance than GIM (exact) (orange). Since many cases fall
into this range, the overall accuracy of GIM (fuzzy) is higher.

The improvements achieved through the use of induction and fuzzy matching enable Infini-gram with
GIM to outperform Infini-gram built on 383B tokens, improving performance by up to 15.9%p. While
enlarging the reference corpus boosts performance, GIM offers a more efficient alternative to scaling
from 10.3B to 383B tokens—a 38-fold increase. Moreover, GIM is a complementary approach that
can be applied orthogonally to Infini-gram, regardless of the size of the reference corpus.

4.3 Qualitative Example of GIM Prediction

Fig. 5 shows examples of explanations provided by GIM. In the first case, the prompt exactly matches
a 12-gram in the context, so GIM follows it to predict the next token. In the second, no exact match
exists for the prompt ending in “comes”, but GIM finds the most similar sequence ending in “coming”
and follows it for prediction. These cases illustrate how GIM predicts from retrieved sequences, with
transparency into which tokens contribute and how they are combined.

5 Results: Next-token prediction for fMRI Responses to Natural Language

Understanding how and where semantic information is represented across the human brain is a central
objective in neuroscience. In this work, we extend prior modeling frameworks that learn mappings
between natural language stimuli and corresponding neural responses across voxels, which are small
three-dimensional regions of the brain. [71, 43]
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5.1 Experimental setup

Figure 6: fMRI feature construction. (a) At each TR
t, we retrieve a prior TR t∗ with various matching
methods. (b) We extract the top 100 principal com-
ponents (PCs) of neural response changes before t∗.
(c) These are concatenated to interpolated Eng1000
embeddings for fMRI signal prediction at TR t.

We analyzed publicly available data6 from [72]
and [73], in which three human participants
listened to 20+ hours of English-laguage pod-
cast narratives while their fMRI responses were
recorded across 95,556 cortical voxels. Our
goal was to predict the brain response of each
voxel from the language input heard by the
participant7. We extracted text embeddings
from the input story, then fit linear models to
map these embeddings to fMRI responses on
the training split (24 stories), and evaluated
performance on the test split (2 stories) using
bootstrapped ridge regression. Embeddings are
extracted in various ways (described below) for
each word in the input, and then interpolated
to make predictions for the fMRI data that is
recorded at 2-second time of repetition (TR) intervals. To model temporal delays in the fMRI signal,
we add 4 time-lagged duplicates of the input features. See more fMRI details in Appendix A.6.

fMRI prediction baselines We use Eng1000 as our primary baseline, the state-of-the-art inter-
pretable model for predicting fMRI responses to narrative stories from a seminal study of language
selectivity [71]. Each element in an Eng1000 embedding corresponds to a co-occurrence statistic
with a different word. We also compare against LLaMA2-70B [74] embeddings, which achieve the
highest performance on this task [75] but are not interpretable. LLaMA embeddings are extracted
with a 16-word sliding window, using the final-layer embedding of the last token in each window.

GIM for fMRI prediction We construct our GIM for fMRI by searching the preceding story text
in an fMRI session for semantic matches and retrieving the changes in the recorded brain response
that follows each match. Specifically, to predict the fMRI response, Rt, for the TR t, we first find
the TR t∗ for which the text input yields the highest cosine similarity to the next-token distribution
of the text input at TR t− 1. Next, we isolate the change in fMRI responses following TR t∗: we
take the difference in the top 100 principal components of the response Rt∗ −Rt∗−1 and use them as
features. To deal with potential time delays in the fMRI signal, we additionally concatenate these
features with the top 100 principal components of Rt∗ −Rt∗−2 and Rt∗ −Rt∗−3. These features,
along with the interpolated Eng1000 embeddings, form the full input to the linear model predicting
fMRI response at TR t (see Fig. 6). When constructing the GIM for fMRI, we search over the most
recent 1024 words and their corresponding fMRI responses. To measure similarity between two texts,
we use the predicted next-word distributions yielded by GIM (exact) in the input context (P (exact)

induction in
Eq. (5)), which we call GIM matching.

Baseline matching methods We compare GIM matching against three baseline matching strategies.
First, we use the predicted next-word distributions yielded by exact n-gram matching in the 10B-
token OpenWebText reference corpus (P (exact)

∞ in Eq. (5)), which we call Infini-gram matching.
Second, Random matching selects a random preceding TR as a match. Third, Naive n-gram matching
searches for an exact match to the most recent 4-word n-gram in the input context, without relying
on predicted next-word distributions that our GIM matching method relies on. Table A6 shows
additional experiments with fuzzy matching methods that show little performance gain, likely due to
noise and temporal smoothing in fMRI signals that diminishes the advantage of fuzzy matching.

5.2 Prediction improvements from GIM matching

Table 2 shows the average correlation values across all voxels for each similarity model. Eng1000, the
primary interpretable baseline, achieved a mean test correlation of 0.072. In contrast, GIM matching

6https://github.com/OpenNeuroDatasets/ds003020
7We report results for subject UTS03 due to high fMRI data quality, including superior repeatability, minimal

motion, and strong encoding model performance [72].
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Table 2: fMRI test prediction performance for
different models. Black-box encodings use
LLaMA-2. Error bars show 95% CI.

Feature Model
Mean Correlation

All Top 10%
Voxels Voxels

Eng1000 0.072±0.0004 0.220±0.0012

+ Random matching 0.069±0.0003 0.197±0.0012
+ Naive ngram matching 0.068±0.0003 0.194±0.0012
+ Infini-gram matching 0.069±0.0003 0.200±0.0012
+ GIM matching 0.087±0.0005 0.265±0.0011

Black-box encodings 0.096±0.0005 0.268±0.0013

(a) Difference in Prediction Performance Between 
GIM Matching and Eng 1000 Baseline

(b) GIM Matching
Prediction Performance 

Voxel Prediction Performance
(Correlation)

Figure 7: (a) Difference in the correlation per-
formance between the GIM matching and the
Eng1000 baseline, visualized across the cortex.
(b) Correlation performance of GIM matching.

achieves a mean correlation of 0.087, a 20% improvement over Eng1000. When predicting the
top-10% of voxels, GIM Matching achieves a mean correlation of 0.265, again a 20% improvement
over Eng1000, and only 1% lower than the black-box LLaMA-2 model (mean correlation 0.268). In
contrast, other matching-based baselines are unable to improve over Eng1000: The Naive n-gram
matching baseline achieves a correlation of 0.068, and random matching achieves a correlation of
0.069.

Fig. 7 visualizes voxel-wise differences in test correlation performance between GIM matching and
the Eng1000 baseline across the cortex. In line with prior studies linking model performance to
functional localization [47, 45, 71, 43], GIM significantly improves prediction in regions highted in
red such as the Occipital Face Area (OFA) and Intraparietal Sulcus (IPS). These gains reflect GIM’s
use of contextual input, in contrast to the static embeddings used by Eng1000, and suggest that these
highlighted regions may contribute to contextual language processing.

Describing improvements from GIM To understand the improvements provided by matching, we
summarize the text for inputs where each matching procedure (GIM and Infini-gram) performs well.
We use an LLM to do the summarization, following recent works in LLM interpretability [76, 77].
We first identify phrases in the input story where a model’s performance (average absolute error
across voxels) exceeds the baseline performance by more than one standard deviation (see an example
in Fig. 8). Then, we prompt GPT-4 ([2]; gpt-4-0613) to generate descriptions for these phrases.

Fig. 8 presents the unedited LLM descriptions8. GIM matching is described as capturing Emotionally
or Narratively Critical Phrases, aligning with the idea that induction improves performance by
tracking local context in a story, e.g., phrases that “are critical to the plot and character development”.
In contrast, Infini-gram matching is described as capturing Brief, Stand-Alone Phrases, matching the
intuition that Infini-gram excels in capturing context that is not story specific, but “can stand alone
with minimal context”. To test these descriptions, we prompt GPT-4 to classify the identified phrases
in two test stories using only the descriptions. This yields 61% accuracy, a moderate but significant
improvement over chance (binomial test p = 0.032). See all phrases and prompts in Appendix A.6.

6 Discussion

GIM constitutes a significant step toward building mechanistically interpretable language models
inspired by pre-trained LLMs. Unlike black-box models or partially interpretable approaches, GIM
provides full transparency in next-token prediction while substantially narrowing the performance
gap between interpretable and black-box architectures across two diverse domains. Importantly, GIM
is not a general-purpose LLM or a tool to decode its internals; it isolates and reimplements a single
observed capability, induction via repetition, as a fully interpretable module. This shows that high-
performance behaviors implicitly learned by LLMs can be transparently reconstructed to advance

8Irrelevant preceding text such as “Sure here is the answer” is removed from the response.
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Figure 8: Qualitative illustration of how GIM and Infini-gram matching improve performance. (a)
Highlighted phrases in the input story where the model outperforms the baseline. (b) Summary
of the highlighted phrases by an LLM to characterize each matching method. (c) Classification of
highlighted phrases in test stories based on the LLM-generated summaries.

performance in the interpretable modeling space. The transparency of GIM makes it well-suited for
language modeling scenarios that require complete auditing, such as analyzing scientific texts or
medical notes [78]. GIM’s transparency also supports neuroscience research, as the fMRI analyses
conducted here are a suggestive starting point for understanding how context is stored and recalled in
the human cortex. GIM can further serve as a testbed for analyzing how context modulates the recall
of specific semantic categories, like people and places, across the cortex, extending prior work with
static embeddings [71]. Additionally, improvements from GIM Matching may help build encoding
models that can more rapidly adapt to local context, which can be used in downstream applications
such as brain decoding [73] or brain-computer interfaces [79].

GIM shows limited gains when the input context is short or uninformative. Its modular design enables
the available context to be expanded through retrieval-augmented generation [80] or external memory.
Like kNN-LMs [81], GIM’s n-gram-based reasoning also struggles with tasks requiring deeper
reasoning. Future work may explore hybrid approaches that pair GIM with black-box models for
better trade-offs. Our speculative decoding setup, where GIM serves as a transparent draft generator
verified by a larger LLM (Appendix A.5), illustrates one example in this direction. Another promising
direction is expanding GIM beyond induction heads, integrating additional mechanistic components
such as indirect object identifiers [42], numerical representations [82], retrieval heads [80], iteration
heads [83], concept-level induction heads [84], instruction-following heads [85], or interpretable
LLM submodules [86–88]. Finally, GIM’s ability to model context-dependent patterns makes it
well-suited for other sequential domains that require interpretability, e.g., it could be extended to
study long-range dependencies in electronic health records [89], audio/speech models [90, 91],
genomics [92] or financial time-series analysis [93].
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A Appendix

A.1 Impact Statement

We introduce the Generalized Induction-head Model (GIM), which improves the performance of fully
interpretable models while maintaining transparency, making interpretable models more viable for
high-stakes applications. For example, in medical note generation, interpretable models can enhance
transparency, enabling clinicians to audit AI-generated text and reduce the risk of hallucinations
or biased outputs. Additionally, GIM’s token-level grounding can improve fairness in language
models and mitigate bias in automated decision-making. GIM also achieved significant speedups
in speculative decoding compared to inference with LLaMA2-70B alone, making it suitable for
deployment in compute-limited settings (see Appendix A.5). Despite these advantages, GIM does
not fully close the performance gap with black-box models, particularly for tasks requiring extensive
reasoning or broad world knowledge. Its reliance on input context may also limit effectiveness in
some scenarios where high-quality data is not available.

A.2 Training of Fuzzy Matching Model

Architecture of Fuzzy Matching Model We train two Fuzzy Matching Models, one using the
GPT-2 tokenizer and the other using the LLaMA-2 tokenizer. With GPT-2 tokenizer, Fuzzy Matching
Model consists of four transformer layers, whereas it comprises three transformer layers when using
LLaMA-2 tokenizer. Since relative position is crucial for calculating similarity, we incorporate
Relative Positional Encoding [94], with a maximum relative position of 32 for the GPT-2 tokenizer
and 64 for the LLaMA-2 tokenizer. The vocabulary embeddings are initialized with those from
GPT-2 and LLaMA2-7B, ensuring that the number of heads and embedding dimensions align with
the specifications of GPT-2 and LLaMA2-7B.

Creating similarity pair with LLMs For both Fuzzy Matching Model, we use LLaMA2-7B as
a teacher model. OpenWebText and Pile-train9 datasets for training each Fuzzy Matching Model
that use GPT-2 or LLaMA-2 tokenizer. During training, we randomly sample sequences of 32 or 64
tokens with batch size of 128 or 256, resulting in 4,096 or 16,384 next-token prediction probabilities
per batch. From these, we sample distant 3,584 or 4,096 queries and 512 keys and create similarity
pairs (3, 584× 512 or 4, 096× 512) by calculating similarity based on Equation (5). The models are
trained using a combination of CE loss and reverse KLD loss, with equal weights (1.0). We adopt
most of the training settings from the codebase10 for training. Gradients are accumulated over 16
iterations, and we use the AdamW optimizer [95] with a learning rate of 0.0001 and a weight decay
of 0.1. The learning rate follows a cosine schedule with a warmup over the first 1,000 iterations,
and training continues for 15,000 or 20,000 iterations. Training is conducted on four NVIDIA A100
GPUs.

Ablation study on Fuzzy Matching Model training We conduct an ablation study on the positional
encoding strategy and training process of Fuzzy Matching Model using the OpenWebText dataset to
distill it from LLaMA-2-7B. The study evaluates the contributions of Relative Positional Encoding,
reverse KLD loss, and CE loss to the model’s effectiveness. As shown in Table A1, next-token
prediction accuracy improves significantly when both reverse KLD and CE losses are included,
demonstrating their complementary roles in optimizing the Fuzzy Matching Model. With CE loss,
Forward KLD loss is less effective than reverse KLD loss. Furthermore, using Relative Positional
Encoding instead of Sinusoidal Positional Encoding leads to better performance, highlighting the
advantages of incorporating relative positional information for enhanced fuzzy matching capabilities.

We also perform an ablation study on the training data. Table A2 shows that the performance
difference between OpenWebText and Pile-train is minimal. When trained on Pile-of-Law [96], a
more domain-specific corpus, Fuzzy Matching Model exhibits slightly lower performance. This
suggests that domain specificity may slightly limit the generalization ability of the fuzzy matching
module. Nevertheless, the approach remains robust even with more domain-specific training data.

9https://huggingface.co/datasets/monology/pile-uncopyrighted
10https://github.com/karpathy/minGPT
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Table A1: Ablation study on training of Fuzzy Matching Model. Next-token accuracy (%) of GIM
(fuzzy) on the BabyLM-test is reported. LLaMA-2 tokenizer is used.

Positional Encoding Reverse KLD loss Forward KLD loss CE loss Accuracy

Relative ✓ ✓ 43.2
Relative ✓ ✓ 42.8
Relative ✓ 42.7
Relative ✓ 41.9

Sinusoidal ✓ ✓ 37.0

Table A2: Ablation study on training Fuzzy Matching Model with different datasets. Next-token
accuracy (%) of GIM (fuzzy) on the BabyLM-test is reported. LLaMA-2 tokenizer is used.

Dataset Accuracy

OpenWebText 43.2
Pile-train 42.7

Pile-of-law 41.8

A.3 Determination of τ

To build GIM by integrating the three types of estimations, we first need to determine the threshold
for effective n, denoted as τ . To identify the optimal value of τ , we conducted cross-validation
using the BabyLM training set (100M tokens). BabyLM consists of six datasets: open_subtitles,
bnc_spoken, gutenberg, childes, simple_wiki, and switchboard. Since switchboard con-
tains only 2M tokens, we exclude it from the experiment. For the remaining datasets, we use each
dataset as a validation set, while the other four are used as the reference corpus to build Infini-gram.
We then compare the performance changes of Infini-gram, GIM (exact), and GIM (fuzzy) depending
on effective n. 10k samples are used for evaluating on each dataset.

As shown in Figure A1, Infini-gram outperforms GIM (exact) when the effective n exceeds 8 for the
GPT-2 tokenizer and 9 for the LLaMA-2 tokenizer. Therefore, we set τ to 8 and 9 for the respective
tokenizers.

Tokenizer: GPT-2 Tokenizer: Llama-2

Model

Figure A1: Comparison of next-token accuracy.

A.4 Language Modeling Results Extended

Experimental details We use diverse datasets as reference corpus for Infini-gram. We use Infini-
gram that is released by authors11 for Pile-train12 and Pile-val13. For BabyLM-dev and OpenWebText,

11https://infini-gram.io/api_doc.html
12v4_piletrain_llama
13v4_pileval_llama and v4_piletrain_gpt2
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Table A3: Ablation study on components of Infini-gram with GIM. Next-token accuracy (%) on
BabyLM-test is reported.

Reference Corpus BabyLM-dev Pile-val OpenWebText Pile-train

Infini-gram with GIM 43.1 42.9 43.2 49.4

w/o GIM (fuzzy) 42.2 36.9 38.3 46.6
w/o GIM (exact) 43.0 42.8 43.1 49.3
w/o Infini-gram 42.9

Infini-gram 39.0 19.0 20.1 33.5

Table A4: Speed of speculative decoding (SP). Accept. denotes the acceptance rate (%). The mean
and standard deviation of 3 runs are reported.

Draft Model Large Model SP BabyLM-test Pile-val

Accept.
rate (%)

Speed Accept.
rate (%)

Speed

ms/token (↓) Up (↑) ms/token (↓) Up (↑)

A
40
×

1

LLaMA2-7B 30.2±0.0 30.2±0.1
TinyLLaMA-1.1B LLaMA2-7B ✓ 78.7±0.5 21.3±0.0 1.42 78.3±0.1 21.3±0.6 1.42
GIM (fuzzy) LLaMA2-7B ✓ 74.9±1.1 17.7±0.7 1.71 71.2±0.5 20.1±0.4 1.50

LLaMA2-13B 52.4±0.0 52.0±0.2
TinyLLaMA-1.1B LLaMA2-13B ✓ 78.2±0.0 26.7±0.5 1.96 77.6±0.1 26.3±0.5 1.98
GIM (fuzzy) LLaMA2-13B ✓ 73.5±0.1 24.8±0.1 2.11 69.8±0.2 27.8±0.1 1.87

H
10

0×
2

LLaMA2-13B 26.4±0.1 26.3±0.4
LLaMA2-7B LLaMA2-13B ✓ 78.9±0.0 24.7±0.0 1.07 78.6±0.0 25.1±0.3 1.05
TinyLLaMA-1.1B LLaMA2-13B ✓ 78.3±0.1 20.7±0.1 1.28 77.6±0.1 21.5±0.1 1.22
GIM (fuzzy) LLaMA2-13B ✓ 73.2±0.3 13.3±0.2 1.98 69.9±0.1 14.9±0.1 1.77

LLaMA2-70B 71.2±0.1 71.0±0.2
LLaMA2-7B LLaMA2-70B ✓ 77.2±0.2 38.3±0.5 1.86 77.8±0.2 37.4±0.3 1.90
TinyLLaMA-1.1B LLaMA2-70B ✓ 75.5±0.1 35.3±0.2 2.02 76.3±0.4 33.9±0.6 2.10
GIM (fuzzy) LLaMA2-70B ✓ 68.5±0.6 31.4±0.7 2.27 66.6±0.6 33.3±0.6 2.13

we build our own Infini-gram. We use public code to build and inference Infini-gram14 and GIM
(exact)15. During inference, the maximum length for exact matching with Infini-gram is 500, and we
use window size k for fuzzy matching as 32 and 64 for GPT-2 and LLaMA-2 tokenizers, respectively.

Ablation study on Infini-gram with GIM We conduct an ablation study to assess the impact of
each component in Infini-gram with GIM. Table A3 reports next-token accuracy when individual
components are omitted. Excluding GIM (fuzzy) results in a more significant performance drop
than removing GIM (exact). This underscores the importance of fuzzy matching in handling diverse
contexts and improving adaptability, as reflected in Table 1, where GIM (fuzzy) outperforms GIM
(exact). Since both components act as induction heads, they exhibit complementary roles—when
one is removed, the other partially compensates for its absence. Only when using Pile-train as a
reference corpus, omitting Infini-gram leads to the most substantial performance decline. It is worth
noting that when the reference corpus lacks similarity to the test dataset’s distribution (e.g., Pile-val,
OpenWebText, and Pile-train), the performance of Infini-gram falls significantly below the scenario
where it is not utilized at all. This highlights the sensitivity of Infini-gram to the quality and relevance
of the reference corpus.

A.5 Speculative Decoding

GIM offers both interpretability and efficiency. When combined with LLMs in speculative decoding,
it enhances prediction accuracy while significantly boosting inference speed.

14https://infini-gram.io/pkg_doc.html
15https://github.com/AlexWan0/infini-gram/tree/main
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Table A5: Speed of speculative decoding (SP). The mean and standard deviation of 3 runs are
reported.

Draft Model Large Model SP BabyLM-test Pile-val FineWeb

ms/token (↓) Speed Up (↑) ms/token (↓) Speed Up (↑) ms/token (↓) Speed Up (↑)

LLaMA2-13B 26.4±0.1 26.3±0.4
GIM (fuzzy) LLaMA2-13B ✓ 13.3±0.2 1.98 14.9±0.1 1.77 14.9±0.3 1.76
GIM LLaMA2-13B ✓ 23.1±0.4 1.14 22.8±0.3 1.15 23.0±0.7 1.14

LLaMA2-70B 71.2±0.1 71.0±0.2 71.1±0.2
GIM (fuzzy) LLaMA2-70B ✓ 31.4±0.7 2.27 33.3±0.6 2.13 33.2±1.0 2.15
GIM LLaMA2-70B ✓ 42.0±0.7 1.70 41.6±1.0 1.71 40.4±1.2 1.76

Experimental details To evaluate the efficiency of GIM (fuzzy), we compare the inference time for
speculative decoding with TinyLLaMA16 and LLaMA2-7B [74]. We evaluate speculative decoding
by generating up to 1024 tokens, using a prefix of 1024 tokens. The speed of decoding may vary
depending on the computational environment. To ensure robust evaluation across different setups, we
conduct experiments in two environments: one with a single NVIDIA A40 GPU and 128 CPU cores,
and another with two NVIDIA H100 GPUs and 64 CPU cores. Greedy sampling is used for token
generation, and each experiment is repeated three times with different random seeds.

Induction improves speculative decoding performance Table A4 demonstrates the speed-up
effect of speculative decoding with GIM (fuzzy). GIM (fuzzy) relies solely on the induction power
derived from the input context to predict the next token, leading to lower acceptance rates compared
to LLMs. Despite this, its inference speed is remarkably fast, and it often matches the predictions of
large models. As a result, the speed improvement can exceed 2× compared to using LLaMA2-70B
alone. In most cases, GIM (fuzzy) achieves even greater speed gains than when using an LLM as a
draft model for speculative decoding.

Additionally, we would like to note that speculative decoding with GIM (fuzzy) and a pretrained
LLM not only accelerates the inference speed of the pretrained model but also enables explainable
predictions based on the given input context. When accurate predictions can be made through
interpretable methods, we utilize this process for interpretability. In more challenging cases, we rely
on a larger model that, while less interpretable, delivers better performance for accurate predictions.
Thus, this approach provides a balanced method that addresses both interpretability and accuracy, in
addition to enhancing efficiency.

Table A5 reports the inference times for GIM (fuzzy) and GIM using speculative decoding, with
the OpenWebText dataset serving as the reference corpus for Infini-gram. We find matches with
a maximum of 64 tokens for both exact and fuzzy matching. The experiments are conducted on
two NVIDIA H100 GPUs and 64 CPU cores. Although GIM requires more time for generation on
average than GIM (fuzzy), it still significantly reduces inference time compared to relying solely on a
large model for inference.

Explanation Figure A2 presents several examples of explanations provided by GIM. Even if an
exact match fails to yield a good match, when the probability of subsequent tokens is similar, the
fuzzy matching model can predict with high similarity, enabling successful fuzzy matching, enabling
successful fuzzy matching, and improving next-token prediction.

A.6 fMRI results extended

Data details We analyze publicly available data collected from prior work [72, 73]. Methods from
the previous study are summarized here for completeness. Functional magnetic resonance imaging
(fMRI) data was recorded from three healthy participants as they listened to English-language podcast
stories over Sensimetrics S14 headphones. Participants were only instructed to listen to the stories.
No explicit behavioral responses were required.

For the collection of training data, each participant completed approximately 20 hours of listening
sessions across 20 separate sessions in which unique stories were presented. This produced 33,000

16https://huggingface.co/TinyLLaMA/TinyLLaMA-1.1B-intermediate-step-1431k-3T
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GIM (exact)

GIM (fuzzy)

“... PG70358 = = = \nBUNNY BROWN AND HIS SIST”

“ER”(a) Input Prompt: “... _Frontispiece_--(_Page 61_)] \nBUNNY BROWN AND HIS 

Sequence from Context
ER

Next Token
13

Effective n

“t”

“... out in a friendly voice:\n"Will you, won't you, will you, won'”

(b) Input Prompt: “... Then the chorus: "Will you, won't you, will you, won'”

Sequence from Context
t

Next Token
13

Effective n

“it”

“... What's Lincolnshire gotta do with it? \nBecause he says”
“... God that wind's gone cold! \nI say”
“... Well he don't know anything about gardening, you see! \nBut”
“... What's Lincolnshire gotta do with it? \nBecause”
“... I don't know why”

(c) Input Prompt: “... Because he says it's Lincolnshire ! \nNo, he didn't! \nHe said”

Sequence from Context
it

that
I
he
!

Next Token
0.680
0.210
0.203
0.186
0.179

Similarity

“week”

“... And I was running it and the first”
“... who's erm sixty odd and he comes in here every”
“... And I was running it and the first week I got there, and one”
“... So I taught him that the first”
“... we had to cancel because nobody turned up.\nEr one”

(d) Input Prompt: “... So I taught him that the first week, and the second”

Sequence from Context
week
day
gu

week
of

Next Token
0.098
0.087
0.053
0.042
0.035

Similarity

Figure A2: Examples of explanation of GIM from BabyLM-test. (a) and (b) show examples of exact
matching while (c) and (d) show examples of fuzzy matching. The red box marks the source of the
final prediction.

timepoints per voxel across the entire human cortex. For testing data collection, participants heard
two-held-out stories five times each and a third story ten times (one story per session). These
repeated measurements were averaged to improve reliability. Signal-to-noise ratios for each voxel
were estimated using the mean-explainable variance approach from [97]. Analysis was restricted to
voxels that were located within 8mm of the cortical mid-surface, yielding about 90,000 voxels per
participant.

All participants were healthy adults with normal hearing and gave written informed consent. The
study protocol was approved by the Institutional Review Board of the University of Texas at Austin.
The scans were acquired on a 3 T Siemens Skyra MRI system at the University of Texas at Austin
using a 64-channel Siemens head coil. Functional images were obtained with a gradient-echo EPI
sequence (TR = 2.0 s, TE = 30.8 ms, flip angle = 71°, multi-band factor = 2, voxel size = 2.6 mm ×
2.6 mm × 2.6 mm, matrix size = 84 × 84, field of view = 220 mm). Anatomical scans were collected
using a T1-weighted multi-echo MP-RAGE sequence with 1 mm isotropic voxels, following the
standard Freesurfer morphometry protocol [98].

Functional data was preprocessed with FSL 5.0 using the FMRIB Linear Image Registration Tool
(FLIRT) for motion correction and alignment. Each participant’s runs were registered to a subject-
specific template built from the first functional run of the first session, with all automated registrations
manually verified for accuracy. Low-frequency signal drifts were removed using a second-order
Savitzky–Golay filter with a 120 s window. To mitigate onset artifacts and detrending issues near
scan boundaries, 20 s (10 volumes) were discarded from both the start and end of each run. This
eliminated the initial silent period and the first and last 10 s of each story. Each voxel’s mean response
was then subtracted, and the remaining signal was normalized to unit variance.

To ensure temporal alignment between linguistic and neural data, word onset times were interpolated
to the fMRI sampling rate using Lanczos interpolation with a window size of 3. The hemodynamic
response was modeled as a finite impulse response (FIR) with four time lags (−8, −6, −4, and −2 s),
following the approach of [71]. For every subject x, voxel v, we fit an encoding model g(x,v) to
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Table A6: fMRI Prediction Performance when using fuzzy matching. Error bars show 95% CI.

Feature Model Tokenizer Matching Model Mean Correlation

All Voxels Top 10% Voxels

Eng1000 - - 0.072± 0.0004 0.220± 0.0012
Infini-gram + Eng1000 GPT-2 - 0.069± 0.0003 0.200± 0.0012
GIM Matching + Eng1000 GPT-2 - 0.087± 0.0005 0.265± 0.0011

Fuzzy Induction Matching + Eng1000 GPT-2 GPT-2 0.076± 0.0004 0.222± 0.0011
Fuzzy Induction Matching + Eng1000 LLaMA-2 LLaMA2-70B 0.076± 0.0004 0.225± 0.0012
Fuzzy Induction Matching + Eng1000 GPT-2 Fuzzy Matching Model 0.076± 0.0004 0.216± 0.0011
Fuzzy Induction Matching + Eng1000 LLaMA-2 Fuzzy Matching Model 0.077± 0.0004 0.223± 0.0012

predict the BOLD response B̂ from the embedded stimulus, i.e. B̂(x,v) = g(x,v)(Hi(S)). Model
evaluation was performed on the held-out test stories, using the trained encoding models to predict
and assess voxel responses.

fMRI fuzzy induction head settings Similar to the GIM Matching technique described in Sec. 5.1,
we construct an induction head for fuzzy matching. In the fuzzy setting, we leverage the predicted
next-word distributions obtained through fuzzy n-gram matching in the input context (P (fuzzy)

induction
in Equation (3)), which we refer to as Fuzzy Induction Matching. Specifically, we calculate the cosine
similarity between the next-word distributions of the current word and all prior candidate words.

To account for the temporal resolution of fMRI, we apply Lanczos smoothing to the word-level
similarity values, aligning these values with the fMRI time scale. This allows us to identify the time
point (TR) t∗ that maximally corresponds to the current time point t based on the highest similarity.

We evaluate several configurations for deriving the next-word distributions, including GPT-2, LLaMa-
2, the Fuzzy Matching model with the GPT-2 tokenizer, and the Fuzzy Matching Model with the
LLaMA-2 tokenizer. See more details on Fuzzy Matching models in Sec. 3.2.

Extended prediction performance results The prediction performance of Fuzzy Induction Match-
ing Models is compared to the performance of the GIM Matching Models and the Eng1000 baseline
in Table A6. The Fuzzy Induction Model, in its highest-performing configuration (using the Fuzzy
Matching Model with the LLaMa2-70B tokenizer), achieves only a 6.94% improvement in prediction
performance compared to the Eng1000 baseline. The lower relative performance of Fuzzy Induction
Matching compared to GIM Matching may be due to the inherent noise and lower spatial and temporal
resolution of fMRI data, which makes it challenging to detect subtle differences in neural activations
associated with similar but non-identical stimuli.
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Table A7: GPT-4 Prompts for Generating and Classifying Categories of Text. Ellipses (...) indicate
omitted portions of the full prompts.

Title Prompt

GPT-4 Prompt for Generating Category De-
scriptions

I have provided two test stories below. Specific phrases from
each story have been picked out based on the performance of
different encoding models. Can you describe the characteristics
of the words and phrases that each category contains? Be specific
about the type of words, their context in the story, and any other
relevant commonalities. Write succinct descriptions for each
category that would allow one to categorize phrases in other such
stories accurately.
Category A: [’sh first she digs into her cutoffs in the’, ’both need
this right now i’, ... ]
Category B: [’to everything or you make yourself scarce’, ’my
cigarettes and uh’, ...]
Full Story: [[’i reached over and secretly’], [’undid my seatbelt’],
...]

GPT-4 Prompt for Classifying Stages Based
on Descriptions

I have attached category descriptions below. Based on the de-
scriptions, in order, go through each short list of words (short
phrase) in the story at the end and classify the segments into one
of the categories. Rather than listing all the phrases in a category
at a time, list each phrase in order and label it as belonging to
category A or B.
Category A: Emotionally, or Narratively Critical ...
Category B: Brief, Stand-Alone Phrases ...
Full Story: [[’i reached over and secretly’], [’undid my seatbelt’],
...]
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Figure A3: Test story 1 (Where’s There’s Smoke), highlighted in regions where the Infini-Gram
matching and GIM matching models exceed baseline performance, measured by the average absolute
error across voxels, by more than one standard deviation.
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Figure A4: The first section of test story 2 (Have You Met Him Yet), highlighted in regions where the
Infini-Gram and GIM matching models exceed baseline performance.
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Figure A5: The second section of test story 2 (Have You Met Him Yet), highlighted in regions where
the Infini-Gram and GIM matching models exceed baseline performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We reviewed the abstract and introduction to ensure they accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included all necessary information to reproduce the experimental results in
the main text and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We included the URL to the publicly available code in the main text. Addition-
ally, experimental details are demonstrated in the main text and the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specified all details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We added error bars in plots or reported standard deviations in tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We included the information on the computer resources in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read through the Code of Ethics and confirmed that our research
conforms to them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed broader impacts in the Appendix and limitations in the Discussion
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We included citations for all cited papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not introduce any new assets in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include such experiments or researches.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not encompass such potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

31



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not employed for purposes integral to the central aspects of this
research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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