
Real-time Alignment for Connectomics

Neha Goyal1, Yahiya Hussain1, Gianna G. Yang1, and Daniel Haehn1

University of Massachusetts - Boston, Boston MA 02125, USA

Abstract. In Connectomics, researchers are creating the brain’s wiring
diagram at nanometer resolution. As part of this processing workflow,
2D electron microscopy (EM) images must be aligned to 3D volumes.
However, existing alignment methods are computationally expensive and
can take a long time. We hypothesize that adding biological features im-
prove and accelerate the alignment procedure. Since especially mitochon-
dria can be detected accurately and fast, we propose a new alignment
method, MITO, that uses these structures as landmark points. With
MITO, we can decrease the alignment time by 27%, and our experi-
ments indicate a throughput of 33 Megapixels/sec, which is faster than
the acquisition speed of current microscopes. We can align an image vol-
ume of 1268×1524×160 voxels in less than 12 seconds. We compare our
method to the following feature generators: ORB, BRISK, FAST, and
FREAK.
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1 Introduction

Connectomics studies the functional and structural connections of a brain to
understand the correlation between the physiology of the brain and its behav-
ior. This correlation will help better treatment solutions, design new drugs for
mental pathologies, construct custom neural prostheses, etc. Therefore, a regis-
tration process is required to map every synaptic connection to build a computer-
generated brain wiring diagram. When needed, the image registration process is
necessary to map the similarities between images acquired at different times or
across other subjects by various sensors. Moreover, image registration is a crucial
processing step in various other bio-medical image applications. In this study, we
used diamond-knife-sliced electron microscopy (EM) images that provide high
resolution such that individual synaptic connections between neurons are visible.
We hypothesize to align these images by adding biological features can improve
state-of-the-art registration methods. We have used a feature extraction model
that follows four steps: feature detection, feature extraction, feature matching,
and estimating the transformation matrix. Using the biological features, we get
faster real-time alignment performance.

2 Methods

We used unaligned two-dimensional EM images with nanometer resolution, and
the corresponding mitochondria mask data as labeled data. The original dataset
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is called Lucchi++ and was the result of the study ‘Fast Mitochondria Detection
for Connectomics [1].’ This dataset included two stacks: image and mask of
160 tiles, each having 768 × 1024 px. We created the unaligned dataset from
the original by rotating each image tile and its corresponding mask tile at an
arbitrary angle between (−π,+π) and added a pad size of 250 px on all the sides
to prevent information loss at the time of rotation. The new unaligned dataset
has two stacks: image and mask, with 160 tiles and dimensions 1268× 1524 px.

Fig. 1. Mapping of input images with and without adding the biological
features. The unaligned input EM images (left) were mapped in real-time with and
without adding the biological features (mask data). We generated a stack of aligned
images (right) as output in both the cases to draw comparisons.

We performed an automatic registration on the unaligned EM images using
a custom-build interactive program that runs the feature extraction model and
calculates alignment score, execution time, and throughput for the entire dataset.
This model used existing computer vision algorithms such as FAST[6], ORB[2],
BRISK[3] to learn the features or patterns from the input dataset. We propose a
new feature detector mechanism called MITO that detects the keypoints in EM
images using mitochondria from mask images as a region of interest (ROI). In
this feature detection step, we introduced mask images as additional biological
features to improve the alignment performance. In the feature description step,
the model uses ORB, BRISK, and FREAK[4] algorithms to create descriptors
that are unique and could be referred to as a keypoint’s numerical fingerprint. In
the next step, we used feature matching algorithms such as BF[8] and FLANN[9]
matcher to map (xi, yi) of the source image to (x

′

i, y
′

i) of the target image. Finally,
with the help of the homography matrix, the model transforms the source image
and outputs the aligned image. We generated two stacks of registered images
with and without the help of mitochondria masks for comparisons (see Fig.1).
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3 Results

We perform experiments on the unaligned Lucchi++ dataset to measure timing
and alignment accuracy. When we combine biological features using the MITO
method with the BF and FLANN matchers, we observe a maximum execution
time of 9.49 (+-0.37) seconds for the whole stack. When comparing the accuracy,
we measure a dice score of over 0.89 for both BF and FLANN, indicating qual-
ity alignment. The average throughput with MITO is at least 33 Megapixels/s
which is faster than the acquisition speed of modern electron microscopes (11
Megapixels/s). Our findings indicate that MITO can be used to align connec-
tomics image data in real-time during image acquisition. Table 1 shows the full
evaluation.

Table 1. Alignment Results on Lucchi++. We compare the BF and FLANN
matchers with a variety of feature descriptors. When using the MITO detector, we
measure the throughput of at least 33 Megapixels/s, indicating real-time performance.

Matcher Detector + Descriptor Mask Dice Score Execution Time (sec.) Stack Throughput (MP/sec)

BF

BRISK
0.9354 47.0052(±1.5173) 6.7879(±0.2170)

✓ 0.8569 19.3020(±0.2625) 16.5210(±0.2256)

ORB
0.7529 19.4427(±1.8462) 16.4941(±1.4953)

✓ 0.8226 20.4218(±0.5493) 15.6208(±0.4259)

FAST + BRISK
0.9184 2419.9270(±99.9857) 0.1319(±0.0053)

✓ 0.8762 28.4635(±1.2776) 11.2167(±0.4908)

ORB + BRISK
0.6291 16.3020(±1.4923) 19.6693(±1.8124)

✓ 0.7935 16.9687(±1.6858) 18.9180(±1.9290)

FAST + FREAK
0.9405 2391.9479(±137.7484) 0.1335(±0.0074)

✓ 0.9140 25.1302(±0.5) 12.6912(±0.2498)

ORB + FREAK
0.8320 16.6458(±1.8088) 19.2979(±1.9733)

✓ 0.7637 16.8072(±0.1365) 18.9718(±0.1545)

MITO(ours) + BRISK ✓ 0.9142 7.7708(±0.0888) 41.035(±0.4713)

MITO(ours) + FREAK ✓ 0.8963 8.3697(±0.0888) 38.0983(±0.4027)

FLANN

BRISK
0.9344 40.1145(±0.9393) 7.9514(±0.1887)

✓ 0.8338 19(±2.4111) 16.9513(±2.0058)

ORB
0.8069 19.3802(±1.2145) 16.4941(±0.9979)

✓ 0.8280 20.6875(±1.1149) 15.4417(±0.8082)

FAST + BRISK
0.9338 3082.2343(±130.2627) 0.1035(±0.0043)

✓ 0.8784 29.6041(±0.2350) 10.7709(±0.0856)

ORB + BRISK
0.6297 16.9322(±1.7772) 18.9655(±1.9261)

✓ 0.7648 15.2031(±1.1735) 21.0579(±1.6571)

FAST + FREAK
0.9450 2628.3229(±32.5343) 0.1213(±0.0015)

✓ 0.9091 31.4166(±4.7502) 10.2940(±1.4380)

ORB + FREAK
0.8285 16.2812(±0.0563) 19.5841(±0.0676)

✓ 0.7402 17.2083(±1.2107) 18.5882(±1.2665)

MITO(ours) + BRISK ✓ 0.9062 9.2239(±0.7265) 34.7050(±2.6154)

MITO(ours) + FREAK ✓ 0.8928 9.4843(±0.3694) 33.6528(±1.3213)
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4 Conclusion

Fast registration is crucial to creating 3D volumetric connectomics datasets from
unaligned EM images. This process can be computationally expensive. Based on
our studies, adding biological features to register these images results in faster
alignment. Specifically, we include mitochondria masks as part of our MITO
feature detector. With MITO, the overall dice score is higher than 0.80, and
the throughput is faster than 11 Megapixels/s. These measurements indicate
the possibility of real-time alignment during the image acquisition with modern
electron microscopes.
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